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Abstract

Nanomaterials have been synthesized using several different techniques. Some of these 
techniques are sophisticated, expensive and need certain training before use. However, 
there are other highly efficient methods for preparing nanomaterials that are easy to work 
with and require no specialized equipment, making them relatively inexpensive routes 
for synthesis. The least expensive routes are those that are classified as solution‐based 
techniques such as colloidal, sol‐gel and microwave‐assisted synthesis. The focus of this 
chapter is on a general description of each technique with recent advances in synthesis, 
doping processes and applications. Specifically, these processes are discussed in connec‐
tion with the synthesis of ZnO compounds and its related nanomaterials.

Keywords: ZnO, synthesis, chemical solutions, nanostructures

1. Introduction

An important II–VI semiconductor is ZnO which has been well‐studied and applied in a 
variety of applications. It has a band gap of 3.6 eV and large exciton binding energy of 60 
meV. Nowadays this material is considered as one of the most important large band gap 
semiconductors due to its easy synthesis, stability at room temperature, eco‐friendly proper‐
ties, being a direct band gap material and fast mobility. This material exists in three different 
crystal phases such as zinc blende, cubic or rock salt and wurtzite or hexagonal. The first two 
phases are obtained only in certain well‐controlled conditions such as certain pressures and 
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on  specific substrates. However, the most common phase under ambient conditions is the 
wurtzite hexagonal crystal structure shown in Figure 1.

Another advantage of this compound is that it can be synthesized and deposited by 
employing different techniques. Slight variation in process conditions can result in dif‐
ferent product morphologies and properties. Since the costs associated with research and 
industry is always an important consideration, it becomes necessary to use inexpensive 
and efficient methods to obtain the desired novel nanostructured materials with applica‐
tions in different fields such as optoelectronics, solar cells, piezoelectric and sometimes in 
biological materials.

Sol‐gel, colloidal solution and microwave‐assisted synthesis are techniques that are still 
important in the synthesis of semiconductor nanomaterials. These techniques share some 
similar characteristics such as (i) they are relatively inexpensive; (ii) the efficiency of the 
synthesized materials is high; (iii) process parameters are easily controlled and (iv) these 
techniques are also well‐studied. For these reasons, in this chapter we have focused on a 
review of these techniques, especially for the synthesis of ZnO, with emphasis on the recent 
advances in the synthesis of novel nanomaterials and its applications. A general overview of 
each process is also presented for ease of readability. The synthesized materials have been 
structurally characterized using X‐ray diffraction (XRD) and scanning electron microscopy 
(SEM). Figure 2 shows a representative XRD pattern of ZnO. XRD patterns of synthesized 
material can be compared to reference patterns to determine phase purity or if there is pref‐
erential crystal orientation. Most of the time, ZnO is obtained as a polycrystalline film or 
powder which can be identified by its numerous diffraction peaks at relative intensities. 
Depending on the processing conditions, single crystal or preferential growth can occur 

Figure 1. Representation of ZnO wurtzite crystal structure (black and grey balls corresponds to Zn and Oxygen atoms).
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in thin films that result in different relative peak intensities or missing peaks compared 
to the reference  pattern. The 2‐theta values of the (100), (002) and (101) lines in Figure 2 

of the  hexagonal crystal planes are located at 31.770, 34.422 and 36.253° for wurtzite ZnO 
(Ref. JCPDS card # 36‐1451).

Different processing parameters may result in different microscopic product morphologies 
of ZnO. From SEM, we can observe that this material could be obtained as  nanoparticles 

Figure 2. Typical XRD pattern of ZnO nanoparticles.

Figure 3. SEM image of ZnO nanoparticles obtained via colloidal synthesis. The scale bar is 500 nm.
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(Figure 3), polycrystalline (Figure 4) and as a nanostructured thin film (Figure 5). All of 
these materials were synthesized under non‐extreme conditions using colloidal synthesis 
to produce the source material. The crystal structure of these materials is the hexagonal 
wurtzite structure.

Figure 4. SEM image of polycrystalline ZnO thin film obtained through vacuum evaporation process, colloidal 
nanoparticles as source were used. The scale bar is 500 nm.

