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Abstract

Brines including seawater, concentrated seawater after desalinization, salt lake, oil/gas
water, and well bitter are widely distributed around the world. In order to promote the
comprehensive utilization and effective protection of the valuable chemical resources
existing in brines such as freshwater, lithium, sodium, potassium, and magnesium salts,
the systematic foundation and application foundation research including phase equilib-
ria and thermodynamic properties for the salt-water electrolyte solution are essential,
especially for solid lithium salts and their aqueous solution systems.

Keywords: thermodynamics, phase equilibria, aqueous solution, lithium salts

1. Introduction

1.1. Lithium resources situation

Lithium is the lightest alkali metal, which plays a growing role in numerous processes such as

rechargeable batteries, thermonuclear fusion, medical drugs, lubricant greases, ceramic, glasses,

dyes, adhesives, and electrode welding [1–19]. Lithium is a critical energy material and a strategic

resource for the twenty-first century. Consequently, the market demands for lithium resources are

increasing around the world [20, 21].

Lithium naturally occurs in compound forms because of its high reactivity. Economic concentra-

tions of lithium are found in brines, minerals, and clays in various parts of the world. Brines and

high-grade lithium ores are the present sources for all commercial lithium production. The global

lithium reserve is estimated at 14.0 megatons [22], which is 74.5 megatons of lithium carbonate

equivalent. Lithium reserves are mainly distributed in South America, China, and Australia [23].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Generally, lithium is obtained from two major resources: the lithium mineral ores including

spodumene and petalite ores and the containing-lithium brine resources including seawater,

underground water and salt lake brine [24–27]. Currently, the former is well exploited while

the latter is being developed by industries with relatively low efficiency. Nonetheless, more

than 60% of the total lithium amount exists in sea water and brines [24]. Therefore, a great

potential exists for obtaining lithium from aqueous sources, if an efficient lithium recovery

technology can be developed. Separation and extraction of lithium from either sea water or

brine is carried out on a semi-industrial scale and industrial scale in the USA from salt

lakes [28], in Japan from thermal water [29, 30], in Israel from the Dead Sea [31], and in China

from underground brines and salt lakes [22].

In addition, the most important physical and chemical processes occurring in brines are evapo-

ration, concentration, crystallization, precipitation, dissolution, and phase transformation. It is

obvious that phase equilibria and thermodynamics can explain above phenomenon and even

guide those processes effectively. Therefore, it is particularly meaningful to engage the research

on phase equilibria and thermodynamics properties of lithium-containing aqueous solution

systems for describing the geochemical evolution of containing lithium brines and exploiting

valuable lithium resources.

2. Phase equilibria of lithium-containing salt-water systems

Brines, including seawater, concentrated seawater after desalinization, salt lake, oil/gas water,

and well bitter are all complex multi-component salt-water systems, whose study and applica-

tion is mainly in reference to the solubility of salts in the water and the solid-liquid equilibrium

rule. Hence, solid-liquid phase equilibria form the basis for salt-water systems, which in turn

are used in the chemical industry for the separation of lithium [32].

2.1. Stable phase equilibria of lithium-containing salt-water systems

Early in the 1960s, Soviet scholars had conducted research on stable phase equilibria of lithium-

containing salt-water systems [33–35]. The solubilities of the systems (Liþ, Naþ, Mg2þ//Cl� –H2O),

(Liþ, Naþ, Mg2þ//SO4
2�

–H2O), (Liþ, Naþ, Kþ//SO4
2-
–H2O) in the temperature range from 288.15

to 373.15 K were determined. Three types of double salts containing lithium, 2Li2SO4�Na2SO4

�K2SO4, Li2SO4�3Na2SO4�12H2O, and Li2SO4�K2SO4 were found for the first time and the physico-

chemical properties of these were measured. All these studies could provide the solubility data to

extract lithium resources in sea water and other brines.

