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Abstract

Richtmyer-Meshkov instability and turbulent mixing are fundamental problems of
multi-materials interface dynamics, which mainly focuses on the growth of perturbation
on the interface and mixing of different materials. It is very important in many applica-
tions such as inertial confinement fusion, high-speed combustion, supernova, etc. In this
chapter, we will gain advances in understanding this problem by numerical investiga-
tions, including the numerical method and program we used, the verification and
validation of numerical method and program, the growth laws and mechanics of turbu-
lent mixing, the effects of initial conditions, the dynamic behavior, and some new
phenomenon for Richtmyer-Meshkov instability and turbulent mixing.

Keywords: Richtmyer-Meshkov instability, turbulent mixing, interface dynamics,
dynamic behavior

1. Introduction

When a shock wave accelerates a perturbed interface separating two different fluids, the

Richtmyer-Meshkov (RM) instability will occur. This phenomenon was theoretically ana-

lyzed by Richtmyer [1] for the first time in 1960, which was confirmed in experiment by

Meshkov [2] in 1969. The main mechanism of the Richtmyer-Meshkov instability (RMI) is the

baroclinic vorticity deposition at the interface due to the misalignment of the pressure

gradient across the shock and the local density gradient at the interface (∇ρ � ∇p 6¼ 0). At

the beginning, the perturbations grow linearly. When entering the nonlinear stage, the

perturbations develop into complex structures formed by bubbles (the portion of the light

fluid penetrating into the heavy fluid) and spikes shaped with “mushrooms” (the portion of

the heavy fluid penetrating into the light fluid), see Figure 1. Afterward, the mushroom

structures are eroded and broke up which results in the turbulent mixing eventually. When
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the incident shock wave impacts the initial perturbed interface, it bifurcates into a transmit-

ted shock wave and a reflected wave. Depending on the material properties of the fluid on

both sides of the interface, the reflected wave can be either a shock or a rarefaction wave. The

criterion is that when the incident shock wave interacts with the interface from light fluid

to heavy fluid, the reflected wave is a shock wave; otherwise, it is a rarefaction wave. If

the transmitted shock wave meets a rigid wall and is reflected back to collide with the

interface once again, this process is called reshock which can advance the transition to

turbulent mixing.

The Richtmyer-Meshkov instability and induced turbulent mixing are very important in a

variety of man-made applications and natural phenomena such as inertial confinement

fusion (ICF) [4], deflagration-to-detonation transition (DDT) [5], high-speed combus-

tion [6], and astrophysics (i.e., supernova explosions) [7]. For ICF, the ablative shell that

encapsulates the deuterium-tritium fuel becomes RM unstable as it is accelerated inward

by the ablation of its outer surface by laser or secondary X-ray radiation. The degree of

compression achievable in laser fusion experiments is ultimately limited by Richtmyer-

Meshkov and Rayleigh-Taylor instabilities. Thus, these instabilities represent the most

significant barriers to attaining positive-net-yield fusion reactions in laser fusion facilities.

For the supersonic combustion, the Richtmyer-Meshkov instability caused by the interac-

tion of a shock wave with a flame front can greatly promote the mixing of fuel and

oxidant and enhance the burning rate. For the supernova explosions, the Richtmyer-

Meshkov instability was believed to occur when the outward propagating shock wave

generated by the collapsing core of a dying star passes over the helium-hydrogen inter-

face. Observations of the optical output of the supernova 1987A suggest that the outer

regions of the supernova were much more uniformly mixed than expected, and indicating

significant Richtmyer-Meshkov mixing had occurred [8]. The Richtmyer-Meshkov instabil-

ity and turbulent mixing are so important and have gained significant attention. However,

the turbulent mixing is a complicated three-dimensional unstable flow, which spans a

wide range of time-space scales.

Figure 1. Development of the Richtmyer-Meshkov perturbed interface between air and SF6 gases [3].
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2. Numerical method and program

By applying the piecewise parabolic method (PPM), volume of fluid (VOF), parallel technique,

and so on, we have developed a series of Euler compressible multi-fluid dynamic programs

with three orders precision, such as MFPPP [9], MVPPM [10], and multi-viscous-flow and

turbulence (MVFT) [11, 12]. MFPPM program is not considering the fluid viscosity, which only

solves the Euler equations. MVPPM program is considering the molecular viscosity but it is

not changed with temperature. Multi-viscous-flow and turbulence (MVFT) is a large-eddy

simulation (LES) program that has four choices of subgrid-scale (SGS) stress models including

the Smagorinsky model [13], Vreman model (VM) [14], dynamic Smagorinsky model (DSM)

[15], and stretched-vortex model (SVM) [16].

2.1. Governing equations

The governing equations of large-eddy simulation are the Favre-filtered compressible multi-

viscous-flow Navier-Stokes (NS) equations and are written as in tensor form:

∂ρ

∂t
þ

∂ρ~uj

∂xj
¼ 0

∂ρ~ui

∂t
þ

∂ ρ~ui~uj þ pδij
� �

∂xj
¼

∂σij

∂xj
�

∂τij

∂xj

∂ρE

∂t
þ

∂ ρ~ujEþ p~uj

� �

∂xj
¼

∂ σij � τij
� �

~ui
∂xj

�
∂ qlj þQT

j

� �

∂xj

∂~Y sð Þ

∂t
þ ~uj

∂~Y
sð Þ

∂xj
¼

∂

∂xj
~D
∂~Y

sð Þ

∂xj

0

@

1

A�
∂QY

j

∂xj
s ¼ 1, 2, ⋯, N � 1

ð1Þ

here i and j represent the directions of x, y, and z, and the same subscripts denote the tensor

summation; ρ, ~ukðk ¼ i, jÞ, p, and E are the resolved-scale density, velocity, pressure, and total

energy per unit mass; N is the number of species; ~YðsÞ is the volume fraction of the sth fluid and

satisfies
XN

1
~Y
ðsÞ

¼ 1; ~D is the diffusion coefficient set to ~D ¼ ν=Sc, where ν is the kinematic

viscosity of the fluid, Sc is the Schmidt number. σij is the deviatoric Newtonian stress tensor, i.e.

