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Abstract

To save energy on an electric power grid, the idea of redesigned ‘micro-grids’ has been 
proposed. Implementation of this concept needs power devices that can operate at higher 
switching speeds and block voltages of up to 20 kV. Out of SiC and GaN wide band gap 
semiconductors, the former is more suitable for low- as well as high-voltage ranges. SiC 
exists in different polytypes 3C-, 4H- and 6H-. 4H-SiC due to its wider band gap, 3.26 eV 
has higher critical electric field of breakdown (E

c
) and electron bulk mobility compared 

to 6H-SiC. Even with all these benefits 4H-SiC full potential has not yet been realized. 
This is due to high trap densities (D

it
) at the interface. In addition to 4H-polytype, in 

recent years, there is a reignited interest on cubic silicon carbide (3C-SiC), which can be 
potentially grown heteroepitaxially on 12″ Si substrates, as it would result in a drastic 
cost reduction of semiconductor devices compared to the successful but exorbitantly 
expensive SiC hexagonal polytype technology (4H-SiC). In this chapter, we discuss and 
summarize all different interface passivation techniques or processes that have led to a 
vast improvement of these (4H- or 3C-SiC/SiO

2
) interfaces electrically.

Keywords: silicon carbide, MOSFET, interface trap density, mobility, PSG, nitrogen 
plasma, NO passivation, BTS

1. Introduction

1.1. Progress in semiconductor devices

The first solid-state amplifier was manufactured by using germanium (Ge) which was seen 
as the semiconductor material of the future. With time, silicon (Si) turned out to be more 
appropriate for a plethora of reasons [1–4]. Silica, the source of Si, is commonly available 
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and is easier to get high-purity Si from it. Silicon can easily be doped to produce n-type, 

p-type and semi-insulating material [5]. In addition to all these, a native oxide SiO
2
 can be 

grown on Si using thermal oxidations at relatively low temperatures of around 900°C [6–8]. 

These properties make Si semiconductor industry favourite. At present, semiconductor 

industry worth is more than $300 billion [9]. Around 10% of this total is in smart integrated 

circuits and electronic power devices [10, 11]. In excess to more than 50% of our electricity 

is conditioned by electronic power devices [12, 13]. These devices are important because 

they determine the cost and efficiency of an electronic system. Hence, they have a greater 
influence on the economy of a country. The arrival of devices like the bipolar transistors in 
the 1950s led to the replacement of vacuum tubes [13, 14], and these improvements made 

possible the Second Electronic Revolution with Si as the material of choice. Power devices 
had a vital place in this revolution. In the 1970s, there were bipolar devices with a blocking 

voltage capacity of 500 V and high current capabilities. Also in 1970, International Rectifier 
Inc. launched the first metal-oxide-field-effect transistor (MOSFET) [15]. The idea was to 

switch bipolar devices with MOSFETs for high power use. The MOSFET is a unipolar device 
and thus can switch at a higher speed. Also, the MOSFET is a voltage-controlled device 
where the junction transistor is a current-controlled device. Higher switching speed means 
operation at higher frequencies where other system components such as inductors can be 
made smaller in size, and voltage control instead of current control means saving of internal 
energy in the device.

1.2. Need of a wide band-gap semiconductor device

To save energy on an electric power grid, the idea of redesigned ‘micro-grids’ has been pro-

posed [16, 17]. Implementation of this concept needs power devices which can operate at 

higher switching speeds and block voltages of up to 20 kV [18]. A potential solution for this 

problem is to use wide band-gap semiconductor (e.g. SiC) power devices [19]. For a power 

device, the Baliga figure of merit (BFOM) [20] is given by

  BFOM =  µ  
N
    ε  

S
    E  

C
  3    (1)

µ
N
 = bulk mobility of SiC, ε

S
 = permittivity of SiC, E

C
 = critical electric field of breakdown for 

SiC. Higher the BFOM, more suitable the semiconductor is for high power operation.

1.3. Unipolar devices

Power devices can be divided into two categories—bipolar and unipolar. Schottky diodes 
and MOSFETs are examples of unipolar devices. In a unipolar device, only one type of 
carrier (either a majority electron or a majority hole) is responsible for current flow. The 
device can operate at higher frequencies which results in lower switching losses [20]. 

There is a flow of both majority and minority carriers in bipolar devices. The slower 
minority carriers have to be injected and removed to get the device to turn on and off, so 
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in bipolar devices there is power loss due to switching and leakage current. The n-channel 

Si-MOSFET is a better choice for low voltages (~100 V), and it can operate at high switch-

ing speed, 100 kHz. But as the blocking voltage increases, the on-state resistance increases 
drastically. The SiC-MOSFET enables us to go to higher operating voltages (order of kilo 
volts) with higher switching speed. This is possible because SiC has a high critical break-

down field, almost seven times that of Si. The specific on resistance (R
ON

) of a MOSFET is 
given by [2]

   R  
ON

   = 4   V  
B
     2  /  µ  

N
    ε  

S
    E  

C
  3    (2)

V
B
 is the desired blocking voltage, µ

N
 is the bulk electron mobility and ε

S
 is the semiconductor 

permittivity.

Bulk electron mobilities are similar for lightly doped Si and SiC (900–1200 cm2/V s). However, 
E

C
SiC ~ 7E

C
Si, so that for a given blocking voltage, R

ON
 can be a factor of 343 (73) times lower 

for SiC. Another way to think of this advantage is that lower critical field of Si means a much 
thicker drift layer is needed to support the source-drain voltage in blocking state. A thicker 

drift layer means higher drift resistance and thus higher R
ON

 for Si but lower R
ON

 for SiC. 

Furthermore, due to unipolar nature of the device we do not have to deal with stored charge 

and hence a FET will have higher switching speed.

1.4. Oxidation

Oxidation of 4H-SiC is a very important processing step during the manufacturing of 
a device. The performance of a metal-oxide semiconductor (MOS) device is dependent 
on the quality of the gate oxide layer. Out of many oxidation processes, thermal oxida-

tion is the process most commonly used to form the interface (4H-SiC/SiO
2
). Thermal 

oxidation is typically carried out in an oxygen (O
2
) atmosphere (500 sccm) at 1150°C. 

