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Abstract

The chapter presents new conditions suitable in design of stabilizing static as well as
dynamic output controllers for a class of continuous-time nonlinear systems represented
by Takagi-Sugeno models. Taking into account the affine properties of the TS model
structure, and applying the fuzzy control scheme relating to the parallel-distributed out-
put compensators, the sufficient design conditions are outlined in the terms of linear
matrix inequalities. Depending on the proposed procedures, the Lyapunov matrix can be
decoupled from the system parameter matrices using linear matrix inequality techniques
or a fuzzy-relaxed approach can be applied to make closed-loop dynamics faster. Numer-
ical examples illustrate the design procedures and demonstrate the performances of the
proposed design methods.

Keywords: continuous-time nonlinear systems, Takagi-Sugeno fuzzy systems, linear
matrix inequality approach, parallel-distributed compensation, output feedback

1. Introduction

Contrarily to the linear framework, nonlinear systems are too complex to be represented by

unified mathematical resources and so, a generic method has not been developed yet to design

a controller valid for all types of nonlinear systems. An alternative to nonlinear system models

is Takagi-Sugeno (TS) fuzzy approach [1], which benefits from the advantages of suitable

linear approximation of sector nonlinearities. Using the TS fuzzy model, each rule utilizes the

local system dynamics by a linear model and the nonlinear system is represented by a collec-

tion of fuzzy rules. Recently, TS model-based fuzzy control approaches are being fast and

successfully used in nonlinear control frameworks. As a result, a range of stability analysis

conditions [2–5] as well as control design methods have been developed for TS fuzzy sys-

tems [6–9], relying mostly on the feasibility of an associated set of linear matrix inequalities
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(LMI) [10]. An important fact is that the design problem is a standard feasibility problem with

several LMIs, potentially combined with one matrix equality to overcome the problem of

bilinearity. In consequence, the state and output feedback control based on fuzzy TS systems

models is mostly realized in such structures, which can be designed using numerical tech-

niques based on LMIs.

The TS fuzzy model-based state control is based on an implicit assumption that all states are

available for measurement. If it is impossible, TS fuzzy observers are used to estimate the

unmeasurable state variables, and the state controller exploits the system state variable esti-

mate values [11–14]. The nonlinear output feedback design is so formulated as two LMI set

problem, and treated by the two-stage procedure using the separation principle, that is,

dealing with a set of LMIs for the observer parameters at first and then solving another set of

LMIs for the controller parameters [15]. Since, the fuzzy output control does not require the

measurement of system state variables and can be formulated as a one LMI set problem, such

structure of feedback control is preferred, of course, if the system is stabilizable.

From a relatively wide range of problems associated with the fuzzy output feedback control

design for the continuous-time nonlinear MIMO systems approximated by a TS model, the

chapter deals with the techniques incorporating the slack matrix application and fuzzy

membership-relaxed approaches. The central idea of the TS fuzzy model-based control design,

that is, to derive control rules so as to compensate each rule of a fuzzy system and construct the

control strategy based on the parallel-distributed compensators (PDC), is reflected in the

approach of output control. Motivated by the above mentioned observations, the proposed

design method respects the results presented in Refs. [16, 17], and is constructed on an enhanced

form of quadratic Lyapunov function. Comparing with the approaches based only on quadratic

Lyapunov matrix [18], which are particular in the case of large number of rules, that are very

conservative as a common symmetric positive definite matrix, is used to verify all Lyapunov

inequalities, presented principle naturally extends the affine TS model properties using slack

matrix variables to decouple Lyapunov matrix and the system matrices in LMIs, and gives

substantial reducing of conservativeness. Moreover, extra quadratic constraints are included to

incorporate fuzzymembership functions relaxes [19, 20] and applied for static as well as dynamic

TS fuzzy output controllers design. Note, other constraints with respect to, for example, to decay

rate and closed-loop pole clustering can be utilized to extend the proposed design procedures.

The remainder of this chapter is organized as follows. In Section 2, the structure of TS model for

considered class of nonlinear systems is briefly described, and some of its properties are outlined.

The output feedback control design problem for systems with measurable promise variables is

given in Section 3, where the design conditions that guarantees global quadratic stability are

formulated and proven. To complete the solutions, Section 4 formulate the static decoupling

principle in static TS fuzzy output control, and themethod is reformulated in Section 5 in defined

criteria for TS fuzzy dynamic output feedback control design. Section 6 gives the numerical

examples to illustrate the effectiveness of the proposed approach, and to confirm the validity of

the control scheme. The last section, Section 7, draws conclusions and some future directions.

Throughout the chapter, the following notations are used: xT, XT denotes the transpose of the

vector x and matrix X, respectively, for a square matrix X = X
T
> 0 (respectively, X = X

T
< 0)

Modern Fuzzy Control Systems and Its Applications4



means that X is a symmetric positive definite matrix (respectively, negative definite matrix),

the symbol In represents the n-th order unit matrix, IR denotes the set of real numbers, and

IRn � r denotes the set of all n � r real matrices.

2. Takagi-Sugeno fuzzy models

The systems under consideration are from one class of multi-input and multi-output (MIMO)

dynamic systems, which are nonlinear in sectors and represented by TS fuzzy model.