σij ¼ μl

∂~ui

∂xj
þ

∂~uj

∂xi
�
2

3
δij

∂~uk

∂xk

� �� �

ð2Þ

where μl is the dynamic viscosity. qlj ¼ �λl∂
~T=∂xj is the resolved heat transport flux per unit

time and space, λl ¼ μlcp/Prl is the resolved heat conduction coefficient, cp is the constant

pressure specific heat, Prl is the Prandtl number, and ~T is the fluid temperature. The equation

of state (EOS) has choices of the ideal gas state form, stiffen gas state form, reduction form of

Gruneisen EOS for condensed matter.
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For a multi-material mixture case, the average quantities and physical properties of a mixed

phase are supposed as a volume-weighted sum over the set of components ρ
� � sð Þ

, ρ~ui

� � sð Þ
,

and ρ~E
� � sð Þ

used at the initial time, and so on for each, respectively,

ρ ¼
XN

s¼1

~Y
sð Þ
ρ
sð Þ ð3Þ

ρ~ui ¼
XN

s¼1

~Y
sð Þ

ρ~ui

� � sð Þ
ð4Þ

ρ~E ¼
XN

s¼1

~Y
sð Þ

ρe
� � sð Þ

þ
1

2
ρ~u2

i

� � sð Þ
" #

ð5Þ

1

γ� 1
¼

XN

s¼1

~Y
sð Þ

γ sð Þ � 1
ð6Þ

μ ¼
XN

s¼1

μ
sð Þ ~Y

sð Þ
ð7Þ

D ¼
XN

s¼1

D
sð Þ ~Y

sð Þ
ð8Þ

For large-eddy simulation, in the filtering operation, the unresolved-scale motions identified as

the “subgrid-scale” are filtered, but the effects of subgrid-scale motions on the resolved-scale

motions are retained in the governing equations in the form of SGS turbulence transport

fluxes, which must be modeled to complete the closure of LES equations. The SGS stress

tensor, the heat, and scalar transport flux are defined as

τij ¼ ρ guiuj � ~ui~uj

� �
ð9Þ

QT
j ¼ ρ gcpTuj � ~cp~T~uj

� �
ð10Þ

QY
j ¼ gYuj � ~Y~uj

� �
ð11Þ

2.2. Subgrid-scale stress models for LES

2.2.1. Smagorinsky model

The SGS turbulence behavior is assumed to be analogous to the molecular dissipative mecha-

nism, so that the molecular viscosity and diffusion models can be used to simulate the SGS

fluxes, and the SGS stress tensor, the heat, and the scalar transport flux are calculated as

follows [13]
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τij ¼ �μt

∂~ui

∂xj
þ
∂~uj

∂xi
�
2

3
δij

∂~uk

∂xk

� �� �

ð12Þ

QT
j ¼ �λt

∂~T

∂xj
¼ �

μtcp

Prt

∂~T

∂xj
ð13Þ

QY
j ¼ �Dt

∂~Y
sð Þ

∂xj
¼ �

μt

ρSct

∂~Y
sð Þ

∂xj
ð14Þ

where the SGS turbulent viscosity μt is calculated by the Smagorinsky eddy viscosity model,

μt ¼ 2CρΔ2jSj ð15Þ

where the dimensionless coefficient C ¼ C2
S, for the isotropic turbulence, the model constant is

CS ¼ 0:17, Δ is the grid-filter width, and j S j ¼ 2SijSij
� �1=2

is the magnitude of the resolved

strain-rate tensor,

Sij ¼
1

2

∂~ui

∂xj
þ
∂~uj

∂xi

� �

ð16Þ

2.2.2. Vreman model

The Vreman SGS model is also an eddy viscosity model and is as follows [14]:

μt ¼ cρ

ffiffiffiffiffiffiffiffiffiffi

Bβ

αijαij

s

ð17Þ

with

αij ¼ ∂i~uj ¼
∂~uj

∂xi
βij ¼ Δ2

mαmiαmj

Bβ ¼ β11β22 � β212 þ β11β33 � β213 þ β22β33 � β223

ð18Þ

The model constant c is related to the Smagorinsky SGS model constant CS by c ≈ 2:5C2
S. The

symbol α represents the 3 � 3 matrix of derivatives of the filtered velocity ~u. If αijαij equals

zero, μt is consistently defined to be zero. In fact, Bβ is an invariant of the matrix β, while αijαij is

an invariant of αTα. If the filter width is the same in each direction, then Δi ¼ Δ and β ¼ Δ
2αTα.

2.2.3. Dynamic Smagorinsky model

In general, the turbulent kinetic energy is transferred from large scales to small scales in

turbulent flows, which is called forward scatter of energy, and then it is dissipated by the

viscous action. However, the reversed energy flow from small scales to large scales (the

process called backscatter) may also occur. Although the backscatter is just a small range of
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local phenomenon, it has been shown to be of importance, especially in the transition regime.

The physical mechanism of most of the widely used SGS models is the forward scatter of

energy; in other words, the SGS models are absolutely dissipative, such as the eddy viscosity

models (Smagorinsky and Vreman SGS models). In order to account for the backscatter of

energy, several modifications to the eddy viscosity models have been proposed. An improve-

ment is to calculate the eddy viscosity coefficient dynamically which is a function of space and

time and can be negative in some regions [15].

The dynamic Smagorinsky model for compressible turbulence is as follows, the model coeffi-

cient is

CD ¼
〈LijMij〉

〈MijMij〉
ð19Þ

where Lij is the Leonard stress, 〈 〉 indicates the statistics averaging.

Lij ¼
bρ~ui~uj �

1

ρ̂
bρ~ui
bρ~u j

� �
ð20Þ

Mij ¼ � 2^Δ
2
ρ̂ ^S

					

					
^Sij �

δij

3
^Skk

� �
� 2Δ

2
b
ρ S

					

					 Sij �
δij

3
Skk

� �2

4

3

5 ð21Þ

the overbars of “¯” and “^” denote the grid filter and test filter, respectively.

2.2.4. Stretched-vortex model

The stretched-vortex model is based on an explicit structural modeling of small-scale dynamics.

