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Abstract

Modulation-doped semiconductor nanostructures exhibit extraordinary electrical and
optical properties that are quantum mechanical in nature. The heart of such structures
lies in the heterojunction of two epitaxially grown semiconductors with different band
gaps. Quantum confinement in this heterojunction is a phenomenon that leads to the
quantization of the conduction and the valence band into discrete subbands. The spac-
ing between these quantized bands is a very important parameter that has been
perfected over the years into device applications. Most of these devices form low-
dimensional charge carriers that potentially allow optical transitions between the
subbands in such nanostructures. The transition energy differences between the quan-
tized bands/levels typically lie in the infrared or the terahertz region of the electromag-
netic spectrum and can be designed according to the application in demand. Thus, a
proper understanding and a suitable external control of such intersubband transitions
(ISTs) are not only important aspects of fundamental research but also a necessity for
optoelectronic device applications specifically towards closing the terahertz gap.

Keywords: heterojunction, HEMT, terahertz, infrared, intersubband transition

1. Introduction

Low-dimensional semiconductor heterostructures, otherwise known as semiconductor

nanostructures, have tremendously revolutionized both the technical and the fundamental

aspects of semiconductor industry in terms of device applications. With the ability to grow

clean and high-quality samples, device implementations have become a huge success [1–3].

When the dimensions of a region with free carriers (electrons) are reduced as compared to the

bulk and approach the deBroglie wavelength, the electronic motion is quantized, thus

resulting in carrier confinement that is quantum mechanical in origin. The phenomenon has
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been widely used for carrier confinement in one, two and three dimensions that consequently

gives rise to nanostructures such as quantum wells, quantum wires and quantum dots, respec-

tively. Due to the quantum confinement, the energy bands (i.e. the conduction and valence

bands) are quantized into discrete energy levels/bands and are no longer continuous as in the

bulk systems. These quantized energy states are known as subbands for 2D or 1D systems and

sublevels for 0D systems. The energetic spacings between these quantized subbands and the

sublevels are very important parameters that define the device applications both from an

optical and from an electrical point of view.

The intersubband spacings in GaAs-based 2D systems are typically in the order of 10–30

meV [4, 5], as seen in the case of two-dimensional electron gas (2DEGs) with a triangular

confinement potential formed across a GaAs/Al
x
Ga1�xAs heterojunction (x being typically

0.3) of a high electron mobility transistor (HEMT) structure. The intersubband transitions

(ISTs) typically cover the terahertz (THz) or far-infrared region of the electromagnetic spec-

trum. However, in the case of a square potential well or in a different material system such as

GaN/AlGaN heterojunction, these spacings can be designed to be even in the mid-infrared or

near-infrared region. Stacking of quantum wells can further enhance the response of

intersubband resonance (ISR), and such designs are the key for various applications like

photodetectors or intersubband lasers [6]. One of the very common and sophisticated exam-

ples in this regard is the quantum cascade laser [7–9], which is based on the cascade phenom-

ena and intersubband transitions across many layers of quantum wells. Such compact and

powerful lasers are used for practical applications in THz spectroscopy [10–13], sensing tech-

nology [14, 15], biomedical applications [16, 17] and also in security applications [11, 18].

Structures based on quantum wells have also made significant advancement in the detector

technology, for example, quantum well infrared photodetectors [19, 20]. In this chapter, we

present a broad overview of the ISTs in a 2DEG formed at the GaAs-Al
x
Ga1�xAs interface of a

HEMT structure. We also discuss possible methods to probe the spacing between the subbands

and also to tune them significantly by applying an external bias across the sample. Further-

more, we present a fundamental study on the coupling of the ISRs with the 2DEG cyclotron

resonance in the presence of tilted magnetic fields. The knowledge of ISTs and the ability of

wide electrical tuning of these resonances are then exploited to study the light-matter interac-

tion at THz frequencies in these HEMT structures. The integrated device with 2DEG in a

HEMT structure and metamaterials (frequency-selective artificially designed structures) is

electrically driven from an uncoupled to a coupled regime of light-matter interaction and then

again back to the uncoupled regime. A strong coupling is thus observed when the frequencies

of both systems are brought in resonance with each other, manifested as an avoided crossing at

that point.

2. High electron mobility transistor design

The low-dimensional charge carriers, trapped in the heterojunction of the HEMT design, form

the core of such field-effect transistors. This transistor design also goes by the name of modula-

tion-doped field-effect transistors (MODFET). These designs are used in various high-power [21]
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and high-speed [22] electronics, high-resolution imaging [23] and various gas, chemical and

biomedical applications [24]. We begin with the design concept of this semiconductor

heterostructure along with an overview of its band structure (see Figure 1(a)) that is obtained

by solving the Schrödinger-Poisson’s equations self-consistently [25, 26] and adding the band

discontinuity at the heterojunctions. A schematic of the layer sequence of the transistor structure

is shown in Figure 1(b). On a semi-insulating GaAs substrate/wafer, we start the molecular beam

epitaxy (MBE) growth by typically a 50-nm-thin GaAs layer. Then, approximately 10 periods of a

GaAs/AlAs short period superlattice (SPS) are grown (not shown in the band diagram). The SPS

layers help to smoothen the surface of the bare substrate for the later epitaxial growth and trap

eventually surface-segregating unintentional impurities, which have always a tendency to stick

at the stoichiometric interfaces of GaAs/AlAs. Moreover, this SPS keeps unwanted charge car-

riers away, forbidding them to tunnel into the 2DEG layer grown on top. Since the substrate is

typically undoped (or semi-insulating), the conduction (or valence) band has no curvature at this

point corresponding with Poisson’s equation, which states that the charge density is proportional

to the second derivative of the potential with respect to the space coordinate. After the growth of

the SPS layer, the first charged layer is the 2DEG that is formed at the heterojunction of the

