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Abstract

In this chapter, aspects of hemodynamic regulation in the end-stage liver disease (ESLD) 
patient, factors, contributing to the hemodynamic profile, coagulation-related problems, 
blood products transfusion tactics and problems, and hemodynamic optimization strate-
gies during different stages of liver transplantation procedure—specifically what, when, 
and how to correct, with special attention to vasoactive agents use, will be discussed.

Keywords: liver transplantation, anesthesia, hemodynamic optimization, vasoactive 
agents, transfusion management

1. Introduction

Inseparable part of liver transplantation procedure, anesthesia, and perioperative care for 

the liver transplant recipient has made a remarkable progress during last decades, becom-

ing a clinical specialty with well-defined goals, requirements, and approaches. Today, with a 
rapid expansion of liver transplant programs worldwide and growing numbers of liver trans-

plant procedures performed, many aspects of anesthesia care, complicated and risky in the 

relatively recent past, have become routine and safe. And yet some problems remain unre-

solved, still posing a challenge for anesthesiologist in the field. Despite incessant and plenti-
ful research, investigating literally every imaginable aspect and angle of the anesthesia and 

perioperative care for liver transplant recipient, and myriad of publications coming out every 

year, no consensus has been reached so far as for the best choice of anesthesia induction and 

maintenance, intraoperative hemodynamics management, fluid and blood products transfu-

sion, patient’s monitoring, and more. One of the most important time- and effort-consuming 
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aspects of anesthesia care, expanding well beyond proper intraoperative time onto the first 
long hours of ICU stay, is patient’s hemodynamic management. Its multicomponent nature, 
sometimes a very short time resolution in the decision-making process, poorly predictable 

course of patients reactions, overall instability with rapid, oftentimes detrimental and life-
threatening changes makes management of patient’s hemodynamics an extremely challeng-

ing and complicating task.

2. Factors contributing to hemodynamic profile of the ESLD patient

Typical hemodynamic pattern of end-stage liver disease (ESLD) patients includes high car-

diac output (CO)/cardiac index (CI)—hyperdynamic circulation pattern, with normal-to-low 
mean blood pressure, variable central venous pressure (CVP), along with general arterial and 
venous vasodilatation due to substantially decreased systemic vascular resistance (SVR). The 
hyperdynamic circulation is thought to be a compensatory change, induced by splanchnic 

and peripheral vasodilatation, reducing the effective blood volume. This, and also decreased 
perfusion pressures, leads to a diminished renal blood flow in cirrhotic patients, which in 
turn stimulates the renin-angiotensin-aldosterone system and antidiuretic hormone produc-

tion, resulting in renal artery vasoconstriction, sodium retention, and volume expansion. 
Worsening liver disease results in progressive vasodilatation, making the hyperdynamic cir-

culation and renal artery vasoconstriction more pronounced [1].

Arterial vascular tone is regulated by complex interactions of different vasoactive substances, 
namely catecholamines and NO complex. In ESLD patients, sensitivity of β-adrenoreceptors 
is relatively decreased, causing cardiovascular response to endogenic catecholamines sub-

stantially attenuated [2]. Plasma-free norepinephrine and epinephrine levels are significantly 
higher. Fraction of epinephrine, contributing to total catecholamines, increased up to 50% 
(normal: about 17%). Dopamine concentration is unchanged [3].

In recent years, nitric oxide (NO) has been recognized as the most important vasodilator of 
the splanchnic and systemic circulation. Cytokines, especially TNF-α, are considered to be 
NO inducers. Endothelial NO synthase has been found as a main source of the vascular NO 
overproduction in the splanchnic arterial circulation [4–6].

Augmented intrahepatic vascular resistance due to sinusoidal constriction is considered the 
major cause of portal hypertension. Hepatic stellate cells (HSC) provide a basis for control of 
sinusoidal vascular tone and an arrangement for sinusoidal constriction and hepatic blood 

flow (HBF) reduction. The dynamic part of hepatic resistance is caused by active contraction/
relaxation of HSC. Portocaval collaterals divert up to 80% of blood flow away from liver [7].

Cardiomyopathy plays a substantial role in the hemodynamic profile and cardiovascular 
compensation mechanisms in a cirrhotic patient. The characteristic features of cirrhotic car-

diomyopathy include an attenuated systolic or diastolic response to stress stimuli, structural 
and histological changes of myocardium, electrophysiological abnormalities, and increased 

concentrations of serum markers, suggestive of cardiac stress. The impaired cardiovascular 
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responsiveness in cirrhosis is likely related to a combination of factors that include among 

other reasons, β-adrenergic receptor dysfunction and reduction of β-adrenergic receptor den-

sity in cirrhotic patients. Recently, it has been found that, in cirrhotic patients, the control of 
vascular tone by Ca++ and K+ channels is altered. The calcium channel dysfunction, leading to 
decreased cardiomyocyte contractility, was demonstrated in an animal model study [2, 8–10].