Researchers in China also studied stable phase equilibria of complex system (Liþ, Naþ, Kþ,

Mg2þ//Cl�, CO3
2�, SO4

2�, borate–H2O) and its subsystems. Some research results are shown in

Table 1. In addition, depending on the aquatic chemical types, the lithium-containing salt-water

systems can be divided into lithium-containing chloride system, sulfate system, carbonate sys-

tem, and borate system.

In order to apply the hydride salting-out effect to the separation of lithium and magnesium,

phase equilibria of the quaternary system Hþ, Liþ, Mg2þ//Cl� – H2O and its subsystems at
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Category Lithium-containing systems Temperature (K) Reference

LiCl Hþ, Liþ, Mg2þ//Cl�–H2O 273.15 [36]

Liþ, Naþ, Kþ, Mg2þ//Cl�–H2O 298.15 [37]

Liþ, Mg2þ//Cl�–H2O 298.15 [38]

Liþ, NH4þ//Cl�–H2O 273.15,298.15, 323.15 [39]

Liþ, Rbþ, Mg2þ//Cl�–H2O 323.15 [40]

Liþ, Naþ, Kþ, Sr2þ//Cl�–H2O 298.15 [41]

Liþ, Mg2þ//Cl�–H2O 288.15 [42]

Li2SO4 Liþ, Kþ//SO4
2�
–H2O

Liþ, Mg2þ//SO4
2�
–H2O

298.15 [43]

Liþ, Kþ, Mg2þ//SO4
2�
–H2O 298.15 [44]

Liþ, Kþ, Mg2þ//Cl�, SO4
2�
–H2O 298.15 [45]

Liþ, Naþ, Kþ, Mg2þ//SO4
2�
–H2O 298.15 [46]

Liþ, Kþ//SO4
2�
–H2O 288.15 [47]

Liþ//Cl�, SO4
2�
–H2O 308.15 [48]

Liþ, Mg2þ//SO4
2�
–H2O 288.15 [42]

Li2CO3 Liþ, Naþ, Kþ//CO3
2�
–H2O 298.15 [49]

Liþ, Kþ//Cl�, CO3
2�
–H2O 298.15 [50]

Liþ, Naþ//Cl�, CO3
2�
–H2O 298.15 [51]

Liþ, Kþ//Cl�, CO3
2�
–H2O 298.15 [52]

Liþ, Naþ, Kþ//CO3
2�
–H2O 288.15 [53]

Li2B4O7 Liþ//Cl�, SO4
2�, B4O7

2�
–H2O

Liþ, Mg2þ//SO4
2�, B4O7

2�
–H2O

Liþ//CO3
2�, B4O7

2�
–H2O

Liþ, Kþ//CO3
2�, B4O7

2�
–H2O

Liþ, Naþ//CO3
2�, B4O7

2�
–H2O

Liþ, Kþ//CO3
2�, B4O7

2�
–H2O

Liþ, Naþ, Kþ//Cl�, B4O7
2�
–H2O

298.15 [54]

298.15 [55]

298.15 [56]

298.15 [57]

298.15 [58]

288.15 [59]

298.15 [60]

Liþ, Naþ, Kþ//CO3
2�, B4O7

2�
–H2O 288.15 [61]

LiBO2 Liþ//SO4
2�, BO2

�
–H2O 288.15, 298.15 [62]

Liþ//Cl�, BO2
�
–H2O 288.15, 298.15 [63]

Liþ//Cl�, BO2
�
–H2O 308.15 [64]

Liþ//Cl�, SO4
2�, BO2

�
–H2O 298.15 [65]

Liþ//SO42, CO3
2�, BO2

�
–H2O 288.15, 298.15, 308.15 [66]

Liþ//Cl�, BO2
�
–H2O 323.15 [67]

Liþ//SO4
2�, BO2

�
–H2O

Table 1. Stable phase equilibria of lithium-containing salt-water systems.
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273.15, 293.15, and 313.15 K had been researched [36, 68]. Phase distribution of the quaternary

system was confirmed and the salting-out effect was investigated preliminarily, which pro-

vides the physical chemistry foundation for lithium-preparation technique in brines.