Figure 1. (a) The conduction band diagram of a HEMT structure along the growth direction z. The growth starts from the

substrate, that is from right to left in the above figure, after the growth of a 50-nm GaAs layer. μm and μs are the quasi-

Fermi levels in the metal and semiconductor, respectively ðμs � μm ¼ eVgÞ. Vb is the built-in voltage. The Fang-Howard

wavefunction of the ground state is also plotted across the heterojunction (which is assumed to be zero in the growth

axis). (b) A schematic of the layer sequence.
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undoped GaAs and an undoped Al0.33Ga0.67As spacer layer. Since the 2DEG is essentially

electrons and negatively charged, the conduction band curves downwards and reaches the

maximum slope at the heterojunction between the GaAs and the Al0.33Ga0.67As layer, at which

point the conduction band (Ec(z)) jumps by ΔEc due to the band discontinuity. This is followed by

the Al0.33Ga0.67As spacer layer where charge carriers are absent and the slope of the conduction

band almost remains constant. In the doped Al0.33Ga0.67As layer, the positive charges of the

donor ions cause the band to bend upwards, thus reversing the slope. Further moving to the

GaAs layer, Ec(z) jumps downwards due to the band discontinuity and continues with a constant

slope. On top of the GaAs layer, AlAs/GaAs SPS (also known as blocking barrier) is grown to

prevent leakage of charge carriers in and out of the 2DEG channel and also to prevent leakage of

surface charges into the channel. Finally, the band hits the gate grown on top of the sample with

a barrier height equivalent to the Schottky barrier height. Ideally, metals (e.g. Cr or Au) are

evaporated on the sample to serve as gates after the completion of the growth. The samples are

typically grown by MBE. While a lot of work has been done previously using metallic Schottky

gates, nonetheless, these gates suffer from huge drawbacks. These gates limit the forward bias

voltage to the turn-on voltage of the Schottky diode. Furthermore, they fail to grow lattice

matched on the semiconductor, are poly-crystalline and thus induce potentially a lot of strain

on the semiconductor layer below. Moreover, they oxidize over time and thus may become

highly ohmic. Due to high reflectivity and certain Drude absorption of their free charge carriers,

such gates are also opaque to the incident light, thus limiting their application in optoelectronic

devices. Recently, we have introduced epitaxial, complementary-doped, electrostatic and trans-

parent gates that are grown on top of the sample [27–29]. These gates are grown within the UHV

conditions of the MBE and thus incorporate a minimum of the unwanted impurities, leading to

unpreceded gate perfection, reliability and reproducibility.

These gates circumvent all the abovementioned disadvantages of Schottky gates and are

typically composed of a 25-nm-thick bulk carbon-doped GaAs layer (with an acceptor density

of NA ¼ 3 � 1018 cm�3) followed by approximately 40 periods of carbon-delta-doped and 0.5-

nm carbon-doped GaAs layers with an average acceptor density NA ¼ 1 � 1019 cm�3. In order

to solve Poisson’s equation for the evaluation of the band structure, the knowledge of the

charge density is necessary. However, it is not possible to calculate the density of charge

carriers until the energy bands are known, thus requiring a self-consistent mechanism that is

otherwise adopted in the 1D Poisson solver [26].

3. Characteristics of HEMTs

After being introduced in 1980s, these transistors based on high-mobility modulation-doped

heterostructures have revolutionized the semiconductor industry in terms of being the most

high-performance compound semiconductor FETs.

Due to spatial separation of the electrons from the ionized impurities, the scattering between

them is highly reduced as compared to the bulk semiconductors, enhancing the electron

mobility especially at low temperatures where the abovementioned scattering mechanism is

dominant. The spacer layer further increases the electron-to-donor separation. While the larger

Different Types of Field-Effect Transistors - Theory and Applications68



separation reduces the scattering mechanism, as a negative contribution, the carrier concentra-

tion is also reduced which reduces the performance. Hence, the spacer thickness should be

optimized. Typical values range from 1 to 30 nm. In order to explain how the high mobility of

the electrons in HEMT makes them fast transistors, we use the Shockley’s gradual channel

approximation model for an FET operation, which states that the rate of change of saturation

drain current, ID, sat, with respect to the change in the gate-source voltage, VGS (also known as

the transconductance, gm, sat), scales proportionally to the mobility (μ) and inverse proportion-

ally to the distance between the gate electrode and the electron channel (d), both of which are

satisfied by the HEMTs:

gm, sat ¼
∂ID, sat
∂VGS

¼
EμZ

dLG
ðVGS � V thÞ, ð1Þ

where Z is the total impedance, LG is the dimension of the gate and V th is the threshold voltage.

