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Abstract

Polymorphonuclear neutrophils (PMNs) are the most abundant leukocytes in the blood 
and are considered as the first line of innate immune defence against infectious  diseases. 
However, PMN cells have a crucial function in both innate and adaptive immune responses. 
Neutrophils have several mechanisms to control pathogens, and one of them is their capa-
bility to form neutrophil extracellular traps (NETs) that may control infection. NETs have 
the capacity to trap microorganisms, kill them, or avoid their  dissemination. The aim of this 
chapter is to provide a comprehensive review on NETs, the cells that produce them, and 
some of the mechanisms involved in their formation, their role in the immune response, 
and the pros and cons of NETs, focusing mainly on infectious diseases.

Keywords: neutrophil extracellular traps (NETs), neutrophils, bacteria, viruses, 
infectious diseases

1. Introduction

The polymorphonuclear neutrophils (PMNs), first reported by IIya IIych Mechnikov,  better 
known as Élie Metchnikoff, are the most abundant leukocytes (60%) in the blood. These 
PMNs are considered as the first line of innate immune response against infectious agents [1]. 
Later on, Carl Friedrich Claus suggested the term of phagocytosis for the function of these 
cells. Studies aimed at the fully understanding of their properties and functions in control-
ling a variety of pathogens are still in progress. Research on neutrophils has focused on their 
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phagocytic  capacity and, more recently, on their role as neutrophil extracellular traps (NETs) 
forming cells, in innate and adaptive immunity.

When neutrophils fail to kill invading pathogens by the classical phagocytosis mechanism, 
PMNs can accomplish this function by neutrophil extracellular traps (NETs), a process 
reported as a novel form of cell death called NETosis, which is dependent of the generation of 
reactive oxygen species [2–5]. Neutrophils forming NETs have been demonstrated by activat-
ing neutrophils with phorbol myristate acetate (PMA), interleukin 8 (IL-8), lipopolysaccha-

ride (LPS), or under contact of neutrophils with Gram-negative and Gram-positive bacteria.

NETosis induction has also been described for viral infections, and some of the signaling 
pathways involved have been analyzed, finding the involvement of pathogen-associated 
molecular patterns (PAMPs), TLR-4, TLR-7, and TLR-8. Rodríguez-Espinosa et al. have shown 
that NETs formation takes place in two separate metabolic steps: the first one involves chro-

matin decondensation, which is independent of external glucose and glycolysis, whereas the 
second, which involves the chromatin release, is a process that is dependent on external glu-

cose and glycolysis [6].

2. Understanding the process of NETs formation

The neutrophil extracellular traps (NETs) structures were described as another type of neutro-

phil cell death, different from apoptosis and necrosis. The research field on NETs has steadily 
been growing since 2004, when Brinkmann et al. reported for the first time this new func-

tion of activated neutrophils, demonstrating, by electron microscopy, that, when  neutrophils 
are in the presence of bacteria, fungi, protozoa, or viruses, they acquire the capacity to form 
 fibrillary structures, resembling nets or webs. These structures are composed mainly of nuclear 
 material, chromatin fibers with diameters of 15–17 nm containing DNA decorated with neu-

trophil elastase (NE), myeloperoxidase (MPO), cathepsin G, proteinase 3 (PR3), high-mobility 
group protein B1 (HMGB-1), tryptase or antimicrobial peptide LL37, histones, and cytoplas-

mic proteins such as histones H1, H2A, H2B, H3, H4, G, lactoferrin, and gelatinase, among 
others [7].

Two mechanisms for the formation of NETs have been described: the suicide or lytic and 
vital NETosis [8]. In the first case, NETs release results from the activation of PMN by IL-8 
or  chemical compounds, such as phorbol myristate acetate (PMA). PMA activates neutro-

phils through the protein kinase C (PKC) and follows the Raf-MEK-ERK mitogen-activated 
protein kinase signaling pathway; the enzyme nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase induces the translocation of elastase from the cytosolic granules to the 
inner nucleus, helping the rupture of the chromatin through histones. Induction of NETs with 
PMA by this mechanism can be observed from 30 min post-activation and, by 6–8 h post-
activation, a high number of extracellular traps (ETs) are well formed (Figure 1).