It can simulate themultiscale compressible turbulence and allows the anisotropy of the flow to be

extended to the dissipation scale. In the stretched-vortex model, the flow within a computational

grid cell is assumed to result from an ensemble of straight, nearly axisymmetric vortices aligned

with the local resolved scale strain or vorticity. The resulting SGS flux terms are [16]

τij ¼ ρ~k δij � eνi e
ν
j

� �
ð22Þ

QT
i ¼ �ρ

Δc

2
~k½ δij � eνi e

ν
j

� �
∂ ~cp~T
� �

∂xj
ð23Þ

QY
i ¼ �

Δc

2
~k½ δij � eνi e

ν
j

� �
∂~Y

∂xj
ð24Þ

where ~k ¼
ð
∞

kc
E kð Þdk is the subgrid turbulent kinetic energy, eν is the unit vector aligned with the

subgrid vortex axis, kc ¼ π=Δc is the cutoff wave number, E kð Þ ¼ K0ε
2=3k�5=3 exp �2k2ν= 3j~ajð Þ


 �

represents the energy spectrum of subgrid vortices, and K0 is the Kolmogorov prefactor, ε is the
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local cell-averaged dissipation, ~a ¼ ~Sije
ν
i e

ν
j is the axial strain along the subgrid vortex axis, ~Sij

denotes the resolved rate-of-strain tensor.

2.3. Numerical algorithm

For the convenience, in the following sections, the overbar and overtilde of variables are

omitted. Operator splitting technique is used to solve the physical problems, described by

Eq. (1), into three sub-processes, i.e., the computation of inviscid flux, viscous flux, and heat

flux. Eq. (1) can be split into two equations as follows:

∂ρ

∂t
þ

∂ρuj

∂xj
¼ 0

∂ρui
∂t

þ
∂ ρuiuj þ pδij
� �

∂xj
¼ 0

∂ρE

∂t
þ

∂ ρujEþ puj
� �

∂xj
¼ 0

∂Y sð Þ

∂t
þ uj

∂Y sð Þ

∂xj
¼ 0 s ¼ 1, 2, …, N � 1

ð25Þ

and

∂ρ

∂t
¼ 0

∂ρui
∂t

¼
∂σij

∂xj
�

∂τij

∂xj

∂ρE

∂t
¼

∂ σij � τij
� �

ui

∂xj
�

∂ qlj þQT
j

� �

∂xj

∂Y sð Þ

∂t
¼

∂

∂xj
D
∂Y sð Þ

∂xj

 !

�
∂QY

j

∂xj
s ¼ 1, 2, …, N � 1

ð26Þ

For the inviscid flux, the three-dimensional problem can be simplified into one-dimensional

(1D) problem in three directions of x, y, and z by the dimension splitting technique,

∂ρ

∂t
þ

∂ ρu
� �

∂x
¼ 0

∂ ρu
� �

∂t
þ

∂ ρu2 þ p
� �

∂x
¼ 0

∂ ρE
� �

∂t
þ

∂ ρuEþ pu
� �

∂x
¼ 0

∂Y sð Þ

∂t
þ u

∂Y sð Þ

∂x
¼ 0 s ¼ 1, 2, …, N � 1

ð27Þ
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And then the one-dimensional Eq. (27) in each direction is resolved by the two-step Lagrange-

Remapping algorithm. Also, one time step is divided into four substeps: (i) the piecewise

parabolic interpolating of physical quantities, (ii) solving the Riemann problems approxi-

mately, (iii) marching of the Lagrange equations, and (iv) remapping the physical quantities

back to the stationary Euler meshes. The orders of accuracy of the spatial and temporal

schemes are the third and second, respectively, for smooth flows.

2.3.1. Lagrange step of finite volume method

The Lagrange equations in 1D for multi-fluid can be written as

∂τ

∂t
�

∂ rauð Þ

∂m
¼ 0

∂u

∂t
þ ra

∂p

∂m
¼ 0

∂E

∂t
þ

∂ raupð Þ

∂m
¼ 0

∂Y sð Þ

∂t
¼ 0 s ¼ 1, 2, …, N � 1

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

ð28Þ

where τ is the specific volume, α is 0, 1, and 2 corresponding to the plane, axial symmetry, and

spherical symmetry problems, r is the Lagrange spatial coordinates, m is the Lagrange mass

coordinates m ¼
ðr

r0
ρrαdr, u ¼ ∂r

∂t, mj�1/2 and mjþ1/2 are the mass coordinates of both sides of the

jth grid, Δm ¼ mjþ1/2 � mj�1/2. The mass average of physical quantities τ, u, E, Y sð Þ
� �n

j
for the

jth grid can be defined as

τ
u
E

Y sð Þ

0

B

B

@

1

C

C

A

n

j

¼
1

Δmj

ð

mjþ1=2

mj�1=2

τ m, tnð Þ
u m, tnð Þ
E m, tnð Þ

YðsÞ m, tnð Þ

0

B

B

@

1

C

C

A

dm ð29Þ

Because of the calculations are referred to as scalars, here the averaged physical quantities in a

cell are written as a uniformity Qn
j at time t. The piecewise parabolic function Qn

j mð Þ in cells are

constructed to compute the time average of physical quantity Q on both sides of the grid edge

mjþ1/2,
~Qjþ1=2,L and ~Qjþ1=2,R. Then the Riemann problem at the grid edge mjþ1/2 is solved by

using double shock wave approximation. After Lagrange marching step, we can obtain distri-

bution of the physical quantities τnþ1
j

n o

, unþ1
j

n o

, Enþ1
j

n o

, and the position of new grids

rnþ1
j�1=2

n o

at time tnþ1, the pressure pnþ1
j

n o

can be computed by equation of state, the

Y sð Þ
� �nþ1

j

� 

will not change. The marching formula is as follows
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rnþ1
jþ1=2 ¼ rnjþ1=2 þ ~ujþ1=2Δt

τnþ1
j ¼

rnþ1
jþ1=2

� �αþ1
� rnþ1

j�1=2

� �αþ1

αþ 1ð ÞΔmj

unþ1
j ¼ unj �

1

2

Δt

Δmj
σjþ1=2 þ σj�1=2

� �

~pjþ1=2 � ~pj�1=2

� �

Enþ1
j ¼ En

j �
Δt

Δmj
σjþ1=2~ujþ1=2~pjþ1=2 � σj�1=2~uj�1=2~pj�1=2

� �

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð30Þ

σjþ1=2 ¼
rnþ1
jþ1=2

� �αþ1
� rnjþ1=2

� �αþ1

αþ 1ð Þ rnþ1
jþ1=2 � rnjþ1=2

� � ð31Þ

2.3.2. Remap step

In Lagrange step, the computational cells distort to follow the material motion, and in Remap

step, the averaged physical quantities at the distorted Lagrange cells are remapped back to the

stationary Euler meshes. The piecewise parabolic interpolation and integral methods in this

step are the same as the ones in Lagrange step.