Albeit commonly overlooked, many of these pathogenic mechanisms resulted in RV over-

load with gradual dilatation and impaired contractile function, leading to elevated mean pul-
monary artery pressure (MPAP). Despite characteristically increased resting CO, ventricular 
contractile response is, actually, substantially attenuated. Cardiomyopathy may contribute to 
portopulmonary hypertension.

However, overt severe Congestive Heart Failure (CHF) is rare. Increased intra-abdominal 
pressure (ascites) contributes to both portal and PA hypertension [11].

Pulmonary vascular changes in cirrhosis are often quite substantial. They include portopul-
monary hypertension (POPH) syndrome, which entails development of pulmonary hyperten-

sion in a cirrhotic patient with portal hypertension, and also hepatopulmonary syndrome, 
which is, essentially, increased pathological shunting and V/Q mismatch due to development 
of the arteriovenous malformations in the lung, resulting in hypoxemia. Portopulmonary 
hypertension is less prevalent than hepatopulmonary syndrome with an estimated preva-

lence of about 5%.

POPH is best defined as pulmonary arterial hypertension (PAH). Necessary conditions 
include presence of portal hypertension and absence of other secondary causes of PH, such as 
valvular disease, chronic thromboembolism, collagen vascular disease, or exposure to certain 

drugs or toxins. Current diagnostic criteria include the presence of portal hypertension (either 
inferred from the presence of splenomegaly, thrombocytopenia, portosystemic shunts, esoph-

ageal varices or portal vein abnormalities, or confirmed by hemodynamic measurements), but 
not necessarily the presence of cirrhosis; and hemodynamic parameters, specifically MPAP 
>25 mmHg at rest, >30 mmHg with exercise/stress, PCWP<15 mmHg, PVR>120 dynes/s/cm5, 

and transpulmonary gradient >10 mmHg [12–16].

A most common suggested mechanism for POPH maintains that the increased blood flow 
(high cardiac output) in chronic liver disease causes pulmonary vascular wall shear stress, 
which can trigger the dysregulation of numerous vasoactive substances. The presence of por-

tosystemic shunts may lead to the shunting of vasoactive substances from the splanchnic to 

the pulmonary circulation, causing deleterious effects in the pulmonary vasculature [17, 18].

The severity of hepatopulmonary syndrome is classified according to the degree of arterial 
hypoxemia, specifically mild (PaO

2
 of 60–80 mm Hg), moderate (50–60 mm Hg), and severe 

(<50 mm Hg). Intrapulmonary vascular dilation leads to increased V/Q mismatching plus a 
degree of intrapulmonary shunting of deoxygenated, mixed venous blood. Both these mecha-

nisms cause systemic arterial hypoxemia [19–22]. Impairment of hypoxic pulmonary vaso-

constriction means that gravitational effects on pulmonary blood flow are poorly tolerated. 
Many authors observed at least partial resolution of the hepatopulmonary syndrome follow-

ing liver transplant [23, 24].
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A common complication of liver disease and portal hypertension is the accumulation of asci-
tes, whereas the presence of significant ascites sometimes compromises respiratory function 
mostly by creating the restrictive pattern of lung mechanics, a more significant complication is 
the presence of fluid in the thorax, termed hepatic hydrothorax. Hydrothorax may exacerbate 
the restriction pattern even further, sometimes leading to atelectasis development, with asso-

ciated V/Q mismatch and intrapulmonary shunt that adds to already pre-existing hypoxemia, 
and also to increase of PA pressure.

3. Hemodynamic changes during orthotopic liver transplant surgery

3.1. Anesthesia-related factors

From the days, when the first successful liver transplantation surgery was performed to this 
day, anesthesiologists all over the world, despite plenty of ongoing and already published 
research works in the field, have not yet arrived at a consensus, let alone adopted unified 
guidelines or protocols of the anesthetic technique for liver transplantation surgery.

Since anesthesia-related systemic hemodynamic changes are well described elsewhere, 
the only aspect of these effects, specifically an impact of anesthesia factors and adjuvant 
drugs on hepatic blood flow (HBF) and oxygen delivery, needs to be discussed here. The 
degree to which the hemodynamic changes, caused by anesthetic agents, take place in 
patients with advanced liver disease, depends on the patient’s particular hemodynam-

ics, volume status and compensation pattern, nature of the surgical procedure, and many 
other factors. Patients with cirrhosis may be more sensitive to hepatic hypoperfusion, and 
may be more susceptible to liver injury (such as administration of a hepatotoxic drug, 

rapid blood loss).

It has been shown that practically all general anesthesia techniques, regardless of drug com-

binations, in the absence of surgical stimulation, reduce the HBF by about 30%. It appears 
that the systemic arterial blood pressure is a main determinant of hepatic blood as the hepatic 

artery exhibits almost no autoregulatory capacity [25]. Commonly used IV induction anes-

thetic agent, etomidate, along with maintaining well the systemic hemodynamic parameters 
at baseline levels, only moderately reduces the HBF in a dose-dependent manner, and causes 
the increase in hepatic arterial resistance (by 40%).