In contrast, vital NETosis has been demonstrated following pathogen recognition by host pat-
tern recognition receptors (PRRs). Gram-negative bacteria products, such as lipopolysaccharide 
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(LPS), activate neutrophils, by the ligation of TLRs (TLR-4 in the case of LPS), inducing the 
liberation of NETs. In the case of Gram-positive bacteria, the complement receptor 3 (CR3) and 
TLR-2 are required to induce vital NETosis; platelets are also inducers of vital NETosis, through 
CD11a. This mechanism maintains the external membrane integrity and thus the function of 
neutrophils, until cells are devoid of nucleus [7, 8].

A third mechanism for the induction of NETs, recently reported, is through autophagy [9, 10]. 
It is worth mentioning that neutrophils are not the only cells that form extracellular traps 
(ETs), and other immune cells, such as mast cells, eosinophils, and macrophages, can also 

Figure 1. Human peripheral blood neutrophils non-activated and activated with PMA (100 ng/ml) for different lengths 
of time. Neutrophil extracellular traps formation starts by 30 min post-activation; extracellular traps are more extended 
by 6 h post-activation (photographs taken by Moreno-Altamirano).
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release ETs. Although the molecular principles underlying the formation of ETs by mast cells 
[11], eosinophils [12], and monocytes/macrophages [13] are similar to those observed in neu-

trophils, there are some notable disparities. The most remarkable mechanism of ET formation 
has been described in eosinophils. In these cells, ETs are formed by both nuclear and mito-

chondrial DNAs, in a reactive oxygen species (ROS)-dependent manner.

Neutrophil extracellular traps are able to capture microorganisms trap microorganisms, kill-
ing them or not, this much depends on the type of pathogen involved. NETs are produced by 
the neutrophils of mice, humans, and some other animals, and can be induced by chemical 
compounds, bacteria, fungi, protozoa, and viruses. The role of NETs in viral infections is not 
yet clear. However, some viruses induce the release of NETs [14, 15].

While some viruses are immobilized and inactivated by NETs, others such as HIV induce 
the production of an IL-10-like protein that inhibits the formation of NETs [15], and dengue 
virus inhibits PMA-induced formation of NETs. Interestingly, neutrophils seem to be arrested 
at the chromatin decondensation step, failing to liberate NETs, thus suggesting a metabolic-
related mechanism of NETs inhibition [16].

Controversy surrounding neutrophil extracellular traps as a host defense mechanism makes 
it necessary to analyze how NETs limit the growth of various infectious agents, whereas, 
apparently, they have no effect on others. On the other hand, how NETs may cause damage 
and autoimmune diseases also needs to be investigated.

3. Neutrophil extracellular traps in bacterial infections

Several mechanisms have been proposed to explain how NETs control bacterial infec-

tion. NETs bind to both Gram-negative and Gram-positive bacteria, precluding bacterial 
 mobilization and dissemination, and some bacteria are killed extracellularly by NETs, due to 
their high content of serine proteases [17]. Some bacteria and their interaction with NETs are 
summarized as follows:

Bordetella pertussis, the causative agent of pertussis or whooping cough, is a Gram-negative 
aerobic bacterium that infects the respiratory tract and inhibits the host´s immune system by 
mean of its virulent factors, such as pertussis toxin, filamentous hemagglutinin, pertactin, 
fimbria, and tracheal cytotoxin. The pertussis toxin inhibits G protein coupling that  regulates 
the adenylate cyclase-mediating conversion of ATP to cAMP. This event induces  macrophages 
and neutrophils to convert the ATP to cAMP by intracellular eukaryotic calmodulin,  causing 
disturbances in cellular signaling mechanisms and thus preventing phagocytosis and an 
 efficient control of the pathogen. The formation of NETs induced by B. pertussis is NADPH 
oxidase dependent [18].

Escherichia coli, the causative bacteria of several pathologies, including bacterial sepsis, is a 
Gram-negative bacterium. NETs formation helps to control infection by trapping and killing 
the bacteria and avoiding dissemination to other organs. The proposed mechanisms for the 
formation of NETs depend on the bacteria strain and its pathogenesis. In the case of E. coli 
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involved in liver sepsis, the infection can be controlled by histones H2B or by activating the 
intravascular NETs release through the integrin lymphocyte function-associated antigen 1 
(LFA-1) [19, 20].