The HEMTs have a clear advantage of lower access resistance particularly in terms of channel

resistance due to the high mobility electrons in the channel in comparison to standard FETs. To

summarize, the HEMT design principles allow:

• High carrier concentration of 2DEG in the channel

• High mobility by optimization of the spacer-layer thickness

• Low access resistance by using buried/recessed gates

• Better confinement of carriers in the channel due to high barriers

• Reduced interface and alloy scattering mechanisms, thus enhancing mobility

Typical transistor characteristic curves of GaAs/AlGaAs HEMTstructures under dark and after

1 s of illumination with a near-infrared light emitting diode (NIR LED) are shown in Figure 2

(a) and (b), respectively. Let us now briefly discuss the transistor operation. Even under zero

bias or for a small positive voltage applied to the gate, an inversion layer is formed at the

semiconductor surface, the two-dimensional electron gas. Now, if a small source-drain voltage is

applied, a current will flow from the source to the drain through the conducting 2DEG

channel. The channel here is highly conducting, that is, offers very small resistance, and the

source-drain current (ISD) is proportional to the source-drain voltage (VSD). This is the linear

region. As VSD increases, ISD deviates from the linear relationship since the channel potential

reduces the charge near the drain end. This eventually reaches a point at which the inversion

charge at the drain end is reduced to nearly zero. This is called the pinch-off point. Beyond this

source-drain bias, the drain current remains essentially the same, the pinch-off point starts to

move towards the source, but the voltage at this pinch-off point remains the same. Thus, the

number of carriers arriving at the pinch-off point from the source and hence the current

remains essentially the same. In terms of the conduction band diagram, when a large enough

negative bias is applied to the gate, the conduction band is lifted up across the chemical

potential (or quasi-Fermi level), thus depleting the channel completely. This results in a zero

source-drain current even when the source-drain voltage is increased. As a positive bias is

applied, the channel is filled with mobile electrons, and with the increase of the source-drain
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voltage, the source-drain current first increases linearly, then non-linearly and finally reaches a

saturation value, as described earlier. A schematic of these situations is depicted in Figure 2(c)

and (e), while the simplified schematic of the conduction band diagram is shown in Figure 2(d).

When the structure is illuminated, it becomes rather difficult to deplete the channel completely

out of electrons with the previously applied negative bias, and, moreover, the saturation current

also increases with the same gate bias applied before.

3.1. Quantum confinement and intersubband transitions in HEMTs

One of the most popular terms in nanoscience is the quantum confinement that results from

changes in the atomic structure as a consequence of direct influence of ultra-small length scale

on the energy band structure [30]. The length scale corresponding to the regime of quantum

Figure 2. Transistor ISD-VSD curves measured at 4.2 K for a range of gate voltage applied from�0.4 to 2 V in steps of 0.2 V

(a) at dark and (b) after illuminating the sample with a near-infrared light emitting diode for 1 s. (c) The schematic of the

pinch-off situation. (d) A simplified schematic of the conduction band diagram under two different gate bias: �0.4 V (in

red for the complete depletion of the channel) and 2 V (in black when the channel is filled with charge carriers). (e) The

schematic of the open channel situation. SI indicates semi-insulating. The complete layer sequence is not shown in the

schematic for simplicity.
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confinement ranges from 1 to 25 nm for typical IV, III–V or II–VI semiconductors [31]. This

leads to the fact that the spatial extent of the electronic wavefunction is comparable to the

particle size, making the electrons feel the presence of the particle boundaries and respond to

changes in particle size by adjusting their energy. This phenomenon is known as the quantum-

size effect. Quantization effects become most important when the particle dimension of a

semiconductor is near to and below the bulk semiconductor Bohr exciton radius (in bipolar

systems) or the deBroglie wavelength (in unipolar systems), making the properties of the

material size-dependent.

In low-dimensional semiconductor nanostructures, the restriction of the electronic motion in

one, two and three dimensions leads to the modification of the density of states (DOS) as

compared to the bulk states. The electronic DOS is defined as the number of electronic states

per unit volume per unit energy, the finiteness of which is a result of the Pauli’s exclusion

principle, which states that only two electrons with opposite spins can occupy one volume

element in the phase space [32]. The confinement of electronic motion results in the quantiza-

tion of the conduction and the valence band. With the knowledge of these quantized states,

their filling can be explained. The number of occupied subbands depends on the electron

density and also on the temperature [33]. In a 2D system, the density of electrons per unit area,

n2D, is given by the integration of the product of 2D DOS, nðEÞ and the Fermi-Dirac occupation

function [34]:

n2D ¼

ð

∞

�∞

nðEÞf ðE, EFÞdE, ð2Þ

where EF is the quasi-Fermi energy. The subbands can thus be split as:

n2D ¼
X

i

ni, ð3Þ

where ni is the number of electrons in the subband with energy εi. The above classical

Boltzmann distribution, f , is given by [33]:

f ðE, EF, TÞ � exp �
E� EF

kBT

� �

, ð4Þ

where kB is the Boltzmann constant and T is the temperature in Kelvin. Using the above

equation, we obtain:

ni ¼
m

πℏ
2

ð

∞

εi

f ðE, EFÞdE ¼
mkBT

πℏ
2
ln 1þ exp

EF � εi

kBT

� �� �

: ð5Þ

In the limit of low temperature, where electrons are degenerate, the 2D electron density is

given by [33]:

n2D ¼
X

i

ni ¼
m

πℏ
2

X

i

ðEF � εiÞΘðEF � εiÞ: ð6Þ
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Figure 3(a) and (b) show a triangular potential well and a schematic of the filling of the

subbands, respectively. Based on the position of the Fermi level, the corresponding subbands

are occupied. Under triangular confinement potential (as in the HEMT design), the energy

spacing decreases for higher subband energies and finally forms the continuum. When the

Fermi energy EF1 is higher than ε1 but less than ε2, only the ground subband is filled. Similarly,

when the Fermi level EF2 is above ε2, but less than ε3, the lower two subbands are filled with

electrons and so on. The position of the quasi-Fermi level can be tuned by changing the band

structure externally, that is, by applying either an electric or a magnetic field. With the external

field, the conduction band can be raised or lowered with respect to the quasi-Fermi level

around the Fermi-pinning point, hence depleting or filling the subbands with electrons.