The thermal oxidation process has been investigated both experimentally and theoreti-

cally by researchers. First-principle calculations done by Di Ventra et al. have shown that 
during thermal oxidation, atomic oxygen diffused onto the surface of SiC and formed 

an advancing interface (4H-SiC/SiO
2
) [21]. Tan et al. confirmed experimentally that the 

excess carbon atoms diffused out as carbon monoxide (CO) [22]. For thicker oxide layers, 

their simulations showed that CO may break up either in SiO
2
 bulk or at the interface 

(4H-SiC/SiO
2
). The released oxygen participates in another round of oxidation, and the 

carbon atoms may lead to the formation of carbon clusters. Di Ventra et al. also proposed 
the formation of carbon dioxide (CO

2
) while CO was emitted out through a thick oxide 

layer. Kanup et al. developed theoretical predictions of the formation of stable carbon 

pairs and carbon interstitials [23]. These defects combined with silicon interstitials form 

near-interface traps (N
IT

). Near-interface traps are more critical compared to bulk traps 

for the mobility of SiC MOSFETs. The oxidation process can also cause the injection of 
carbon into SiC substrate. This injected carbon can exist in different forms such as car-

bon interstitials (C
i
) and carbon di-interstitials (C

i
)

2
 to further degrade the FET channel 
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mobility [4–6, 24]. The oxidation rate of 4H-SiC depends upon the orientation of 4H-SiC 
wafers. This has been determined experimentally by Shenoy et al. [25]. The oxidation rate 

for C-face is three to five times faster than for the Si-face. Alumina-enhanced oxidation 

(AEO) is very fast due to the Na that is released from the alumina at the oxidation tem-

perature. AEO on Si-face at 1050°C gives growth rate which is 10 times faster than normal 
thermal oxidation at 1150°C [26].

1.5. 4H-SiC/SiO
2
 interface passivation

Silicon carbide exists in different polytypes 6H-, 4H- and 3C-. A MOSFET fabricated using 
6H- polytype has field-effect inversion channel mobility which is much higher than that 
of 4H- polytype MOSFET (due to higher band gap of 4H-, Eg ~ 3.26 eV, most of the inter-

face traps for 4H-SiC falls in the forbidden band, Eg ~ 3.0 eV for 6H- polytype). 6H-SiC 
due to its lower band gap, 3.0 eV, has lower critical electric field of breakdown (E

c
) and 

bulk mobility compared to 4H-SiC. Also, in 4H- the field-effect mobility is more isotropic 
[5, 27] as compared to 6H-SiC. All these benefits make 4H- polytype a preferred choice 
among other polytypes of SiC for power devices. Although 4H- polytype has all these 
advantages, its full potential has not yet been exploited. This is due to high interface 

trap densities (D
it
) at the interface (4H-SiC/SiO

2
) 1013 eV−1cm−2. This value is much higher 

than the D
it
 of Si/SiO

2
 interface (1010 eV−1cm−2). The cause of higher D

it
 is the formation of 

Si-dangling bonds, C-dangling bonds, O vacancies and C clusters. All this occurs dur-

ing the oxidation of 4H-SiC [6–8]. Different post-oxidation annealing (called as passiv-

ation) techniques had been tried in the past to reduce the interface traps, for example, 
post-oxidation annealing in nitric oxide (NO), nitrous oxide (N

2
O), ammonia (NH3) and 

hydrogen (H
2
) ambient [13, 29, 30]. NO/N

2
O led to the incorporation of nitrogen (N) at 

the interface and forms different chemical species C-N, Si-N, Si-N-O and reduces the near 

D
it
 [6, 7]. The combined NO + H

2
 passivation (NO passivation followed by H

2
 passivation) 

gives improved interface which results in slightly better mobility ~40 cm2/V s. Allerstan 
et al. have shown that the presence of sodium (Na+) ion at the interface increases inver-

sion channel mobility drastically up to 150 cm2/V s, on the Si face of 4H-SiC MOSFET 
[11]. However, Na+ moves under applied bias and hence destabilizes the device due to 
changing threshold voltage (V

T
).The a-face (1120) of 4H- polytype with Al

2
O3/SiO

2
 com-

posite gate oxides leads to devices with channel mobilities of 100 cm2/V s or more, but 
these MOSFETs showed higher leakage currents and lower breakdown voltages [13, 28]. 

Some groups have reported that the thermal oxidation at higher temperatures can lead to 

a better interface with a low-interface trap density value ~2 × 1011 eV−1cm−2 at 0.2 eV from 

the conduction band (CB) edge [15, 29]. In the following sections, different interface pas-

sivation processes will be discussed.

1.5.1. Phosphorous interface passivation

In phosphorous (P) passivation, the interface is treated with P source to get a gate oxide with 
P at the interface. This can be done by using either a gas mixture of POCl3, N2

 and O
2
 or SiP

2
O

7
 

as a planar solid source to form phosphosilicate glass (PSG), P
2
O

5
, under high- temperature 
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(1000°C) annealing in nitrogen environment. With P passivation, we can have different process 
variations in order to obtain different results, which are discussed in the following sections.

1.5.1.1. Thick PSG process

In thick PSG device, a 70-nm thermal oxide is grown and then passivated by a 3-h P passiv-

ation process. During interface passivation, the following reaction takes place, which leads 
to the formation of phosphosilicate glass. The formation of this PSG layer leads to a high 
concentration of P at the interface. The P concentration near interface is ~2 × 1021 cm−3 using 

Secondary Ion Mass Spectroscopy (SIMS), data are not shown.

   SiP  
2
    O  

7
     

 N  
2
   gas 1L/min, 1000°C 

    ⎯⎯⎯ ⟶    SiO  
2
   +  P  

2
    O  

5
    (3)

The D
it
 is significantly lower as compared to NO-passivated device and is 2 × 10−11 eV−1cm−2 at 

0.2 eV from the conduction band edge, E
c
 − E = 0.2 eV, Figure 1. In all the D

it
  measurements, 

high-low C-V technique is used to extract the values. MOS capacitor results show that P 
passivation is more effective than NO passivation. The field-effect mobility of an n-chan-

nel MOSFET after P passivation is two times higher compared to standard NO passivation 
(Figure 2).