Furthermore, the phase equilibria and phase diagram of various salt-water systems containing

lithium had been reported heavily. However, the experimental temperature was almost

focused on 298.15 K. With the maturity of research techniques and the development of instru-

ments, phase equilibria of multi-component systems at multiple temperatures should be the

research focus point in the future. It is worth mentioning that the structures of borate are

complicated and have diversified aggregation forms because of the changes of pH, boron

contents, types of coexisting ions, and the concentration conditions in the brines. Most studies

on the borate-type salt lake brine are mainly for lithium tetraborate. Our group has made

excellent progress on phase equilibria of salt-water system containing different species of

lithium borates [62–67].

2.2. Metastable phase equilibria of lithium-containing salt-water systems

In the process of seawater and salt lake brine evaporation, the metastable phenomenon is

ubiquitous. Because of the conditions of temperature, wind speed, and humidity in the natural

environment, brine systems are in a metastable state. Early in the eighteenth century, Van’t

Hoff had already found that some phase regions disappeared and some enlarged in the stable

phase diagram when the salt-water system was in the process of simulating evaporation [32].

So it is useful for the metastable phase diagram to extract the products which cannot be

obtained in the stable phase diagram [69].

Some of metastable phase equilibria of lithium-containing salt-water systems are shown in

Table 2. A lot of lithium-containing systems of chloride, sulfate, carbonate, and borate were

researched. The concentration of lithium salt becomes higher in the sulfate-type salt lake

brine in the final evaporation period. In our group, metastable phase equilibria of the

Category Lithium-containing systems Temperature (K) Reference

LiCl Liþ,Naþ,Mg2þ//Cl�–H2O 308.15 [70]

Liþ,Naþ,Ca2þ//Cl�–H2O 288.15 [71]

Liþ,Kþ//Cl�–H2O 298.15 [72]

Liþ,Kþ//Cl�–H2O 323.15 [73]

Liþ,Kþ,Rbþ//Cl�–H2O 298.15 [74]

Liþ,Kþ,Rbþ//Cl�–H2O 323.15 [75]

Li2SO4 Liþ,Mg2þ//Cl�,SO4
2�
–H2O 298.15 [76]

Liþ,Naþ//Cl�,SO4
2�
–H2O 273.15 [77]

Liþ,Naþ,Mg2þ//SO4
2�
–H2O 263.15 [78]

Liþ,Mg2þ//SO4
2�
–H2O 323.15 [79]

Liþ,Mg2//Cl�,SO4
2�
–H2O 323.15 [80]
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lithium-containing sulfate system (Liþ, Naþ, Kþ, Mg2þ//Cl�, SO4
2-
–H2O) and its subsystems

at different temperature were determined, which has great help for industrial production

and the comprehensive utilization of lithium-containing sulfate system salt lakes.

3. Thermodynamics of lithium salts and their aqueous solution systems

In the long-term production activities and scientific practice, it is troublesome for some pro-

duction process of the new technology, new processes, or new product development, because

there is no data and phase diagram of the relevant salt-water system. In addition, experimental

determination on solubilities of multi-component systems is a complex work and it is virtually

impossible for researchers to investigate all the salt-water systems. However, it is well-known

that phase diagram is a geometry description of phase relation in the system under the

condition of thermodynamic equilibrium. In theory, the phase diagram should be able to be

gained based on the principles of thermodynamics [99].

Category Lithium-containing systems Temperature (K) Reference

Liþ,Mg2//Cl�,SO4
2�
–H2O 308.15 [81]

Liþ,Kþ//Cl�,SO4
2�
–H2O 308.15 [82]

Liþ,Mg2//Cl�,SO4
2�
–H2O 273.15 [83]

Liþ,Naþ//SO4
2�
–H2O 288.15, 308.15 [84]

Liþ,Naþ//SO4
2�
–H2O 308.15, 348.15 [85]

Liþ,Naþ,Kþ//Cl�,SO4
2�
–H2O 308.15 [86]

Liþ//Cl�,SO4
2�
–H2O 308.15 [48]

Liþ,Kþ//SO4
2�
–H2O 288.15, 323.15 [87]