Propofol, however, has shown an ability to preserve baseline levels of the HBF, as long as 
systemic hemodynamic changes were insignificant [26].

Use of isoflurane and sevoflurane for anesthesia maintenance, albeit being associated with min-

imal-to-moderate global reduction of HBF, has not been found to be associated with any signifi-

cant influence on arterial hepatic blood flow or oxygen transport and extraction ratio in the liver. 
Short-action opioids, fentanyl in particular, has shown no discernible effect on HBF [27–31].

Other potential perioperative causes of a reduction of HBF include mechanical ventilation, 
positive end-expiratory pressure, systemic hypotension due to hypovolemia, hemorrhage, 

etc., and hypoxemia. Beta (β)-blockers, alpha (α)-agonists, H
2
 blockers, hypocapnia, alka-

losis, and hypoglycemia have been found to be associated with moderate HBF reduction. 
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Dopamine (3 mcg/kg/min), epinephrine (from 0.01 mcg/kg/min), hypercapnia, acidosis, and 
hypoxemia, however, are among the factors that actually can increase HBF [32, 33].

With a substantial variety of anesthetic techniques currently in use and with full awareness of 
ESLD hemodynamic profile specifics and patient-to-patient variety in that respect, it appears 
to be reasonable to set hemodynamic goals (i.e., hemodynamic parameters to possibly main-

tain) for anesthesia care for liver transplant. These should include mean arterial pressure 
(MAP) around 75–85 mmHg, Heart rate (HR): <100/min, Central venous pressure (CVP): 

<20 mmHg, Mean Pulmonary Artery Pressure (MPAP): <25 mmHg, CO/CI: >4 L/min/>2 L/min 
m2, Systemic Vascular Resistance (SVR): >500 dynes/s/cm−5, and mixed venous SvO2: >75%.

3.2. Surgery-related factors

The course of liver transplantation surgery includes four stages. During preanhepatic, or dis-

section phase, the diseased liver is being dissected and prepared for removal. Portal vein 
clamping, followed by hepatic artery and IVC clamp, heralds the start of anhepatic phase, 
during which part of the diseased liver is being removed from the body and being replaced by 
the donor’s organ. Vascular anastomoses are being performed, followed by organ reperfusion 
phase, the shortest one with most significant hemodynamic impact. After venous blood flow 
restoration in the transplanted organ, postreperfusion phase include common hepatic arterial 

anastomosis, cholecyctectomy, and bile duct reconstruction.

During preanhepatic (dissection) phase, laparotomy, often followed by ascites evacuation, 
causes drop of intra-abdominal pressure, with rapid splanchnic volume increase (i.e., mes-

enteric blood pooling) ensued. Ongoing blood loss at this stage may be very substantial, due 
to abundance of venous collaterals in cases with longstanding portal hypertension, and also 
in cases of re-do transplants, or cases with significant adhesions after previous surgeries. 
Decrease of venous return, ongoing blood loss, fluid shift, and developing acidosis further 
contribute to CO/CI and mean arterial blood pressure (MABP) decrease.

Portal cross clamp, which portends the anhepatic stage start, causes variable (20–30% of 
baseline) degree of venous return decrease. However, in cases of well-developed portoca-

val collaterals (longstanding portal hypertension), this loss of preclamp venous return may 

be less significant, around 15–20%, and generally well tolerated. IVC complete cross-clamp 
oftentimes leads to a more substantial and poorly tolerated (approximately 50%) decrease of 
venous return, whereas IVC partial clamp causes variable, about 25–50%, decrease of venous 
return [34, 35]. ESLD patients have very limited ability, if any, to compensate for the rapid 
decrease in venous return with systemic vasoconstriction due to inherent low SVR. Veno-
venous bypass (VVB) may present a possible solution to compensate for decreased venous 
return. Hemodynamic instability following test clamping of IVC is the most common indi-
cation for initiating VVB [36]. It has been suggested [37] that hypotension (30% decrease in 
MAP) or a decrease in cardiac index (50%) during a 5-min test period of hepatic vascular 
occlusion can be used to identify the group of patients who require VVB. Other indications 
of the VVB include presence of pulmonary hypertension, impaired ventricular function from 
previous myocardial infarction, ischemic heart disease, and cardiomyopathy [38]. In patients 
with pulmonary hypertension, excessive fluid loading to compensate for hemodynamic 
changes during anhepatic phase may result in acute right ventricular dysfunction. Patients 
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with  cardiomyopathy have impaired left ventricular function, and consequently a limited 
ability to generate adequate CO in the face of the increase in SVR during the anhepatic phase. 
These patients, too, may benefit from ameliorative effect of the preload associated with VVB. 
Some centers use VVB in patients with impaired renal function (i.e., hepato-renal syndrome) 
in order to prevent further kidneys damage during the anhepatic phase and to reduce the need 