Klebsiella pneumoniae, the common cause of pneumonia, is caused by this aerobic  Gram-negative 
bacillus. The role of NETs in the killing of K. pneumoniae has been investigated; this bacte-

rium is not sufficient to induce NETs in neutrophils ex vivo, but it is in the lungs of a murine 
model. Adenosine A2B receptor deficiency improves survival and enhances bacterial killing 
and clearance due to NETs formation [21]. In addition, TREM-1 also mediates NETs formation, 
leading to a bactericidal effect and the control of infection [22].

Leptospira interrogans is the causative agent of leptospirosis. The pathogen spirochetes Gram-
negative belongs to the Leptospiraceae family and to the genus Leptospira. Leptospirosis is an 
emerging zoonotic disease, affecting animals and humans in the world, but most frequently 
in tropical and subtropical countries. This disease is associated with exposure of individu-

als to wild or farm animals. Scharrig et al. [23], demonstrated for the first time the induction 
of NETs in human ex vivo and murine in vivo models, when incubating human neutrophils 
with Leptospira interrogans LI-130 (LIC). This research group observed that the bacteria 
number, the pathogenicity, and viability were relevant factors for induction of NETs; how-

ever, the motility of bacteria was not. Entrapment of LIC in the NETs resulted in Leptospira 
death. Pathogenic, but not saprophytic, Leptospira exerted nuclease activity, thus degrad-

ing the DNA, concluding that formation of NETs was dependent on bacterial concentration, 
 pathogenicity, and viability, but not motility, and that NETs could trap and kill Leptospira 

interrogans [23].

Mannheimia haemolytica, the causative agent of bovine respiratory disease complex (BRD), 
is a Gram-negative bacterium that induces a severe pleuropneumonia in bovine animals, 
where neutrophils play a key role in the pathogenesis. Extracellular traps are induced in 
neutrophils and macrophages exposed to the bacteria or to their virulent factor, leucotoxin 
(LKT) [24].

Mycobacterium bovis, the etiological agent of bovine tuberculosis, is a Gram-positive bacte-

rium, with a worldwide distribution, easily transmitted to bovine animals and to humans. 
The extracellular traps formation has been demonstrated in neutrophils and macrophages. 
Neutrophils can sense the size of pathogens, and based on their size, neutrophils are induced 
to undergo necrosis, apoptosis, or NETosis [25].

Mycobacterium tuberculosis is the causative agent of tuberculosis. Ramos-Kichik et al. showed 
that both M. tuberculosis and Mycobacterium canetti can induce NETs, which trap but not kill 
these mycobacterial species [26]. On the other hand, the mycobacterium-derived early secre-

tory antigenic target protein of 6 kDa (ESAT-6) can induce the formation of NETs in M. tuber-

culosis-infected neutrophils [27].

Pseudomonas aeruginosa, the causative agent of the cystic fibrosis lung disease, is a 
Gram-negative opportunistic bacterium. The formation of NETs in the context of P. aeruginosa 

is controversial, and evidence that NETs may have a major anti-P. aeruginosa activity must be 

clarified [28].
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Salmonella typhimurium, a Gram-negative bacterium, induces the release of NETs, and some 
of their components, such as histones (H2), have bactericidal activity, whereas others, such as 
elastase, can degrade virulence factors, as in the case of the alpha toxin [7, 29].

Shigella flexneri, a Gram-negative bacterium, induces the release of NETs. S. flexneri is trapped 

by NETs and killed via the neutrophil elastase; virulence factors such as IcsA and IpaB are 
degraded by the neutrophil elastase [7].

Staphylococcus aureus is some Gram-positive bacteria that cause sepsis. The role of NETs in 
controlling a S. aureus infection could be through the antimicrobial proteins associated to 
these, the bactericidal effect of H2 histones, the antimicrobial action of the cathelicidin LL-37, 
and neutrophil proteases that decrease the secretion of the alpha-toxin (α-toxin). The vir-

ulence factors LukGH and PVL help to induce the release of NETs. The S. aureus-induced 

release of NETs is an NADPH oxidase-independent process [30].

Staphylococcus epidermidis belongs to the group of coagulase-negative straphylococci. It is a 
quite common colonizer of healthy mice and human skin. It is a part of “normal” skin flora and 
plays a beneficial role in cutaneous niche. However, in immunocompromised patients, there 
is a high risk of developing infection mainly due to catheters use in hospitals. The exoprotein 
of S. epidermidis, the delta-toxin, PMSs (Phenol-Soluble Moduline-gamma) cooperates with 
host antimicrobial peptides to help kill pathogens of the group A of Streptococcus (GAS). In 
2010, Cogen et al. [31] reported that the exoprotein phenol-soluble-moduline -gamma (PSMs) 
(δ-toxin) can induce NETs formation. The authors demonstrated a direct binding of δ-toxin to 
LL-37, CRAMP, hBD2, hBD3, as well as DNA.