Liþ,Kþ//SO4
2�
–H2O 308.15 [88]

Li2CO3 Liþ,Naþ//SO4
2�,CO3

2�
–H2O 288.15 [89]

Liþ,Kþ//Cl�,CO3
2�
–H2O 298.15 [90]

Li2B4O7 Liþ,Naþ,Kþ//Cl�,B4O7
2�
–H2O 298.15 [60]

Liþ,Naþ//SO4
2�,B4O7

2�
–H2O 288.15 [91]

Liþ,Naþ,Kþ//CO3
2�,B4O7

2�
–H2O 288.15 [92]

Liþ,Kþ//Cl�,SO4
2�,B4O7

2�
–H2O 288.15 [93]

Liþ,Kþ//SO4
2�,B4O7

2�
–H2O 288.15 [94]

Liþ//Cl�,CO3
2�,B4O7

2�
–H2O 298.15 [95]

Liþ,Kþ//CO3
2�,B4O7

2�
–H2O 273.15 [96]

Liþ,Kþ//CO3
2�,SO4

2�,B4O7
2�
–H2O 273.15 [97]

Liþ,Kþ//CO3
2�,B4O7

2�
–H2O 288.15 [98]

Table 2. Metastable phase equilibria of lithium-containing salt-water systems.
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As to the classical electrolyte theory, Debye-Hückel theory is only suitable for the dilution

solution with a concentration below 0.1 m (molality) and it is unusable to solve the thermody-

namic behaviors and to predictive the dissolution equilibria for the complex salt lake brine

systems [100]. Pitzer theory [101], which was developed on the basis of Debye-Hückel ion-

interaction theory, characterizing thermodynamics properties of electrolyte solution with brief

and terse form is widely used either in geochemical behaviors of natural waters and mineral

deposits or in the predictions of solubility of salt-water systems. A series of calculated expres-

sions for the activity coefficient and osmotic coefficient of any electrolytes in multi-component

systems were proposed by Pitzer [102]. After measuring the thermodynamic parameters, such as

osmotic coefficient, activity coefficient, heat of dissolution, heat of dilution, heat of mixing, and

specific heat, it is easy to calculate and fit the relative model-parameter theoretically and solubil-

ity on the basis of Pitzer and its extended ion-interaction model to promote the development of

theory and practice, such as the new field of calculating phase diagram and its application [32].

At present, the domestic and foreign research methods of electrolyte solution of thermody-

namic properties are mainly isopiestic method, electromotive force method, calorimetric

method, conductivity method, hygrometry, density method, and so on. The isopiestic method

and electromotive force method are the most common experimental method to be widely used

in measuring the thermodynamic properties such as permeability and activity coefficient. They

complement each other. The basic property of matter which is the change of energy can be

measured directly by the calorimetric method. In recent years, the calorimetric method is

widely implemented in the research of solution thermodynamic properties [103].

In 1992, Yao et al. [104] measured the osmotic and activity coefficients of aqueous mixtures of

LiCl and MgCl2 in the range of low concentration to near crystallization limits by the isopiestic

method. The Pitzer single-salt parameters and the mixed parameters were calculated by the

osmotic and activity coefficients, which were applicative for Pitzer’s equation. The predicted

solubilities for the system studied using Pitzer’s approach were shown to be in reasonable

agreement with experimental results from references. The osmotic coefficients of aqueous

mixtures of Li2SO4 and MgSO4 had been reported from 1.4 to 13.5 mol�kg�1 at 298 K using

the isopiestic method by Zhang et al [105]. In the ranges of 0.2–8.7 and 0.6–12.7 mol�kg�1 the

osmotic coefficients of Li2SO4 and MgSO4 were also reported, respectively. The predicted

solubilities for this system using Pitzer’s approach showed good agreement with experimental

results. Yang et al. [106] measured isopiestic molalities and water activities for the Li2B4O7–

LiCl–H2O system at 298.15 K using an improved isopiestic apparatus, and the two types of

osmotic coefficients were calculated and compared. Pitzer’s primary model with minor mod-

ifications, in combination with the chemical equilibria, was used to represent the experimental

data for the complex Li2B4O7–LiCl–H2O system.