After Remap step, we define the physical quantities in Euler mesh as ρEuler

� �nþ1

j
, uEulerð Þnþ1

j ,

EEulerð Þnþ1
j , Y sð Þ

� �

Euler

� �nþ1

j

, the volume of fluid through the grid boundary jþ 1=2 as ΔV�
jþ1=2,

and the average of physical quantities as ρ�
, u�, p�, Y sð Þ

� ��� �

jþ1=2
. The density after Lagrange

step is ρnþ1
j ¼ 1=τnþ1

j . In Remap step

Δmnþ1
j ¼ ρnþ1

j Vnþ1
j ð32Þ

Δmn
j ¼ ρEuler

� �n

j
Vn

j ð33Þ

Δm�
jþ1=2 ¼ ρ�

jþ1=2ΔV
�
jþ1=2 ð34Þ

ΔE�
jþ1=2 ¼

1

2
u�jþ1=2

� �2
Δm�

jþ1=2 þ Δe�jþ1=2 ð35Þ

ρEuler

� �nþ1

j
¼ Δmnþ1

j � ρ�
jþ1=2ΔV

�
jþ1=2 � ρ�

j�1=2ΔV
�
j�1=2

� �h i

=Vn
j ð36Þ

u
Euler

� �nþ1

j
¼ unþ1

j Δmnþ1
j � u�jþ1=2Δm

�
jþ1=2 � u�j�1=2Δm

�
j�1=2

� �h i

=Δmn
j ð37Þ

Y sð Þ
� �

Euler

� �nþ1

j

¼ Y sð Þ
� �nþ1

j
Vnþ1

j � Y sð Þ
� ��

jþ1=2
ΔV�

jþ1=2 � Y sð Þ
� ��

j�1=2
ΔV�

j�1=2

� �� �

=Vn
j ð38Þ
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E
Euler

� �nþ1

j
¼ Enþ1

j Δmnþ1
j � ΔE�

jþ1=2 � ΔE�
j�1=2

� �h i

=Δmn
j ð39Þ

where Δe�jþ1=2 is the advection of specific energy through the grid boundary jþ 1=2.

2.3.3. Viscous flux, heat flux, and scalar flux

The viscous flux, heat flux, and scalar flux of Eq. (26) are calculated based on the computed

inviscid flux by using second-order spatial center difference and two-step Runge-Kutta time

marching. The first equation of Eq. (26) can be neglected, and which is written in conserved

form

∂U

∂t
þ

∂F

∂x
þ

∂G

∂y
þ

∂H

∂z
¼ 0 ð40Þ

and

U ¼ ρu,ρv,ρw,ρE
� �T

F ¼ �σxx , � σyx, � σzx , � uσxx � vσyx � wσzx þ qx
� �T

G ¼ �σxy, � σyy , � σzy, � uσxy � vσyy � wσzy þ qy

� �T

H ¼ �σxz, � σyz , � σzz, � uσxz � vσyz � wσzz þ qz
� �T

ð41Þ

In the Cartesian coordinate system, the spatial derivative terms of Eq. (40) can be dispersed as

follows:

Lh U
n
i, j,k

� �

¼
F
n
i�1=2, j,k � F

n
iþ1=2, j,k

Δx
þ
G

n

i, j�1=2,k �G
n

i, jþ1=2,k

Δy
þ
H

n
i, j,k�1=2 �H

n
i, j,kþ1=2

Δz
ð42Þ

Then, Eq. (40) is solved by two Runge-Kutta time marching,

U
ðlÞ
i, j,k ¼ U

E
i, j,k þ ΔtLh U

n
i, j,k

� �

U
nþ1
i, j,k ¼

1

2
U

E
i, j,k þ U

ðlÞ
i, j,k þ ΔtLh U

ðlÞ
i, j,k

� �h i

8

>

<

>

:

ð43Þ

The detailed descriptions of numerical algorithm are referred to Ref. [17].

3. Verification and validation

In this section, the validity and reliability of our compressible multi-fluid dynamic programs

are to be verified and validated by comparisons with analytical solutions and hydrodynamic

interface instability experiments in a shock tube.
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3.1. Riemann problem of condensed matter

A copper pellet collides with a copper target with three velocities of 2, 4, and 8 km/s. Using the

reduction form of Gruneisen EOS for copper in simulations, the one-dimensional numerical

results of postshock density (a), pressure (b), and velocity (c) compare with theoretical solu-

tions, as shown in Figure 2, the solid lines corresponding to numerical results and the dot lines

corresponding to the theoretical solutions.

3.2. Riemann problem of one-dimensional gas/liquid

At initial time, the region [0, 1.0 cm] is filled with gas with high pressure 1.0 � 108 Pa and

density 1.29 g/cm3. The region [1.0 cm, 5.0 cm] is filled with water with pressure 1.0 � 105 Pa

and density 1.0 g/cm3. The gas and water are all described by Stiffen gas EOS. The left and

right boundaries are flow. Figure 3 shows the distributions of the density (a), pressure (b), and

velocity (c) at 20 μs. There are a forward shock wave and a backward rarefaction wave after

interaction. The pressure and velocity around the interface are well continuous and have no

nonphysical oscillation.

3.3. Single-mode Richtmyer-Meshkov instability

The two- and three-dimensional single-mode Richtmyer-Meshkov instabilities are numerical

simulated by MVPPM program, which also compare with the theoretical model [18]. The

initial small perturbation is a sinusoidal one with wavelength 60 mm (global wavelength for a

three-dimensional case) and amplitude 1.0 mm. The incident air shock wave with Mach

number 1.2 impacts the air/SF6 single-mode interface. Figure 4 shows the comparisons of

amplitude of single-mode perturbed interface with the linear impulsive and nonlinear

models, the left one corresponding to the two-dimensional (2D) results, and the right one

corresponding to the three-dimensional results.