for postoperative renal support. Among the advantages of VVB, some researchers listed the 
ability to reduce hemodynamic instability during anhepatic phase. It is useful in patients with 
pulmonary hypertension and cardiomyopathy who tolerate anhepatic period poorly. VVB 
has been shown to maintain intraoperative renal function [39, 40]. It also helps to maintain 
cerebral perfusion pressure in patients with acute fulminant failure by avoiding rapid swings 
in blood pressure, and, at least theoretically, may reduce blood loss [41]. However, VVB is 
not devoid of certain disadvantages. It does not guarantee normal perfusion of abdominal 
organs and lower limbs, since venous return never could be maintained at prebypass levels. 
The pump could only provide up to 2 L/min output (most commonly, only 1.5–1.8 L/min), 
which is, however comparable with low-to-normal levels of CO, cannot ensure the normal 
or even near-normal level of preload [42]. There is neither evidence of general(patient- and 
organ survival) outcome improvement, nor that it’s use reduces or prevents the occurrence of 

postoperative renal failure [43]. VVB may exacerbate coagulation problems and cause exces-

sive bleeding by inducing hemolysis, platelet depletion.

Graft reperfusion causes major hemodynamic changes along with possible substantial end-
organ injury. These may include direct myocardial injury, resulting in tachy/bradyarrhyt-
mias and cardiac arrest, profound vasoplegia, acute interstitial pulmonary oedema, leading to 

further RV overload/acute insufficiency, raise of pulmonary artery pressure (PAP) and CVP. 
Blood loss, hemodilution, hypovolemia, temperature drop, and rapidly developing lactic aci-
dosis contribute to decreased sensitivity to catecholamines and efficiency of vasopressors. 
All these factors lead to rapid drop of SVR, resulting in a decrease of MABP with or without 
CO/CI decrease. Postreperfusion syndrome (PRS) was defined as a more than 30% decrease 
of MABP from that in the anhepatic stage, longer than for 1 min during the first 5 min after 
reperfusion of the liver graft [44–46].

In the postreperfusion period, the major factors of hemodynamic instability include ongoing 

blood loss, exacerbated by consumption coagulopathy in the face of very limited or almost 

nonexisting production of coagulation factors by the liver graft. Hypocalcemia, resulting from 
the effects of citrate-containing blood conservation solution, associated with transfusion of large 
amounts of RBC, exacerbates reduction of myocardial contractility caused by recent reperfusion. 
Acidemia, mostly due to lactic acidosis, substantially decreases efficacy of vaso-active agents.

4. Blood loss and coagulopathy management

4.1. Blood loss estimation and prediction factors

Blood loss during OLT is a well-known major factor of morbidity/mortality and overall hemo-

dynamic instability, varying from just hundreds of ml up to dozens of liters. Predisposing 
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factors for major blood loss may include pre-existing + ongoing consumption and dilution 

coagulopathy (i.e., preoperative prothrombin time (PT), International normalized ratio (INR) 

and platelets numbers, factor V levels, etc.), MELD score >25, severe portal hypertension, 
“hostile abdomen” —postlaparotomy, re-do orthotopic liver transplant (OLT), long ischemia 
times, aged/marginal quality donor organ, donor-recipient organ size discrepancy, long, trau-

matic liver dissection, and surgeon-related factors.

Substantial number of studies reported no statistically significant correlations between blood 
loss and most of aforementioned parameters, particularly in respect to MELD score [47] and 

INR [48].

To date, blood loss and associated massive blood transfusion during OLTs remain difficult to 
predict [49]. Intraoperative blood salvage technique provides at least some way for blood loss 
estimation, with considerable approximation. Correspondent guidelines, based on calcula-

tions of hematocrit during blood loss (25–30%) and that of returned red blood cells by Cell-
Saver (approximately 55–65% depending on Cell-Saver model), have been developed. Authors 
calculated estimated blood loss by multiplying the total volume of Cell-Saver returned RBCs 
by factor 3.4–4.0 [50, 51].

4.2. Coagulopathy: mechanisms and assessment

Of all the aforementioned factors, coagulopathy presents by far the most important and 
potentially most correctable problem, contributing to overall blood loss and, therefore, hemo-

dynamic instability. Bleeding during OLT is multifactorial due both to surgical trauma and 
to coagulation defects. Coagulation defect in ESLD patients include impaired coagulation 
factor synthesis, dysfunction of coagulation factors, increased consumption, and fibrinolysis. 
Commonly, the levels of factor VII and protein C decrease first, followed by reductions in 
factors V, II, and X levels [52]. Platelet function is also affected by liver disease, and thrombo-

cytopenia is common. Predisposing factors include hypersplenism secondary to portal hyper-

tension, decreased thrombopoietin synthesis, immune complex-associated platelet clearance, 

and reticuloendothelial destruction [53].

