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Abstract

Plasmonic nanostructures have attracted considerable interest in biomarker sensing with 
the goal of rapid diagnostics and personalized nanomedicine. Surface‐enhanced Raman 
scattering (SERS) is a versatile technique for the characterization of the plasmonic effect 
of the metallic nanostructures as well as a sensitive read‐out approach for biomarkers 
detection. In this contribution, we will give a review on the key optical properties of 
plasmonic nanostructures as SERS substrate for protein biomarkers detection. As a con‐
sequence, two approaches, label‐free and SERS labels will be discussed in details for pro‐
tein biomarkers sensing by using the plasmonic nanostructures as the substrate.

Keywords: plasmonic nanostructures, surface‐enhanced Raman scattering (SERS), 
protein biomarker, label‐free, SERS labels, sensing

1. Introduction

In order to understand the fundamental of plasmonic nanostructures and the related appli‐
cation, it is important to start with “plasmon”, which was first named by Pines in the 1950s 
[1, 2]. As the valence electron collective oscillations resemble closely the electronic plasma 
oscillations observed in gaseous discharges, the term “plasmon” was thus used to describe the 
quantum of elementary excitation associated with this high‐frequency collective motion [2]. 
Based on the definition, plasmon is very similar as photon, which is the quantum particle rep‐
resenting the elementary excitations, or modes, of the free electromagnetic field oscillations. 
To be simple, plasmon can be described in the classical picture as an oscillation of free elec‐
tron density against the fixed positive ions in a metal [3, 4]. To visualize a plasma  oscillation, 
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imagine a cube of metal is placed in an external electric field pointing to the right. Electrons 
will then move to the left side (uncovering positive ions on the right side) until they cancel 
the field inside the metal [5]. When the electric field is switched off, and the electrons move to 
the right, repelled by each other and attracted to the positive ions left bare on the right side. 
They oscillate back and forth at the plasma frequency until the energy is lost in some kind of 
resistance or damping [6–10]. Plasmons are a quantization of this kind of oscillation, which 
plays a large role in the optical properties of metals. Light of frequency below the plasma 
frequency is reflected, because the electrons in the metal screen the electric field of the light. 
Light of frequency above the plasma frequency is transmitted, because the electrons cannot 
respond fast enough to screen it [5]. In most metals, the plasma frequency is in the ultraviolet, 
making them shiny (reflective) in the visible range [8–11]. Some metals such as copper and 
gold having electronic interband transitions in the visible range, whereby specific light ener‐
gies (colors) are absorbed, yield distinct colors.

Surface plasmons are those plasmons that are confined to surfaces and that interact strongly 
with light resulting in a polariton. They occur at the interface of a vacuum or material with 
a positive dielectric constant and a negative dielectric constant (usually a metal or doped 
dielectric) [5]. Plasmonics is related to the localization, guiding and manipulation of electro‐
magnetic waves beyond the diffraction limit and down to the nanometer‐length scale [12, 13]. 
The key component of plasmonics is a metal, which can support surface plasmon polariton 
(electromagnetic waves coupled to the collective oscillations of free electrons in the metal, 
plasmon coupled with photons). There are two types of surface plasmon resonances (SPRs) 
that can be generated [12, 13]. The first one is the surface plasmon polariton (SPP), which is 
generated when light becomes trapped at a metal‐dielectric interface. The second one is the 
localized surface plasmon resonance (LSPR), which happened when a surface plasmon is 
confined to a particle of size comparable to the wavelength of light, that is, a nanoparticle, the 
particle’s free electrons participate in the collective oscillation. For the full detailed descrip‐
tion of the fundamentals of plasmon and plasmonic effect, several excellent reviews are rec‐
ommended [13–19].

Plasmonic nanostructures are thus the metallic nanostructures on which the electromagnetic 
field was generated by exciting the oscillation of surface plasmon in the metal‐light dielectric 
interface. The study on the plasmonic nanostructures has attracted more and more interest 
in the research areas from the fundamentals to applications in a variety of scientific disci‐
plines. In this chapter, we will focus on the plasmonic nanostructures as the surface‐enhanced 
Raman scattering (SERS) substrate for protein biomarkers detection.