3.4. Simulations of shock tube experiments

The compressible multi-fluid dynamic programs are used to simulated several shock tube

experiments of interface instability for validation. These experiments include planar interface

and gas cylinder shock tube experiment and planar and cylindrical jelly experiments.

Figure 5 shows the comparison of 2D calculated width of turbulent mixing zone (TMZ) [19] of

Leinov’s shock tube experiment with reshock with experiment [20] in which the Mach number

Figure 2. Comparison of postshock density (a), pressure (b), and velocity (c) in copper at t ¼ 1.0 μs when a copper pellet

collides with a copper target at three different velocities.
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Figure 3. Distributions of the density (a), pressure (b), and velocity (c) at 20 μs for one-dimensional Riemann problem of

gas/liquid interface.

Figure 4. Comparisons of amplitude of single-mode perturbed interface with the linear impulsive model and nonlinear

models, left: two-dimension and right: three-dimension.

Figure 5. TMZ width versus time (t ¼ 0 denotes the reshock arrival to the interface).
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of incident air shock wave is 1.2, which impacts the air/SF6 interface, the grid size is 50 μm.

Figure 6 shows the 3D calculated TMZ width [21] of Poggi’s multi-mode shock tube experi-

ment [22] with reshock in which the Mach number of incident SF6 shock wave is 1.453, which

impacts the SF6/air interface. Figures 7 [10] and 8 [23] show the calculated and experimental

interface images of AWE’s SF6 half-height and double-bump shock tube experiment [24, 25],

the Mach number of incident air shock wave is 1.26, respectively. Figure 9 [26] shows the SF6
gas cylinder evolution at different times under the initial air shock wave with the Mach

number 1.2, Figure 10 shows the width and height of gas cylinder at different times for

experiment and numerical simulations.

Figure 6. Time history of TMZ width.

Figure 7. Two dimension calculated from MVFT and experimental half-height interface at different times.
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For the problems of interface instability with a high density ratio, our hydrodynamic programs

are also applicable. For the LLNL’s jelly ring experiments [27], the jelly ring only has a

sinusoidal periodic initial perturbation at the outer interface and is driven by expansion of the

explosion products of a gaseous mixture of C2H2 and O2. The jelly is mainly made of water.

The thickness of ring is 15 mm, the mode number of perturbation is 6 and 36, respectively, and

the initial amplitude is 1.0 mm. Figure 11 shows the evolutions of the jelly ring at different

times from simulated from LLNL’ CALE program (a) and our MVPPM program (b), and the

experimental image (c) at 600 μs [28]. Figure 12 shows the time histories of radius (a) and the

amplitude (b) of the outer and inner interfaces of the jelly ring simulated from CALE and

Figure 8. Three dimension calculated fromMVFTand experimental double-bump interface at different times, left column

corresponding to experimental images, right column corresponding to 3D calculated images, and middle column

corresponding to span-wise average images of 3D calculated results.

Figure 9. Evolutions of SF6 gas cylinder, upper row corresponding to experiment, lower row corresponding to numerical

simulation by MVFT program, the time sequences are 0, 50, 190, 330, 470, 610, and 750 μs severally.
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MVPPM programs [28]. Figure 13 shows the images of jelly ring at 600 μs for mode number 36

from experiment (a), CALE (b), and MVPPM (c) programs [28].

From the above comparisons between our numerical simulations and theoretical model,

experiments for the problems of hydrodynamic interface instability from the density ratio low

Figure 11. Evolutions of jelly ring at different simulated from CALE (a: left group) and MVPPM (b: middle group)

programs, and the experimental image at 600 μs (c).

Figure 12. Time histories of radius (a) and the amplitude (b) of the outer and inner interfaces of jelly ring simulated from

CALE and MVPPM programs.

Figure 10. Width and height of gas cylinder at different times for experimental and numerical simulations.
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to the high density ratio, the numerical results agree well with theory and experiments, so the

validity and reliability of our compressible multi-fluid dynamic programs have been verified

and validated.

4. Interface instability and turbulent mixing

As we know, the physical mechanism for the occurrence of Richtmyer-Meshkov instability is

the baroclinic vorticity deposition at the interface resulting from the misalignment of the

pressure gradient across the shock front and the local density gradient across the interface.

The evolution equation of vorticity is as follows:

dω

dt
¼

∇ρ� ∇p

ρ2
þω � ∇u�ω∇ � u ð44Þ

where ω ¼ ∇ � u is the vorticity and viscous terms are neglected. The first term on the right

side of Eq. (44) is the baroclinic vorticity production term. The second term on the right side of

Eq. (44) is the vortex-stretching term, which is zero in the two-dimensional case, as the

vorticity and velocity fields are orthogonal. This term enhances dissipation, resulting in more

diffuse and smaller scale structures in the turbulent mixing zone. The third term on the right

side is the compression term and does not contribute to the vorticity evolution significantly.

The baroclinic vorticity production is much larger when the shock wave impacts the interface

and pass through it and constitutes the principal mechanism of the Richtmyer-Meshkov

instability.

In this section, we will introduce the growth laws of the Richtmyer-Meshkov instability and

the induced turbulent mixing and its dynamic behavior by numerical simulations.

4.1. Growth laws of Richtmyer-Meshkov instability and turbulent mixing

Figure 14 shows the amplitude (a) and growth rate (b) of two-dimensional single-mode

Richtmyer-Meshkov instability without reshock for initial perturbation amplitude 1 and 12 mm

Figure 13. Images of jelly ring at 600 μs for mode number 36 from experiment (a), CALE program (b), and MVPPM

program (c).
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and wavelength 60 mm. After initial shock, the perturbation enters the nonlinear stage quickly.

The growth rate increases fast and reaches the highest peak, then will reduce owing to the

reduction of the effect of compressibility and the dominant role of flow nonlinearity. At the late

times, the amplitude is increasing linearly, and the growth rate remains a constant. For the larger

initial amplitude, the perturbation enters the later linear growth stage earlier.

For the multi-mode Richtmyer-Meshkov instability and the induced turbulent mixing with

reshock, the initial air shock wave with Mach number 1.2 impacts the air/SF6 interface. The

multi-mode initial perturbation is composed of eight dominant mode wavelengths of 0.8, 1.0,

1.25, 1.6, 2.0, 2.5, 3.2, and 4.0 mm superimposed with a very small random disturbance. The

shock tube experiment can be referred to Ref. [29]. Figure 15 shows the schematic of shock

tube and computational model. The transmitted wave rebounds between the interface and the

end-wall of shock tube and produces multiple shock-interface interactions. At about 1.7 ms,

Figure 14. Amplitude (a) and growth rate (b) of two-dimensional single-mode Richtmyer-Meshkov instability without

reshock.

