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Abstract

Neutrophils, as the main cells of the first line of host defense against microbial patho-
gens, are responsible for pathogen recognition, inhibition of pathogen spreading into 
the host tissue, and finally, killing the invader cells. Neutrophils carry out these func-
tions via numerous mechanisms, including a relatively recently described activity based 
on a release of neutrophil extracellular traps (NETs), a process called netosis. NETs are 
structures composed of DNA backbone, decorated with antimicrobial factors, derived 
from neutrophil granules. The structure of NETs and their enzymatic and microbicidal 
inclusions enable efficient trapping and killing of microorganisms within the neutrophil 
extracellular space. However, the efficiency of NETs depends on neutrophil ability to 
recognize pathogen signals and to trigger rapid responses. In this chapter, we focus on 
possible pathways involved in the release of NETs and summarize the current knowl-
edge on triggers of this process during bacterial, fungal, protozoan, and viral infections. 
We also consider the mechanisms used by microorganisms to evade NET‐killing activity 
and analyze the harmful potential of NETs against the host cells and the contribution of 
NETs to noninfectious human diseases.

Keywords: neutrophil extracellular traps, netosis, receptors, microbial evasion of NETs, 
autoimmune diseases

1. Introduction

The human organism is constantly exposed to many microbes, most of them being pathogenic 
microorganisms that can cause life‐threatening infections. The host tissues are a good target 
for colonization and growth of pathogens; however, the immune system developed during the 
course of evolution, specialized and responsible for protecting against pathogens,  effectively 
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prevents infections. Among cells of the immune system, polymorphonuclear cells—neutro-

phils—deserve a special attention. These cells form the first line of defense against pathogens 
and their components effectively combat the intruders [1]. Neutrophils are phagocytic cells 
capable of active migration from blood vessels to the site of infection. Their high efficiency in 
pathogen killing is possible due to a number of factors with microbicidal activity [2]. The main 
task of neutrophils is capturing pathogens, i.e., reducing the area of infection and inflamma-

tion by effective elimination of microorganisms. To fulfill this task, neutrophils use a number 
of mechanisms. The best‐known one is the phagocytosis that involves capturing pathogenic 
cells, their internalization and killing in special compartments of neutrophil cells—phago-

somes [3]. This mechanism, despite its high efficacy and minimal side‐effects for the host, 
can be insufficient to combat massive bacterial infections or attack of other large‐size patho-

genic cells. An alternative to phagocytosis is a mechanism described in 2004 by Brinkmann 
et al., involving web‐like structures released into the extracellular space, called neutrophil 
extracellular traps (NETs) [4]. Morphological changes of neutrophils associated with NET 
formation (“netosis”) involve a number of complex intracellular events. The initial process is 
a decondensation of nuclear chromatin, released into the extracellular space and forming a 

backbone of vast NETs. These DNA fibers are decorated with associated nuclear proteins—
histones—and proteins released from neutrophil granules such as elastase, myeloperoxidase, 
lactoferrin, and azurocidin [5, 6].

The netosis is classified as a unique type of cell death, different from apoptosis and necrosis. 
The mechanism of this process is complex and still incompletely understood although the main 
processes involved have been identified [7, 8]. NETs can be released in response to many differ-

ent stimuli, including selected chemical compounds, components of pathogen cells, and whole 
bacteria, fungi, viruses, and parasites [9]. Released structures are able to capture all of these fac-

tors and, in consequence, to reduce the pathogen spreading over the host organism. The NET 
proteinaceous components, often enzymes, are responsible for killing trapped microorganisms, 
thus restoring the proper functioning of the host body [10]. However, the same components 
may also destroy surrounding host cells and tissues or trigger some autoimmune diseases [11].