During the dissection phase of the transplant, excessive bleeding is related to the technical 

difficulties during the liver dissection, and presence of portal hypertension, with large dilated 
collaterals [54].

During the anhepatic phase, coagulation factor synthesis is practically nonexistent, and ongo-

ing factors consumption exacerbate the bleeding.

Right after graft reperfusion, profound coagulation abnormalities are very common. Factors 
that contribute to excessive bleeding in postreperfusion period include platelet entrapment in 

the sinusoids of the donor liver, a global reduction of all coagulation factors (mainly due to 

increased consumption, and partially due to hemodilution), and decreased level of antifibri-
nolytic factors [55, 56].

Method of thromboelastography (TEG) allows a rapid graphic assessment of the functional 
clotting status and degree of fibrinolysis. In various studies, the amount of RBCs and fresh 
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frozen plasma (FFP) usage has been significantly reduced when TEG monitoring that was 
compared to the conventional “clinician-directed” transfusion management [57, 58]. Although 
the usefulness of TEG in complex coagulation defects has been questioned [59], recent studies 

have shown, that the use of TEG can reduce the number of blood products transfused [58].

4.3. Hemotransfusion requirements and strategies

Blood transfusion therapy remains a critical component of anesthetic management and peri-
operative care in OLT. Multiple studies have shown a large variability in the use of blood 
products among different centers and among individual anesthesiologists within the same 
center [60]. The decision of when to transfuse RBCs, remains debatable. Some authors recom-

mend keeping the hematocrit between 30 and 35%; others think it advisable and acceptable to 
maintain it between 26 and 28% [61, 62]. The modern trends have shown a substantial change 
from a transfusion of 10–20 units to 0–5.

The standard indication for fresh frozen plasma (FFP) infusion is coagulation defect treat-
ment. FFP is expected to improve complex coagulation disorders in case of severe bleeding 
as it contains all coagulation factors and inhibitors. However, Freeman et al. [62] maintain 

that FFP administration is not essential during OLT, and that platelets and fibrinogen con-

centrates may be given when platelet count and fibrinogen level fall below 50,000 mm3 and 

1 g/L. In some centers, the trigger point is INR lower than two, which remains controversial. 
It has been shown that TE-guided coagulation defect management generally lowers the FFP 
amount. There is currently no consensus on the volume of FFP or rate of infusion required; in 
common practice, 10–15 mL/kg are usually administered. Because of the lack of universally 
accepted guidelines, the amount and timing of FFP administration during OLT are still guided 
by experienced clinical judgment, local practices, and coagulation tests (including TEG).

Although there is no consensus regarding the appropriate threshold value [64], platelet con-

centrates are frequently administered during OLT to address “oozing” on the operation field 
that likely could be attributed to the lack clot formation ability. Inter-center indications for 
platelet transfusion vary, but it seems that the current trend is to administer platelet transfu-

sions pretty much regardless of the absolute PLT count.

It has been shown in many studies that the massive use of blood products during OLT is 
associated with increase in morbidity and mortality [65, 66]. It has been demonstrated that 
the intraoperative transfusion of red blood cells (RBCs) is associated with increase of post-
operative mortality, specifically reduce survival rates at six months (63.8 vs. 83.3%) and at 
5 years (34.5 vs. 49.2%), thus became a major prediction factor of mortality [59, 67, 68]. Higher 
intraoperative RBC transfusion requirements are associated with higher reintervention rates. 
Patients, who undergo reintervention, have three times higher mortality than those who do 
not have reinterventions [69, 70]. All blood products (RBCs, fresh frozen plasma (FFP), and 
platelets) have been shown to be negatively associated with graft survival at 1 and 5 years by 
univariate analysis [71]. Recent studies show that FFP and platelet transfusions are linked to 
the development of ALI/ARDS [71]. Pereboom et al. demonstrated, that platelet transfusion 
during OLTx is associated with increased postoperative mortality due to transfusion-related 
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acute lung injury (TRALI)/ARDS [63]. Intraoperative platelet transfusions have been identi-
fied as a strong independent risk factor for patient survival after OLT in addition to RBCs 
[72]. Studies have demonstrated that platelets are involved in the pathogenesis of reperfusion 
injury of the liver graft by inducing endothelial cell apoptosis. This effect is independent of 
ischemia-related endothelial cell injury [73].

4.4. Ways of blood loss reduction

Ways of blood loss reduction include surgical techniques such as Piggy-back technique 
with IVC preservation—partial Inferior vena cava (IVC) clamp, and anesthesia management 

options, such as maintaining the low CVP, minimal hemodilution with limited crystalloids 
infusion, and vasoactive agents use. Discussion of surgical techniques is beyond the scope 
of this review; however, anesthetic management options and techniques, intended to reduce 
blood loss during OLT are in the focus of discussion.