SERS was first discovered in the 1970s [20, 21] on electrochemical roughed silver electrode 
and dramatically developed with the advancement of nanotechnology. Currently, two basic 
principles that contribute the SERS effect are accepted, which are the chemical effect (CM) e.g., 
charge‐transfer and the electromagnetic effect (EM) [22–28]. Basically, CM is the interaction of 
the adsorbate molecules and the metal surface, mostly from the first layer of the charge‐trans‐
fer resonance between molecules and the metal [22–24]. Whereas EM mechanism is based 
on the interaction of the transition moment of an adsorbed molecule with the electric field 
of a surface plasmon induced by the incoming light at the metal, as discussed above [25–28]. 

Nanoplasmonics - Fundamentals and Applications342



Thus, SERS has been utilized in different areas including the catalysis, energy, and biology, 
and, in particular, in biomedical application. For instance, SERS has been used to monitor the 
catalytic reaction, image the live cell and tumor, monitor the nanoparticle distribution in live 
body, and so on [29–31]. Several excellent reviews have been published on SERS including 
the basic principle of SERS, SERS nanoparticles, SERS labels as well as SERS applications in 
biomedicine [32–37]. In this chapter, we will mostly focus on the optical properties (plasmonic 
effect) of the metallic nanostructures for SERS, with the highlight on the application of plas‐
monic nanostructures for protein detection by using SERS as a read‐out technology.

2. Plasmonic nanostructures

In this section, optical property of plasmonic nanostructures (surface plasmon resonance) 
will be discussed in terms of the SERS‐activity. Plenty of methods have been reported for the 
synthesis of plasmonic nanostructures including the wet‐chemistry (seed‐mediated growth), 
template nanoscale lithography, thin‐film, and the template approach. Here in this chap‐
ter, we will mainly focus on the synthesis and characterization of plasmonic nanostructures 
that are widely used for SERS study. Based on the shape or geometry of the nanostructures, 
we will give a brief overview for the quasi‐spherical metallic nanostructures, anisotropic 
nanoparticles/structures as well as the plasmonic nanoassemblies with the highlight on the 
plasmonic effect for SERS activity. As Mirkin et al. have discussed in details of the template 
techniques for assembly of plasmonic nanostructures [13], we will not include this technique 
in this chapter.

2.1. Quasi‐spherical metallic nanoparticles

As gold and silver nanostructures show the most significant SERS effect due to the surface 
plasmon resonance generated on gold and silver surface (EM enhancement mechanism), 
other metals such as copper and the transit metal also show the SERS effect; however, the 
impact factor is very low, which depends on several factors, including the size and geometry 
of nanoparticles as well as the laser excitations. Numerous protocols are available for the 
synthesis of metallic spheres [38–41]. The simplest and most common approach is the reduc‐
tion of metal salts with a variety of reducing and capping agents. To improve the stability and 
the enhancement of plasmonic nanoparticles, the combination of the alloy metal is an option. 
Thus, gold/silver nanoshells are designed and synthesized as the composite metallic nano‐
structures [42, 43] that show higher SERS effect compared to single metal. More importantly, 
by tuning the shell thickness, the LSPR of gold/silver nanoshells can be tuned (Figure 1b). In 
regard to the enhancement factor (EF) on the metallic sphere nanoparticles for SERS, it has 
been reported that individual spherical nanoparticles generate very low EF for SERS based on 
the EM calculation [34, 44]. Single molecule detection [25, 27] was reported on silver nanopar‐
ticles with the enhancement factor (EF) around 1012–1014, which is due to the strong surface 
plasmon coupling effect (called “hot‐spot”). In order to get high order of EF, well‐defined 
plasmonic nanostructures with multiple “hot‐spots” are required, which will be discussed in 
the following session.
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2.2. Anisotropic nanoparticles

As it is hard to obtain the SERS signal in the individual metallic nanospheres, anisotropic 
nanoparticles such as rods, stars, cubes, prisms, and nanoplates became very important SERS 
substrates (Figure 2a), which exhibit significantly higher electromagnetic field enhancements 
at sharp edges (“lighting rod effect” or “plasmonic antenna effect”), making them attractive 
for use as plasmonic enhancers in SERS [45–49]. For the synthesis of anisotropic nanoparticles, 
the most widely employed approach is seed‐mediated growth, which involves seed‐forma‐
tion and growth. Typical example is the synthesis of gold nanorods (Figure 2a), which starts 
with the quasi‐spherical ∼4 nm gold seeds and subsequent reduction of more metal salt with 

Figure 2. Typical electronmicrographs of anisotropic nanostructures for efficient SERS. Nanorods (a), nanoflowers (b), 
nanoplates (c), nanoprisms (d), nanocubes (e), and nanostars (f). (cited from Ref. [33] with permission from the Royal 
Society of Chemistry).