Bias temperature stress (BTS) test was performed on metal-oxide semiconductor capacitors 
for a positive/negative bias and results are shown in Figure 3(a) [30]. For a positive BTS test, 

the electric field is ~+1.5 MV/cm. The value of 0 V for flatband voltage (V
FB

) before BTS in the 

case of phosphorous passivation confirms fewer interface traps after this process. The V
FB

 

is significantly higher (~2 V) after NO annealing. After the positive BTS test, V
FB

 increases 

drastically from 0 to −18 V. The reason behind this shift in V
FB

 is induced positive polarization 
charge at the interface due to the formation of PSG layer. Results of a negative BTS test are 
also shown in Figure 3(a). Due to induced negative polarize charge at the interface, the V

FB
 

shifts in positive direction. Thus, the PSG layer makes devices highly unreliable by shifting 
V

FB
 in opposite directions. Results of a positive BTS test for a thick PSG MOSFETs are shown 

in Figure 3(b). A negative shift of −2 V in threshold voltage after a positive BTS test confirms 

Figure 1. D
it
 after 3-h P passivation and comparison with NO passivation.

Advanced SiC/Oxide Interface Passivation
http://dx.doi.org/10.5772/67867

271



that all these devices are highly unstable and of no practical use. Again, the near zero values 
for V

T
 confirm the effectiveness of P passivation compared to NO passivation.

Phosphorous process leads to improved interface by making traps electrically inactive and 
hence leads to higher field-effect mobility in 4H-SiC MOSFETs [6, 30]. Although the values of 

diffusion coefficients of impurities in SiC are very low, the possibility of P diffusion into SiC 
cannot be neglected. Phosphorous in the SiC substrate could have two effects: (i) phosphorous 
in the SiC can passivate carbon di-interstitial clusters and the correlated dangling bonds and (ii) 
the presence of phosphorous in the substrate can increase the concentration of n-type dopants 

(P) in the 4H-SiC/SiO
2
 interface region to produce a counter-doping effect. This  phenomenon 

has been observed in nitrogen-implanted 4H-SiC MOSFET. Both these effects (reduction in 
interface trap and counter-doping) lead to a lower V

T
 and a higher channel mobility [31, 32].

Figure 2. Field-effect mobility of a MOSFET after P passivation and comparison with NO passivation.

Figure 3. (a) V
FB

 after positive and negative BTS of a MOS capacitor. (b) Mobility data before and after positive BTS on 
a thick PSG MOSFET.
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1.5.1.2. Etched PSG process

Annealing of an SiO
2
 layer in a P

2
O

5
 ambient converts it into a phosphosilicate glass layer. 

PSG is a polar material [33], and if a positive/negative bias is applied at the gate terminal of 
MOSFET a positive/negative polarization sheet charge is induced at the 4H-SiC/SiO

2
 inter-

face. The effect of this induced charge is similar to the effect of Na+ ions at the interface. The 

presence of either charge leads to an unsTable 4H-SiC MOSFET. For example, this polarize 
charge can change a “normally-off” device to a “normally-on” device. X-ray photoelectron 
spectroscopy (XPS) results [34, 35] reveal that PSG layers cannot be removed completely by 
etching in BOE if is grown on 4H-SiC while opposite is true for the layer grown on Si. After 
BOE etching in the case of SiC, a 2–3-nm Si-C-O-P interfacial layer can still be seen which is 
equivalent to a phosphorous areal density of 2 × 1014 atoms/cm2 (approximately one-tenth 
of a monolayer). Before etching, the areal density of phosphorus is 1015 cm−2. We lose P after 
etching which is reflected in higher trap density for the etched PSG sample, Figure 4. In order 

to understand this phenomenon, we need to address the following two questions: (i) Is the 
un-etched PSG layer responsible for the better interface trap and hence high field-effect mobil-
ity? and (ii) Is there any difference between the bulk PSG layer and the un-etched layer in 
terms of induced polarization charge? These two questions are very important in order to 
understand the field-effect mobility and threshold voltage stability of the devices. An etching 
experiment on P-passivated MOS capacitors was performed to answer these questions. On 
etched devices, a thick layer of deposited oxide is used to fabricate MOS capacitors by using 

a low-pressure chemical vapour deposition (LPCVD) system at a temperature of 650°C. The 
D

it
 and V

FB
 results of PSG-etched devices are shown in Figures 4 and 5 and are also compared 

with etched NO-passivated devices.

The D
it
 for an etched NO device is like as-oxidized MOS capacitors. The values are signifi-

cantly higher and similar to the D
it
 profile for an unpassivated MOS device. These results 

show that, after etching, there is a decrease in the areal densities of both P and N from the 
4H-SiC/SiO

2
 interface. As a result, we observed worst electrical properties of the interface 

Figure 4. D
it
 before and after etching for NO and PSG MOS capacitors trap density increases after etching.
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caused by increased interface trap densities. The results of BTS tests for etched P-passivated 
samples are shown in Figure 5. The etched devices have flatband voltages, which remain con-

stant at around 6 V and are caused by the electron injection phenomenon from the SiC into 
the polar (PSG) layer. For the etched PSG MOS capacitors, the values are reduced significantly 
showing the absence of high induced polarization charge at the interface. In the case of thick 
PSG samples, polarization charge induces a negative shift in V

FB
 which keeps on increasing 

with increasing BTS test time. The results of BTS tests for the etched PSG MOS capacitors 
show that, after etching, stability improves at the cost of higher interface trap density.

1.5.1.3. Thin PSG devices BTS

P passivation of the 4H-SiC/SiO
2
 interface reduces the D

it
 but increases the threshold voltage 

instability due to the formation of a PSG layer during the process (Figure 6) [18]. In order 

to make the devices more reliable after P passivation, a different approach is used which 
involves a thin PSG layer (~10 nm). The D

it
 of a thin MOS capacitor is shown in Figure 7. D

it
 

value for thin PSG MOS device is 3 × 1011 eV−1cm−2 at E
c
 − E = 0.2 eV which is two times lower 

than NO-passivated device. The corresponding lateral 4H-SiC MOSFET has a peak channel 

Figure 6. Gate oxide before (a) and after (b) P passivation. The P which passivates the traps at the interface also leads to 
instability by transforming SiO

2
 into PSG.