Constructing the set of membership functions hi (θ(t)), i = 1, 2,…, s, where

θ tð Þ ¼ θ1 tð Þ θ2 tð Þ ⋯ θq tð Þ
� �

; ð1Þ

is the vector of premise variables, the final states of the systems are inferred in the TS fuzzy

system model as follows

_q tð Þ ¼
X

s

i¼1

hi θ tð Þð Þ Aiq tð Þ þ Biu tð Þð Þ ; ð2Þ

with the output given by the relation

y tð Þ ¼ Cq tð Þ ; ð3Þ

where q(t) ∈ IRn, u(t) ∈ IRr, y(t) ∈ IRm are vectors of the state, input, and output variables,

Ai ∈ IRn � n, Bi ∈ IRn � r, C ∈ IRm � n are real finite values matrix, and where hi(θ(t)) is the

averaging weight for the i-th rule, representing the normalized grade of membership (mem-

bership function).

By definition, the membership functions satisfy the following convex sum properties.

0 ≤ hi θ tð Þð Þ ≤ 1,
X

s

i¼1

hi θ tð Þð Þ ¼ 1 ∀i∈ 1;…; sh i : ð4Þ

It is assumed that the premise variable is a system state variable or a measurable external

variable, and none of the premise variables depends on the inputs u(t).

It is evident that a general fuzzy model is achieved by fuzzy amalgamation of the linear

system models. Using a TS model, the conclusion part of a single rule consists no longer of

a fuzzy set [21], but determines a function with state variables as arguments, and the

corresponding function is a local function for the fuzzy region that is described by the

premise part of the rule. Thus, using linear functions, a system state is described locally (in

fuzzy regions) by linear models, and at the boundaries between regions an interpolation is

used between the corresponding local models.

Note, the models, Eqs. (2) and (3), are mostly considered for analysis, control, and state

estimation of nonlinear systems.

Stabilizing Fuzzy Control via Output Feedback
http://dx.doi.org/10.5772/68129

5



Assumption 1 Each triplet (Ai, Bi, C) is locally controllable and observable, the matrix C is the same

for all local models.

It is supposed in the next that the aforementioned model does not include parameter uncer-

tainties or external disturbances, and the premise variables are measured.

3. Static fuzzy output controller

In the next, the fuzzy output controller is designed using the concept of parallel-distributed

compensation, in which the fuzzy controller shares the same sets of normalized membership

functions like the TS fuzzy system model.

Definition 1 Considering Eqs. (2) and (3), and using the same set of normalized membership function

Eq. (4), the fuzzy static output controller is defined as

u tð Þ ¼
X

s

j¼1

hj θ tð Þð ÞKjy tð Þ ¼
X

s

j¼1

hj θ tð Þð ÞKjCq tð Þ : ð5Þ

Note that the fuzzy controller Eq. (5) is in general nonlinear.

Considering the system, Eqs. (2) and (3), and the control law, Eq. (5), yields

_q tð Þ ¼
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð Þ Ai þ BiKjC
� �

q tð Þ ¼
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð ÞAcijq tð Þ ; ð6Þ

Acij ¼ Ai þ BiKjC , Acji ¼ Aj þ BjKiC : ð7Þ

Proposition 1 (standard design conditions). The equilibrium of the fuzzy system Eqs. (2) and (3),

controlled by the fuzzy controller Eq. (5), is global asymptotically stable if there exist a positive definite

symmetric matrix W ∈ IRn � n and matrices Yj ∈ IRr � m, H ∈ IRm � m such that

W ¼ WT
> 0 ; ð8Þ

AiW þWAT
i þ BiY iC þ CTYT

i B
T
i < 0 ; ð9Þ

AiW þWAT
i

2
þ
AjW þWAT

j

2
þ
BiY jC þ CTYT

j B
T
i

2
þ
BjY iC þ CTYT

i B
T
j

2
< 0 ; ð10Þ

CW ¼ HC ð11Þ

for i = 1, 2,…, s as well as i = 1, 2,…, s � 1, j = i + 1, i + 2,…, s, and hi(θ(t))hj(θ(t)) 6¼ 0.

When the above conditions hold, the control law gain matrices are given as

Modern Fuzzy Control Systems and Its Applications6



Ki ¼ Y iH
�1
: ð12Þ

Proof. (compare, for example, Ref. [16]) Prescribing the Lyapunov function candidate of the form

ν q tð Þð Þ ¼ qT tð ÞPq tð Þ > 0 ; ð13Þ

where P ∈ IRn � n is a symmetric positive definite matrix, the time derivative of Eq. (13) along

the system trajectory is

_ν q tð Þð Þ ¼ _qT tð ÞPq tð Þ þ qT tð ÞP _q tð Þ < 0 : ð14Þ

Inserting Eq. (6) into Eq. (14), it has to be satisfied

_ν q tð Þð Þ ¼
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð ÞqT tð ÞPcijq tð Þ < 0 ; ð15Þ

Pcij ¼ PAcij þ AT
cijP : ð16Þ

Since P is positive definite, the state coordinate transform can be defined as

q tð Þ ¼ Wp tð Þ , W ¼ P�1
; ð17Þ

and subsequently, Eqs. (15) and (16) can be rewritten as

_ν p tð Þð Þ ¼
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð ÞpT tð ÞWcijp tð Þ < 0 ; ð18Þ

Wcij ¼ AcijW þWAT
cij: ð19Þ

Permuting the subscripts i and j in Eq. (18), also it can write

_ν q tð Þð Þ ¼
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð ÞpT tð ÞWcjip tð Þ < 0 ; ð20Þ

Wcji ¼ AcjiW þWAT
cji: ð21Þ

Thus, adding Eqs. (17) and (19), it yields

2 _ν p tð Þð Þ ¼
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð ÞpT tð Þ Wcij þWcji

� �

p tð Þ < 0 ð22Þ

and subsequently,
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_ν p tð Þð Þ ¼
X

s

i¼1

h2i θ tð Þð ÞpT tð ÞWciip tð Þ þ 2
X

s�1

i¼1

X

s

j¼iþ1

hi θ tð Þð Þhj θ tð Þð ÞpT tð Þ
Wcij þWcji

2
p tð Þ < 0 ; ð23Þ

which leads to the set of inequalities.