4.4.1. Fluid management and “low CVP” paradigm

Balanced fluid administration and maintaining relative hypovolemia have been advocated by 
many authors. A low CVP has been recommended to minimize blood loss during dissection 
stage of the liver transplantation. Massicotte et al. [74, 75] reported that maintaining a low 
CVP before the anhepatic phase was an efficient technique to decrease blood loss and transfu-

sion rate. However, low CVP is associated with increased risk of complications, such as tissue 
hypoperfusion, development of lactic acidosis and renal failure, and also significant morbid-

ity and mortality [76]. As it has been observed, increase in serum creatinine level, indications 
for dialysis, and 30-days mortality were higher in group of liver transplant patients, where 
CVP has been kept at low levels (around 3–5 smH

2
O), in order to avoid venous congestion 

of the graft. However, no supportive evidence has been found for decreasing CVP and effec-

tive circulating blood volume during OLT levels, currently accepted in some centers for liver 
resection [77]. Due to the lack of adequately powered, randomized, prospective controlled tri-
als further investigations are needed to determine which patients would benefit from restric-

tive volume management in the intraoperative period of OLT.

4.4.2. Blood salvage technique during OLT

The use of intraoperative blood salvage and autologous blood transfusion has been for a long 
time an important method to reduce the need for allogeneic blood and the associated compli-

cations [78]. It has been demonstrated, that, for systematic use of Cell Saver salvaged blood in 
75 OLT cases, retransfusion volume was enough and adequate in 65% of the cases [79].

The resultant hematocrit after Cell Saver processing ranges between 50 and 80% [80]. The 
safety of cell-salvaging procedure has been widely demonstrated [81]. Use of intraoperative 
autologous transfusion resulted in conservation of RBCs and reduction in exposure to homol-
ogous blood and blood components [82, 83]. Use of Cell Saver during OLT made it possible 
to recover up to 50% of blood loss [84]. Substantial reduction in FFP and a lesser reduction in 
platelet requirement have also been seen.
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Nonetheless, blood-salvaging techniques during OLT are still being considered as controver-

sial. Some studies have reported relatively higher blood loss, increased incidence of fibrino-

lysis, and cost rise [85, 86].The increased blood loss in recipients, receiving Cell Saver blood 
has been attributed to the release of fibrinolytic compounds from blood cells in the collected 
blood and/or from the transplanted liver [87]. These findings, however, have not dissuaded 
the anesthesiologists from using Cell Saver during OLTs; in fact, this method is gaining wider 
popularity, and becoming almost a standard of care in many centers around the world.

5. Vasoactive agents applied pharmacology and use in hemodynamic 
management during OLT

Hemodynamic instability during OLT due to blood loss, graft reperfusion, and postreper-

fusion vascular tone adjustment, substantial fluid shift oftentimes necessitates the use of 
vasoactive agents. Different vasopressors, such as dopamine, dobutamine, epinephrine, nor-

epinephrine, phenylephrine, vasopressin, and, more recently, terlipressin and octreotide have 

been used for hemodynamic optimization and end-organ perfusion improvement during 

OLTs for decades [88, 89].

Norepinephrine and phenylephrine have a universal vasoconstrictor effect due to α-receptor 
stimulation, thus effectively increasing systemic vascular resistance, while decreasing car-

diac index, peripheral and portal blood flow [90–93]. However, norepinephrine in higher 
doses causes severe peripheral vasospasm and promotes metabolic (lactic) acidosis [88]. 
Phenylephrine increases SVR and MPAP, while it decreases CO/CI, peripheral, and portal BF 
[93], and does not affect portal VP during the dissection phase. CVP is often increased and 
does not seem to reflect cardiac filling [94].

Epinephrine and norepinephrine decrease liver and kidney tissue perfusion, thereby reducing 

lactate clearance, promote lactic acidosis, cause temporary alterations of hepatic macro- and 

microcirculation (return to baseline 2 h after onset of infusion). Dose-dependent progressive 
decline of hepatic macro- (33–75% reduction) and microcirculation (39–58% reduction) was 
found in transplanted livers. Norepinephrine has a direct constrictor effect on liver sinu-

soids, thereby reducing hepatic blood volume/flow and aggravating portal hypertension, 
and demonstrates effects similar to those of vasopressin effects on CO/CI and SVR [95], does 

not increase HBF, hepatic DO2 or VO2, and does not improve the hepatic lactate extraction 
ratio [96]. Vasopressin increases SVR, decreases MPAP; normalizes CO/CI, and potentially, 
CVP; maintains mean BP; decreases portal pressure, HBF, and systemic blood flow (SBF); 
improves impaired renal function; enhances diuresis, and thus improves Na balance and lac-

tate elimination; enhances platelet aggregation; and increases levels of Profactor VIII and von 