Figure 1. TEM image of gold/silver nanoshell (a) and the tunable LSPR of gold/silver nanoshells with the shell thickness 
(b) (cited from Ref. [33] with permission from the Royal Society of Chemistry).
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a weak reducing agent such as ascorbic acid in the presence of structure‐directing additives 
e.g., CTAB (cetyltrimethylammonium bromide), leading to the formation of gold nanorods. 
The aspect ratio can be controlled by the relative concentrations of the reagents. By tuning the 
aspect ratio of the gold nanorods, their localized surface plasmon resonance (LSPR) can be 
tuned, which is an important aspect for the application of gold nanorods in SERS as well as 
phototherapy.

2.3. Plasmonic nanoassemblies

In order to generate the hot‐spots for the SERS enhancement, plasmonic clusters including the 
dimers, trimers, and high orders nanoaggregates have been prepared. As it is very important 
to understand the relationship between nanoparticle structure and the SERS activity, Van 
Duyne et al. have reported the SERS EF with the different nanostructures (mainly dimers 
and trimers) [50]. As indicated in Figure 3, individual trimers have been encapsulated with 
silica‐shell to avoid the interference from the environment as well as ensure the contribution 
solely from the individual nanoparticles. It was demonstrated that the creation of hot spots, 
where two nanoparticles are in sub‐nanometer proximity or have coalesced to form crevices, 
is the paramount to achieving maximum SERS EF. Specifically, L‐shaped trimer nanoantenna 
comprised of three Au cores showed the EF of 108–1010 (Figure 3a) and the dark‐field Rayleigh 
scattering spectrum of the L‐shaped trimer contains three peaks (Figure 3b), corresponding 
to dipolar and multipolar LSPRs [50]. Single‐particle SERS obtained from the trimer nanoan‐
tenna showed distinct peaks from the Raman molecule (PCEPE), which are correlated with 
the density functional theory (DFT) calculations (Figure 3c–e).

Figure 3. L‐shape trimer nanoantenna (a), LSPR spectrum of the trimer obtained by dark‐field Raleigh scattering 
microscopy (b), SERS spectrum of the Raman molecule (PCEPE) (c), normal Raman spectrum of PCEPE (d), and Raman 
spectrum of PECEP calculated using DFT (e). (Reproduced with permission cited from Ref. [50]).
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Plasmonic nanostructures with multiple hot‐spots have been reported with the satel‐
lite nanostructures by using either gold sphere or gold nanorods as the core [51–53]. To 
obtain the high orders of nanoassemblies, the linker is the key to connect the nanoparticles. 
Chemicals with dual/multifunctional groups are often used such as cystamine and dithiol‐
polymer. As silica surface is versatile, the functionalization of silica surface followed by the 
assembly of small nanoparticles is a very useful strategy. More importantly, the distance 
between the satellite nanoparticles with the core nanoparticles can be controlled by the 
silica‐thickness. As reported by Gellner et al. [51], gold nanoparticles with the diameter of 
80 nm were incubated with Raman reporters and encapsulated with a very thin silica shell. 
The ultrathin glass shell was then functionalized with a binary mixture of silanes including 
an aminosilane, which can adsorb the negatively charged gold nanospheres to form the 
3D structures. Correlated HR‐SEM/dark‐field/LSPR/SERS experiments on individual 3D 
SERS‐active superstructures together with finite element method (FEM) calculations con‐
firmed the plasmonic coupling between the core and the satellite particles, with hot‐spots 
occurring between core and satellites as well as between satellites [51].