Figure 5. SEM ZnO nanostructures using colloidal nanoparticles as source. The scale bar is 500 nm.
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2. Some techniques for synthesizing ZnO nanostructures and nanoparticles

2.1. Sol‐gel

The sol‐gel process encompasses a variety of precursors, solvents and additives. But in gen‐
eral, the basis of the sol‐gel process includes some form of hydrolysis and condensation reac‐
tions. In the case of ZnO, usually a zinc salt such as zinc acetate is used with water or an 
alcohol as the solvent. An example of possible hydrolysis and condensation reactions for ZnO 
are shown in Eqs. (1) and (2), where Zn(OR)2 is a soluble salt.

  Zn  (OR )  2  H2
→

OZn  (OH )  2   + 2R  (1)

  Zn  (OH )  2   + Zn  (OH )  2   → (OH )Zn − O − Zn(OH ) +  H  2   O  (2)

During the hydrolysis reaction, the soluble zinc precursor forms a zinc hydroxide intermedi‐
ate that is able to condense with other intermediates to grow a zinc oxide inorganic polymer. 
The final product after drying has an amorphous structure and crystallization of ZnO par‐
ticles require an annealing step. The morphology of the inorganic network can range from 
spherical nanoparticles to percolated gels and is highly dependent on the choice of precur‐
sors, water content, solute and solvent ratio, aging and additives. The sol‐gel process has 
proven to be an inexpensive and relatively simple method of ZnO nanoparticle synthesis that 
is tailorable to produce unique nanostructures for different applications.

2.2. Colloidal solution

Colloidal synthesis is another well‐known chemical solution method to obtain novel nanoma‐
terials with different morphologies and sizes. All processing conditions involved in the system 
can be fixed to control nucleation and growth of the materials. The kind of interactions (physical 
and chemical) between particles include Vander Waals, electrostatic, Ostwald ripening and some 
other theoretical principles such as Derjaguin, Landau, Venvey and Overbeek theory (DLVO). 
These interactions can contribute to agglomeration and subsequently precipitation of the parti‐
cles. Colloidal instability can be prevented through steric stabilization which usually requires a 
surfactant to maintain the colloidal suspension. Surfactants work in two ways: first, to prevent 
particulate interactions and second, to prevent the continuous nucleation and growth of particles.

2.3. Microwave‐assisted synthesis

Microwave‐assisted synthesis is a relatively recent technique that has been used for synthesis of 
nanomaterials. It has been considered as a promising approach to obtain novel nanomaterials in 
organic and inorganic fields. Additionally, microwave synthesis is considered as a green process 
and coheres perfectly to the principles formulated by Anastas et al. related to green chemistry [1].

Often a domestic microwave is used and the synthesis is carried out in solvent‐free  solutions. 
This technique allows for rapid and homogeneous heating of the system since energy is trans‐
mitted directly through molecular vibrations. The short heating ramp time of microwave 
 synthesis allows for better control of particle size distribution compared to conventional 
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 heating. On the contrary, the extremely high heating rate of microwave‐assisted synthesis may 
cause the boiling point of the solution to increase by a few degree Celsius. Additionally, the 
microwave susceptibility will vary between different materials and temperatures.

The microwave energy is generated by a magnetron that transforms electrical energy into a 
strong magnetic field. The electromagnetic energy interacts with the solution, vibrating the 
molecules and giving sufficient activation energy to the system for chemical reactions to take 
place in seconds or minutes.

The reaction rate during microwave synthesis can be explained through the Arrhenius equa‐
tion [Eq. (3)] as follows:

  K = A  e   −ΔG/RT   (3)

where K is the rate constant, T is the absolute temperature (in Kelvin), A is the pre‐expo‐
nential factor, a constant for each chemical reaction that defines the rate due to frequency of 
collisions in the correct orientation,  ΔG  is the activation energy for the reaction (in Joules) and 
R is the universal gas constant. Thus, the two parameters affecting the kinetics of a particular 
chemical reaction are temperature and activation energy.

Bilecka et al. reported that nanoparticle growth can be described using four thermodynamic 
parameters related to the Arrhenius equation through activation energy [2]. These variables are the 
activation energies for precursor solvation, monomer formation, nucleation and crystal growth. 
As with colloidal synthesis, nucleation and growth in microwave synthesis are governed by 
Ostwald ripening.