Willebrand factor, and does not promote lactic acidosis. Its use after reperfusion, albeit hav-

ing been shown beneficial by many authors, remains controversial, mainly due to splanchnic 
flow restriction effect with potential impairment of portal flow to the graft. Vasopressin has 
been demonstrated to have a dose-dependent vasoconstrictor effect on the peripheral vascu-

lature with substantial SVR increases, while having little effect on heart rate, systemic arterial 
blood pressure, and CI in normotensive patients [97]. The ability of vasopressin to selectively 
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 constrict splanchnic  vasculature, and thus decrease portal blood flow, is thought to constitute 
a physiological basis for variceal bleeding control by a higher vasopressin (0.4 U/min) dose 
[98, 99]. Vasopressin decreases portal vein pressure and flow in the native liver during liver 
transplantation [100]. Authors’ own study has shown that use of low-dose vasopressin (0.04 
U/min) infusion in an attempt to reduce blood loss seems to be a promising and a feasible 
technique. Vasopressin decreases portal vein pressure and blood flow in the native liver, as 
do terlipressin and octreotide [101]. A low-dose vasopressin (0.04 U/min) infusion apparently 
exerts only a minimal effect on the general hemodynamics. Low-dose vasopressin infusion is 
proved to be safe: to date, no cases of liver graft damage have been documented. To the con-

trary, cases where a high-dose of vasopressin (0.8 U) bolus, followed by a vasopressin infusion 
(4U/h) to attenuate refractory hypotension secondary to graft reperfusion, was used without 
causing any identifiable liver graft damage, have been reported [102]. Vasopressin has been 
shown to have a stimulation effect on lactate production by liver cells and adipose tissue in 
the septic model [103], and to be able to decrease blood loss during pre- and anhepatic phases 

of OLT (namely, EBL before graft reperfusion has been decreased by 50.2% [104] Figure 1)

Figure 1. Blood loss decrease in pre-reperfusion stages of OLT: comparison of low-dose vasopressin and phenylephrine 
infusions.
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5.1. Suggested algorithm of vasoactive agents used during anesthesia for OLT

Phenylephrine, epinephrine, norepinephrine, dopamine, and vasopressin are commonly used 

during different stages of OLT. The task of attaining hemodynamic stability sometimes dic-

tates concomitant use of two or more vasoactive agents (Figure 2).

Intraoperative use of dopamine, 3 mcg/kg/min in OLT is intended to preserve and protect the 
adequate renal function, especially in cases of hepatorenal syndrome [105]. Higher rates of 
dopamine infusion, 5–10 to 20 mcg/kg/min, increase cardiac output and SVR. However, gain-

ing CO/CI increase at the expense of tachycardia and, potentially, some rhythm disturbances 
makes dopamine a less desirable agent.

Early in the perunhepatic (dissection) stage of the surgery, phenylephrine infusion may be 

started, along with already running dopamine and low-dose vasopressin. Due to phenyl-
ephrine’s almost purely α-mimetic activity, its use actually addresses the low SVR problem, 
a main culprit for low MABP in majority of cases, provided that volume status correction 
and maintenance is being performed properly. In the majority of cases, phenylephrine infu-

sion continues throughout the case. Providers in the other centers prefer and advocate early 
norepinephrine-only infusion be started, while others combine these agents [106].

Anhepatic stage often presents a challenge in terms of maintaining of hemodynamic stability. 
Rapid decrease in venous return; therefore, potential drop of CO, exacerbated by significant 
blood loss, usually necessitates more aggressive approach. Along with increase of norepineph-

rine (and phenylephrine, if its infusion is running along with the former), epinephrine may be 
added, with the purpose of using its β-stimulation activity. In preparation graft reperfusion, 

Figure 2. Use of different vasoactive agents throughout the whole of the OLT procedure.
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some authors actually recommend “pretreatment” [107] with epinephrine and phenylephrine 
combination for postreperfusion syndrome prevention.

Graft reperfusion and postreperfusion syndrome presents a most significant challenge for 
hemodynamic management. Many different techniques and drug combinations has been tested 
and recommended for rapid hemodynamic recovery after liver graft reperfusion. Along with 
vasoactive agents and their combinations that are already in use by the time of a graft reperfu-

sion, other agents has been successfully used (Figure 1). Vasopressin in small boluses, 1–2 U, 
may be highly efficient in opposing the significant and rapid decrease of SVR, and calcium chlo-

ride, up to 100 mg, may enhance inotropic effects of epinephrine [108]. Another agent, namely 
Methylene Blue, 2 mg/kg, has been reported as very efficient and “last resort” drug for pro-

longed and profound hypotension, refractory to treatment with other vasoactive drugs [109].

The presence of significant metabolic, mainly lactic, acidosis is a well-known cause of 
decreased vasoactive agent’s efficiency [110]. To overcome hyporesponsiveness to vasopres-

sors, sodium bicarbonate infusion may be necessary. THAM infusion provides a fast and 
efficient way of acidosis reversal and returning pH closer to the physiological range [111].