Streptococcus spp. are Gram-positive bacteria that include non-pathogenic commensal strains 
and highly virulent pathogenic strains. The pathogenic strains express virulent factors that 
allow them to evade the immune system. Streptococcus pneumoniae infection leads to pneumo-

nia and invasive diseases such as meningitis and bacteremia, whereas Streptococcus pyogenes 

is the major causative agent of Severe Group A Streptococcal Infections. S. pneumoniae and S. 

pyogenes induce the formation of NETs. However, these bacteria have evolved mechanisms 
that allow them to modulate the formation of NETs. Neutrophils, on the other hand, have 
evolved a NETs release mechanism in response to Streptococcus-derived virulence factors. 
The S. pyogenes virulent factor M1 decreases the induction of NETs while conferring bacterial 
resistance to be killed by NETs. The S. pyogenes-derived M1 exotoxin induces the formation 
of NETs, by associating with fibrinogen and forming a complex that stimulates neutrophils. 
Formation of NETs contributes to the pathogen elimination [32].

In summary, this review shows that in response to bacterial stimuli, neutrophils get activated 
and form NETs that may trap and kill invading bacteria. Besides the “classical” way of clearing 
pathogens by phagocytosis and intracellular exposure to bactericidal compounds, this novel 
mechanism of neutrophil extracellular killing plays an important role in primary host defense. 
Moreover, knowledge on the mechanisms of bacterial adaptation to evade the immune system 
could be used in the medical practice. For instance, DNases inhibitors can be used as potential 
therapeutics, to prevent degradation of NETs by Group A Streptococcus DNases. In the future, 
therapeutics aimed at the maintenance of NETs could be used to help clear bacterial infections.
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4. Neutrophil extracellular traps in parasitic infections

Neutrophil extracellular traps have been broadly studied in regard to bacteria. The role 
of NETs against protozoa, however, has just recently been analyzed. Protozoa can induce 
NETs in neutrophils and macrophages, and knowledge on the mechanisms at play is 
just emerging.

In 2011, Abdi Abdallah [33] reported that human neutrophils produce NETs in response to 
stimulation with Plasmodium falciparum trophozoites, Leishmania braziliensis, and Toxoplasma 

gondii tachyzoites. In vitro experiments have demonstrated the presence of NETs upon bovine 
neutrophils stimulation with Eimeria bovis sporozoites, in human neutrophils after stimulation 
with promastigotes of Leishmania donovani, Leishmania major, Leishmania chagasi, or L.  amazonensis 

amastigotes. A brief description of the mechanism involved in protozoa-induced NETs forma-

tion is next described.

Toxoplasma gondii is an obligated intracellular parasite that causes toxoplasmosis in 
 immunocompromised individuals. In immunocompetent individuals, however, the immune 
system usually keeps the parasite from causing illness. Toxoplasma gondii tachyzoites 

induce the release of NETs by activating the MEK-ERK signaling pathway. NETs can trap 
Toxoplasma gondii tachyzoites, eliminating about 25% of them as parasite trapping avoids their 
 dissemination [34].

Plasmodium falciparum, an intracellular parasite, causes malaria. It is estimated that this para-

site infects between 215 and 659 million humans per year, worldwide. Malaria is transmit-
ted to humans by the bite of Anopheles mosquitoes. P. falciparum sporozoites develop into 

merozoites and enter into erythrocytes. Studies conducted in Nigerian children infected with 
P. falciparum showed NETs structures with trapped trophozoites, and in their blood, infected 
and non-infected erythrocytes were also observed [35–37].

Eimeria bovis. This parasite is the causative agent of enteritis in cattle, and NETs formed are 
released upon stimulation with E. bovis sporozoites. This parasite stage of E. bovis seems to be 

a better inducer of NETs than PMA. NETs have been shown to diminish infection by parasite 
immobilization and also by parasite killing, although to a lesser extent [38, 39].