Figure 5. Positive BTS data of an etched PSG MOS capacitor device stability after etching.
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mobility of ~75 cm2/V s, Figure 7. This number is approximately two times higher compared to 

an NO device. Although the mobility of a thick PSG is higher (Figure 2), the device is plagued 

with threshold voltage instability. The breakdown field for thin PSG device is NO-like, but its 
leakage current is significantly higher (not shown). Results for positive BTS tests for thin PSG 
MOS capacitors and MOSFETs are shown in Figure 8(a) and (b), respectively. An oxide field 
of ~+1.5 MV/cm was applied at 150°C during positive BTS tests for all the samples. The thin 
PSG MOS capacitors show an improved electrical interface which translates into stable flat-
band voltage values of the MOS capacitors. Figure 8(b) shows the electric field-effect mobili-
ties of the MOSFETs before and after positive BTS tests performed for 8 h. We can observe that 
there is a small right shift caused by electron injection, in the field-effect mobility curve. This 
once again proves that using the thin PSG process, the device stability can be improved. The 
instability of thick PSG devices is due to polarization charge which is negligible in the case of 

Figure 7. D
it
 for thin PSG MOS capacitor. D

it
 is lower than NO device, but higher than thick PSG device.

Figure 8. (a) Positive BTS data of a thin PSG MOS capacitor. Data show improved device stability.  Δ  V  
FB

   =  V  
FB

  final  –  V  
FB

  initial   

(b) Mobility data of a MOSFET with (dashed curve) and without 8-h positive BTS.

Advanced SiC/Oxide Interface Passivation
http://dx.doi.org/10.5772/67867

275



thin PSG devices. There is one-to-one relationship between the thickness of the PSG layer and 
shift in flatband voltage (ΔV

FB
) for a given BTS voltage. As we increase the thickness of the 

gate oxide layer from 10 nm (thin PSG devices) to 70 nm, we get less stable device.

1.5.2. Nitrogen plasma (N-plasma) passivation of the 4H-SiC/SiO
2
 interface

NO passivation is the process that has been used in the production of commercial SiC MOSFET. 
This process reduces the D

it
 of the interface, it has some limitations. This process is performed 

at high temperature between 1150 and 1200°C. The mechanism is that at such a high tempera-

ture, NO dissociates into atomic N and O. The N produced during the reaction reduces the 

number of the traps by passivating them, while the O reacts with the SiC layer forming an 

additional SiO
2
 layer and hence a new set of interface traps [16]. Thus, there are two mecha-

nisms going on simultaneously in competition. With N-plasma passivation where there is no 

atomic O, it is possible to eliminate additional oxidation and hence limiting the total number 

of traps caused during post-oxidation annealing. As a result during N-plasma passivation, the 

D
it
 decreases drastically. Also, we get some extra benefit from this process. It has been seen 

that after this process, the D
it
 continues to decrease with the increase of N plasma exposure 

time, which is not true in the case of NO passivation. In that process, the N concentration satu-

rates at the interface after the annealing time of 2 h [17]. The D
it
 for 4-h N-plasma passivation is 

NO-like and results in NO-like mobility (~40 cm2/V s). Eight-hour N-plasma-passivated MOS 
devices give D

it
 ~3 × 1011 eV−1cm−2. If mobility scales with D

it
, MOSFETs that have undergone 

an 8-h N-plasma passivation should have a peak field-effect mobility of ~100 cm2/V s.

For N-plasma passivation, ground-state atomic N is created in microwave plasma and a 

portion of these atoms recombine to emit at visible wavelengths. The set-up used to create 

N-plasma is shown in Figure 9. The snapshot of the spectrum formed during the N-plasma 

passivation is shown in Figure 10. In the spectrum, a peak is obtained at the wavelength of 

Figure 9. High-temperature microwave plasma furnace used for nitrogen plasma passivation (N-plasma passivation).
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589.19 nm. This peak is obtained due to the recombination of active ground-state (4S) N atoms. 

This recombination is followed by the decay of an excited state in the N
2
 molecule and gives 

rise to yellow afterglow [19]. The mechanism, which causes the afterglow, takes place due to 

the following reaction.

   

N  (    4  S    )    + N  (    4  S    )    →  N  
2
    (    5  ∑    g+ )    + M

    
 N  

2
    (    5  ∑    g+ )    + M → N  (    4  S    )    + N  (    4  S    )    + M

    
 N  

2
    (    5  ∑    g+ )    + M →  N  

2
    (   B   3   ∏  

g
   )    + M

    

 N  
2
    (   B   3   ∏  

g
   )    →  N  

2
    (   A   3 ∑ u+ )    + hν

    (4)

Also, the intensity of yellow afterglow of emission is proportional to the square of concentra-

tion of active ground-state atoms. The amount of radiation detected at 589.19 nm is therefore 

a measure of the atomic nitrogen concentration in the plasma [36, 37]. After N-plasma pas-

sivation for the desired time, the recovery step was performed at 1160°C in N
2
 flow. This step 

is used to heal the damage caused during the nitrogen plasma exposure of oxide and helps to 

improve the breakdown characteristics of the devices.

1.5.2.1. Four-hour N-plasma passivation on thermal oxide

Initially, the N-plasma process was used on the interface grown using a standard thermal oxi-

dation. Nitrogen plasma also causes damage to the interface so N-plasma process is followed 

by a recovery process. Results obtained for a 4-h N-plasma process followed by a 2-h recovery 
process (from plasma damage) are shown in Figure 11(a) and (b) [38]. The D

it
 and electric 

field-effect mobility obtained under these conditions are both “NO-like.” The thickness of the 
oxide layer used is 70 nm. The peak value of field-effect mobility of MOSFET is ~45 cm2/V s 
(which is like NO-passivated MOSFET). The V

T
 determined by using the linear portion of the 

drain current versus gate voltage curve is around 4 V (Figure 12). After N-plasma passivation, 

the oxide breakdown field of the MOS capacitor is ~4 MV/cm. This lower breakdown field is 

Figure 10. Typical spectrum of nitrogen during N-plasma passivation.
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due to the damage caused during N-plasma passivation. This is the result of the gate leakage 

current and needs further optimization of the recovery process done after the passivation 
step. Also, we can conclude that the recovery anneal of 2 h is not enough.