2. Mechanisms of NET formation

The activation of netosis causes dramatic changes in neutrophil morphology involving the 
decondensation of chromatin, lysis of granules, and cell membrane rupture and leading to 
neutrophil death called “programmed suicide” which is a third type of neutrophil defensive 
action, besides phagocytosis and degranulation [4, 6]. However, the newest studies have shown 
that in some cases neutrophils use exocytosis to release a part of DNA without any rupture 
of cell membrane, in a process called “vital netosis.” However, this term is still under debate 
because it is not clear, if neutrophils actually remain alive thereafter [12, 13]. Some reports 
have suggested that in this fast NET‐releasing process it is rather the mitochondrial DNA that 
is excreted, supporting observations of significantly lower efficiency of NET production in 
comparison with regular netosis [13]. The classical NET‐forming pathway is triggered with 
massive generation of reactive oxygen species (ROS), resulting from the activity of NADPH 
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oxidase. This ROS‐dependent netosis pathway lasts for up to 4 hours, starting from neutrophil 
activation, and leading to the release of whole nuclear DNA mixed with granular proteins. In 
contrast, the fast netosis pathway does not require ROS production, leading to a rapid release 
of NETs within minutes after activation [12].

2.1. Factors that trigger NET production

Netosis can be activated by many compounds, mostly those exposed on the pathogen cell sur-

face. This initial step of NET formation determines the form of released NETs and pathways 
involved, as well as the intensity and time span of neutrophil response.

The largest group of NET activators are pathogenic Gram‐positive and Gram‐negative bac-

teria, but also some fungi (Aspergillus spp., Candida spp.), as well as viruses (HIV‐1, Hantaan 
virus) and parasites such as Toxoplasma gondii and Leishmania. Besides microorganisms, 
numerous chemical factors, including phorbol ester (PMA), hydrogen peroxide, nitric oxide, 
ionomycin, calcium ions, glucans, mannans, and lipopolysaccharide (LPS), as well as media-

tors of inflammation such as granulocyte‐macrophage colony‐stimulating factor (GM‐CSF), 
some interleukins and immune complexes have been identified as potential netosis-triggering 
factors [9, 11]. Most of them are recognized by neutrophil surface receptors (pattern recogniz-

ing receptors, PRRs) that trigger cell signaling for cytokine or chemokine production in order 
to launch a pathogen‐tailored response [14]. Diverse pathogens may be recognized by neutro-

phils with very similar and overlapping mechanisms.

2.2. Receptors that mediate NET formation

2.2.1. Toll‐like receptors

The main PRRs involved in the recognition of pathogens and pathogen‐associated molecules 
are Toll‐like receptors (TLRs). Among several TLRs, only TLR2, TLR4, TLR7, and TLR8 have 
been identified as participating in NET‐dependent phenomena. The role of TLR4 in the activa-

tion of netosis was confirmed in Staphylococcus aureus infection. This receptor plays a great role 
in the activation of “vital netosis” in vivo, cooperating with complement receptor 3 (CR3) [15]. 
During bacterial sepsis, neutrophils and platelets cooperate in pathogenesis, but the mutual 
relationship between these cells is still under debate. TLR4, a lipopolysaccharide receptor, 
seems to mediate the activation of neutrophils by platelets induced by LPS [16].

The other molecule involved in NET triggering via TLRs is high‐mobility group box 1 protein 
(HMGB1). This protein released from dying cells or activated macrophages enhances inflam-

matory reactions. HMGB1 is a TLR4 agonist, but does not induce the production of ROS by 
NADPH oxidase, suggesting its involvement in an ROS‐independent mechanism of NET for-

mation [17]. On the other hand, an oxidized low density lipoprotein (oxLDL) is able to induce 
netosis via ROS‐dependent pathway, activated by TLR4 and TLR6 receptors [18]. TLR4 was also 
identified as an important surface recognizing molecule in viruses‐activated netosis detected in 
the lungs of infected hosts. Respiratory syncytial virus (RSV) is responsible for acute bronchiol-
itis in children under 3 years. This RNA virus exposes a fusion protein (F‐protein) on its surface 
that mediates a fusion of viral envelope with the target cell membrane and also activates NET 
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release using TLR4 mediation [19]. Moreover, F‐protein is also recognized by CD14 receptor, 
which cooperates with TLR4 [20, 21]. A human immunodeficiency virus HIV‐1 is captured and 
killed in NETs formed by neutrophils using TLR7 and TLR8 to recognize viral nucleic acids. 
Activation of these receptors leads to production of ROS and activation of ROS‐dependent 
netosis pathway [22].