Figure 15. Schematic of shock tube and computational model.
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the transmitted shock wave reflected back off the end-wall impacts the interface. Figure 16

shows the time history of TMZ width, the black line denotes the numerically calculated width

and the red line is obtained from fitting of the numerical results. As can be seen, after the initial

shock, the TMZ width starts to grow as a power law ~tθ with the value θ to be determined as

0.352. After the reshock, more energy is deposited onto the interface to promote the develop-

ment of TMZ, and the TMZ width evolves in time as a negative exponential law ~�e�t=t�

where the value of t* is 0.519. Then after the following interaction of the reflected rarefaction

wave with the interface, the TMZ also evolves as a negative exponential law but with a

different factor t* ¼ 0.875. Under the subsequent impingements with lower and lower intensity,

the TMZ width, after a slight reduction caused by the reflected compression wave, evolves in

an approximate linear fashion with a velocity of 2.05 m/s. Figure 17 shows the instantaneous

images of the TMZ visualized by the volume fraction isosurface YSF6 ¼ 0.1, 0.3, 0.5, 0.7, and 0.9

from blue to orange at different times, the TMZ exhibits a very complex spatial structure.

4.2. Evaluation of different subgrid-scale stress models

In large-eddy simulation, the effect of small scales on large-scale motions is represented by the

SGS stress model. Most of the commonly used SGS models assume that the main function of

subgrid scales is to remove energy from the large scales and dissipate it through the action of the

viscous forces. But, as we know, in fact the energy is also transferred from the small scales to

the large scales (backscatter) in a small and local range. The SGS turbulent dissipation, which is

the work of SGS stress, represents the energy transfer between resolved and subgrid scales,

ε
SGS

¼ τijSij ð45Þ

If it is negative, the subgrid scales remove energy from the resolved scales (forward scatter); if

it is positive, they release energy to the resolved scales (backscatter). It is easy to see that

the eddy viscosity models such as Smagorinsky model, Vreman model, etc. are absolutely

dissipative.

Figure 16. Time history of the TMZ width.
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Figure 18 shows the distribution of calculated SGS turbulent dissipation in streamwise direction

for Smagorinsky and Vreman models and for AWE’s SF6 half-height shock tube experiment [24]

at two times [11]. The SGS dissipation of the Smagorinsky model is much greater than the

Vreman model over 1.5 times; therefore, the dissipation is too great for the Smagorinsky SGS

model. The SGS turbulent dissipations of the Vreman model (VM), the dynamic Smagorinsky

model (DSM), and the stretched-vortex model (SVM) based on a planar Richtmyer-Meshkov

instability with incident Mach number 1.2 are shown in Figure 19 [30]. Before the interfacial flow

has developed to be turbulent completely, the dynamic and stretched-vortex models have all

predicted the energy backscatter, but the energy backscatter predicted by the dynamic model is

Figure 17. Instantaneous images of TMZ visualized by the volume fraction isosurface YSF6 ¼ 0.1, 0.3, 0.5, 0.7, and 0.9 from

blue to orange at different times.

Figure 18. Distribution of calculated SGS turbulent dissipation in a streamwise direction for Smagorinsky and Vreman

models and for AWE’s SF6 half-height shock tube experiment [24] at two times. Red line corresponding to the Vreman

model, green line corresponding to the Smagorinsky model.
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larger and its range is wider. After reshock, the turbulent fluctuations are stronger extremely the

turbulent dissipation also increases. The dynamic model’s dissipation is the highest, then

followed by the Vreman model, and the stretched-vortex model’s dissipation is the lowest. At

the late time, the SGS dissipation of the dynamic and Vreman models is the same basically, and

the dynamic model is also to be absolutely dissipative, yet the stretched-vortex model is still able

to predict the local phenomenon of energy backscatter in a small range. So, the dynamic model is

poor in representing the energy backscatter. The Vreman and stretched-vortex models are all

robust, but the former is absolutely dissipative.

4.3. Effects of the initial conditions on the growth of RMI and the turbulent mixing

4.3.1. Effects of the initial conditions on the growth of single-mode RMI

First, we consider the effects of initial conditions of perturbation amplitude and wavelength on

the growth of single-mode Richtmyer-Meshkov instability without reshock [18]. The incident

shock wave with Mach number 1.2 impacts the air/SF6 interface. The initial perturbation ampli-

tude and wavelength are listed in Table 1. The calculations are carried out in two dimensions,

and the RMI does not develop into turbulent mixing completely. Figure 20 shows the effects of

the initial perturbation amplitude on the growth of single-mode RMI for the fixed initial pertur-

bation wavelength λ0 ¼ 60 mm. The perturbation amplitude (a) and growth rate (b) increase

gradually with the increasing of initial amplitude. And when the initial amplitude is much

larger, the growth of amplitude enters a linear stage earlier at the late times, and the growth rate

remains a constant. The growth rate increases fast and reaches the highest peak at the early

times. After the peak, the effect of compressibility is reduced and the flow nonlinearity starts to

play a dominant role and causes the growth rate to decay with time. Figure 21 shows the effects

of the initial perturbation wavelength on the growth of single-mode RMI for the fixed initial

Figure 19. Distribution of the SGS turbulent dissipation in a streamwise direction for the Vreman, dynamic Smagorinsky

and stretched-vortex models at four times.
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Figure 20. Effects of the initial perturbation amplitude on the growth of single-mode RMI for the fixed initial perturbation

wavelength λ0 ¼ 60 mm.

Wavelength (mm) 60 30 40 50 70 80

Amplitude (mm) 1 2 3 4 5 6 8 10 12 14 3

Table 1. Initial conditions of perturbation for single-mode RMI.