Ai þ BiKiCð ÞW þW Ai þ BiKiCð ÞT < 0 ; ð24Þ

Ai þ BiKjC
� �

W

2
þ

Aj þ BjKiC
� �

W

2
þ
W Ai þ BiKjC

� �T

2
þ
W Aj þ BjKiC

� �T

2
< 0 ð25Þ

for i = 1, 2,…, s as well as i = 1, 2,…, s � 1, j = 1 + 1, i + 2,…, s and hi(θ(t))hj(θ(t)) 6¼ 0.

Thus, setting here

KjCW ¼ KjHH�1CW ; ð26Þ

where H is a regular square matrix of appropriate dimension and defining

H�1C ¼ CW�1, Y j ¼ KjH ; ð27Þ

the LMI forms of Eqs. (9) and (10) are obtained from Eqs. (24) and (25), respectively, and

Eq. (27) implies Eq. (11). This concludes the proof.

Trying to minimize the number of LMIs owing to the limitation of solvers, Proposition 1 is

presented in the structure, in which the number of stabilization conditions, used in fuzzy

controller design, is equal to N = (s2 + s)/2 + 1. Evidently, the number of stabilization conditions

is substantially reduced if s is large.

Proposition 2 (enhanced design conditions). The equilibrium of the fuzzy system Eqs. (2) and (3),

controlled by the fuzzy controller Eq. (5), is global asymptotically stable if for given a positive δ ∈ IR,

there exist positive definite symmetric matrices V, S ∈ IRn � n, and matrices Yj ∈ IRr � m, H ∈ IRm � m

such that

S ¼ ST > 0 , V ¼ VT
> 0 ; ð28Þ

AiSþ SAT
i þ BiY iC þ CTYT

i B
T
i ∗

V � Sþ δAiSþ δBiY iC �2δS

" #

< 0 ; ð29Þ

Φij ∗

V � Sþ δ
AiSþ AjS

2
þ δ

BiY j þ BjY i

2
C �2δS

2

6

4

3

7

5
< 0 ; ð30Þ

CS ¼ HC ; ð31Þ

for i = 1, 2,…, s, as well as i = 1, 2,…, s � 1, j = 1 + 1, i + 2,…, s, hi(θ(t))hj(θ(t)) 6¼ 0, and

Modern Fuzzy Control Systems and Its Applications8



Φij ¼
AiSþ SAT

i

2
þ
AjSþ SAT

j

2
þ
BiY jC þ CTYT

j B
T
i

2
þ
BjY iC þ CTYT

i B
T
j

2
: ð32Þ

When the above conditions hold, the control law gain matrices are given as

Ki ¼ Y iH
�1
: ð33Þ

Here and hereafter, ∗ denotes the symmetric item in a symmetric matrix.

Proof. Writing Eq. (6) in the form

X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð Þ Acijq tð Þ � _q tð Þ
� �

¼ 0 ; ð34Þ

then with an arbitrary symmetric positive definite matrix S ∈ IRn � n and a positive scalar

δ ∈ IR, it yields

X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð Þ qT tð ÞSþ δ _qT tð ÞS
� �

Acijq tð Þ � _q tð Þ
� �

¼ 0 : ð35Þ

Since S is positive definite, the new state variable coordinate system can be introduced so that

p tð Þ ¼ Sq tð Þ , _p tð Þ ¼ S _q tð Þ , V ¼ S�1PS�1
: ð36Þ

Therefore, Eq. (14) can be rewritten as

_ν p tð Þð Þ ¼ _pT tð ÞVp tð Þ þ pT tð ÞV _p tð Þ < 0 ð37Þ

and Eq. (35) takes the form

X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð Þ pT tð Þ þ δ _pT tð Þ
� �

AcijSp tð Þ � S _p tð Þ
� �

¼ 0 : ð38Þ

Thus, adding Eq. (38) as well as the transposition of Eq. (38) to Eq. (37), it yields

_ν p ið Þð Þ ¼ _pT tð ÞVp tð Þ þ pT tð ÞV _p tð Þ

þ
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð Þ pT tð Þ þ δ _pT tð Þ
� �

AcijSp tð Þ � S _p tð Þ
� �

þ
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð Þ AcijSp tð Þ � S _p tÞð ÞT p tð Þ þ δ _p tð Þð Þ < 0 :
�

ð39Þ

Stabilizing Fuzzy Control via Output Feedback
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Using the notation

pTc tð Þ ¼ pT tð Þ _pT tð Þ
� �

; ð40Þ

the inequality Eq. (39) can be written as

_ν pc tð Þ
� �

¼
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð ÞpTc tð ÞScijpc tð Þ < 0 ; ð41Þ

Scij ¼
Ai þ BiKjC
� �

Sþ S Ai þ BiKjC
� �T

∗

V � Sþ δ Ai þ BiKjC
� �

S �2δS

" #

< 0 : ð42Þ

Permuting the subscripts i and j in Eq. (41), and following the way used above, analogously it

can obtain

_ν pc tð Þ
� �

¼
X

s

i¼1

h2
i θ tð Þð ÞpTc tð ÞSciipc tð Þ þ 2

X

s�1

i¼1

X

s

j¼iþ1

hi θ tð Þð Þhj θ tð Þð ÞpTc tð Þ
Scij þ Scji

2
pc tð Þ < 0 : ð43Þ

Since r = m, it is now possible to set

KjCS ¼ KjHH�1CS ; ð44Þ

where H is a regular square matrix of appropriate dimension and introducing

H�1C ¼ CS�1, Y j ¼ KjH ð45Þ

then Eqs. (42) and (45) imply Eqs. (29)–(31). This concludes the proof.