1.5.2.2. Four-hour N-plasma passivation on deposited oxide

To limit carbon liberation (by minimizing the number of processing steps which causes oxi-
dation) of the SiC, thermal oxide layers can be replaced by deposited oxides. The peak value 

of field-effect mobility for a companion MOSFET is ~50 cm2/V s (Figure 12), which is signifi-

cantly higher than “NO-like” device, with threshold voltage again ~4 V (Figure 13). Note that 

this value is 25% higher than the one obtained with thermally grown oxide [38, 39].

Figure 12. Threshold voltage (V
T
) for a 4-h N-plasma passivation. The extrapolation in linear region method is used to 

extract the threshold voltage.

Figure 11. (a) Interface trap density (both NO and plasma) and (b) mobility for 4-h N-plasma passivation.
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1.5.2.3. Eight-hour N-plasma passivation

The interface trap density after 8-h N-plasma passivation with 6-h recovery is shown in 
Figure 14(a) for 62-nm thermal oxides [3, 39, 40]. The D

it
 at 0.2 eV is 2 × 1011 cm−2eV−1, which is 

like the MOS capacitors having a thick PSG layer. But as we discussed, these types of devices 
are highly unstable and of no practical use. With N-plasma passivation, we do not have this 

problem because the oxide layer is still SiO
2
 and still non-polar in nature. The areal densi-

ties of N obtained after Secondary Ion Mass Spectroscopy measurements done on the MOS 

capacitors, which underwent 4-h and 8-h N-plasma passivation, are 6 × 1014 and 1.5 × 1015 cm−2, 

respectively. The areal density for standard NO-passivated MOS capacitor is also 6 × 10−14 cm−2 

and has been used as a reference sample. Also, XPS data for N-plasma-passivated devices 
have shown (not presented here) that the D

it
 for devices that have undergone this  process is 

Figure 13. Mobility for a deposited oxide + 4-h N-plasma-passivated MOSFET.

Figure 14. (a) Interface trap density for 8-h N-plasma passivation, and compared with thick and NO-passivated devices. 
The D

it
 is at E

c
 − E = 0.2 eV is 2 × 1011 cm−2eV−1, which is like thick PSG MOS capacitors. (b) Breakdown characteristics of 

MOS capacitors after 8-h N-plasma passivation. The dashed curve is for a standard NO device.
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almost 2.5 lower than that for NO-passivated devices. Figure 14(b) shows breakdown char-

acteristics after an 8-h N-plasma passivation. The oxide is leaky compared to NO, and the 

breakdown field is lower (~2 MV/cm for some devices). If mobility scales with D
it
, MOSFETs 

that have undergone an 8-h N-plasma passivation should have a peak field-effect mobility of 
~100 cm2/V s. Further optimization of the process is desirable to achieve higher N concentra-

tion at the interface and to improve the yield of the process.

1.5.3. High-temperature oxidation

Lately, there has been a growing interest in high-temperature oxidation of 4H-SiC. Studies 
have shown that if the oxidation conditions are optimized, then the 4H-SiC/SiO

2
 interface 

grown after the process has much better electrical properties to the ones grown under stan-

dard conditions (1100−1200°C). In the following sections, we see the progress made in this 
area. Also, we discuss the effect of performing P and N

2
O post-oxidation annealing on the 

oxides grown at high temperatures. It has been observed that high-temperature oxidation 

performed at 1500°C can lead to a better interface with D
it
. Figure 15(a) shows the effect of 

temperature on the D
it
. We can see with the increase of temperature from 1200 to 1500°C that 

D
it
 reduces from 2 × 1012 to 5 × 1011 cm−2eV−1 at E

c
 − E = 0.2 eV. Figure 15(b) shows the linear 

transfer characteristics and field-effect mobilities of the devices measured at room tempera-

ture [36]. The V
T
 values for the devices without any passivation are typically around 5 [3, 49] 

which is due to the large number of traps at the interface. The net charge of these traps is nega-

tive in nature. This high-temperature process is effective in reducing in number of trapped 
and resulted in low threshold voltages observed in the MOSFETs. The reduction in trapped 
charge is reflected by the field-effect mobility of ~40 cm2/V s. This value is much lower than 
the previously reported results, even the one obtained at 1400°C. All this is a direct reduction 

Figure 15. (a). D
it
 of thermal oxides grown at 1200 and 1500°C in a pure oxygen flow rate of 0.05 l/min. The increase 

in temperature resulted in approximately a twofold reduction in D
it
 from 5.3 × 1011 to 2.5 × 1011 cm−2eV−1, a E

c 
− E = 0.2 

eV. (b). Linear transfer characteristic and field effect mobility of 3 lateral 4H-SiC MOSFETs. Whilst there is a variation 
in threshold voltage, the novel high temperature gate oxidation process yields a consistent maximum mobility of ~40 
cm2V−1s−1.
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in Coulomb scattering. In this approach (high-temperature oxidation), there is no need of 
performing the post-oxidation annealing of the 4H-SiC/SiO

2
 interfaces.

1.5.3.1. Combined N
2
O and phosphorous passivations of the 4H-SiC/SiO

2
 interface  

with oxide grown at 1400°C

Phosphorous (P) passivation is more effective than N
2
O passivation in improving the 4H-SiC/

SiO
2
 interface by reducing the number of traps at the 4H-SiC/SiO

2
 interface. There are some stud-

ies performed by Rong Hua et al. [41] to see the combined effect of high-temperature oxidation 
with either P or N

2
O passivation. The MOS capacitor with 1400°C dry oxidation and without any 

post-oxidation passivation process has the highest D
it
 as shown in Figure 16(a). The D

it
 results 

from the MOS capacitors have one-to-one relation with the field-effect mobility of the MOSFETs 
shown in Figure 16(b), where the lowest D

it
 corresponds to the highest field-effect mobility. 

From Figure 16(b), it can be seen that the P passivation can increase the peak field-effect mobility 
of a 4H-SiC MOSFET to about 66 cm2/V s, which is five times higher than the value obtained after 
high-temperature N

2
O-annealing process. Compared to low field-effect mobility, ~2 cm2/V s, of 

the MOSFETs with gate oxide grown at 1400°C for 1 h without post-oxidation annealing process, 
the P-post-oxidation annealing (POA) process can dramatically increase the field-effect mobility.