2.2.2. Receptors of complement system

The most commonly identified receptor of complement system that contributes to neutro-

phil responses is CR3 complex (Mac‐1; CD11b/CD18). It has been identified to be involved 
in NET triggering by different types of pathogenic microorganisms. The role of Mac‐1 in 
NET formation is best known in fungal life‐threatening, systemic infections, especially 
those caused by Candida albicans. On the cell wall, C. albicans exposes well‐characterized 
compounds, such as β‐glucans or mannans, important for activation of netosis [23–25]. The 
β‐glucan particles are bound by Mac‐1 allowing to recognize C. albicans at early stage of 
infection, without preliminary opsonization [26]. Some studies have suggested that for in 

vitro activation of netosis by fungal compounds the presence of fibronectin is required [27]. 
The activation of Mac‐1 causes a rapid formation of NETs via the ROS‐independent pathway 
[26, 27]. However, glucans are also able to induce ROS formation through the activation of 
NADPH oxidase [28].

Mannheimia haemolytica is a bacterium that causes a severe respiratory disease. One of the 
virulence factors of this pathogen is leukotoxin (LKT), which can lead to the death of many 
host cells. LKT was also identified as a M. haemolytica factor that triggers NET formation via 
CD18 receptor, but the complete model of this interaction and the regulation of netosis by this 
toxin are still not fully understood [29].

Aggregatibacter actinomycetemcomitans, as well as Actinomyces viscosus and S. aureus, also induce 
NET release by human neutrophils. However, analysis of the complement receptors involved 
in netosis activated by these bacteria showed that complement receptor 1 (CR1; CD35) rather 
than CR3 takes part in recognizing the pathogens [30]. However, CR3 seems to be important 
for the activation of “vital netosis” induced by S. aureus [15].

Moreover, some viruses seem to be recognized by neutrophils via complement receptors. 
Hantaan virus (HTNV), a member of hantaviruses family, causes severe renal and pulmonary 
pathologies in humans. This virus is known as a potential NET triggering factor that stimu-

lates neutrophils much stronger than Vaccinia virus or LPS. Detailed analysis of mechanisms 
of neutrophil activation by HTNV indicated that CR3 and CR4 receptors are necessary for 
activation of netosis using the ROS‐dependent pathway [31].

Another microorganism able to induce netosis is a parasite Eimeria bovis. Although 
this pathogen does not cause diseases in humans but causes diseases in animals, e.g., 
a severe hemorrhagic diarrhea, especially in calves, it is a good example of activation 
of netosis via CR3 by parasites. The interaction of Mac‐1 with E. bovis causes a rapid 
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Ca2+‐mobilization and activation of the ROS‐dependent netosis pathway with intensive 
NET expulsion [32].

Complement receptors are also involved in triggering netosis by immune complexes (ICs) 
that play an important role in many pathogen‐associated diseases, as well as noninfectious, 
autoimmunological diseases. ICs are bound to neutrophil surface by many different recep-

tors, causing activation of the cells. Mac‐1 takes part in these interactions leading to NET 
release. The overall mechanism is still unclear, but it has been confirmed that IC activation of 
CR3 receptors leads to the increase of NADPH oxidase activity and, thus, to the initiation of 
ROS‐dependent netosis pathway [33].