Figure 3(c) shows a schematic of the intersubband transition from the filled ground subband

to an empty excited subband. In quantum mechanics, Fermi’s golden rule is used to calculate

the transition rate (i.e. the probability of a transition to occur per unit time), from one state with

a given eigenenergy to another state of higher eigenenergy or to the continuum of energy

eigenstates, subjected to some kind of perturbation. According to Fermi’s golden rule, this rate

of transition, W i!f ðωÞ from an initial state ji〉 to a final state jf 〉 under the electric-dipole

approximation1 ( e
!

:p̂), is given by:

W i!ðωÞ ¼
2π

ℏ

eE0

m�ω

� �2

j〈f j e
!

:p̂ji〉j2δðEf � Ei � ℏωÞ, ð7Þ

where E0 is the amplitude of the electric field and e and m� are the charge and the effective

mass of electrons. Ei and Ef are the energies of the initial and the final state. Now, the

absorption coefficient, α2D, is defined as the ratio of the absorbed electromagnetic energy per

unit time and area (considering a 2D system) and the intensity of the incident radiation,

summed over all the filled initial and empty final states. In order to ensure that the initial state

is filled and the final state is empty, a condition necessary for the transition to occur, we

introduce the Fermi factors: ζðEiÞ for the initial state and 1� ζðEf Þ
� �

for the final state. The

absorption coefficient is thus given by:

α2D ¼
2e2π

Ð

0cnωm
�2
�
X

i, f
j〈f j e

!
:p̂ji〉j2 ζðEiÞ � ζðEf Þ

� �

δðEf � Ei � ℏωÞ, ð8Þ

where E0 is the absolute permittivity, c is the velocity of light and n is the refractive index of the

material. The intersubband absorption takes place within the quantized levels of the conduc-

tion or the valence band, schematically shown in Figure 3(c). The total wavefunction can be

written as the product of the lattice-periodic Bloch wave (for electrons in a crystal), 0u0 [35], and

1In optical experiments with wavelengths λ in the order of micrometers, the width of the quantum well, which practically

sets the scale of the electronic wavefunctions, is much shorter than λ. To a good approximation, the momentum of the

photon can be neglected and the electric field can be assumed as constant across the electronic states (with or at k
!
¼ 0).

This approximation is also known as the electric-dipole approximation.
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a slowly varying envelope function 0ϑ0. According to the Bloch ansatz, the envelope function

reduces to the plane wavefunction; hence, the total wavefunction is given by:

ψð r!Þ ¼ 1
ffiffiffiffi

A
p eik⊥

!
� r! � ϕsðzÞ � uvð r

!Þ, ð9Þ

where A is the normalization constant, v indicates the index for the bands and s represents the

subband indices. The complete matrix element in 〈f j e! �p̂ji〉 can be split as follows:

〈f j e! �p̂ji〉 ¼ e
! �〈uvf jp̂juvi〉〈ϑsf jϑsi〉þ e

! �〈uvf juvi〉〈ϑsf jp̂jϑsi〉, ð10Þ

where the first term indicates the interband transition and the second term is the

intersubband transition. The first term has the dipole matrix element of the Bloch functions

that explains the selection rule for the interband transition and an overlap integral of the

envelope functions. In case of transitions within the subbands of the conduction or the

valence band, the first term vanishes and the second term becomes more relevant in the one-

band model that consists of an overlap integral of the Bloch function and a dipole matrix

element of the envelope function. Further simplification of the matrix elements of the enve-

lope function gives:

〈ϑ
sf k

!f

⊥

j e! �p̂jϑ
si k
!i

⊥

〉 ¼ 1

A

ð

d3r e�i k
!f

⊥
� r!ϕ�

sf ðzÞ{expx þ eypy þ ezpz}e
�i k

!i

⊥
� r!ϕsiðzÞ

� �

: ð11Þ

It can be observed that only the third term, ezpz, in the curly bracket survives, giving a

contribution at a finite frequency. Except for si ¼ sf and k
!i

⊥
¼ k

!f

⊥
(i.e. the initial and the final

states are equal), all the other terms vanish, implying the free-carrier absorption at zero

frequency when no scattering processes are involved [36]. Hence, only the following matrix

element determines the intersubband absorption in the one-band model:

Figure 3. (a) A triangular potential well showing the subband energies and the associated Fang-Howard Airywavefunctions.

(b) A schematic depiction of the 2D density of states that appears step-like for each quantized state. (c) A schematic

representation of the subbands in the energy-momentum space for a triangular quantum well. The thick parts of the

parabola indicate filled states and the arrows indicate the allowed dipole transitions.
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〈sf jpzjsi〉 ¼
ð

dzϕ�
sf ðzÞpzϕsiðzÞ: ð12Þ

The above equation states that the electric field of the incident radiation must have a compo-

nent perpendicular to the semiconductor layers or parallel to the growth direction (which is a

necessary condition) in order to couple to the ISTs. This is known as the polarization selection

rule for the ISTs. In simple words, it states that the electric field vector of the exciting electro-

magnetic wave or at least a finite component of it must be perpendicular to the 2DEG. Another

important quantity in this regard is the oscillator strength [34] defined as:

f sisf ¼
2

m�ℏωsf si
j〈sf jpzjsi〉j

2 ¼ 2m�ωsf si

ℏ
j〈sf jzjsi〉j2: ð13Þ

The above quantity is used to understand and compare the strength of the transitions between

initial and final states in different physical systems and obeys the Thomas-Reiche-Kuhn sum rule

[37]. It is important to note that for a symmetric quantum well, only parity changing transi-

tions (odd-even or even-odd) are allowed due to the inversion symmetry of the potential well.