Figure 21. Effects of the initial perturbation wavelength on the growth of single-mode RMI for the fixed initial perturba-

tion amplitude a0 ¼ 3 mm.
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perturbation amplitude a0 ¼ 3 mm. The perturbation amplitude (a) and growth rate (b) reduce

gradually at the early times and increase gradually at the late times with the increasing of initial

wavelength. And when the initial perturbation strength (ration of initial amplitude to wave-

length) is much smaller, the perturbation growth is mainly dependent on the initial perturbation

amplitude and slightly dependent on the initial perturbation wavelength at the late times of

RMI. The same conclusion can be obtained from three-dimensional calculations.

4.3.2. Effects of the initial conditions on the growth of multi-mode RMI and the

induced turbulent mixing

For the effects of three-dimensional initial multi-mode conditions, the case of Richtmyer-

Meshkov instability is same as the above Section 4.1. Table 2 lists the initial condition of

perturbations, the perturbation strength (PS) is defined as the ratio of initial amplitude to

wavelength. Turbulent kinetic energy K, dissipation rate ε, and enstrophy Ω are defined as

follows [31]:

K ¼
〈ρu00 iu

00
i〉

2〈ρ〉
þ

〈τii〉

2〈ρ〉
ð46Þ

ε ¼
〈σij∂u

00
i=∂xj〉

〈ρ〉
�

〈τij∂u
00
i=∂xj〉

〈ρ〉
ð47Þ

Ω ¼
1

2
jω j2 ð48Þ

where u00i is the velocity fluctuation and 〈 〉 denotes the transverse plane-average. For large-

eddy simulations, the turbulent kinetic energy and dissipation rate both include two parts

named as the resolved-scales (the first term on the right side of Eqs. (46) and (47)) and the

subgrid-scales (the second term on the right side of Eqs. (46) and (47)).

Figure 22 shows the growth history of TMZ width. Figures 23 and 24 show the time histories

of the perk values of turbulent kinetic energy and enstrophy, respectively. For the larger initial

perturbation strength, the TMZ grows faster, the turbulent kinetic energy is also larger or the

turbulence strength is also stronger, the deposited vorticity is larger too. The development of

turbulent mixing has a strong dependence on the initial conditions between the initial shock

and the impingement of the first reflected rarefaction wave, after that the evolution of the

turbulent mixing has lost the memory of the initial conditions.

CASE1 CASE2 CASE3 CASE4 CASE5

η0 (mm) 0.07 0.14 0.28 0.56 1.12

PS 0.035 .0.7 0.14 0.28 0.56

Table 2. Model parameters.
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Figure 22. Growth history of the TMZ width for different models.

Figure 23. History of turbulent kinetic energy for different models.

Figure 24. History of enstrophy for different models.
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4.4. Dynamic characters of multi-mode RM instability and induced turbulent mixing

Figures 25–27 show the spatial profiles of the turbulent kinetic energy, dissipation rate and

enstrophy along the motion direction of shock wave at different times before and after reshock

individually. They all have a spatial profile similar to Gaussian distribution. The strongest

turbulent intensity is located in the center of TMZ. Figures 28–30 show the temporal evolu-

tions of the peak values of the turbulent kinetic energy, dissipation rate, and enstrophy in the

spatial profiles, along with their fitted results, respectively. The turbulent kinetic energy,

dissipation rate, and enstrophy decay gradually because of dissipation and diffusion. After

the initial shock and before the reshock, the turbulent kinetic energy and enstrophy decay with

time as a power law ~tθ except the dissipation rate which decays with time as an exponential

law ~e�t=t� . One reason is that the TMZ is not fully developed turbulence before reshock and

the other reason is that the flow in TMZ is stronger anisotropic between the transverse

direction and the axis direction. After reshock and the first reflected rarefaction wave, they all

decay with time as the negative exponential law with the closed decay factors at the same

Figure 25. Spatial profiles of the turbulent kinetic energy at different times. (a) Before reshock and (b) after reshock.

Figure 26. Spatial profiles of the turbulent kinetic energy dissipation rate at different times. (a) Before reshock and (b)

after reshock.
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stage, and be similar to the growth of TMZ width. And then, they all decay asymptotically due

to no remarkable energy deposition. Therefore, the turbulent mixing behaves in a statistical

self-similar pattern. Figure 31 shows the one-dimensional global energy spectra of three

velocity components on a log-log scale at three times. The energy spectra of two transverse

components of velocity are too close, and there is a difference between transverse and axis

components. The turbulent mixing flow is continuous anisotropic yet the anisotropy weakens

gradually. That is to say, the development of the turbulent mixing presents a trend of isotropy.

4.5. Numerical study of the elliptic gas cylinder instability

Our group first performed the experimental and numerical investigations of the elliptic gas

cylinder instability. As we know that the initial density distribution of the gas cylinder is hard

Figure 28. Time history of the peak value of turbulent kinetic energy.

Figure 27. Spatial profiles of the enstrophy at different times. (a) Before reshock and (b) after reshock.
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to determine in the experiment, which can only give the one-dimensional radial concentration

distribution for circular gas cylinder as an approximate Gaussian function. Drawing to the

experience on the one-dimensional diffusive interfacial transition layer with finite thickness for

circular gas cylinder, we constructed a two-dimensional diffusive interfacial transition layer

with finite thickness for elliptic gas cylinder through numerical simulation [32],

ρðα, βÞ ¼ χ0ρSF6
e�½ðα�αminÞ

2þðβ�βminÞ
2�=δ2 ð49Þ

ðx� x0Þ

α2
þ
ðy� y0Þ

β2
¼ 1 ð50Þ

Figure 29. Time history of the peak value of turbulent kinetic energy dissipation rate.

Figure 30. Time history of the peak value of enstrophy.
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where x0¼ y0¼ 0, α ∈ [αmin, αmax], β ∈ [βmin, βmax], αmin¼ βmin¼ 1.0� 10�5mm, αmax¼ 6.30 mm,

βmax ¼ 2.30 mm, and δ ¼ 6.16 mm. χ0 ¼ 0.71 is the concentration of the elliptic center. The

density distribution is plotted in Figure 32. The Mach number of air shock wave is 1.25. The

simulations (see Figure 33) reproduce the elliptic gas cylinder instability experiment very well,

they achieve to a good agreement qualitatively and quantitatively, some salient features of the

vortex pairs are obtained clearly.