Note, Eq. (42) leads to the set of LMIs only if δ is a prescribed constant. (δ can be considered as

a tuning parameter). Considering δ as a LMI variable, Eq. (42) represents the set of bilinear

matrix inequalities (BMI).

Theorem 1 (enhanced relaxed design conditions). The equilibrium of the fuzzy system Eqs. (2) and (3),

controlled by the fuzzy controller Eq. (5), is global asymptotically stable if for given a positive δ ∈ IR

there exist positive definite symmetric matrices V, S ∈ IRn � n, the matrices X ij ¼ XT
ji ∈ IRr�n

, and

Yj ∈ IRr � m, H ∈ IRm � m such that

S ¼ ST > 0 , V ¼ VT
> 0 ,

X11 X12 ⋯ X1s

X21 X22 ⋯ X2s

⋮ ⋮ ⋱ ⋮

Xs1 Xs2 ⋯ Xss

2

6

6

6

6

4

3

7

7

7

7

5

> 0 ; ð46Þ

AiSþ SAT
i þ BiY iC þ CTYT

i B
T
i þ X ii ∗

V � Sþ δAiSþ δBiY iC �2δS

� �

< 0 ; ð47Þ

Φij ∗

V � Sþ δ
AiSþ AjS

2
þ δ

BiY j þ BjY i

2
C �2δS

2

4

3

5 < 0 ; ð48Þ

Modern Fuzzy Control Systems and Its Applications10



CS ¼ HC ; ð49Þ

for i = 1, 2,…, s, as well as i = 1, 2,…, s � 1, j = 1 + 1, i + 2,…, s, hi(θ(t))hj(θ(t)) 6¼ 0 and

Φij ¼
AiSþ SAT

i

2
þ
AjSþ SAT

j

2
þ
BiY jC þ CTYT

j B
T
i

2
þ
BjY iC þ CTYT

i B
T
j

2
þ
X ij þ X ji

2
: ð50Þ

When the above conditions hold, the control law gain matrices are given as

Ki ¼ Y iH
�1
: ð51Þ

Proof. Introducing the positive real term

νν θ tð Þð Þ ¼ qT tð ÞZ θ tð Þð Þq tð Þ > 0 ; ð52Þ

Z θ tð Þð Þ ¼ ZT
θ tð Þð Þ ¼

X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð ÞZij > 0 ; ð53Þ

where Zij ¼ ZT
ji ∈ IRn�n, i, j = 1, 2, …, s is the set of associated matrices and using the state

coordinate transform Eq. (36), then Eq. (53) can be rewritten as

νν p tð Þð Þ ¼
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð ÞpT tð ÞX ijp tð Þ > 0 , X ij ¼ S�1ZijS
�1 ¼ XT

ji ; ð54Þ

where

Z θ tð Þð Þ ¼ h1ðθ tð Þp tð Þ h2ðθ tð Þp tð Þ ⋯ hsðθ tð Þp tð Þ½ �

X11 X12 ⋯ X1s

X21 X22 ⋯ X2s

⋮ ⋮ ⋱ ⋮

Xs1 Xs2 ⋯ Xss

2

6

6

4

3

7

7

5

h1ðθðtÞp tð Þ
h2ðθðtÞpðtÞ

⋮

hsðθðtÞpðtÞ

2

6

6

4

3

7

7

5

ð55Þ

is symmetric, an positive definite if Eq. (46) is satisfied. Then, in the sense of the Krasovskii

theorem (see, for example, Ref. [22]), it can be set up in Eq. (39)

_ν p ið Þð Þ ¼ _pT tð ÞVp tð Þ þ pT tð ÞV _p tð Þ

þ
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð Þ pT tð Þ þ δ _pT tð Þ
� �

AcijSp tð Þ � S _p tð Þ
� �

þ
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð ÞðAcijSp tð Þ � S _p tÞð ÞT p tð Þ þ δ _p tð Þð Þ

< �
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð ÞpT tð ÞX ijp tð Þ

< 0,

ð56Þ

which in the consequence, modifies Eq. (42) as follows
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Scij ¼
Ai þ BiKjC
� �

Sþ S Ai þ BiKjC
� �T

þ X ij ∗

V � Sþ δ Ai þ BiKjC
� �

S �2δS

" #

< 0 : ð57Þ

Following the same way as in the proof of Proposition 2, then Eqs. (47) and (48) can be derived

from Eq. (57), while Eq. (55) implies Eq. (46). This concludes the proof.

This principle naturally exploits the affine TS model properties. Introducing the slack matrix

variable S into the LMIs, the system matrices are decoupled from the equivalent Lyapunov

matrix V. Note, to respect the conditions X1j ¼ X
T
ji , the set of inequalities Eqs. (47) and (48) have

to be constructed. In the opposite case, constructing a set on s2 LMIs, the constraint conditions

have to be set as X1j ¼ X
T
ij > 0, that is, the weighting matrices have to be symmetric positive

definite.