However, for asymmetric quantum wells, like that of the triangular potential well, the inver-

sion symmetry with respect to the quantum well centre is broken by some means (i.e. internal

electric fields or band structure engineering, etc.). This leads to the relaxation of the selection

rule, thus allowing transitions between all the subbands.

4. Intersubband-Landau coupling under tilted magnetic fields

When a magnetic field is applied in a plane perpendicular to the semiconductor surface, the

free electrons that carry the electric charge perform an orbital motion in the plane perpendic-

ular to the magnetic field direction. This motion is quantized, and equally spaced levels (called

the Landau levels) separated in energy are formed. The Hamiltonian of the quantum mechan-

ical system thus gets decoupled into a magnetic and an electric component, and the energy

spectrum consists of a series of Landau ladders for each subband. In the presence of a magnetic

field, the Drude conductivity, normalized to E0c, is given by [38–42]:

σðωÞ ¼ n2De
2τ

2m�
E0c

1

1þ iðωþ ωcÞτ
þ 1

1þ iðω� ωcÞτ

� �

, ð14Þ

where n2D is the electron density, τ is the relaxation time constant and c is the velocity of light

in free space. Using Maxwell’s theory, the transmittance, t, can be written as:

t ¼ 2

1þ ffiffi

E

p þ σ
ð15Þ

The transmission, T, is thus given by [41, 42]:
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T ¼ jtj2 ¼ 4

1þ
ffiffi

E

p
þ σr

	 
2 þ σ2i

, ð16Þ

where σr is the real part of the conductivity and σi is the imaginary part. Using the above

equation, the normalized transmission can be written as [41, 42]:

TðBÞ
Tð0Þ ¼ 1� 1þ ωpτ

	 
2 � 1

2

1

1þ ωpτ
	 
2 þ ωþ ωcð Þ2τ2

þ 1

1þ ωpτ
	 
2 þ ðω� ωcÞ2τ2

" #

, ð17Þ

where ωp ¼ n2De
2

m�cE0ð1þ
ffiffi

E

p Þ is the plasma frequency. From the quantum mechanical description of

such a system, when electrons in 2DEG are subjected to a space-charge potential, VðzÞ and a

magnetic field B tilted at an angle of θ with respect to the horizontal direction, the total

Hamiltonian of the system is given by [4, 43]:

H ¼ � ℏ
2

2m�
∂2

∂x2
þ e2B2

⊥

2m� x
2 � ℏ

2

2m�
∂2

∂z2
þ VðzÞ þ

e2B2
jj

2m� z
2 � e2BjjB⊥

2m� xz: ð18Þ

where Bjj ¼ B sinθ and B⊥ ¼ B cosθ. The first two terms in the above equation describe the

magnetic field quantization into Landau levels (similar to the harmonic potential). The third

and the fourth terms illustrate the quantization due to the space-charge potential within the

triangular well approximation. The z2 term results in the positive diamagnetic shift due to the

parallel magnetic field component, Bjj. The last term, proportional to the product xz, couples

the Landau and subband quantization at all angles 0� < θ < 90�.

Using the perturbation theory, one can solve the above Hamiltonian treating θ as the pertur-

bation parameter. In order to solve the above problem, the product of Airy wavefunctions ðji〉Þ
and Hermite functions ðjn〉Þ is taken as the basis set. From the first order perturbation

theory, there is no correction to the zeroth-order energies, expect for the degenerate situation

Ei0i ¼ Ei0 � Ei ¼ ℏωc⊥. This is commonly addressed as the full-field coupling regime. In the

non-resonant regime, second-order effects are present, and hence using perturbation theory

of the second order for non-degenerate levels, the total energy eigenvalues are obtained as [4]:

Ei,n ¼ Ei þ ℏωc⊥ nþ 1

2

� �

þ e2Bjjððz2Þii � ðziiÞ2Þ
2m� �

e2B2
jj

2m�
X

i 6¼i0

ðzi0 iÞ2 1� Ei0ið2nþ 1Þ
ℏωc⊥

� �

1þ Ei0i

ℏωc⊥

� �2
, ð19Þ

where zi0i are the matrix elements for the ISTs from ith subband to i0th subband. The first two

terms represent the linear zeroth-order terms, corresponding to the subband energies and the

Landau energies respectively. The third term represents the diamagnetic shift, and the fourth

term results from the coupling Hamiltonian. This non-resonant regime is known as the half-

field coupling, where the splitting is proportional to θ
2. Thus, larger tilt angles are required for

the observation of the splitting in the half-field coupling regime. Transmission measurements
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are performed on a HEMT sample using the magnetic field chopping scheme. A fixed number

of spectra are taken at a certain magnetic field (T(B)), and then the magnetic field is turned off,

during which the same number of transmission scans (T(0)) are taken. At first, the transmission

experiments are performed under no tilt of the magnetic field. A contour plot of the normal-

ized transmission spectra for different fields in the range 3.6–4.2 T is plotted in Figure 4(a).

Clearly, the only visible resonance observed is the cyclotron resonance under perpendicular

magnetic fields that scales linearly with the field. On introduction of the tilt (approximately

30�), a clear anti-crossing is observed at around 3.9 T (see Figure 4(b)). The apparent observa-

tion of the satellite peaks (shown by black arrows in Figure 4(c)) in the presence of the

Figure 4. (a) A contour plot of the normalized transmission spectra under perpendicular magnetic fields without any tilt.