However, the combined N
2
O- and P-passivation processes have shown a slight decrease in the 

peak field-effect mobility value (60 cm2/V s) compared to the P-only passivation. This value 
is still much higher than obtained using N

2
O passivation (12 cm2/V s). The only drawback 

for the combined N
2
O- and P-passivation processes is that the MOSFET still has a negative 

threshold voltage (V
T
) value (~−5 V) but better than the P-only passivation. The net positive 

charge at/or near the interface 4H-SiC/SiO
2
 resulted in a negative V

T
 of the device. This value 

can be improved with further optimization of the process. The negative threshold voltage 
means that the device is normally on which is not an ideal choice from the application point 

Figure 16. (a). Interface trap density extracted using high-low frequency capacitance method for MOS capacitors 
fabricated with different passivation conditions. (b). Field-effect mobility and the drain current against the gate bias for 
lateral MOSFETs with different passivation conditions.
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of view. Potentially, this problem could be solved by using a thin layer (a few nm thick) of 
SiO

2
 which afterward undergoes the suggested combined N

2
O and P POA and then finally 

topped up by a thick(40-nm) deposited SiO
2
 layer. There is no extra benefit of performing P 

passivation on the devices which have already had N
2
O POA.

1.5.3.2. Impact of N
2
O passivation on 4H-SiC/SiO

2
 interfaces grown at high temperature

The results on high-temperature oxidation (1500°C) have shown a reduction in the interface 
trap density (D

it
) without performing any kind of interface passivation. It would be interest-

ing to see the impact of N
2
O passivation on the oxides grown via high-temperature oxidation 

process. The interface is grown with high-temperature oxidation, and the results are shown in 

Figure 1. There is a decrease in the D
it
 for the high-temperature as-oxidized MOS capacitors 

as compared with the MOS capacitors grown using standard oxidation process. But there is 

no further improvement in the D
it
 with N

2
O passivation performed at 1350°C, Figure 17. The 

electric field of breakdown for MOS capacitors with high-temperature oxidation with and 
without N

2
O passivation is lower than 8 MV/cm. The reason for an early breakdown in the 

case of high-temperature as-oxidized MOS capacitors is not clear and further study is needed. 

Figure 17. The electrical properties of the 4H-SiC MOS capacitors with a high-temperature (1500°C) thermal oxidation, 
interface trap density (a–b) and oxide breakdown (c–d).
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In the case of passivated devices, this could be due to the incorporation of nitrogen throughout 

the bulk of the oxide, as previously reported on 4H-SiC MOS capacitors after ammonia pas-

sivation. We also performed N
2
O passivation on the MOS capacitors grown via the standard 

oxidation process, and the results are shown in Figure 18. Again, the electric field of break-

down is lower for these devices. Also, there is no improvement in the D
it
 with the increase of 

temperature for N
2
O passivation. The breakdown data for N

2
O passivation at 1450°C could 

not be obtained due to a high increase in the oxide thickness after the passivation.

1.5.4. Other interface passivation processes

In addition to all these interface passivation processes, there are some studies done using boron 

(B) and Sb. Modic et al. have shown that Sb-doped surface channel in combination with nitric 
oxide post-oxidation annealing can increase the channel field-effect mobility to 100 cm2/V s [42]. 

Also, Okamoto et al. were able to increase the channel field-effect mobility to 102 cm2/V s by 
introducing boron atoms to the interface [43].

1.6. 3C-SiC/SiO
2
 interface

There is a reignited interest on cubic silicon carbide (3C-SiC), which can be potentially grown 
heteroepitaxially on 12″ Si substrates, as it would result in a drastic cost reduction of semi-
conductor devices compared to the successful but prohibitively expensive SiC hexagonal 

Figure 18. The electrical properties of the 4H-SiC MOS capacitors with a standard oxidation process (1200°C thermal 
oxidation) followed by N2O passivation at 1350 and 1450°C. From  (a) – (c) D

it
  versus E

C
-E and (d) – (e) show breakdown 

characteristics of various MOS capacitors with different oxidation/passivation processes.
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 polytype technology (4H-SiC). It has been demonstrated that lateral power transistors in 
3C-SiC outperform Si and 4H-SiC devices up to 1200 V, and represent an alternative to gal-
lium nitride (GaN) technology. Also, GaN transistors are normally on, and as a result, it is 
challenging to control them eclectically. The voltage ratings for which these 3C-SiC devices 
are targeted for make them useful in automotive and other domestic appliances. Thus, this 

3C-SiC technology has a huge potential for reducing the global carbon footprint.

1.6.1. High-temperature dry/thermal oxidation (1200–1400°C) and N
2
O passivation  

of the 3C-SiC/SiO
2
 interface

Due to the smaller band gap of 3C- (2.2 eV) compared to 4H- (3.2 eV), a fewer number of traps 
lie within the energy band gap of 3C-SiC in a metal-oxide-semiconductor structure resulting 
in better field-effect mobility [44]. It is found that 3C-SiC has different oxidation chemistry 
compared with 4H-SiC; 70–80-nm oxide can be grown at 1100°C in 1 h, which is 10 times 
faster than the oxidation rate of 4H-SiC on the Si face [45]. Also for the Si face in 4H-SiC, it has 
been observed that mobility increases with decreasing D

it
. For example, as we go from ther-

mally grown gate oxide to post-oxidation-annealed (passivated) oxide using hydrogen (H
2
) 

passivation, NO/N
2
O passivation, nitrogen plasma (N-plasma) passivation or phosphorous (P) 

passivation, D
it
 decreases significantly [37, 46–48]. Thomas et al. have shown that as-grown oxi-

dized at 1500°C resulted in a 4H-SiC MOSFET with maximum field-effect mobility of 40 cm2/V 
s. Sharma et al. have studied high-temperature oxidation of 3C-SiC [49]. In that work, the high-

est temperature used for the oxidation of 3C-SiC is 1400°C, because of the limit dictated by 
the melting point of Si (1414°C). The oxidation is done in 100% oxygen ambient. In addition, a 
standard nitrous oxide post-oxidation annealing of the interface is performed to see its effect.