3. Synthesis of ZnO nanostructures and nanoparticles via chemical 

solutions: recent advances

Sol‐gel, colloidal and microwave‐assisted synthesis are effective techniques to efficiently obtain 
novel ZnO nanostructures. These techniques are relatively inexpensive and do not require sophis‐
ticated laboratory equipment. Additionally, slight variations in precursors or process parameters 
can produce different morphologies that can be applied in different technological fields.

3.1. Process, materials and precursors

The precursors used in these synthesis routes usually start with a basic salt of Zn, a solvent 
and a catalyser such as temperature. The Zn precursor must be soluble in the selected solvent 
such that it can provide the necessary Zn ions to produce ZnO particles. Other reagents may 
be added in order to substitutionally dope ZnO with metal cations such as Fe, Cu, Co and 
Ba. Additionally, surfactants may be added to maintain colloidal stability of the product or 
 influence the morphology of the growing particles.

Different precursors used in sol‐gel and colloidal techniques from recent publications have 
been summarized in Tables 1 and 2, respectively. The readers are asked to consult the rel‐
evant publications for details of these processes.
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Precursor Solvent Stabilizing agent Reference Technique

Zn(CH3OO)2 2H2O CH3OH, C2H5OH, C3H7OH, 
C3H7OH, C4H9

OH
(CH2CH2OH)2NH, 
N(CH2CH2OH)3

Pourshaban et al. [3] Sol‐gel

Zn(CH3COO)2 2H2O/CuCl 2‐methoxyethanol (CH2(OH)·CH2·NH2) Joshi et al. [4] Sol‐gel

Zn(CH3OO)2 2H2O, Ba(NO3)2 2‐methoxyethanol (CH2CH2OH)2NH/DEA Kasar et al. [5] Sol‐gel

Zn(CH3OO) 2H2O, (NH4)2CO3, Fe(NO3)3 Distilled water/ethylene glycol – Bahari et al. [7] Sol‐gel

Zn(CH3OO)2 2H2O, Mn(CH3CO2)2 4H2O Isopropyl alcohol Urea Kumar et al. [6] Sol‐gel

Zn(CH3OO)2 2H2O, C2H3LiO2 C2H5OH (CH2(OH)·CH2·NH2) Boudjouan et al. [8] Sol‐gel

Zn(CH3OO)2 2H2O, CaCl2 CH3OH, C2H5OH – Slama et al. [9] Sol‐gel

Zn(CH3OO)2 2H2O, (CH3COO)2·Co 4H2O CH3OH Mono ethanolamine 
(CH2(OH)·CH2·NH2)

Dhruvash et al. [10] Sol‐gel

Zn(CH3COO)2 2H2O C2H5OH – Singh et al. [21] Sol‐gel

Zn(CH3COO)2 2H2O/KOH CH3OH – Kim et al. [22] Sol‐gel

Zn(CH3COO)2·2H2O 2‐methoxyethanol (CH2(OH)·CH2·NH2) Tabassum et al. [11] Sol‐gel

Zn(CH3COO)2·2H2O/Al(NO3)3 9H2O/AgNO3 C2H5OH Diethanolamine (DEA) Khan et al [12] Sol‐gel

Zn(CH3OO)2 2H2O, NaCl CH3OCH2CH2OH (CH2(OH)·CH2·NH2) Zhou et al. [30] Sol‐gel

Zn(CH3OO)2 2H2O Isopropyl alcohol (CH2(OH)·CH2·NH2) Chebil et al. [23] Sol‐gel

Zn(CH3OO)2 2H2O, Cu(CH3COO)2 ……. Diethanolamine (DEA) Agarwal et al. [14] Sol‐gel

Zn(CH3OO)2 2H2O 2‐methoxyethanol (CH2(OH)·CH2·NH2) Haarindraprasad et al. [24] Sol‐gel

Zn(CH3OO)2 2H2O Dimethyl formamide Diethanolamine (DEA) Bhunia et al. [25] Sol‐gel

Zn(CH3OO)2 2H2O, C2H7NO2 Distilled water/glacial acetic acid – Para et al. [26] Sol‐gel

Zn(CH3OO)2 2H2O, Ga(NO3)3 xH2O 2‐methoxyethanol (CH2(OH)·CH2·NH2) Wang et al [27] Sol‐gel