In certain cases, shortly after even seemingly uneventful graft reperfusion, PAP and CVP 
start to rise and graft congestion ensues. Reasons for this pulmonary pressure surge include 
postreperfusion left ventricle diastolic dysfunction as a result of direct myocardial injury, 

caused by free oxygen radicals containing metabolic substances, relative overload due to 

rapid transfusion of substantial amounts of blood products, interstitial pulmonary edema 

with PVR increase, and more. Graft congestion causes substantial perfusion and oxygen 
delivery impairment in the newly transplanted liver, that delays normal function restora-

tion, specifically restart of coagulation components synthesis, which, in turn, exacerbates and 
prolongs the coagulation deficit. To address this problem, infusion rates of vasoactive drugs 
should be adjusted to the best possible balance of MAP and PAP, blood products transfusion 
rate (but not necessarily volume) should be decreased, diuretics (Furosemide) may be admin-

istered, and infusion of nitroglycerin, starting at 1 mcg/kg/min, may be commenced, as blood 
pressure tolerates. Nitroglycerin has proved to be an effective agent for treatment of pulmo-

nary hypertension. It has been shown that nitroglycerin infusion resulted in pulmonary vas-

cular resistance decrease by 43%, and mean pulmonary artery pressure decrease by 19% [112].

Hemodynamic management of postreperfusion stage of liver transplantation procedure con-

sists of continuation of vasoactive agents infusion and usually involves a gradual decrease 

of infusion rates and also weaning from most aggressive vasopressors, like epinephrine. In 
substantial percentage of the cases, despite the adequate volume status restoration and coag-

ulation defect complete reversal, the necessity for vasoactive drugs persists. Hemodynamic 
optimization continues well beyond the actual end of the surgery, oftentimes for a few days 
in critical care units.

Choice and dosage of vasoactive agents at every stage of OLT depend and should be 
guided by hemodynamic parameters. We suggest the allocation to all the patient popula-

tion undergoing liver transplantation surgery, in three groups, according to hemodynamic 

parameters: compensated (MAP 80–100 mmHg, SVR > 600 dynes/s/cm5), subcompensated 

(MAP 60–70 mmHg, SVR 300–600 dynes/s/cm5), and decompensated (MAP <50 mmHg, SVR 
<200–250 dynes/s/cm5)
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Suggested algorithm of vasoactive agents use and dosage is summarized in Table 1.

6. Conclusion

Hemodynamic optimization during liver transplant surgery presents very complex, chal-
lenging, sometimes formidable task, many aspects of which remain unclear, thus warrant 
 further research. A wide variety of anesthetic techniques and standards, institutional policies, 

Hemodynamics

OLT stage MAP 80–100, SVR>600 MAP 60–70, SVR 300–600 MAP<50, SVR <200–250

Agent Dose Agent Dose Agent Dose

Dissection Dop 3 Dop 3 Dop 5–10

Phen 0.2–0.4 Phen 0.4–0.6 Phen 0.6–1.0

Vas 0.04 Vas 0.04 Vas 0.04–0.08

NE 0.01–0.03

An-hepatic Dop 3 Dop 3 Dop 5–10

Phen 0.2–0.4 Phen 0.4–0.8 Phen 0.8–1.2

Vas 0.04 NE 0.01–0.03 NE 0.04–0.08

Vas 0.04 Epi 0.01–0.03

Vas 0.04–0.08

Reperfusion Dop 3–5 Dop 3–5 Dop 3–5

Phen 0.2–0.6 Phen 0.6–0.8 Phen 0.8–1.2

Ca 500 NE 0.04–0.08 NE 0.06–0.1

Epi 0.02–0.04 Epi 0.04–0.08

Ca 1000 Vas 3–5

Vas 1–2 Ca 1000–2000

MB 1–1.5

Bic 50–100

Post-

reperfusion

Dop 3 Dop 3 Dop 3–5

Phen 0.02–0.06 Phen 0.4–0.8 Phen 6–1.0

NE 0.02–0.04 NE 0.08–0.1

Epi 0.02–0.04

Dop—dopamine; Phen—phenylephrine; NE—norepinephrine; Epi—epinehrine, all dosage in mcg/kg/min; Vas—
vasopressin, units/min; Ca—calcium chloride, mg; MB—Methylene Blue, mg/kg; Bic—sodium bicarbonate, mEq.

Table 1. Algorithm of vasoactive agents use and dosage during OLT.
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hemodynamic triggers for vasoactive agents use and transfusion thresholds, arriving at the 

even nation-wide consensus, let alone worldwide, remain extremely difficult, if not mere a 
unrealistic task. Nonetheless, introduction of comprehensive guidelines, based on most com-

mon clinical practices and realities of perioperative hemodynamic management appears to 

be not only conceivable but rather timely and a necessary enterprise. Once introduced, such 
guidelines may lay the ground for successful and safe intra and perioperative practices and 

also provide support for much-needed research efforts in this complicated area of transplant 
anesthesia practice.
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