Based on the principle of isopiestic method, the osmotic and activity coefficients can be obtained.

However, it might be difficult to get these coefficients with the strict thermodynamics calculation

in the mixed electrolyte solutions. The activity coefficients of KCl and LiCl in KCl–LiCl aqueous

mixtures have been studied at 298.15 K in ionic strength range of 0.1–4.0 mol�kg�1 by Li et al.

[107]. The data were fitted to Pitzer’s equation using the regression method, Pitzer parameters

were obtained. The activity confidents of aqueous LiCl in the system LiCl–MgCl2–H2O were
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determined at 298.15 K in the total ionic strength range from 0.05 to 6.0 mol�kg�1 with the

electromotive force method using a lithium-selective electrode and Ag/AgCl electrode by Wang

et al. [108]. The activity coefficients of the experiment were compared with which calculated by

the Pitzer equation with the known parameters of experimental osmotic coefficients.

The process of chemical reaction, dissolution, dilution, and mixing are often accompanied with

heat changes. Reaction heat data, such as dissolution heat, dilution heat, mixing heat, and

special heat, were determined critically by the calorimetry technology, which can work out

thermodynamic enthalpy, entropy, Gibbs free energy, and thermodynamic equilibrium con-

stant. Hence, the calorimetric method became the research highlights to measure the thermo-

dynamic properties (dissolution heat, dilution heat, mixing heat, and capacity heat).

There are some thermodynamic parameters measured by the calorimetric method. In 1965,

Wu [109] and Wood [110] researched heats of mixing of a variety of aqueous containing

lithium solutions of the same ionic strength at 298.15 K. Some of them were in the different

concentration. The concentration dependence of the heats of mixing indicated that like-

charged ion pairs were important contributors to the heat of mixing. The enthalpies of dilution

of lithium in the range 0.1–1.0 m had been measured at 303.15 K with a microcalorimeter by

Leung et al. [111]. The relative apparent enthalpies of these solutions had been determined

with the aid of an extended form of Debye-Hückel limiting law. Enthalpies of solution of

Li2SO4 and Li2SO4�H2O in water at 298.15 K were investigated [112]. The molar enthalpies of

solution extrapolated to infinite dilution at 298.15 K were ΔsolHm
∞ (Li2SO4) ¼ �(30502 � 170)

J�mol�1 and ΔsolHm
∞ (Li2SO4�H2O) ¼ �(17899 � 152) J�mol�1. The value for the monohydrate

lithium sulfate had been calculated by assuming that the excess water in the sample was

present as an aqueous saturated solution. There were presented preliminary specific heat

capacities of lithium sulfate solution.

The standard molar enthalpy of the formation of some lithium borates were determined

[113–116]. The results were ΔfHm
θ (LiBO2�2H2O) ¼ �(1627.46 � 0.90) kJ�mol�1, ΔfHm

θ

(LiBO2�8H2O) ¼ �(3397.00 � 0.94) kJ�mol�1, ΔfHm
θ(LiB5O8�5H2O) ¼ �(5130.25 � 4.05)

kJ�mol�1, ΔfHm
θ (Li2B4O7�3H2O) ¼ �(4290.86 � 3.31) kJ�mol�1, ΔfHm

θ(Li3B5O8(OH)2 (I)) ¼

�(4724.1 � 4.2) kJ�mol�1, ΔfHm
θ(Li3B5O8(OH)2 (II)) ¼ �(4723.8 � 4.2) kJ�mol�1, and

ΔfHm
θ(Li4[B5O13(OH)2]�3H2O) ¼ � (7953.8 � 6.6) kJ�mol�1.