Leishmania spp. These protozoal parasites are the causative agents of leishmaniosis, and the 

leishmaniosis model has been quite useful in studies on the role of NETs at the early stages 
of the disease. The promastigote has been identified as the main parasite stage as inducer of 
NETs. Promastigotes and amastigotes numbers diminish upon NETs release. Histones H2A 
and H2B are the main inducers of NETs, and these are highly toxic for the parasite. The pro-

mastigote form of the parasite can evade the NETs by means of its 3′ nucleotidase, enzyme 
that degrades the DNA, allowing Leishmania spp. to escape from being killed by NETs [40].

In 2015, Rochael et al. analyzed the role of reactive oxygen species, neutrophil elastase, myelo-

peroxidase, and the PAD4 enzyme in the formation of NETs by L. amazonensis promastigotes, 
in human cells. These authors observed that Leishmania promastigotes promote a redox dis-

balance in neutrophils. The exposure of neutrophils to H
2
O

2
 induces histone  deamination 
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mediated by PAD4, and the redox disbalance takes place independently of the parasite 
 viability, thus suggesting that Leishmania induces the production of ROS through an NADPH 
oxidase-dependent mechanism [41].

Leishmania as well as Staphylococcus aureus induces the release of NETs by an early and rapid 
mechanism, through an ROS-independent pathway, which is inhibited by an elastase inhibi-
tor and, in contrast to classic NETosis, is not affected by chloramidina. PAD4 activity is only 
relevant during classic NETosis. Promastigotes viability after treatment of parasites with a 
NETs-rich supernatant, obtained from either the early and rapid or the classic pathways, 
shows a reduction of about 42% [41].

As previously described, the interaction of Leishmania amazonensis with human neutrophils 

leads to the release of NETs, which trap and kill the parasite. However, the signaling path-

ways leading to Leishmania-induced NETosis are still under study. However, it has been 
shown that PI3K, independently of protein kinase B, has a role in parasite-induced NETosis. 
The main PI3K isoforms involved are PI3Kγ and PI3Kδ. Activation of ERK downstream of 
PI3Kγ is necessary to trigger an ROS-dependent parasite-induced NETosis. Pharmacological 
inhibition of protein kinase C also significantly decreases parasite-induced NETs release. 
Intracellular calcium, regulated by PI3Kδ, represents an alternative ROS-independent path-

way of NETosis stimulation by L. amazonensis. Finally, intracellular calcium mobilization and 
reactive oxygen species generation are the major regulators of parasite-induced NETosis. 
These results contribute to a better understanding of the signaling behind Leishmania-induced 

NETosis [42].

Entamoeba histolytica. This protozoan parasite causes amebiasis, amoebic colitis, and hepatic 
abscess. Since this parasite is too large to be phagocytosed, Avila et al. [43] analyzed the pos-

sibility that this parasite induces the formation of NETs. These authors demonstrated that the 
amoeba lipopeptidophosphoglycan induces NETs in a dose-dependent manner. NETs can 
be readily observed 15 min after stimulation; however, by 1 h at a 1:20 infection ratio, NETs 
occupy a whole microscopic field. NETs induction depends on trophozoite integrity; 30 min 
after contact with NETs, trophozoites show no changes in size or morphology, and this con-

tact does not have any effect on viability or growth at any time of incubation. On the other 
hand, it was observed that E. histolytica is resistant to cathelicidin LL-37. Resistance to NETs 
exposure was also studied upon addition of a proteases inhibitor, resulting in that proteases 
are not responsible for trophozoite resistance to NETs. However, the use of ethylene glycol-
bis(β-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA), a divalent anion chelant, had a 

deleterious effect in the growth of amoebas that were in contact with NETs, suggesting that 
trophozoites may have DNAse activity, responsible for its resistance to NETs [43].

Ávila et al. demonstrated that parasite growth could only take place in the absence of a 
calcium chelant, since enzymes such as trophozoite DNAsas require calcium. This provides 
an example of NETs inhibition by parasite-produced enzymes. Entamoeba histolytica is one 

of the main parasites that cause stomach diseases worldwide. It causes intestine and liver 
invasion, associated with the recruitment of large amounts of neutrophils at the early stages 
of infection [43].
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5. Neutrophil extracellular traps in fungus infection

5.1. Aspergillus fumigatus and Aspergillus nidulans

The Aspergullus fumigatus species is isolated in 80% of invasive aspergillosis patients. Chronic 
granulomatosis disease patients, whose cells are not able to undergo respiratory burst, are 
highly susceptible to infection by fungus of the Aspergillus genus such as A. nidulans. This 
indicates the important role of the host respiratory burst, which is also involved in the forma-

tion of NETs.