2.2.3. Fc‐receptors

The recognition of opsonized pathogens or antibody‐associated foreign molecules is one of 
key functionalities of the cells of immune system. In the activation of these cells, antibody 
receptors of the Fc-receptor family are involved. Neutrophil cells express only two types of 
surface Fc‐receptors for IgG molecules, namely, FcγRIIa (CD32a) and FcγRIIIb (CD16b) [34]. 
Some microorganisms induce NETs only in the presence of autologous serum [15], suggesting 
a role of Fc‐receptors in the activation of netosis, but it has not yet been resolved which recep-

tors, CD32 or CD16, have greater impact. The best‐known NET inducers via Fc‐receptors are 
ICs. Some studies showed that FcγRIIa mediates activation of netosis by endocytosis of ICs 
[35]. However, other authors suggested that FcγRIIa rather promoted phagocytosis and only 
FcγRIIIb was involved in the induction of netosis [33]. The activation of netosis by CD16 takes 
about 3 hours with efficient production of ROS, suggesting a similarity to induction of netosis 
by PMA.

Fc‐receptors also seem to participate in NET formation during bacterial infections. The results 
presented for neutrophils in contact with opsonized S. aureus suggest that activation of Fc‐
receptors modulates netosis [30]. Moreover, coating of bacteria by IgA also enhances NET 
formation via FcαIR [36].

2.2.4. C‐lectin receptors

C‐type lectin receptors (CLRs), such as dectin‐1, are responsible for recognition of sur-

face exposed β‐glucans of pathogens [37, 38]. The role of glucans in activation of netosis 
as well as the role of dectin‐1 receptor in activation of NET formation are still under 
debate [26]. The involvement of dectin‐1 in this process was confirmed for several fungal 
pathogens, such as Paracoccidioides brasiliensis [39]. However, the role of this receptor in 
the activation of netosis during C. albicans infection is still unclear. Some studies seem 
to support this hypothesis [40], but, on the other hand, Gazendam et al. suggested that 
unopsonized C. albicans cells do not induce netosis via dectin‐1 receptor [26]. The role 
of dectin‐1 was also proposed by Li et al. who showed that upon ligand binding a dec-

tin‐1 receptor activates Mac‐1, and this receptor induces downstream NET formation [41]. 
Additional evidence presented that dectin‐1 may indirectly mediate netosis depending 
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on microbial size. Neutrophils in contact with C. albicans hyphae or Mycobacterium bovis 

aggregates were able to release NETs. It was proposed that phagocytosis of microbes 
mediated by dectin‐1 plays the function of microbial size sensor and prevents netosis by 
downregulation of elastase translocation from granules to the nucleus [42]. The number 
of Candida cells and the level of infection were also proposed to be factors responsible for 
NET formation [43].

Interestingly, the regulation of NET excretion by PMA, used in in vitro models of netosis, 
occurs without activation of any receptors, but directly by the action on protein kinase C 
(PKC) [44], an important signal mediator of ROS‐dependent netosis pathway [45].

2.3. Netosis pathways

Because many of receptors exposed on neutrophil surface are involved and cause cross‐
activation in NET triggering processes [46–49], the complete pathway of netosis is still 
under debate. However, some key steps as well as mediating compounds were proposed to 
be involved in NET formation and are summarized below; however, the specific processes 
may vary depending on the trigger type.

The first important mediators of netosis, identified in fungal infections associated with 
NET release, seem to be Src family kinases and spleen tyrosine kinase (Syk) [31, 40]. Src 
cooperates with plasma membrane‐associated receptors, such as CD11b, CD16, or dectin‐1, 
and causes an activation of Syk. Further, Syk devolves the activation signal downstream 
to next mediators—phosphoinositide 3‐kinase (PI3K)/protein kinase B (Akt), p38 MAPK 
(mitogen‐activated protein kinase), and extracellular signal‐regulated kinases (ERK1/2) 
pathways [33, 50, 51]. Syk is also involved in the activation of protein kinase C (PKC) by 
PMA [33, 52, 53], without participation of Src, confirming observed bypassing of the recep-

tors by PMA.

Many of the natural NET inducers, activating the receptors mentioned above, lead to the 
release of calcium ions from endoplasmic reticulum storage into the cytoplasm, increasing 
PKC activity [54]. PKC is responsible for phosphorylation of gp91phox that can form the func-

tional complex of NADPH oxidase with subsequent ROS generation [55, 56]. ROS are crucial 
for classical suicidal netosis (ROS‐dependent pathway).