[Zn(CH3OO)2 2H2O 2‐methoxyethanol (CH2(OH)·CH2·NH2) Alfaro et al. [28] Sol‐gel

Zn(CH3OO)2 2H2O, LiOH, graphene C2H5OH/EtOH – Li et al. [29] Sol‐gel

Zn(CH3OO)2 2H2O, Mg(CH3COO)2 4H2O, Al(NO3)3 

9H2O)
Isopropyl alcohol Diethanolamine (DEA) Das et al. [13] Sol‐gel
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Precursor Solvent Stabilizing agent Reference Technique

Zn(CH3OO)2 2H2O 1‐butanol (CH2(OH)·CH2·NH2) Demes et al. [31] Sol‐gel

Zn(CH3OO)2 2H2O, SnCl2.2H2O Ethanol and chelating with 
glycerin

Acetic acid Kose et al. [32] Sol‐gel

Zn(CH3OO)2 2H2O, 
Li(CH3‐COO)2.2H2O,Co(CH3COO)2.2H2O

(C2H5OH) (C2H6O2) Bashir et al. [15] Sol‐gel

Zn(CH3OO)2 2H2O Ethanol (C2H5OH) (CH2(OH)·CH2·NH2) Ayana et al. [33] Sol‐gel

Zn(CH3OO)2 2H2O, Cu(CO2CH3)2 H2O Ethanol (C2H5OH) (CH2(OH)·CH2·NH2) Wang et al. [16] Sol‐gel

Zn(CH3OO)2 2H2O, NaOH 2‐Propanol – Zimmermann et al. [34] Sol‐gel

Zn(CH3OO)2 2H2O Acetone TEA Efafi et al. [35] Sol‐gel

Zinc nitrate hexa hydrate/Na‐CMC Deionized water Muthukrishnan et al [36]. Sol‐gel

Zn(NO3)2.6H2O/Bi(NO3)3.5H2O, NaOH Deionized water PEG‐6000 Liu et al. [37] Sol‐gel

Ti(OCH(CH3)2)4, Zn(CH3COO)2 2H2O Isopropyl alcohol – Boro et al. [38] Sol‐gel

Zn(CH3OO)2 2H2O, NH4VO3 CH3OH/MeOH – Slama et al. [17] Sol‐gel

ZnCl2, FeCl3, NH4Ac, Zn(CH3OO)2 2H2O C2H6O2 Rabbani et al. [39] Sol‐gel

(Zn(CH3COO)2.2H2O)/TiO2 Isopropyl alcohol (CH2(OH)·CH2·NH2) Marimuthu et al. [40] Sol‐gel

Zn(CH3OO)2 2H2O, Co(NO3)2.6H2O] Double distilled water [C6H8
O7 H2O] Birajdar et al. [18] Sol‐gel

Z
n
(NO3)2, citric acid and tetraethoxysilane Ethanol (C2H5OH) – Sivakami et al. [41] Sol‐gel

Isopropyl orthotitanate (TTIP), zinc nitrate tetra 
hydrate

Ethanol (C2H5OH) Diethanolamine (DEA) Moradi et al. [42] Sol‐gel

Zn(CH3OO)2 2H2O 2‐Methoxyethanol (CH2(OH)·CH2·NH2) Ocaya et al. [43] Sol‐gel

Zn(CH3OO)2 2H2O, CoCl2 Polyvinyl alcohol Verma et al. [19] Sol‐gel

[Zn(NO3)2 6H2O]/Ga(NO3)3, gelatin Distilled water – Khorsand Zak et al. [20] Sol‐gel

Zn(CH3OO)2 2H2O Distilled water/ethanol (CH2(OH)·CH2·NH2) Kiani et al. [44] Sol‐gel

Table 1. Precursors and solvents used in the synthesis of ZnO by the sol‐gel process.
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Precursor Solvent Stabilizing agent Reference Technique

Zn(CH3OO)2 2H2O, sulfo propyl 
methacrylatepotassium

Ethylene glycol – Liua et al. [45] Colloidal

Zn(CH3OO)2 2H2O Distilled water Poly(vinyl alcohol) (PVA) Nagvenkar et al. [46] Colloidal