(b) A contour plot showing the anti-crossing between the cyclotron resonance and the intersubband resonance in the

normalized transmission spectra under tilted magnetic fields. This feature appears as the satellite peaks across the

cyclotron resonance. (c) Normalized transmission plots for three magnetic fields where satellite peaks (highlighted by

black arrows) are seen at 3.9 T.
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magnetic field at the anti-crossing point is a manifestation of the subband-Landau coupling

and hence the resonance splitting (the splitting between the two satellite peaks across the

dominant cyclotron resonance). The spacings of the subbands are twice the value of the

splitting at the anti-crossing frequency (according to the half-field coupling regime). This

corresponds to E01 ¼ 2hcvc⊥ ¼ 11:1 meV where vc⊥ is the wavenumber corresponding to the

cyclotron frequency at the anti-crossing point. All magnetic chopping measurements are

performed under zero bias. This phenomenon of avoided crossing is an indirect experimental

method to evaluate the intersubband spacing via the so-called magnetic field chopping

scheme [44, 45]. A more direct method is by application of the electric fields across the

structure and this is discussed in the next section.

5. Tuning and probing of intersubband transitions electrically

Intersubband transitions are the most fundamental optical transitions that can be excited in

low-dimensional semiconductor nanostructures. The observation of ISRs is a result of the fact

that the component of the incident infrared electric field perpendicular to the semiconductor

layers or parallel to the growth direction selectively couples, thus exciting the electrons from

the lower occupied subband to the higher empty subband. By applying a voltage across the

structure, it is possible to deplete and selectively populate the subbands. Thus, a more direct

scheme of transmission measurement is proposed to study the intersubband spacing in such

semiconductor nanostructures (viz. HEMT) even in the absence of an external magnetic field.

The change in the transmission, TðVg,nÞ=TðVr,0Þ, due to the 2D space-charge layer for a

normally incident light polarized in the perpendicular direction (say z) is given by [38]:

TðVg,nÞ

TðVr,0Þ
¼ 1�

2ReðσzzÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

E0=μ0

p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ESE=E0
p

� �

þ σg

, ð20Þ

where ESE is the dynamic dielectric function of the substrate, σg is the conductivity of the gate and

σzz is the conductivity tensor element of the 2D layer. E0 and μ0 are the absolute permittivity and

permeability of the free space, respectively. The Drude model very well describes the dynamic

conductivity response of the quasi-free charge carriers in the 2D space-charge layer [41, 42]:

σDrudeðωÞ ¼
e2n2Dτ

m�

1

1þ iωτ
, ð21Þ

where τ is the scattering time, n2D is the carrier density and m� is the effective mass. However,

for the ISTs, observed under normally incident light, with the sample tilted at an angle, the

conductivity can be described by replacing σzz by σISR [41, 42]:

σISR∝
j〈zii0〉zj

2

ω2 � ω2
ISR þ iω=τ

, ð22Þ
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where j〈zii0〉zj
2 is the matrix element for the IST from the ith state to the i

0th state. The ISR

frequency can however differ from the observed one due to resonance screening (depolariza-

tion shift) arising from the many body effects [46]. In the density-chopping scheme, a certain

number of scans are taken at the reference voltage (a voltage much below the threshold

voltage), when the 2DEG is completely depleted of charge carriers. Then, the gate voltage is

slowly increased to a value when the subbands start populating (this can be well seen from the

capacitance-voltage spectrum in Figure 5(a) where the change in capacitance is measured

during the broadband absorption onset upon changing the gate voltage and modulating it

with the LockIn technique). The same number of scans is taken at this higher gate voltage. The

voltages are then changed alternatively, and the respective scans are co-added and averaged

over long measurement times. The long measurement time ensures that any drift arising from

the complicated experimental setup can be averaged out to zero and a good signal-to-noise

ratio is obtained. Figure 5(b) shows the density-chopped transmission spectra of a HEMT

Figure 5. (a). Capacitance-voltage spectrum of the HEMT structure showing a sharp increase of the capacitance as the

voltage is increased above �0.9 V (threshold voltage). This indicates the filling of the ground subband with charge

carriers. The corresponding 2D carrier density is also plotted as a function of the gate voltage that agrees well with the

Hall measurements performed on the same sample (not shown). (b) The normalized transmission spectra at different gate

voltages chopped (or normalized) with respect to the reference voltage (�2 V). A clear shift of the intersubband resonance

is observed towards higher values as the gate voltage is increased. (c) The wide electrical tunability of the intersubband

resonance as a function of the 2D carrier density (or the applied electrical bias).
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sample. With the increase of the gate voltage, the conduction band is pulled below the quasi-

Fermi level. This results in the steepening of the triangular potential well, resulting in an

increase of the intersubband spacing. Thus, by applying a bias on the gate, the intersubband

resonance can be significantly tuned over a wide frequency (1–3 THz) or energy (4–12 meV)

range, as can be seen in Figure 5(c).

6. An access to the interior of HEMT via artificial structures

Artificial structures such as metamaterials are engineered in the sub-wavelength sizes for

certain desired properties. They are designed in assemblies of multiple individual elements

called unit cells. These structures possess unique properties such as negative [47] or zero [48]

refractive indices, magnetism at optical frequencies [49], etc. The special properties are not

inherent to the materials but the design of the structures and the way electromagnetic field

interacts with them. They can also be treated as planar cavities with certain resonance frequen-

cies. When electromagnetic radiation with a certain polarization is incident on these structures,

the electric or the magnetic field couples to the cavity and exhibits a resonance that is known as

the cavity resonance or resonance frequency of the metamaterials. In transmission measure-

ments, this appears as a dip at that particular resonance frequency. An array of interconnected

double split-ring resonators (see Figure 6(a–d)) is adopted for the metamaterial design, whose

dimensions and the characteristic frequency response are first simulated by the standard finite

difference time domain solver (like CST microwave studio). For simplicity and small compu-

tation time, only one unit cell, as shown in Figure 6(e), is used for the simulation with a

periodic boundary condition in the planar directions. Moreover, these meta-atoms are placed

far apart from each other to avoid any influence of inter-meta-atom interactions. For the right

coupling of the electromagnetic radiation, the electric fields are confined in the two narrow

capacitor arms of the double split-ring resonator (see Figure 6(e)). Moreover, the fringing field

effect ensures that there is a strong electric field component along the growth direction that

extends over a few 100 nm [29]. This component of the electric field couples with the HEMT to

excite the ISRs in accordance with the polarization selection rule as discussed before.