3. Label‐free protein biomarkers detection

SERS is a powerful vibrational spectroscopy, which can provide rich molecular information 
for the target, making it very useful for direct protein detection. The fingerprint information 
extracted from the SERS spectra of proteins can be used directly to identifying the protein 
confirmation, the structure as well as the component of the target protein [54–56]. Label‐free 
SERS detection for protein originates from the chromophores such as hemoglobin, myoglo‐
bin, and cytochrome c, which showed strong SERS signals with good reproducibility due to 
the Raman resonance (RR) effect of the chromophore center of the proteins [57, 58]. The infor‐
mation related to the conformation and orientation of proteins as well as the charge‐transfer 
processes between protein and surface can be obtained. As reported by Feng and Tachikawa 
[59], to determine the factors that contribute to the difference of SER(R)S signals and RR sig‐
nal of metmyoglobin, they designed a Raman flow system and found that both the degree of 
protein‐nanoparticles interaction and the laser irradiation contribute to the structural changes 
(Figure 4).

As the majority of proteins have no chromophore, the detection of proteins become much 
harder since the SERS signal from the native protein is very weak and most of the signals 
are generated from the amino acid residues and amide backbones, which are very similar 
for most of the proteins [60, 61]. Therefore, the key to get robust and sensitive label‐free pro‐
tein detection is the SERS substrate, which should have the high SERS‐activity as well as 
proper preparation of the reproducible surface. Gold and silver nanocolloids are the widely 
used plasmonic nanoparticles for the label‐free SERS detection [62–64]. As the gold and silver 
nanoparticles have relatively lower SERS enhancement effect, the procedure that could induce 
the aggregation, thus generate “hot‐spot” nanostructures is required. Typically, the addition 
of aggregation agent such as salt is the simplest and easiest approach for the aggregation. 
As displayed in Figure 5, Han et al. utilized sulfate as an aggregation agent to induce strong 
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SERS signal due to the weak binding of SO
4

2– on silver surface, making it easier for protein 
binding [65]. With this scheme, proteins including lysozyme, ribonuclease B, avidin, catalase, 
and hemoglobin have been detected and analyzed [65]. As SERS signal from the protein can 
provide useful information in terms of the structure, constituents, conformation as well as 
the potential interaction of the protein with the surface, in recent years, several groups have 
put great effort to improve the method of SERS‐based label free identification of proteins. 
For instance, Zhao et al. have conducted serious study on the label‐free protein detection by 
controlling the plasmonic nanoparticles and optimizing the purification procedures of the 
proteins [62–65]. A typical example is the Western‐blot SERS, which was based on the silver 
staining of the membrane after the protein separation with the gel electrophoresis, which will 
purify and separate the proteins on the surface, making the detection more simple and easy.

Furthermore, Ren et al. have proposed a facile method to enable reliable label‐free SERS detection 
of the native structures of a wider range of proteins by using the iodide‐modified silver colloids 
as illustrated in Figure 6 [66]. The colloidal state of Ag NPs will help to keep the native struc‐
tures of proteins and promote the photostability of samples. The iodide modification affords a 
one‐atom‐thick monolayer on the surface without producing interfering signal. Therefore, they 
demonstrated that the iodide‐modified silver colloids could not only clean the surface but also 
avoid the strong chemical interaction between the metal surface and the proteins, and reduce 
the possibility of denaturation, thus make the detection reliable and reproducible.

Figure 5. Scheme for aggregating nanoparticles for directly label‐free SERS detection of proteins. (Reproduced with 
permission cited from Ref. [65]).

Figure 4. Raman‐flow system for label‐free protein detection (a) and the interaction of the protein with a silver 
nanoparticle monitored by SERS (b). (Reproduced with permission cited from Ref. [59]).

Plasmonic Nanostructures as Surface-Enhanced Raman Scattering (SERS) Substrate...
http://dx.doi.org/10.5772/intechopen.68164

347



Recently, label‐free SERS has been attempted for the serum protein detection, aiming for the 
cancer diagnosis. By inducing the aggregation of silver nanoparticles for high‐quality SERS 
spectra, colorectal cancer has been identified based on the principal component analysis com‐
bined with linear discriminant analysis. [67–69]