Corollary 1 Prescribing S = V and using the Schur complement property, then Eq. (57) implies

AcijSþ SA
T
cij þ X ij þ 0:5δSAT

cijδ
�1
S
�1
δAcijS < 0 ð58Þ

and for δ = 0 evidently, it has to be

AcijSþ SA
T
cij þ X ij < 0 : ð59Þ

Evidently, then Eqs. (47) and (48) imply

S Ai þ BiKiCð ÞT þ Ai þ BiKiCð ÞSþ X ii < 0 ; ð60Þ

Ai þ BiKjC
� �

S

2
þ

Aj þ BjKiC
� �

S

2
þ
S Ai þ BiKjC
� �T

2
þ
S Aj þ BjKiC
� �T

2
þ
X ij þ X ji

2
< 0 : ð61Þ

Considering S = W and comparing with Eqs. (23) and (24), then Eqs. (60) and (61) are the

extended set of inequalities Eqs. (23) and (24). The result is that the equilibrium of the fuzzy

system Eqs. (2) and (3), controlled by the fuzzy controller Eq. (5), is global asymptotically

stable if there exist a positive definite symmetric matrices S ∈ IRn � n, the matrices X1j ¼ X
T
ji

∈ IRr�n, and Yj ∈ IRr � n, H ∈ IRm � m such that

S ¼ S
T
> 0 ,

X11 X12 ⋯ X1s

X21 X22 ⋯ X2s

⋮ ⋮ ⋱ ⋮

Xs1 Xs2 ⋯ Xss

2

6

6

4

3

7

7

5

> 0 ; ð62Þ

AiSþ SA
T
i þ BiY iC þ C

T
Y
T
i B

T
i þ X ii < 0 ; ð63Þ

AiSþ SA
T
i

2
þ
AjSþ SA

T
j

2
þ
BiY jC þ C

T
Y
T
j B

T
i

2
þ
BjY iC þ C

T
Y
T
i B

T
j

2

X ij þ X ji

2
< 0 ; ð64Þ

CS ¼ HC ; ð65Þ
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for i = 1, 2, …, s, as well as i = 1, 2, …, s � 1, j = 1 + 1, i + 2, …, s, and hi(θ(t))hj(θ(t)) 6¼ 0.

Subsequently, if this set of LMIs is satisfied, the set of control law gain matrices is given as

Ki ¼ Y iH
�1

: ð66Þ

These LMIs form relaxed design conditions.

Note the derived results are linked to some existing finding when the design problem involves

additive performance requirements and the relaxed quadratic stability conditions of fuzzy

control systems (see, e.g., Refs. [11, 19]) are equivalently steered.

4. Forced mode in static output control

In practice, the plant with r = m (square plants) is often encountered, since in this case, it is

possible to associate with each output signal as a reference signal, which is expected to

influence this wanted output. Such mode, reflecting nonzero set working points, is called the

forced regime.

Definition 2 A forced regime for the TS fuzzy system Eqs. (2) and (3) with the TS fuzzy static output

controller Eq. (5) is foisted by the control policy

u tð Þ ¼
X

s

j¼1

hj θ tð Þð ÞKjy tð Þ þ
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð ÞW ijw tð Þ ; ð67Þ

where r =m,w(i) ∈ IRm is desired output signal vector, andWij ∈ IRm � m, i, j = 1, 2,… s is the set

of the signal gain matrices.

Lemma 1. The static decoupling challenge is solvable if (Ai, Bi) is stabilizable and

rank
Ai Bi

C 0

� �

¼ nþm : ð68Þ

Proof. If (Ai, Bi) is stabilizable, it is possible to find Kj such that matrices Acij = Ai + BiKjC are

Hurwitz. Assuming that for such Kj, it yields

rank
Ai Bi

C 0

� �

¼ rank
Ai Bi

C 0

� �

In 0
KjC Im

� �

¼ rank
Ai þ BiKjC Bi

C 0

� �

; ð69Þ

rank
Ai þ BiKjC Bi

C 0

� �

¼ rank
In 0

�C Ai þ BiKjC
� ��1

Im

� �

Ai þ BiKjC Bi

C 0

� �

; ð70Þ

respectively, then

rank
Ai Bi

C 0

� �

¼ rank
Ai þ BiKjC Bi

0 �C Ai þ BiKjC
� ��1

Bi

� �

¼ nþm ; ð71Þ

since rank(Ai + BiKjC) = n, and rankBi = m.
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Thus, evidently, it has to be satisfied

rank C Ai þ BiKjC
� ��1

Bi

� 	

¼ m : ð72Þ

This concludes the proof.

Theorem 2. To reach a forced regime for the TS fuzzy system Eqs. (2) and (3) with the TS fuzzy control

policy Eq. (67), the signal gain matrices have to take the forms

W ij ¼ C Ai þ BiKjC
� ��1

Bi

� 	�1
; ð73Þ

where Wij ∈ IRm � m, i, j = 1, 2, … s.

Proof. In a steady state, which corresponds to _q tð Þ ¼ 0, the equality yo = wo must hold, where

qo ∈ IRn, θo ∈ IRq, yo, wo ∈ IRm are the vectors of steady state values of q(t), θ(t), y(t), w(t),

respectively.

Substituting Eq. (67) in Eq. (2) yields the expression

X

s

i¼1

X

s

j¼1

hi θoð Þhj θoð Þ Ai þ BiKjC
� �

qo þ BiW ijwo

� �

¼ 0 ; ð74Þ

�
X

s

i¼1

X

s

j¼1

hi θoð Þhj θoð Þqo ¼ �qo ¼
X

s

i¼1

X

s

j¼1

hi θoð Þhj θoð Þ Ai þ BiKjC
� ��1

BiW ijwo ; ð75Þ

respectively, and it can be set

yo ¼ Cqo ¼ �
X

s

i¼1

X

s

j¼1

hi θoð Þhj θoð ÞC Ai þ BiKjC
� ��1

BiW ijwo ¼ Imwo : ð76Þ

Thus, Eq. (76) gives the solution

W�1
ij ¼ �C Ai þ BiKjC

� ��1
Bi ; ð77Þ

which implies Eq. (68). Hence, declaredly,

rankW j ¼ rank C Ai þ BiKjC
� ��1

Bi

� 	

¼ m : ð78Þ

This concludes the proof.