Netosis is a different type of neutrophil death in comparison to apoptosis. Although both 
mechanisms are mutually exclusive, they could be activated by the same receptors. Indeed, 
neutrophils are able to block apoptosis, to allow for the formation of NETs. A key molecular 
switch between apoptosis and netosis seems to be protein kinase B. Activation of Akt allows 
to induce netosis, but inhibition of this enzyme leads to apoptotic cell death. A key role in 
apoptosis is played by caspases, whose activities are inhibited in netosis [57]. Moreover, ROS 
may alternatively inactivate caspases favoring autophagy [58].

The role of PI3K in NET formation is still unclear. Some research showed that phosphorylation 
of PI3K is not important and has no effect on NET formation via activation of CD16 [59]. On the 
other hand, an activation of netosis by ICs seems to require active PI3K [33]. Moreover, PI3K 
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interplays with Akt [60], as well as influences a nuclear factor kappa‐light‐chain‐enhancer of 
activated B cells (NF‐κB) regulation by production of phosphatidylinositol (3,4,5)‐trisphos-

phate [61]. NF‐κB has been identified as a regulatory molecule in netosis [62]. PI3K also regu-

lates the autophagy, an important process in PMA‐ and oxLDL‐induced netosis [18, 58, 63].

The role of ERK1/2 in netosis pathway has also been confirmed [19, 32, 33, 59, 64, 65]. 
ERK1/2 can be induced by Src/Syk, as well as by TLR receptors via interleukin‐1 receptor‐
associated kinase (IRAK) [66]. These mediators seem to be involved in the ROS‐depen-

dent netosis pathway, but the relationship between activation of ERK1/2 and generation 
of ROS by NADPH oxidase is still unsolved. More probably, ERK1/2 can downstream‐
activate NADPH oxidase [33, 65] or is itself controlled by ROS [45]. The role of p38 MAPK 
is also not clear, because some studies showed that inhibition of these kinases has no 
impact on ROS production and ROS‐dependent netosis [33, 67, 68], but other presented 
an opposite effect [32]. The summary of netosis pathways is schematically presented in 
Figure 1.

Figure 1. Molecular mechanisms of NET formation. CLRs, C‐type lectin receptors; CR, complement receptors; ERK1/2, 
extracellular signal‐regulated kinases; HTNV, Hantaan virus; ICS, immune complexes; IRAK, interleukin‐1 receptor‐
associated kinase; LPS, lipopolysaccharide; PI3K, phosphoinositide 3‐kinase; PIP3, phosphatidylinositol (3,4,5)‐
trisphosphate; PKC, protein kinase C; PMA, phorbol myristate acetate; RSV, respiratory syncytial virus; Src, Src kinase; 
Syk, spleen tyrosine kinase; TLRs, toll‐like receptors.
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2.4. Role of ROS in netosis

The first described, classical mechanism of netosis assumed that ROS species play an essen-

tial role in netosis (the ROS‐dependent pathway) [56]. Indeed, several findings have proven 
that ROS are key netosis mediators. Patients with chronic granulomatous disease (CGD), 
caused by a point mutation in gp91-phox subunit of NADPH oxidase, making the enzyme 
nonfunctional, were more susceptible to infections. Additionally, CGD patients experienced 
hyper‐inflammatory states and sterile inflammations [69, 70]. Moreover, providing ROS from 
external sources, as well as application to CGD patients a gene therapy, restored the ability of 
neutrophils to release NETs [8, 46, 71]. Similarly, inhibition of NADPH oxidase by diphenyli-
odide (DPI) turns off the ability to release NETs [72].