Meanwhile, the thermodynamic properties in solution system contained lithium borates had

been widely researched. Zhang et al. [117] determined the molar heat capacities of the aqueous

Li2B4O7 solution at a concentration of 0.0187 mol�kg�1 in the temperature range from 80 to 355

K by a precision automated adiabatic calorimetry. The enthalpies of dilution for the aqueous

Li2B4O7 solutions from 0.0212 to 2.1530 mol�kg�1 at 298.15 K have been measured [118]. The

relative apparent molar enthalpies and relative partial molar enthalpies of the solvent and

solute for the aqueous Li2B4O7 system were also calculated. The thermodynamic properties of

the binary aqueous system Li2B4O7–H2O were represented with the extended Pitzer ion-inter-

action model. And the enthalpies of dilution, ΔdilHm, have been also measured for the LiCl–

Li2B4O7–H2O system at T ¼ 298.15 K [119]. A suitable microcalorimetric method was used to

obtain the better data of the enthalpies of dilution for the ternary system LiCl–Li2B4O7–H2O at

a low concentration. The relative apparent molar enthalpies have been determined and the
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relationships between apparent molar enthalpies and ionic strength at different molar fractions

of Li2B4O7 were obtained. Li [120] measured the heats of dilution and heat capacities of

eutectic point solution system Li2B4O7–Li2SO4–LiCl–H2O and subsystems Li2B4O7–Li2SO4–

H2O and Li2B4O7–LiCl–H2O to cover the ionic strength range from 19 to 0.1 at 298.15 K. The

data of the heat of dilution were extrapolated to infinite dilution by use of the Debye-Hückel

limiting law to obtain relative apparent molar enthalpies.

In our group, the heat capacities of aqueous solution systems (Li2B4O7–H2O) m ¼ 0.00415–

0.4208 mol�kg�1
�at T ¼ 298.15, 308.15 and 323.15 K were determined experimentally using the

Setaram BT 2.15 microcalorimeter [121]. On the basis of experimental data, the apparent molar

heat capacities at different concentrations and temperatures were calculated, and the relation-

ship equations between apparent molar heat capacity and solution concentration of lithium

tetraborate at 298.15, 308.15 and 323.15 K were obtained. On the other hand, the Pitzer single

salt parameters of lithium tetraborate at different temperatures were fitted on the basis of the

Pitzer ion-interaction theory of the electrolytes on the apparent molar heat capacity.

So far, the thermodynamic parameters of lithium salts are still scarce. The Pitzer single salt

parameters and the mixing ion-interaction parameters at different temperatures have not been

established yet. So, more works on the thermodynamics parameters of lithium salts and their

aqueous solution systems at multi-temperatures are essential.

4. Conclusion

With the gradually increasing demands of lithium salt resources as the lithium energy battery,

to exploit the lithium-containing brine resources including seawater, concentrated seawater

after desalinization, salted lake, oil/gas field water, and well bitter is essential. Therefore,

studies on phase equilibria and phase separation of the lithium-containing brine systems are

significant to guide the comprehensive utilization of those lithium-containing brine resources

around the world. In this chapter, the following three main aspects were discussed: Firstly, the

stable and metastable phase equilibria of lithium-containing salt-water multi-systems includ-

ing the different types of chloride, sulfate, carbonate, and borate brines at different tempera-

tures were summarized. Secondly, a series of valuable thermodynamic properties of standard

molar enthalpy of formation for solid lithium salts such as LiCl�H2O, Li2SO4�H2O,

LiBO2�2H2O, LiBO2�8H2O, Li2B4O7�3H2O, Li3B5O8(OH)2, and Li4[B5O13(OH)2]�3H2O, and the

thermodynamic properties (dissolution heat, dilution heat, mixing heat, and capacity heat) for

their relatively aqueous solutions were obtained combined by the isothermal dissolution

equilibrium method, isopiestic method, and adiabatic calorimetry, and so on. Thirdly, on the

basis of classical Debye-Hückel electrolyte theory, the extended modern electrolyte model,

developed by Pitzer KS and his coworkers to express the activity coefficient and osmotic

coefficient of any electrolytes in multi-component lithium-containing systems, was success-

fully used to obtain a series parameters such as the model parameter fitting, thermodynamic

property calculation, and the solubility prediction.
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