The forced regime is basically designed for constant references and is very closely related to

shift of origin. If the command value w(t) is changed “slowly enough,” the above scheme can

do a reasonable job of tracking, that is, making y(t) follow w(t) [23].
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5. Bi-proper dynamic output controller

The full order biproper dynamic output controller is defined by the equation

_p tð Þ ¼
X

s

j¼1

hj θ tð Þð Þ J jp tð Þ þ Ljy tð Þ
� 	

; ð79Þ

u tð Þ ¼
X

s

j¼1

hj θ tð Þð Þ Mjp tð Þ þN jy tð Þ
� �

; ð80Þ

where p(t) ∈ IRh is the vector of the controller state variables and the parameter matrix

K∘

j ¼
J j Lj

Mj N j

� �

; ð81Þ

K∘

j ∈ IR nþrð Þ� hþmð Þ, is considered in this block matrix structure with respect to the matrices

Jj ∈ IRh � h, Lj ∈ IRh � m, Mj ∈ IRr � h, and Nj ∈ IRr � m. For simplicity, the full order p = n

controller is considered in the following.

To analyze the stability of the closed-loop system structure with the dynamic output controller,

the closed-loop system description implies the following form

_q∘ tð Þ ¼
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð ÞA∘

cijq
∘ tð Þ ; ð82Þ

y∘ tð Þ ¼ I∘C∘q∘ tð Þ ; ð83Þ

where

q∘T tð Þ ¼ qT tð Þ pT tð Þ
� �

; ð84Þ

A∘

cij ¼
Ai þ BiN jC BiMj

LjC N j

� �

, I∘ ¼ 0 Im½ �, C∘ ¼
0 In
C 0

� �

ð85Þ

and A∘

cij ∈ IR2n�2n, I∘ ∈ IRm � (n + m), C∘
∈ IR(n + m) � 2n.

Introducing the notations

A∘

i ¼
Ai 0
0 0

� �

, B∘

i ¼
0 Bi

In 0

� �

; ð86Þ

where A∘

i ∈ IR2n�2n, B∘

i ∈ IR2n� nþrð Þ, the closed-loop system matrices take the equivalent forms
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A∘

cij ¼ A∘

i þ B∘

iK
∘

jC
∘
: ð87Þ

In the sequel, it is supposed that A∘

i ;B
∘

i

� �

is stabilizable, A∘

i ;C
∘

i

� �

is detectable [24].

Note this kind of controllers can be preferred in fault tolerant control (FTC) structures with

virtual actuators [25].

Theorem 3 (relaxed design conditions). The equilibrium of the fuzzy system Eqs. (2) and (3) controlled

by the fuzzy dynamic output controller Eqs. (79) and (80) is global asymptotically stable if there exist a

positive definite symmetric matrix S∘ ∈ IR2n � 2n, symmetric matrices X∘

ij ¼ X∘

ji ∈ IR2n�2n, a regular

matrix H∘
∈ IR(n + m) � (n + m)

, and matrices Y ∘

j ∈ IR nþrð Þ� nþmð Þ such that

S∘ ¼ S∘T > 0 ,

X∘

11 X∘

12 ⋯ X∘

1s

X∘

21 X∘

22 ⋯ X∘

2s

⋮ ⋮ ⋱ ⋮

X∘

s1 X∘

s2 ⋯ X∘

ss

2

6

6

4

3

7

7

5

> 0 ; ð88Þ

A∘

iS
∘ þ S∘A∘T

i þ B∘

iY
∘

iC
∘ þ C∘TY ∘T

i B∘T
i þ X∘

ii < 0 ; ð89Þ

A∘

i þ A∘

j

2
S∘ þ S∘

A∘T
i þ A∘T

j

2
þ
B∘

iY
∘

j þ B∘

jY
∘

i

2
C∘ þ C∘T

Y ∘T
j B∘T

i þ Y ∘T
i B∘T

j

2
þ
X∘

ij þ X∘

ji

2
< 0 ; ð90Þ

C∘S∘ ¼ H∘C∘
; ð91Þ

for all i ∈ 〈1, 2,… s〉, i < j ≤ s, i, j ∈ 〈1, 2,… s〉, respectively, and hi(θ(t))hj(θ(t)) 6¼ 0.

When the above conditions hold, the set of control law gain matrices are given as

K∘

j ¼ Y∘

j H
∘ð Þ�1, j ¼ 1, 2,…, s ð92Þ

Proof. Defining the Lyapunov function as follows

ν q∘ tð Þð Þ ¼ q∘T tð ÞP∘q∘ tð Þ > 0 ; ð93Þ

where P∘
∈ IR2n � 2n is a positive definite matrix, then the time derivative of ν(q(t)) along a

closed-loop system trajectory is

_ν q∘ tð Þð Þ ¼ _q∘T tð ÞP∘q∘ tð Þ þ q∘T tð ÞP∘
_q∘ tð Þ < 0 : ð94Þ

Substituting Eq. (87), then Eq. (94) implies

_ν q∘ tð Þð Þ ¼
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð Þq∘T tð ÞP∘

cijq
∘ tð Þ < 0 ; ð95Þ

P∘

cij ¼ P∘A∘

cij þ A∘T
cijP

∘
: ð96Þ

Since P∘ is positive definite, the state coordinate transform can now be defined as
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q∘ tð Þ ¼ S∘p∘ tð Þ , S∘ ¼ P∘ð Þ�1
; ð97Þ

and subsequently Eqs. (95) and (96) can be rewritten as

_ν p∘ tð Þð Þ ¼
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð Þp∘T tð ÞS⋄cijp
∘ tð Þ < 0 ; ð98Þ