Zn(CH3OO)2 2H2O, LiOH·H2O Ethanol (C2H5OH) – Yuan et al. [47] Colloidal

Zn(CH3OO)2 2H2O, tetraalkylammonium 
hydroxide

DMSO NEt4OH Panasiuk et al. [48] Colloidal

Zn(CH3OO)2 2H2O Ethanol Triethylamine, diethylamine Gupta et al. [49] Colloidal

(Zn(NO3)2 6H2O), NaOH Distilled water 1‐Thioglycerol (TG) and 2 
mercaptoethanol (ME)

Hodlur et al. [50] Colloidal

Zn(CH3OO)2 2H2O Deionized water Hexamethyl netetramine Guo et al. [56] Colloidal

Zn(CH3OO)2 2H2O, KOH Methanol – Rahman [51] Colloidal

Zn(CH3OO)2 2H2O, KOH Methanol PVP Gutul et al. [52] Colloidal

Zn(CH3OO)2 2H2O, KOH Ethanol 3‐aminopropyltriethoxysilane Moghaddam et al. [53] Colloidal

Zn(CH3OO)2 2H2O, NaOH Ethyl alcohol – Liu et al. [54] Colloidal

Zn(CH3OO)2 2H2O Diethylene glycol. – Xie et al. [60] Colloidal

Zn(CH3OO)2 2H2O Ethanol LiOH Verma et al. [61] Colloidal

Zn(CH3OO) 2 2H2O, NaOH 2‐propanol – Moghaddam et al. [64] Microwave

GO, Zn(NO3)2, NaOH Deionized water – Tian et al. [65] Microwave

Zn(CH3OO)2 2H2O, NaOH Distilled water Guanidinium carbonate, acetyl acetone, Hamedani et al. [66] Microwave

Zinc hydroxide Distilled water Cetyltrimethylammonium bromide Rai et al. [67] Microwave

Zn(CH3OO)2 2H2O, NaOH, NH4OH Dieonized water – Yanga et al. [69] Microwave

(Zn(NO3)2.6H2O), hydrazine hydrate Distilled water – Krishnakumar et al. [70] Microwave

ZnSO4·7H2O, GO, NaOH Distilled water – Lua et al. [71] Microwave

Zn(CH3OO)2 2H2O Deionized water – Zhu et al. [72] Microwave
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Precursor Solvent Stabilizing agent Reference Technique

ZnSO4, NaOH Deionized water – Liu et al. [73] Microwave

Zn(NO3)2 Deionized water – Rassaeia et al. [74] Microwave

Zinc oxide, ammonium hydroxide Deionized water – Lu et al. [75] Microwave

ZnSO4, NaOH Deionized water – Limaye et al. [76] Microwave

Zinc acetylacetonate monohydrate Water Ethoxyethanol, ethoxyethanol, and 
n‐butoxyethanol

Schneider et al. [77] Microwave

Table 2. Precursors and solvents used in the synthesis of ZnO by colloidal/microwave synthesis.
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3.2. Recent studies and applications

Various morphologies of ZnO can be obtained from the sol‐gel process including nanorods [3], 
inhomogeneous films [4, 5], inhomogeneous nanoparticles [6] and nanocomposites [7].

The structural effects of cation doping on ZnO nanoparticles was investigated in several stud‐
ies. When doped with lithium, it was found that the concentration of Li+ ion substitution for 
Zn2+ directly affected the XRD intensity of the (002) plane, but did not affect the grain size or 
crystallinity of the nanoparticles [8]. When ZnO was doped with Ca2+ ions, the average par‐
ticle size was increased to 40–90 nm which could be attributed to the larger ionic radius of Ca2+ 

that substituted for Zn2+ ion sites [9]. Likewise, the average grain size reduced when a small 
radius ion is substituted for Zn2+ (0.74 Å) in the hexagonal wurtzite structure such as Co2+ 

(0.58 Å) [10]. Doping with Al3+ ions also showed the same tendency in reducing particle size, 
however, impurity phases such as Al2O3 and ZnAl2O4 were also observed [11]. Additionally, 
co‐doping of ZnO with Ag+ and Al3+ ions showed the formation of crystal defects due to the 
difference in ionic radius between Ag+, Al3+ and Zn2+. Crystallinity improved proportionally 
with increased Ag+ doping concentration, however, lattice defects and dislocations increased 
with Al3+ substitution [12]. Further dopant studies also demonstrated that limited dopant 
precursor solubility provoked a random distribution of dopant throughout the product [13]. 
Most research about doping ZnO has resulted in improved optical and electrical properties 
due to improved morphology or intrinsic material properties [14–20].