4. SERS Labels for protein biomarkers sensing

Compared to label‐free SERS approach, SERS labels have attracted significant attention for 
protein detection because of its high sensitivity comparable to fluorescence. The high sensitiv‐
ity is most due to the strong plasmonic effect of the SERS substrates, which could be AuNPs, 
AgNPs, anisotropic nanoparticles (gold nanorods), nanoshells, plasmonic nanoassemblies, as 
discussed in the early session of this chapter. More importantly, SERS labels have demon‐
strated their unique optical properties and potential for simultaneous and multiplexed detec‐
tion [33–37] owing to the advantages of SERS labels over fluorescent label including (i) the 
multiplexing capability for simultaneous target protein detection due to the narrow width of 
the vibrational Raman bands, (ii) quantification using the SERS fingerprint of the correspond‐
ing labels, (iii) the need for only a single laser excitation wavelength, and (iv) high photostabil‐
ity. In this section, the sensor platform using SERS labels for protein biomarker sensing will be 
discussed from the conventional sandwich immunoassay, dot‐blot semi‐sandwich immuno‐
assay, and protein microarray to microfluidic protein assay, with the highlights on our recent 
works for the detection of breast cancer biomarker [70–73], pathogen antigens [74], cytokines 
[75, 76], and related works.

SERS sandwich immunoassay is a conventional sensor platform for the protein biomarker 
detection with SERS labels. Porter et al. have reported a serial of works on SERS immunoas‐
say for various protein biomarkers detection [77–82]. The SERS labels were named as ERLs 
(external reporter label). Typically, ERLs were composed of metallic nanoparticles (e.g., widely 

Figure 6. Label‐free SERS for native protein detection on iodide‐modified silver nanoparticles. (Reproduced with 
permission cited from Ref. [66]).
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used gold nanoparticles duo to the distinguished plasmonic effects) and Raman reporters (dyes 
or the small molecule) to indicate the presence of the target. As indicated in Figure 7a, detec‐
tion antibodies were immobilized on the plasmonic nanoparticles by either electrostatic force 
or the covalent binding through the links such as DSP (dithiobis (succinimidyl propionate)) 
[79] and carboxyl‐PEG‐SH (poly (ethylene glycol) 2‐mercaptoethyl ether acetic acid) [30]. To 
fabricate the sandwich SERS platform, the substrate could be the glass or gold film (Figure 7b). 
Additional studies have shown the higher sensitivity with gold film as the substrate because 
of the plasmonic coupling effect between the gold film (SPP—surface plasmon polarition) and 
the SERS labels (LSP—localized surface plasmon) [81, 82]. Followed by the capture of the target 
antigen or probes by the antibody on the surface, ERLs are bound on the surface for the signal to 
indicate the presence of the target proteins. With the similar platform design, plenty of proteins 
have been detected with few from the clinic important biomarkers [78–83].

Microassay is the platform that could detect proteins with high throughput by SERS labels 
using different dyes as the Raman reporters. As a typical example indicated in Figure 8, mul‐
tiple protein targets have been immobilized on the surface, followed by the probe with the 
dye labeled SERS nanoparticles [83]. Upon the laser excitation, SERS signals from the dye 
will indicate the presence of the target proteins. Microfluidic assay is another platform with 
high‐throughput properties for protein detection as the design for the channels can separate 
each of the individual proteins with different channels as well as enhance the reaction by 
controlling the flow conditions [74].

Although it is a high throughput, the requirement for the professional training, long‐time 
incubation as well as the labor intensive procedures has hindered the application of the plat‐
form in the clinic setting. To improve the efficiency of the platform, a dot‐bot assay was thus 
developed, which is targeting on the rapid and sensitive and simultaneous multiple protein 

Figure 7. Schematic illustration of SERS ERLS (a) and typical SERS sandwich immunoassay for protein biomarkers 
detection (b). (Reproduced with permission cited from Ref. [35]).
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detections with a simplified procedure [75]. As displayed in Figure 9, duplex cytokines (inter‐
leuckin‐6 and interleuckin‐8; IL‐6 and IL‐8) were detected simultaneously on the dot‐blot 
assay with femtogram (fg) sensitivity, which was achieved by using the rational designed Au/
Ag nanoshells as the plasmonic substrate (Figure 9). As specificity is a key issue for this study 
because it is hard to test the real samples without purification. Therefore, much more works 
were reported in this area, the limitations in the long incubation time and the labor‐intensive 
procedures with this platform have become a big obstacle toward the application in real, in 
particular, for the point‐of‐care diagnosis.

Figure 9. Scheme of the direct SERS dot‐blot immunoassay platform for duplex cytokine detection (a), schematic 
illustration of hydrophilically stabilized Au ‐Ag nanoshells with Ra‐MEG‐OH/TEG‐COOH (b). (cited from Ref. [75] with 
permission from the Royal Society of Chemistry).