Recent reports highlight the importance of glucosaminoglycans (GAG) in A. fumigatus viru-

lence. GAG helps the formation of biofilms and purified soluble GAG induces NK cell-medi-
ated apoptosis of neutrophils, in vitro.

Fungus resistance to neutrophil-mediated killing positively correlates with the amount of 
cell wall-associated GAG. Fungus GAG content functions as the analog of bacterial capside, 
enhancing resistance to NETs. Although the mechanism by which exopolysaccharides mediate 
resistance to NETs has not been defined, it is suggested that GAG may inhibit hyphae-NETs 
binding, perhaps due to the repulsion between the Aspergillus exopolysaccharide positive 
charges and the positive charges present in the NETs antimicrobial peptides and histones [44, 

45]. Aspergillus induces respiratory burst through its glycosaminoglycans that activate the 
NAPDH oxidase system, yielding ROS and activating classic NETosis activation [44].

5.2. Candida albicans

In 2006, Urban et al. showed that NETs can kill Candida albicans in any of its two forms, yeast, 
which is the proliferating form, or the filamentous, which is the invasive and tissue destruc-

tive form. This was corroborated by means of electronic microscopy which showed NETs and 
C. albicans hyphae co-localization, which suggested that hyphae are trapped by NETs, thus 
controlling the infection [46, 47].

Experiments aimed at analyzing the effect that PMA-activated NETs have on C. albicans 

showed that 20–30% of fungus dies after exposure to NETs [46].

The analysis of the components present in the neutrophil granules that may be respon-

sible for the killing of Candida albicans showed that histones are not accountable for this. 
It was determined that human Neutrophil Granular Extract (hNGE) is responsible for the 
fungus death, in a dose-dependent manner. These granules contain Bactericidal/permea-

bility-increasing (BPI) protein lactoferrin, and defensins. It appears that the release of NETs 
is related to the microorganism cell wall composition; the binding of microorganisms by 
NETs is mediated by ionic forces and thus, the fact that the Candida wall contains numerous 

proteins with phosphodiester bonds with negative charges makes it likely that they bind 
the positive charges of proteins and histones present in NETs [48].

Kenno et al. analyzed the induction of NETs by Candida albicans, and they corroborated that 

the distinctive forms of Candida albicans, hyphae or yeast, may induce NETs. These authors 
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found that hyphae induce higher amounts of NETs than the yeast form, after 4 hours of incu-

bation. Candida albicans hyphae stimulate cells through autophagy but not ROS, whereas the 
yeast form induces NETs through autophagy and ROS. C. albicans β-glycans induce NETosis 
by an ROS-independent mechanism [49, 50].

5.3. Cryptococcus neoformans

In 2015, Rocha et al. described that the opportunistic fungus Cryptococcus neoformans, 

which possesses a glucuronoxylomannan (GMX)-containing capside, precludes this 
fungus to be phagocytosed by neutrophils. These authors also demonstrated that the 
acapsular strain of Cryptococcus neoformans, which harbor glucuronoxylomannogalactan 
(GMXgal), is capable of inducing NETs. In contrast, the capsular strain does not induce 
the release of NETs [51].

The release of NETs by the acapsular strain of Cryptococcus neoformans is dependent on ROS 
generation and the PAD4 enzyme. The capsular strain also inhibits PMA-induced NETs for-

mation [51]. NETs release has also been observed in response to Cryptococcus gattii stimulation.

Analysis of Cryptococcus neoformans susceptibility to acapsular strain-induced NETs showed 
that NETs diminished colony-forming units (CFUs) by 80% in the capsular strain and by 54% 
in the case of the acapsular strain. For this, it is necessary that NETs contain MPO.

Paracoccidioides brasiliensis and Paracoccidioides lutzii are fungi of the Paracoccidioides genus that 
cause high mortality and morbidity by the systemic mycosis Paracoccidioidomycosis (PCM), 
mostly in Latin American countries. Della Coletta et al. [52] have investigated the role of 
neutrophil extracellular traps on these fungi, reporting the formation of NETs by the yeasts 
P. brasiliensis and P. luttzii.