Synthesis of ZnO of different morphologies without doping is also important to consider 
since product morphology alone can affect device properties. Without any dopant ZnO can 
be obtained under normal laboratory conditions with well‐aligned nanorods, agglomerated 
nanoparticles and inhomogeneous thin films composed of nanoparticles, quantum dots, 
nano‐wires, spheres or nano‐cubes [21–44].

Colloidal synthesis technique can be utilized to obtain nanocomposites of ZnO and other mate‐
rials. Nano‐sheets of poly (styrene‐methyl methacrylate‐sulfopropyl methacrylate potassium)/
ZnO nanocomposites were obtained by Liua et al. [45]. Dissolving ZnO in other materials can 
result in a great combination and co‐application of materials such as ZnO/PVA (Polyvinyl alco‐
hol) [46]. The same process was done to produce ZnO/TiO2 multilayer thin films [47]. This tech‐
nique allows obtaining well size‐controlled nanoparticles such as those reported with use of 
dimethyl sulfoxide, but the author reports that the solvent and post‐annealing treatment are 
also important factors in the crystallization process and average particle size [48].

Several authors have reported that the product morphology can be altered between flakes, 
hexagons, particles and flower‐like morphologies by adding different surfactant material [49]. 
Agglomeration of ZnO nanoparticles was reduced by adding capping agents to different thiol 
molecules during synthesis [50]. It was demonstrated that the colloidal stability of nanoparti‐
cles can be maintained after dispersion in monoethanolamine (MEA). Also, hybrid structures 
can be obtained through this method like ZnO‐Au reported recently [51]. Dispersion of nano‐
materials could also be maintained through an additive such as poly (N‐vinylpyrrolidone) 
which has been shown to maintain colloidal stability for more than a couple of months [52]. 
In the same way agglomeration of ZnO quantum dots can be prevented through a  capping 

ZnO Nanostructures Synthesized by Chemical Solutions
http://dx.doi.org/10.5772/intechopen.68278

13



agent such as 3‐aminopropyltriethoxysilane in order to maintain their quantum proper‐
ties [53]. Stabilization of the colloidal particles ensures that particle size and shape does not 
change with time allowing for more repetitive results for each batch of material. Stable col‐
loidal solutions have also been used to grow novel nanostructures on several kinds of unique 
substrates such as wood that can allow for new ecological applications in future [54–63].

Colloidal and sol‐gel processing are both chemical techniques that can be used to easily obtain 
different nanomaterials; similarly, microwave‐assisted synthesis can obtain similar products but 
has been explored very little. In microwave‐assisted synthesis, most reactions take place in a short 
amount of time and have resulted in the synthesis of good ZnO nanostructures. The technique has 
obtained spherical nanoparticles that are stable in solution for up to 50 days, and can be deposited 
several times on a substrate without any change in its morphology. Similarly, it is possible to 
obtain composites such as ZnO‐nanoparticles on reduced graphene oxide. Also, the morphology is 
highly dependent on the complexing agent where the reaction takes place or if a dopant is added, 
such as that reported for obtaining ZnO nanoflowers, nanorods and nanoparticles. Additionally, a 
research group has confirmed the formation of flower‐like to rod‐like nanostructures by changing 
the system temperature. Other works have also reported about dumbbell‐shaped nanoparticles, 
nano‐flowers, graphene‐ZnO nanocomposites, straw‐bundle, chrysanthemum and nanorod‐
based microspheres obtained under certain temperature conditions. [2, 64–78].

4. Conclusions and future directions

The techniques listed in the above paragraphs remain as the most important chemical solu‐
tion‐based routes to synthesize ZnO. Within the same processing method, a variety of mate‐
rial morphologies and properties can be obtained by subtle changes in temperature, additives, 
dopants or other parameters. There has been a wide range of organic and inorganic par‐
ticles that have been synthesized and applied in different fields through these techniques. 
Investigating the effects of processing conditions on ZnO nanoparticles is still a hot topic in 
current research for their applications in optoelectronic and solar cell devices.
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