2.5. ROS‐independent mechanism of netosis

Little is known about the ROS‐independent netosis pathway. NET release without ROS con-

tribution is much faster than the classical netosis. The pathway in which neutrophils remained 
structurally intact was named as “vital netosis.” It can be induced by the same pathogens as 
those acting in the ROS‐dependent manner, e.g., during Leishmania parasite infection [12]. 
Similarly, the induction of NET release in response to glucans of C. albicans usually occurs 
through the ROS‐dependent pathway, but in infants, neutrophils release NETs without ROS 
involvement [73]. Upon contact with S. aureus neutrophils release NETs but the web of DNA 
is released in the exocytosis pathway, without cell membrane rupture. Moreover, NET pro-

duction was also observed in patients with inactive NADPH oxidase [74]. It was also docu-

mented that this type of netosis exploited a release of mitochondrial DNA and an oxidative 
activity of mitochondrion [13], as well as a small conductance calcium‐activated potassium 
channel 3 (SK3) [75].

2.6. Morphological changes of neutrophils during NET formation

The process of DNA release in the ROS‐dependent pathway takes about 1–4 hours and is 
quite complex. After NADPH oxidase activation, produced ROS probably influence the sta-

bility of granules and nuclear envelope. The proteins stored in neutrophil granules—elastase 
and myeloperoxidase—are moved to the nucleus but the mechanism of their translocation 
is unknown. In the nucleus, these enzymes contribute to the degradation of linker histones 
responsible for maintenance of the nuclear structure [55]. They cooperate with next enzyme 
transferred into the nucleus—peptidyl arginine deiminase 4 (PAD4)—that catalyzes the citrul-
lination of histones, especially H3 and H4. The modification and cleavage of histones lead to 
the relaxation and decondensation of chromatin, changing the shape and structure of nucleus, 
and finally causing the disappearance of nuclear membrane [76–78]. DNA is moved into the 
cytoplasm and mixed with granular proteins such as cathepsin G, proteinase 3, lactoferrin, 
azurocidin, or with cytoplasmic proteins such as calprotectin [79]. Some research suggests 
that cytoskeleton also plays an important role in the process of NET formation [46]. At the end 
of the process, this mixture is released outside the cell. Figure 2 summarizes all morphological 
changes during netosis.
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Figure 2. Mechanism of NET formation. ALI, acute lung injury; ARDS, acute respiratory distress syndrome; ANCA, 
antineutrophil cytoplasmic antibodies; MPO, myeloperoxidase; NE, neutrophil elastase; PAD4, protein arginine deiminase 
4; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; SVV, small vessel vasculitis.
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3. Role of NETs in health and diseases

3.1. The microbicidal activity of NETs

The primary role of NETs is the antimicrobial activity, due to the cooperation of several 
mechanisms and components exposed at the high local concentrations in the NET fibers [55]. 
The pathogen spreading is limited by entrapment inside NET structure due to electrostatic 
interactions between the negatively charged DNA backbone and positively charged bacterial 
 compounds localized on their cell surface [6]. Proteinaceous components of NETs are respon-

sible for different types of NET antimicrobial activities. Proteases such as elastase, cathepsin 
G, and proteinase 3 are able to cleave virulence factors of Yersinia enterocolitica, Shigella flexneri, 
Salmonella Typhimurium, and other pathogens [4, 80]. The oxidative mechanisms of defense, 
e.g., the production of aggressive hypochlorous acid by myeloperoxidase, cause massive 
damages of NET‐entrapped pathogens with their membrane and protein oxidation [81, 82]. 
Histones, as well as antimicrobial peptides such as LL‐37 and BPI, also play an important role 
in pathogen elimination. Peptides derived from histones and LL‐37 take part in cell membrane 
permeabilization or bacterial cell lysis [83–85]. Moreover, NET‐associated factors can restrict 
nutrient supply for microbes, e.g., lactoferrin chelates iron and calprotectin sequesters zinc 
ions [79, 84].

3.2. Pathogen escape from NETs

Microorganisms that constantly compete with the host defense mechanisms for survival, 
elaborated also evasion strategies against toxic effects of NETs. The strategies can be divided 
into three groups, including: (1) an inactivation of NET components responsible for trapping 
and killing pathogens, (2) a suppression of NET formation and (3) development of resistance 
mechanisms against antimicrobial components of NETs.