6. Neutrophil extracellular traps in viral infections

Viruses have an extraordinary ability to evade the immune system, and the innate immune 
system is regarded as the first line of defense. Innate immune cells recognize a wide variety of 
pathogens through their pattern-recognition receptors (PRRs) that include Toll-like receptors 
(TLRs), NOD-like receptors (NLRs), and RIG-like receptors (RLRs) that recognize pathogen-
associated molecular patterns (PAMPs). Several PRRs recognize viral ligands such as TLR-3, 
TLR-7, TLR-8, RIG-1, and MDA5, and the activation of these PRRs induces the synthesis of 
antiviral interferons (types I and II), tumor necrosis factor α, interleukin-15, and interleu-

kin-18 [53–55].

The role of NETs in the control of several bacterial infections has been broadly analyzed. 
However, research on their role in viral infections remains scarce. It has recently been shown 
that viral infections or virus-derived molecules may act as strong inducers of NETs. Several 
viruses that induce the formation of NETs have been identified. In some cases, NETs neutral-
ize the viral particles by the MPO or the granule-derived defensins, associated to NETs. The 
α-defensin protein directly inhibits the influenza virus replication and protein synthesis [56]. 
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Some viruses, such as those of the herpesvirus family, contain proteins with endonuclease 
activity, so they can degrade NETs and allow viral escape and dissemination. NETs anti-
viral activity consists in the sequestering of viral particles, thus preventing fusion of viruses 
with target cells and direct neutralization of virions. It is worth mentioning that viruses do 
not necessarily infect the neutrophils. However, neutrophils can sense viral particles through 
their PRRs or via secondary signals produced upon infection of other host cells. The use of 
secondary signals to induce the release of NETs has important advantages in the context of 
viral infections [56, 57].

Viruses that induce the release of NETs in vitro do so under a non-productive infection of 
neutrophils. In the case of HIV-1, neutrophils sense this virus by endosomal PRRs that detect 
viral nucleic acid via TLR-7 and TLR-8, and then undergo NETosis. The respiratory syncytial 
virus (RSV) induces NETosis through TLR-4. Hantaviruses induce NETs formation by signal-
ing through β

2
 integrins. Influenza virus A can stimulate neutrophils directly to release NETs. 

Viruses also produce NETs indirectly without engagement of the PRRs expressed by neutro-

phils. Interleukin-8 (IL-8) triggers NETosis. Although NETs formation by viruses is now well 
established, it is not so clear how NETs contribute to antiviral immunity. In some viruses, as in 
a mouse model of poxvirus infection, induction of NETs with LPS prior to infection strongly 
reduced the number of virus-infected liver cells, and this protective effect was reversed by 
DNAse treatment. Noroviruses can be reduced by their binding to histone H1. Some viral 
mechanisms counteract NETs formation, as for HIV-1 envelope glycoprotein which stimu-

lates DCs to produce cellular IL-10 through dendritic cell-specific ICAM-grabbing non-integ-

rin (DC-SIGN), IL-10 is an immunosuppressive cytokine that, among other functions, inhibits 
TLR-induced ROS production (54). IL-10 homologs have been found in the genome of large 
DNA viruses that include ubiquitous human virus, such as human cytomegalovirus (HCMV) 
and Epstein-Barr virus (EBV). Kaposi’s sarcoma-associated herpesvirus (KSHV) impairs the 
release of NETs, and dengue virus serotype-2 can arrest NETs release by interfering with 
glucose uptake [6]. Taken together, these findings suggest that virus-induced release of NETs 
may help to control viral dissemination by direct and indirect mechanisms, whereas, at the 

same time, viral evasion mechanisms target the formation of NETs.

In 2015, Moreno-Altamirano et al. [16] demonstrated that dengue virus serotype-2 inhibits 
PMA-induced formation of NETs, arresting neutrophils at the chromatin de-condensation 
step which, based on a previous report [6], suggests that DENV-2 inhibits the formation of 
NETs by interfering with glucose uptake and glycolysis.

7. Conclusion

Anti-microbial properties of NETs have been shown for bacteria, protozoa, fungus, and virus. 
Understanding how neutrophil extracellular traps (NETs) limit the growth of some infectious 
agents, whereas, apparently, they have no effect on others, and how NETs may cause tissue 
damage and contribute to the development of pathologies, such as autoimmune diseases, will 
help to exploit their anti-pathogen properties at full, and to limit their pathogenic effects, in clin-

ical settings. It is quite likely that this research field will continue providing exciting findings.
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