S⋄cij ¼ A∘

cijS
∘ þ S∘A∘T

cij : ð99Þ

Introducing, analogously to Eqs. (54) and (55), the positive term

νν p∘ tð Þð Þ ¼ p∘T tð ÞZ∘
θ tð Þð Þp∘ tð Þ > 0 ; ð100Þ

defined by the set of matrices X∘

ij ¼ X∘T
ji ∈ IRn�n, i, j ¼ 1, 2,…, s

n o

in the structure Eq. (88) such

that

Z∘
θ tð Þð Þ ¼ Z∘T

θ tð Þð Þ ¼
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð ÞX∘

ij > 0 ; ð101Þ

then, in the sense of Krasovskii theorem, it can be set up

_ν p∘ tð Þð Þ ¼
X

s

i¼1

X

s

j¼1

hi θ tð Þð Þhj θ tð Þð Þp∘T tð ÞS∘cijp
∘ tð Þ < 0 ; ð102Þ

where

S∘cij ¼ A∘

cijS
∘ þ S∘A∘T

cij þ X∘

ij : ð103Þ

Therefore, Eq. (102) can be factorized as follows

_ν p∘ tð Þð Þ ¼
X

s

i¼1

h2i θ tð Þð Þp∘T tð ÞS∘ciip
∘ tð Þ þ 2

X

s�1

i¼1

X

s

j¼iþ1

hi θ tð Þð Þhj θ tð Þð Þp∘T tð Þ
S∘cij þ S∘cji

2
p∘ tð Þ < 0 ; ð104Þ

which, using Eq. (87), leads to the following sets of inequalities

A∘

iS
∘ þ S∘A∘T

i þ B∘

iK
∘

jC
∘S∘ þ S∘C∘TK∘T

j B∘T
i þ X∘

ij < 0 ; ð105Þ

A∘

i þ B∘

iK
∘

jC
∘

� 	

S∘

2
þ

A∘

j þ B∘

jK
∘

iC
∘

� 	

S∘

2
þ
S∘ A∘

i þ B∘

iK
∘

jC
∘

� 	T

2

þ
S∘ A∘

j þ B∘

jK
∘

iC
∘

� 	T

2
þ
X∘

ij þ X∘

ji

2
< 0 ;

ð106Þ

for i = 1, 2,…, s, as well as i = 1, 2,…, s � 1, j = 1 + 1, i + 2,…, s, and hi(θ(t))hj(θ(t)) 6¼ 0.
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Analyzing the product B∘

iK
∘

jC
∘
S
∘
, it can set

B
∘

iK
∘

jC
∘
S
∘ ¼ B

∘

iK
∘

jH
∘
H

∘ð Þ�1
C
∘
S
∘ ¼ B

∘

iY
∘

jC
∘
; ð107Þ

where

K
∘

jH
∘ ¼ Y

∘

j , H
∘ð Þ�1

C
∘ ¼ C

∘
S
∘ð Þ�1 ð108Þ

and H
∘
∈ IR(m + n) � (m + n) is a regular square matrix. Thus, with Eq. (108), then Eqs. (105) and

(106) implies Eqs. (89) and (90) and Eq. (108) gives Eq. (91). This concludes the proof.

This theorem provides the sufficient condition under LMIs and LME formulations for the

synthesis of the dynamic output controller reflecting the membership function properties.

For the same reasons as in Theorem 1, the following theorem is proven.

Theorem 4 (enhanced relaxed design conditions). The equilibrium of the fuzzy system Eqs. (2) and (3)

controlled by the fuzzy dynamic output controller Eqs. (79) and (80) is global asymptotically stable if for

given a positive δ ∈ IR there exist positive definite symmetric matrices V∘, S∘ ∈ IRn � n, and matrices

Y
∘

j ∈ IRr�n, H∘
∈ IRm � m such that

S
∘ ¼ S

∘T
> 0 , V

∘ ¼ V
∘T

> 0 ,

X
∘

11 X
∘

12 ⋯ X
∘

1s

X
∘

21 X
∘

22 ⋯ X
∘

2s

⋮ ⋮ ⋱ ⋮

X
∘

s1 X
∘

s2 ⋯ X
∘

ss

2

6

6

4

3

7

7

5

> 0 ; ð109Þ

A
∘

iS
∘ þ S

∘
A

∘T
i þ B

∘

iY
∘

iC
∘ þ C

∘T
Y
∘T
i B

∘T
i ∗

V
∘ � S

∘ þ δA
∘

iS
∘ þ δB

∘

iY
∘

iC
∘ �2δS∘

� �

< 0 ; ð110Þ

Φ
∘

ij ∗

V
∘ � S

∘ þ δ
A

∘

iS
∘ þ A

∘

jS
∘

2
þ δ

B
∘

iY
∘

j þ B
∘

jY
∘

i

2
C
∘ �2δS∘

2

4

3

5 < 0 ; ð111Þ

C
∘
S
∘ ¼ H

∘
C
∘
; ð112Þ

for i = 1, 2,…, s, as well as i = 1, 2,…, s � 1, j = 1 + 1, i + 2,…, s, hi(θ(t))hj(θ(t)) 6¼ 0, and

Φ
∘

ij ¼
A

∘

iS
∘ þ S

∘
A

∘T
i

2
þ
A

∘

jS
∘ þ S

∘
A

∘T
j

2
þ
B
∘

iY
∘

jC
∘ þ C

∘T
Y
∘T
j B

∘T
i

2
þ
B
∘

jY
∘

iC
∘ þ C

∘T
Y
∘T
i B

∘T
j

2
: ð113Þ

When the above conditions hold, the control law gain matrices are given as

K
∘

i ¼ Y
∘

i H
∘ð Þ�1

: ð114Þ

Proof. Since Eq. (82), Eq. (87) takes formally the same structure as Eqs. (6) and (7), following the

same way as in the proof of Theorem 1, the conditions given in Theorem 4 can be obtained.