Two transmission minima (or dips) are observed—one at 1.2 THz and the other at 2.4 THz (see

Figure 6(f)). The experimental characterization of the metamaterial array is performed by a

standard THz time-domain spectroscopy at room temperature, where the thermal energy, kBT

(¼ 25 meV), is higher than the subband spacings. This thermal occupation of higher subbands

consequently prevents us from observing the ISR (ground-to-first excited state) in the 2DEG

layer. Hence, the response from the sample is purely due to metamaterials. A Ti:Sa laser with

an 80 fs pulse duration (a centre wavelength of 800 nm) and a repetition rate of 80 MHz is used

to generate the THz radiation by exciting an inter-digitated photoconductive antenna [9]

processed on a GaAs substrate. A fixed DC bias is applied on the antenna. The THz generation

is obtained under the transmission geometry of the antenna. Four 90� off-axis parabolic

mirrors are used for the collection and collimation of the THz beam. The detection is based on

free space electro-optic sampling [8, 29] of the THz electric field by using a birefringent, 2-mm-

thick ZnTe crystal. As compared to the simulation, the transmission is normalized with respect
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to the orientation of the metamaterial. The electric field component of the THz source is in the

plane parallel to the optical table. Hence, when the metamaterials are oriented at 0� (solid-

black arrow in Figure 6(f)), the incident infrared radiation couples into the structures. When

the metamaterials are oriented at 90� (black-dashed arrow in Figure 6(f)), the field does not

couple. By normalizing the transmitted spectrum of the metamaterial at 0� with respect to the

one at 90�, two transmission dips are obtained—one at 1.2 THz and the other at 2.4 THz as

shown in Figure 6(f).

Once the sample is cooled down to liquid helium temperatures, at first, the characterization of

the voltage range is performed over which the density-chopping measurements are to be

taken. The change in capacitance with the gate voltage is measured by capacitance-voltage

spectroscopy, mentioned before, as shown in Figure 7(a). A typical charging spectrum of

Figure 6. (a–c). Gradual zoomed-in optical images of the metamaterial design, showing the gate and the interconnected

double split-ring resonator arrays. (d) An SEM micrograph of the metamaterial unit cell. The length and the gap size are

both 3 µm, the total structure being 26 by 40 µm. (e) In-plane electric field distribution of the surface of the structure

showing a strong confinement of the field in the capacitive arm of the structure. (f) Normalized transmission spectrum of

the metamaterial taken at room temperature, showing two strong resonances. The dots are experimental data while the

black curves are the deconvoluted resonance dips and the dashed line is the complete spectrum obtained from the

deconvoluted peaks. Inset: Time domain signals (left) and the corresponding Fourier transform signals (right).

The black-dashed arrow indicates the orientation of the structure when the electromagnetic fields do not couple while the

solid-black arrow when the field couples.
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2DEG has a capacitance close to zero in the beginning and then as the gate voltage is increased,

the conduction band is pulled below the quasi-Fermi level and subsequently the 2DEG

subbands are filled with electrons. The filling is observed as a steep increase in the capacitance.

The region of interest is the steep slope, where increasing the gate voltage increases the 2DEG

ISRs. This is due to the fact that with more positive gate voltage, the slope of the triangular

potential confinement steepens and hence increases the subband spacings, thus shifting the

ISRs to higher energies. This phenomenon is well known as the quantum-confined Stark effect. It

is also necessary to completely ionize the donor-exchange centres (DX centres2). As more DX

centres are ionized, less forward bias is required to charge the 2DEG subbands with electrons.

With longer illumination, all the DX centres are successively ionized, leading to the shift of the

charging slope in the capacitance-voltage spectra towards more negative biases. The spectrum

shown in Figure 7(a) is obtained after 3 h of continuous illumination. The shaded region in the

charging spectra, shown in Figure 7(a), indicates the region where the density-chopped infra-

red transmission measurements are performed. The density-chopping scheme is similar to that

explained before, where the change in transmission, TðVg,nÞ=TðVr,0Þ, is recorded. According to

the charging spectrum, the reference voltage Vr is chosen much below the threshold voltage

(�0.2 V), that is at �2 V, and the gate voltage Vg is varied from �0.25 to 0 V in steps of 20 mV.

The spectra are recorded alternatively between the gate voltage and the reference voltage and

successively co-added and averaged over long measurement times. A contour plot of all the

normalized transmission spectra is shown in Figure 7(b). It is observed that at low tempera-

tures, the cavity resonance slightly shifted to a higher frequency as a result of the lower losses

in the cavity in comparison to the room temperature measurements. At Vg ¼ �0:14 V, a clear

splitting of the ISR can be observed when the ISR (ground-to-first excited state, E01) of the

2DEG crosses the resonance of the metamaterials at 2.4 THz. The width of the splitting is found

to be 0.47 THz. By applying bias on the gated and networked-metamaterial layer, a significant

modulation of the intensity of cavity resonance is observed [50, 51]. Thus, in our chopping

scheme, the metamaterial resonance at 2.4 THz disappears for biases between �0.16 V and

�0.04 V, where new states appear, known as the upper and the lower polaritons. Polaritons are

defined as the quasi particles that result from intense light-matter interactions. The separation

between them determines how strong the interaction is and is given by the light-matter

coupling constant. For a fermionic intersubband system, the value of this coupling constant,

Ω, is given by [42]:

Ω ¼
ℏef 01
2m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2D
2EE0ℏω01Vmode

r

, ð23Þ

where f 01 is the oscillator strength of the ground-to-first excited state ISR with an energy of ℏω01.