Figure 34 shows the vorticity at the center of the core and the distance between the two vortex

cores of these two simulations. When the incident shock accelerates the elliptic gas cylinder

along the major axis, the absolute vorticity in the vortex core |ωcore| is larger; but the distance

between two vortex cores is larger when the incident shock accelerates the cylinder along the

minor axis. So, the effect of convergence is stronger when the incident shock accelerates the

elliptic gas cylinder along the major axis, for which the gas jet appears at the symmetry center.

4.6. Foundation of new RM instability and mechanism

At present, the investigation for the Richtmyer-Meshkov instability is performed in a uniform

flow field. We first study the Richtmyer-Meshkov instability and turbulent mixing in a

Figure 31. One-dimensional global energy spectra of three components of velocity on a log-log scale.
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nonuniform flow field by experiment and numerical simulations and find some new phenom-

ena. Figure 35 shows the test section schematic of shock tube. The air shock wave with Mach

number 1.27 accelerates the two-mode sinusoidal air/SF6 interface (amplitude A01 ¼ 5 m, A02 ¼

7.5 mm). The experimental Schlieren images (gray images in Figure 38) show the transmitted

shock wave and the interface all incline which is different from the familiar RMI. We think this

Figure 32. Density images and distributions of the (a) circular and (b) elliptic SF6 gas cylinder initially constructed.

Figure 33. Experimental evolution images and numerical simulation results by MVFTat t¼ 200, 300, 400, 500, and 600 µs,

the experiments corresponding (a), (c), and (e), and the simulations corresponding (b), (d), and (f).
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may be owing to the nonuniformity of flow field. Also, drawing to the experience on the

diffusive interfacial transition layer of circular gas cylinder, we construct a nonuniform flow

field with a Gaussian distribution of density along the direction perpendicular to the shock

motion direction (as shown in Figure 36). The numerical result (shown in Figure 37) confirms

this idea [12, 33, 34].

Figure 35. Initial structure diagram in the shock tube.

Figure 34. Vorticity at the center of the cores and the distance between the two vortex cores from simulations.

Figure 36. Density profiles of nonuniform flows with Gaussian function and uniform flows in a vertical direction.
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Figure 38 shows the evolution of the interface and the propagation of the transmitted

shock wave, the calculated results agree well with the experiment. Due to the nonuniform

flow field of SF6 gas, the propagating velocity of transmitted shock wave in the upper part

of shock tube is faster than in the bottom of shock tube, and it forms an oblique shock

wave front and the interface. Figure 39 shows the shock front locations between experi-

ment and numerical simulations, Figure 40 shows the perturbation amplitude of experi-

ment, numerical simulation, and theories, they are in good agreement. Figure 41 shows the

calculated perturbation amplitude of RM instability for different modes in the initial

uniform and nonuniform flow fields. As we can see that, at late times, the growth of small

perturbation in a low-density zone catches up and exceeds the large perturbation in a

high-density zone, which is opposite to the case of uniform flow field. Figure 42 shows

the perturbation amplitudes of four different initial amplitudes 2.5, 5.0, 7.5, and 10 mm in

low- and high-density zones of nonuniform flow fields. It shows that the effect of initial

amplitude on the growth of RM instability in the nonuniform flow field is different from

the case of uniform one, which can be explained by the baroclinic vorticity shown in

Figures 43 and 44, the baroclinic vorticity produced in the low-density zone is larger than

that in the high-density zone.

Figure 37. Simulated density distribution in a nonuniform flow field by using Gaussian function.

Figure 38. Experimental schlieren photography images and numerical simulation results by MVFT2D at a certain time

series (the sizes of the pictures are ones of the test window [0.038, 0.25 m] � [0.0, 0.2 m]).
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Figure 39. Shock front locations of the experiment and calculated results on the three test lines.

Figure 41. Calculated perturbation amplitude of RM instability for different modes in the initial uniform and nonuniform

flow fields.

Figure 40. Perturbation amplitudes of the experiment, simulation, and comparison with theories.
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Figure 42. Perturbation amplitudes of four different initial amplitude 2.5, 5.0, 7.5 and 10 mm in the low and high density

zones of nonuniform flow field.

Figure 44. Baroclinic vorticity in the uniform and nonuniform flow fields with the initial amplitude group (A01 ¼ 2.5 mm,

A02 ¼ 7.5 mm) at 1.0 ms.

Figure 43. Average vorticity when initial amplitude is 5.0 mm which is in the low and high density zones of nonuniform

flow field at 1 ms.
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Figure 45. Density contour of the numerical simulated by MVFT at a time series. The left column with a uniform initial

condition, the middle column with a δ1 nonuniform Gaussian function, and the right column with a δ2 nonuniform

Gaussian function. The small arrow denotes the direction of propagation of the shock wave fronts before reshock the

interface.

Figure 46. TMZ width of RM instability in the initial uniform and nonuniform flow fields.
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For the above investigations of RM instability in the nonuniform flow field, they are all

without reshock. In the following section, we will study the effect of nonuniformity of flow

field and the reshock on the RM instability. Here, we consider two kinds of nonuniformity: the

nonuniform coefficient δ1 ¼ 0.6162 m and δ2 ¼ 0.4961 m. Figure 45 shows the density contour

of the numerical simulated by MVFT at a time series, the left column with a uniform initial

conditions, the middle column with a δ1 nonuniform Gaussian function, and the right column

with a δ2 nonuniform Gaussian function. There is a significant difference between the uniform

and nonuniform flows before reshock, but the difference decreases in evidence after reshock.

Figure 46 shows the TMZ width of RM instability in the initial uniform and nonuniform flow

fields. It points out that the growth of the TMZ width for the initial nonuniform flow field is

greater than that for the uniform flow field, and the lesser the nonuniform coefficient, the

higher the growth rate of TMZ width, but the difference for the three different flow configura-

tions diminishes after reshock.

5. Prospect

Now, we investigated the Richtmyer-Meshkov instability and the induced turbulent mixing in

fluid flow by using large-eddy simulation, but the turbulent mixing is a complicated three-

dimensional problem with multiple time-space scales, and the more engineering applications

involve the materials mixing with strength. So, the future work will be carried out in the

following aspects: (a) the direct numerical simulations with high precision and high resolution

on the platform of supercomputer, (b) the interface instability and turbulent materials mixing

with strength, this may involve the material properties such as the deformation, fracture, melt,

phase transition, material microstructures, etc., and it may make this problem to be more

difficult.
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