The main NET component, DNA backbone is degraded by bacterial endonucleases, membrane‐
bound or released into the surrounding milieu. The group of microorganisms that produce 
such enzymes to avoid the killing activity of NETs includes S. aureus whose nuclease influences 
the bacterial survival and enhances its infectivity in a mouse respiratory tract infection model 
[86]. The same strategy, leading to decline NET integrity, is also adopted by other bacteria 
such as Aeromonas hydrophila [87], Escherichia coli [88], Leptospira sp. [89], Neisseria gonorhoeae 

[90], Streptococcus agalactiae [91], Streptococcus pyogenes [92, 93], Streptococcus synguinis [94], 

Streptococcus suis [95], Vibrio cholerae [96], and Yersinia enterocolitica [88]. Streptococcus pneumoniae 

uses cell‐associated endonuclease (EndA) to escape from local entrapment and promote bacte-

rial spreading from lower airways to bloodstream during pneumonia [97]. Also, parasites such 
as Leishmania infantum use nuclease activity to resist the NET activity [98].

Moreover, the production of ROS involved in the initiation and progression of the main neto-

sis pathway can be regulated by bacterial catalase activity in a self‐protection process [99].

Other interesting NET evasion strategies were proposed for meningococci [100], which apply 
the release of outer membrane vesicles for protection of bacteria from binding to NETs and 
express a high‐affinity zinc uptake receptor (ZnuD) to overcome possible ion sequestration 
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by calprotectin, the NET component also known to be involved in C. albicans killing during 
netosis [101]. Moreover, a modification of meningococcal LPS with phosphoethanolamine 
protects bacteria from bactericidal activity of cathepsin G embedded into NET structures.

The bactericidal activity of another NET component, cathelicidin LL‐37, can be abolished by 
its binding to the surface‐expressed M1 protein in S. pyogenes [102] or to surface exposed 
D‐alanylated lipoteichoic acid in S. pyogenes and S. pneumoniae, promoting bacteria survival 
within NETs [103, 104].

Moreover, C. albicans aspartic proteases, secreted during NET formation in response to fungal 
infection, are able to degrade and inactivate LL‐37 [105].

Many bacterial toxins are involved in induction of NETs but some of them are used by bacte-

ria to regulate, in particular to inhibit NET formation [106]. Bordetella pertussis causing cough-

ing syndrome adopts adenylate cyclase toxin (ACT) to suppress NET shaping [107]. ACT, 
after translocation into the host phagocyte, may influence the conversion of ATP to cyclic 
AMP, that in consequence prolongs neutrophil life span by inhibiting the oxidative burst, 
being one of the initial signals in NET production. This part of NET formation mechanism is 
also blocked by streptolysin O (SLO) produced by S. pyogenes [108].

In the defense against NET formation, microorganisms can also exploit host signaling as in the 
case of interleukine‐8 (IL‐8) production by epithelial cells in response to infection. This chemo-

kine is responsible for neutrophil recruiting and amplification of NET release but S. pyogenes 

can produce a peptidase (SpyCEP) which inactivates IL‐8 and reduces NET formation [109].

A more complex strategy, used by Pseudomonas aeruginosa [110] or S. agalactiae [111], employs 
molecular mimicry with the acquisition of sialic acid motifs presented on the host cell surface 
which attenuate NET formation. A comparable, indirect mechanism suppressing NET release 
has been adopted by Mycobacterium tuberculosis. This microorganism that triggers NET release 
during the first stage of infection activates the production of anti‐inflammatory cytokine IL‐10 
that inhibits TLR‐induced ROS production and suppresses further NET generation [112].

Also, viruses can apply this strategy of NET suppression, as demonstrated for HIV‐1 enve-

lope glycoprotein [22]. Moreover, Dengue virus serotype‐2 can negatively affect NET forma-

tion by inhibiting glucose uptake in the ROS‐independent mechanism of netosis [113].

On the other hand, conidia of Aspergillus fumigatus expose hydrophobin (RodA) that suppresses the 
formation of NETs [114]. This process is also supported by the production of a positively charged 
exopolysaccharide—galactosaminogalactan that protects the microorganism from binding by 
NET components [115]. The polysaccharide capsule negatively modulating NET production that 
contributes to fungal disease severity was also observed in Cryptococcus neoformans infections [116].