Figure 8. Dye labeled SERS nanoparticles (a) and protein array (b) for high throughput proteins detection by SERS. 
(Reproduced with permission cited from Ref. [83]).
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To minimize the assay time and enable the rapid detection, several strategies have been 
employed [80, 84]. For instance, Driskell et al. prepared an approach to increase the flux of 
antigen and SERS particles to the solid‐phase surface by using a rotated capture substrate. 
As illustrated in Figure 10a, by controlling the rotating rate for the capture substrate, the 
reaction kinetics can be improved quickly [80]. Instead of gold nanoparticles, gold nanorods 
were used as plasmonic nanostructures for ERLs to improve the sensitivity. The assay time 
was reduced from 24 hours to 25 minutes, however, in a 10‐fold loss of sensitivity compared 
to the conventional SERS sandwich immunoassay. Further, to improve the simplicity of the 
assay, the syringe pump SERS immunoassay platform (Figure 10b) was developed to over‐
come diffusion‐limited binding kinetics that often impedes rapid analysis in conventional 
SERS immunoassay. The assay time was reduced from 24 hours to 10 minutes with a 10‐fold 
improvement in detection limit [84].

Despite these attempts being successful in reducing assay times, nonspecific adsorption of 
nontarget molecules still remains the biggest challenge in immunoassay for protein detec‐
tion. To circumvent this problem, our group recently proposed an innovative platform that 
utilizes nanoscaled alternative current electrohydrodynamic (ac‐EHD)‐induced surface shear 
forces to enhance the capture efficiency as well as significantly reduce the nonspecific binding 
of the molecules on the surface (Figure 11a). Meanwhile, to improve the sensitivity, rational 
designed silica‐coated gold/silver nanoshells have been employed as the SERS labels. It was 
found that the detection limit can go down to 1 fg/mL. Further, to improve the design of the 
channel (Figure 11b), simultaneous detection of four biomarkers was achieved both from the 
serum and patient samples.

Due to the great advantages of SERS in the sensitivity, multiplexed capability with only one 
single laser excitation, and photostability, it is expected that SERS labels will have more appli‐
cations in the point‐of‐care diagnosis platforms for protein biomarkers detection by using the 
rationally designed plasmonic nanostructures.

Figure 10. Two typical platforms of rotating capture substrate (a) and syringe pump (b) to enhance the assay time  
(Reproduced with permission cited from Refs. [80, 84]).
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5. Conclusions and perspectives

Plasmonic nanostructures with various size and shapes have been utilized in different areas 
including the catalysis, energy, and biomedicine. In this chapter, the fundamentals of plas‐
monic effect as well as the plasmonic nanostructures have been reviewed. Surface‐enhanced 
Raman scattering (SERS) is an optical phenomena happened on the plasmonic nanostruc‐
tures and have shown distinguished properties for protein biomarkers detection. With two 
typical approaches (label‐free and SERS label) developed, SERS with plasmonic nanostruc‐
tures has shown great potentials for proteins detection further to understand the biological 
system that protein involved. Meanwhile, although SERS detection for the protein biomark‐
ers has been reported since 1990s, the application of this technology toward the real clinical 
sample is limited due to the rich information on the Raman peaks from the proteins, which 
have similar chemical bonds, thus making it very hard to be identified quickly and easily. 
Thanks to the development of the approach for the statistical analysis, label‐free SERS detec‐
tion for proteins has become feasible for clinical samples. On the contrast, SERS labels with 
the well‐designed plasmonic nanoparticles show great potential for sensitive, reproducible, 
and simultaneous multiplexed detection for critical protein biomarkers. By combining the 
label‐free SERS with SERS labels approach, we expect that SERS combined with the rational 
designed plasmonic nanostructures will greatly enhance the research and application in this 
field.
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Figure 11. Scheme of the microfluidic device platform for protein biomarker sensing by using ac‐EHD to enhance 
the assay time and minimum the nonspecific binding by applying a potential on the unsymmetry electrode pair. 
Dual functional Au/Ag nanoshells were used as SERS nanotags for breast cancer biomarker, HER2 detection (a) and 
simultaneously detecting four biomarkers in a five‐channel device (b). (Reproduced with permission cited from Refs. 
[70, 71]).
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