Vmode is the mode volume of the microcavity, given by (to a very good approximation) [39]:

2They are isolated donor atoms, which can be occupied by the electrons in connection with a large lattice relaxation also

known as a deep-donor complex (DX center) in AlxGa1�xAs.
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Vmode ¼
∭ Eð r!Þj E

!
ð r!Þj2d3 r

!

max Ej E
!
ð r!Þj2

n o , ð24Þ

where E
!

is the electric field. The coupling strength depends on three important parameters.

First, it is proportional to 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Vmode

p
, implying that the cavity mode volume should be small for

higher coupling strength. Second, the higher the transition energy, the smaller the coupling

strength (1=
ffiffiffiffiffiffiffiffiffi

ℏωij

p

). And finally, the coupling strength scales as
ffiffiffiffiffiffiffiffi

n2D
p

, which is a characteristic

feature of the fermionic systems. The higher the carrier density, the greater is the coupling. The

voltage tuning of our device is based on the quantum-confined Stark effect. The dependence of

the coupling strength, Ω=2, on the number of quantum wells as shown Gabbay et al. [52] can

be written as:

Ω

2
¼ ℵ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e�2αavgΔZNQW

1� e�2αavgΔZ
,

s

ð25Þ

where αavg is the average absorption coefficient, ℵ is a constant, which is proportional to the

average light-matter interaction and ΔZ is the distance between the QWs. For a single QW, as

in the present investigation, the coupling strength is proportional to the value of ℵ=2. In the

theoretical studies, Gabbay et al. found the value of ℵ to be 1, which implies that for a single

QW, the coupling strength is 0.5. The splitting in our experiments is found to be 0.47 THz,

which agrees well with the theoretical value. It is well known that if the splitting is signifi-

cantly above the sum of the full width at half maximum of both the ISR and the metamaterial

resonance, then the coupling can be assigned to be in the strong coupling regime. Thus, an

Figure 7. (a). Capacitance-voltage spectrum taken after illumination with the far-infrared source for 3 h, where the visible

part of the beam saturates the DX centres. The shaded region in the spectrum denotes the voltage range over which the

coupling experiments are performed. (b) A contour plot of the normalized transmission showing the formation of

polaritonic states at the avoided crossing point. A strongly coupled system is formed with a resonance splitting of 0.47

THz.
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ultra-strong light-matter interaction regime is achieved by employing a single triangular

quantum well in a HEMT heterostructure with a normalized coupling ratio of 0.19.

7. Conclusion

In conclusion, we have reviewed the quantum mechanical phenomenon that governs various

electrical and optical properties in the low-dimensional semiconductor nanostructures such as

a HEMT. We have demonstrated how one could electrically, or in combination with magnetic

fields, probe and tune the intersubband transitions in the heterojunction of a HEMT structure.

Such structures primarily have a triangular confinement potential. In the presence of a mag-

netic field, each subband is further split into a series of Landau levels or cyclotron orbits. Upon

optical excitation with an infrared source, the intersubband resonances couple to the cyclotron

resonance under tilted magnetic fields. This leads to the appearance of satellite peaks at the

anti-crossing point. From the values of splitting at the anti-crossing points, the spacing

between the corresponding subbands can be evaluated. Experiments performed in the absence

of magnetic fields demonstrated that it is also possible to directly measure and tune these

spacings via density-chopped infrared transmission spectroscopy. The subband spacings are

measured directly and found to be in the far-infrared region (wide electrically tunable from 6

to 12 meV) of the electromagnetic spectrum. New epitaxial, complementary-doped, semi-

transparent electrostatic gates that have better optical transmission are introduced [29]. The

integrated device with a 2DEG in a high electron mobility transistor structure and artificial

metamaterials forms a strongly coupled system that can be electrically driven from an

uncoupled to a coupled and again back to the uncoupled regime. In the strongly coupled

regime, a periodic exchange of energy between the two systems is observed as a splitting of

0.47 THz at the point of avoided crossing. This is a very high-energy separation, considering

the fact that only one quantum well is employed and thus the achievement of a strong

coupling regime can be safely claimed. The tuning mechanism is attributed to the quantum-

confined Stark effect. This device architecture is particularly interesting in designing devices

like modulators and detectors specifically in the THz regime. The integrated device has the

high-speed dynamic characteristics of the HEMT design and the appropriate frequency-con-

trolling ability of the metamaterials. From the design perspective of the metamaterials, they

can be made particularly for the THz regime with appropriate dimensions (like the one used in

this chapter). Upon excitation with a broadband source, this layer selects the desired frequency

for which it is designed, and under the application of an external electrical field across the

structure, the transmission of this frequency can be controlled and also modulated. This

control dynamics can be very fast, simply owing to the fast dynamics of the HEMT

design [52, 53]. Furthermore, this design can also be used to detect THz frequencies. Various

other 2D materials (like graphene [54–56] or black phosphorous [57, 58]) are also used these

days in the transistor configuration for developing THz detectors, simply utilizing the fast

dynamics of the transistor design. These novel devices have thus helped to reduce the long-

debated THz gap in the electromagnetic spectrum, where there is a severe lack of fast elec-

tronic devices.
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