Another way to subsist the antimicrobial activity of NETs is applied by P. aeruginosa in 

patients with chronic fibrosis where bacteria during its long‐term adaptation can form the 
resistant biofilm that protects the pathogen [117]. Moreover, S. pneumoniae and Haemophilus 

influenzae are even able to embed NETs into biofilm for self‐protection [118, 119]. Also, the 
extracellular matrix components of C. albicans biofilm alter its recognition by neutrophils and 
inhibit release of NETs [43].
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All the above mechanisms developed by microorganisms to avoid killing by NETs confirm 
their ongoing adaptation to the sophisticated processes of host defense.

3.3. Role of nets in noninfectious diseases

Netosis is a process being under control of many mechanisms of activation, but NET fibers 
seem not to be a target or location specific, and in some cases, their release get out of the con-

trol. So, the process can be a double‐edged sword, acting also against the host cells. Therefore, 
NETs seem to play a significant role in several autoimmune disease and disorders, described 
in detail in others reviews [54, 120].

3.3.1. Lung diseases

A chronic inflammatory state of the lungs leads to the development of acute lung injury (ALI) 
or acute respiratory distress syndrome (ARDS) [121–123]. The increased permeability of alve-

oli due to a mechanical ventilation or infection causes an activation of signaling involved in 
the release of proinflammatory factors by epithelial cells, and in consequence the massive 
migration and activation of neutrophils.

NET release can be also the trigger of sterile inflammatory state in the lung. Moreover, a lack 
of surfactant proteins makes a NET clearance difficult. The proteolytic enzymes contained in 
NETs damage epithelial cells, in consequence releasing more proinflammatory factors. This 
generates a self‐perpetuating mechanism of netosis activation [11, 124, 125].

A similar mechanism was observed in patients with cystic fibrosis (CF), a disease consisting in an 
increase in mucus viscosity, therefore hindering the clearance of mucus from the airways [126]. 
The presence of DNA in CF patient sputum increases a mucus viscosity, which correlates with 
the development of inflammation state and higher migration of neutrophils. The high viscosity of 
mucus makes it difficult to remove, generating good conditions for bacterial invasion [126, 127].

3.3.2. Autoimmune disorders

Autoimmune diseases including small vessel vasculitis (SVV), systemic lupus erythematosus 
(SLE), or rheumatoid arthritis (RA) seem to be also associated with uncontrolled release and 
ineffective clearance of NETs [128–130]. The high amount of NETs and free‐circulating DNA 
causes a production of antineutrophil cytoplasmic antibodies (ANCAs) against DNA and 
NET‐associated proteins such as MPO, cathepsin G, elastase, etc. Autoantibodies to citrulli-
nated proteins (ACPA) seem to be a key pathologic factor in RA. The circulating complexes of 
antibodies‐DNA or antibodies‐NET proteins induce multiorgan inflammatory states, as well 
as inflammations of vessels [11, 13, 131, 132].

3.3.3. Thromvbosis

Deep vein thrombosis (DVT) is a next pathological state mediated by NETs. Neutrophils can 
be activated in veins by many different factors, including activated platelets, interleukins, pro-

inflammatory cytokines, as well as von Willebrand factor (vWF), released by NET‐damaged 
endothelial cells. NETs, released inside veins, promote the formation of thrombi by binding 
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of necessary blood cells and supporting of clot formation. The uncontrolled netosis can lead 
to massive DVT and consequently to multiple ischemia [11, 13, 133].

4. Conclusions

The progress in investigation of the fundamental processes leading to activation of netosis dur-

ing pathogenic infection allows us to better understand the main causes of microbial infections 
and to consider the consequences of neutrophil responses to the host. All of them pointed out 
on the possible targets for novel therapeutic approaches regulating immunity responses dur-

ing microbial infection and counteracting the detrimental NET formation and inflammatory 
diseases.
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