A 3C-SiC/Si wafer with heterostructure grown on on-axis p-type Si (001) substrate was used 
in the work. The 3C-SiC epilayer is n-type with a doping concentration of ND ~ 1 × 1016 cm−3. 

The thickness of epilayer was around 10 µm. Lateral MOS-C structure had been used to study 

the electrical properties of the interface (inset of Figure 19(a)). The oxidation was performed 

at high temperatures followed by 30-min argon (Ar) annealing at temperatures used for oxi-
dation. Standard high-low C-V and conductance techniques were used to analyse the 3C-SiC/
SiO

2
 interface. In addition, lateral n-channel MOSFETs were fabricated to extract the field-

effect mobilities (µ). Planar MOSFETs were fabricated on the same substrate which was used 
to fabricate the MOS capacitors. Figure 19 shows the normalized C-V curves at 1 MHz for 
different MOS-Cs. There are three distinct features of these curves. The first is a large flatband 
voltage shift (ΔV

FB
 = V

FB,i
 − V

FB,ideal
) towards negative gate bias, the second is increased capaci-

tance in depletion and the third is to observe the large stretch-out in C-V characteristics. The 

subscript ‘i’ stands for different processing conditions used to grow the gate oxide, i = 1 for 

1200°C oxidation, i = 2 for 1300°C oxidation, i = 3 for 1300°C oxidation and i = 4 for 1300°C 
oxidation followed by N

2
O annealing. Figure 19(b) shows a comparison between the ideal 

and experimental C-V curves for each temperature. The ideal C-V curve is obtained (solving 
the electrostatic and Poisson equation) by assuming that the 3C-SiC/SiO

2
 interface is perfect, 

having no defects near the interface and also in the bulk of the oxide and 3C-SiC. The doping 
value used in the computations for the high-temperature-oxidized samples was ND = 0.63 × 
1016 cm−3 for all the oxidation temperature range, that is, the 3C-SiC doping concentration 
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seems to be stable even for 1400°C. Interestingly, a significant increase in the 3C-SiC doping 
was observed for the sample further annealed in N

2
O. In this case, a value of ND = 2.45 × 1016 

cm−3 was used to fit the experimental capacitance. The flatband voltage shift shows the exis-

tence of net positive fixed charge at the interface and its origin is believed to be the presence 
of carbon clusters and dangling bonds formed after thermal oxidation [6] Carbon clusters and 

dangling bonds act as donor-like states and are positively charged when they are empty and 

as a result give rise to a negative shift in V
FB.

 The calculations for effective oxide charge (QEFF) 

has been done (not shown) for all the MOS-Cs. It was found that QEFF increases with tempera-

ture, which is different from the results reported previously on 3C-SiC MOS-Cs and further 
research is required to explain this behaviour [50]. In addition to carbon clusters, the nitrogen-

related complex in the case of 1300°C (oxidation + N
2
O annealing) MOS-C causes a large shift 

in V
FB

, likely due to its incorporation in the 3C-SiC surface and resulting in an increased dop-

ing concentration [51]. Also, as mentioned above, all the curves are significantly stretched out 
compared to the ideal curve, representing the presence of high interface traps. These traps 

Figure 19. (a) Typical 1-MHz C-V curves for 3C-SiC MOS structures with oxides grown at 1200, 1300, 1400 and 
1300°C+N

2
O. (b) A comparison between the ideal and experimental C-V curves for each temperature. (c) Interface 

state densities (D
it
) for 3C-SiC MOS structures with and without post-oxidation anneal (N

2
O) process, calculated using 

Terman C-V and conductance (inset) methods. Due to a very wide Gaussian dispersion, it is not possible to extract D
it
 for 

the N
2
O-annealed device using the conductance method.

Advanced SiC/Oxide Interface Passivation
http://dx.doi.org/10.5772/67867

285



could be near the conduction band edge and/or the presence of oxide near interface traps (also 
known as slow traps) [52]. Hysteresis (not shown) in the C-V curves indicates the slow nature 
of some of the traps [52]. In addition, less band banding is caused by increased net positive 

fixed charge at the interface resulting in increased capacitance in depletion region [53]. 

Figure 19(c) shows the density of interface traps (D
it
) extracted from the Terman C-V method 

and compared with conductance methods (shown as inner graphic of Figure 1). Both these 

methods give consistent results with 1300°C (oxidation + N
2
O) leading to the lowest D

it
 = 1.8 × 

1012 cm−2eV−1 at E
c 
− E

T
 = 0.25 eV. This value is two times smaller than the one obtained with the 

1300°C oxidation process (D
it
 = 3.7 × 1012 cm−2eV−1). It is believed that these D

it
 values are rather 

high, primarily because of the contribution of slow states. As it can be seen in Figure 19(b) for 

the 1300°C (oxidation + N
2
O) device, the plateau is quite ideal for voltages larger than the 

flatband (accumulation) but in depletion there is a relevant dispersion (ideal versus experi-
mental), typical signature of the oxide near interface traps. The superiority of annealed device 

is also confirmed by the G-V plot as shown in Figure 20(a), performed at 100 kHz. The area 
under the conductance peak is a measure for D

it
. The position of the peak corresponds to the 

energy position in the band gap and as all these peaks occur at gate bias close to V
FB

, it can be 

inferred that these peaks are a measure of D
it
 close to the CB edge of 3C-SiC [49]. Devices 

without the N
2
O post-oxidation annealing have larger area under G-V curves when compared 

with the annealed device, implying higher D
it
 for non-annealed devices. The peak value of 

1300°C (oxidation + N
2
O) is much smaller than other devices and hence this device has the 

lowest D
it
 being consistent with Terman and conductance methods. Also, all of the admit-

tance-voltage (G-V) curves have finite full width at half maximum (FWHM) signifying that 
these traps are dispersed over an energy range within the band gap and are not localized at a 
fixed energy value. Similar results have been reported on the MOS capacitors implanted with 
N [54]. As the 1300°C oxidation process with N

2
O post-oxidation annealing gives the  lowest 

D
it
, this process was used to fabricate a lateral 3C-SiC MOSFET. Also, a lateral MOSFET was 

fabricated with the 1300°C oxidation process, as for a reference sample. The results of mobility 

Figure 20. (a) Normalized conductance curves of 3C-SiC MOS structures taken for different gate voltages at probe 
frequency (ω) = 100 kHz. (b) Field-effect channel mobilities (µ) for N

2
O-annealed and non-annealed 3C-SiC MOSFETs. 

Both the N
2
O post-oxidation annealing and thermal oxidation were done at 1300°C.
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measurements for lateral MOSFETs are shown in Figure 20(b). The device with N
2
O anneal-

ing has a peak channel mobility of approximately 120 cm2/V s, and shows a ×2 improvement 
in peak mobility as compared with a 1300°C as-oxidized MOSFET which has a mobility of 
60 cm2/V s. This is consistent with the fact that the N

2
O-annealed MOS-C has better D

it
 as 

compared with the as-oxidized 1300°C MOS-C. The MOSFET annealed in N
2
O has a relatively 

sharp turn-on and a peak channel mobility of 125 cm2/V s. At greater gate biases, the field-
effect mobility decreases because of the increasing surface field, which may be an indication 
of the surface roughness to be a dominant scattering mechanism [40]. Figure 21 shows atomic 

force microscopy (AFM) analysis that has been performed on all of the devices in order to see 
the effect of temperature on the surface morphology. The root-mean-square (RMS) values of 
roughness for all these MOSCs lie in the range of 0.54–0.60 nm, showing that high tempera-

tures (≥1300°C) do not have effect of temperature on the surface morphology. The RMS values 
of roughness for all these MOSCs lie in the range of 0.54–60 nm, showing that high tempera-

tures (T ≥ 1200°C) do not have any significant detrimental effect on the oxide surface. The 
Secondary Ion Mass Spectrometry profiles are shown in Figure 22. The N

2
O-annealed device 

shows the accumulation of nitrogen at the interface which is responsible for the improved D
it
 

and field-effect mobility (µ) in this process. There is virtually no appreciable difference 
between the Si, O and C profiles for all the devices, and it could be due to no out-diffusion or 
diffusion of species from the interface. There is a possibility that the Si, O and C concentration 

Figure 21. Atomic force microscopy (AFM) for results different processed MOS capacitors with as-grown thermal oxide 
(a) at T = 1200°C (b) T = 1300°C, (c) T = 1400°C and (d) T = 1300°C with N

2
O post-oxidation annealing. The RMS values 

of roughness within a range of 0.54–0.60 nm, implying that high temperature does not have deteriorating effect on the 
surface morphology of devices.
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decreases monotonically very slightly with temperature, which is not within the tolerances of 

SIMS measurement. The parallel equivalent conductance spectroscopy is used to further anal-
yse the characteristics of the high-temperature  oxidation. Figure 23 shows GP/ω versus probe 

frequency (f) curves for non-annealed and 1300°C (oxidation + N
2
O) devices. By fitting the 

curves to a Gaussian fit, the interface state density, trap time extracted. As shown in Figure 5, 

the 1300°C (oxidation + N
2
O) device could have no Gaussian dispersion or a very wide 

Gaussian dispersion, and as a result it, is not possible to fit the experimental data and it is not 
possible to extract D

it
, trap time constant (t

p
) and surface-potential fluctuations (σ

s
) for the 

Gaussian dispersion, for the annealed device. The D
it
 extracted using this technique for all the 

devices is shown as the inset of Figure  1. Naik and Chow have reported a wide Gaussian 

dispersion for conductance curves on NO-treated 4H-SiC MOS-C [54], which potentially 

explains the results presented here. Figure 24(a) plots the trap time constant as a function of 

energy. As we can see from the figure that across the different energy levels in the band gap, 
t

p
 increases with increasing temperature. At a constant temperature, t

p
 increases as we go 

Figure 22. SIMS profiles for 3C-SiC MOS capacitors fabricated under different conditions with (a)–(c) for as-oxidized 
MOS capacitors. From plot (d), it is evident that most of the nitrogen has accumulated at the 3C-SiO

2
/SiC interface in the 

case of 1300°C N
2
O-annealed device. It is obvious that most of the nitrogen has accumulated at the SiO

2
/SiC interface 

after an NO anneal.
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Figure 23. G
p
/ω versus probe frequency (ω) at different biases in depletion region for MOS capacitors with as-grown 

thermal oxide (a) at T = 1200°C, (b) T = 1300°C, (c) T = 1400°C and (d) T = 1300°C with N
2
O post-oxidation annealing.

Figure 24. (a) The trap time constant as a function of energy and (b) the temperature dependence of standard deviation 
of the surface potential (σ

s
).
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deeper into the band gap. The surface-potential fluctuations can be extracted by performing 
the curve fitting to the G-V curves. In Figure 24(b), we can see the temperature  variation of the 

standard deviation of the surface potential (σ
s
) which is caused by fluctuations of interface 

states for different MOS capacitors. The values lie between 2 and 3, which indicates that the 
3C-SiC/SiO

2
 interface is electrically better than 4H- polytype (σ

s
 = 4 for 4H- and around 2 for 

Si). This fairly low value of σ
s
, coupled with the low value of D

it
 and the MOSFET field-

decreasing large field-effect mobility, suggests that Coulombic interface-scattering-related 
effects should not limit transistor performance.

In conclusion, high-temperature oxidation (1200–1400°C) has been used to grow the 3C-SiC/
SiO

2.
 Out of all the oxidation temperatures investigated, 1300°C was found to be the optimum 

temperature for oxidation. The interface can be improved further by performing the N
2
O 

post-oxidation annealing again at 1300°C for 2 h, though this leads to high accumulation of N 
at the interface. The lateral MOSFET with N

2
O-annealed oxide yielded a field-effect mobility 

of 125 cm2/V s, which is twice the value of non-annealed MOSFET, with the gate oxide grown 
at 1300°C (60 cm2/V s). The low values of σ

s
 and larger µ for as-oxidized MOS-Cs show that 

the 3C-SiC/SiO
2
 interface is better than its 4H-SiC counterpart (at least in terms of interfacial 

fast traps). These findings have important implications for SiC-MOS technology as 3C-SiC/Si 
can provide a low-cost alternative even in the case of high temperature of processing.
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