From this reason, the proof is omitted. Compare, for example, Ref. [17].

Following the presented results, it is evident that the standard as well as the enhanced conditions

for biproper dynamic output controller design can be derived from Theorem 3 and Theorem 4 in

a simple way.
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6. Illustrative example

The nonlinear dynamics of the system is represented by TS model with s = 3 and the system

model parameters [20]

A1 ¼

�1:0522 �1:8666 0:5102

�0:4380 �5:4335 0:9205

�0:5522 0:1334 �0:4898

2

6

4

3

7

5
,A2 ¼

�1:0565 �1:8661 0:5116

�0:4380 �5:4359 0:9214

�0:5565 0:1339 �0:4884

2

6

4

3

7

5
,

A3 ¼

�1:0602 �1:8657 0:5133

�0:4381 �5:4353 0:9216

�0:5602 0:1343 �0:4867

2

6

4

3

7

5
,B ¼

�0:1765 0:0000

0:0000 0:0000

0:1176 0:4721

2

6

4

3

7

5
,C ¼

1 0 0

0 1 0

" #

:

To the statevectorq(t) are associated thepremisevariables and themembership functions as follows

θ tð Þ ¼
θ1 tð Þ
θ2 tð Þ
θ3 tð Þ

2

4

3

5,θi tð Þ ¼
θ1 tð Þ if q1 tð Þ is about 2:5,
θ2 tð Þ if q1 tð Þ is about 0,
θ3 tð Þ if q1 tð Þ is about � 2:5,

h1 θ2 tð Þð Þ ¼ 1�
1

2:5
jθ2 tð Þ � 2:5j

h2 θ1 tð Þð Þ ¼ 1�
1

2:5
jθ1 tð Þj

h3 θ3 tð Þð Þ ¼ 1�
1

2:5
jθ3 tð Þ þ 2:5j

8

>

>

>

>

>

<

>

>

>

>

>

:

while the generalized premise variable is θ(t) = q1(t).

Thus, solving Eqs. (46)–(49) for prescribed δ = 1.2 with respect to the LMI matrix variables S, V

H, Yi, j = 1, 2, 3, and Xij, i, j = 1, 2, 3 using Self–Dual–Minimization (SeDuMi) package for

Matlab [26], then the feedback gain matrix design problem was feasible with the results

S ¼

0:3899 �0:0102 �0:0000

�0:0102 0:1596 �0:0000

�0:0000 �0:0000 0:4099

2

6

4

3

7

5
,V ¼

0:9280 0:1235 �0:1525

0:1235 1:1533 �0:3979

�0:1525 �0:3979 0:7574

2

6

4

3

7

5
,

H ¼
0:3899 �0:0102

�0:0102 0:1596

� �

,

X ¼

0:4567 0:0983 �0:0517 0:0694 0:0463 �0:0174 0:0694 0:0463 �0:0174

0:0983 0:7153 �0:1118 0:0463 0:1906 �0:0441 0:0463 0:1905 �0:0440

�0:0517 �0:1118 0:1883 �0:0175 �0:0442 0:0143 �0:0175 �0:0442 0:0142

0:0694 0:0463 �0:0175 0:4573 0:0981 �0:0515 0:0695 0:0463 �0:0174

0:0463 0:1906 �0:0442 0:0981 0:7154 �0:1115 0:0463 0:1905 �0:0440

�0:0174 �0:0441 0:0143 �0:0515 �0:1115 0:1876 �0:0175 �0:0441 0:0142

0:0694 0:0463 �0:0175 0:0695 0:0463 �0:0175 0:4578 0:0978 �0:0514

0:0463 0:1905 �0:0442 0:0463 0:1905 �0:0441 0:0978 0:7152 �0:1111

�0:0174 �0:0440 0:0142 �0:0174 �0:0440 0:0142 �0:0514 �0:1111 0:1868

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

Y1 ¼
0:5607 �0:4590

0:1544 �0:1191

� �

,Y2 ¼
0:5558 �0:4577

0:1579 �0:1207

� �

,Y3 ¼
0:5518 �0:4566

0:1606 �0:1222

� �

;

Substituting the above parameters into Eq. (51) to solve the controller parameters, the follow-

ing gain matrices are obtained
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K1 ¼

1:3653 �2:7895

0:3772 �0:7224

" #

,K2 ¼

1:3530 �2:7823

0:3860 �0:7318

" #

,K3 ¼

1:3428 �2:7761

0:3925 �0:7406

" #

,

Ac22 ¼

�1:2953 �1:3750 0:5116

�0:4380 �5:4359 0:9214

�0:2152 �0:5388 �0:4884

2

6

4

3

7

5
,Ac31 ¼

�1:3012 �1:3734 0:5133

�0:4381 �5:4353 0:9216

�0:2216 �0:5348 �0:4867

2

6

4

3

7

5
;

For simplicity, other closed-loop matrices of subsystem dynamics are not listed here.

Since the diagonal elements of Acij, i, j = 1, 2, 3, are dominant, in terms of Gerschgorin

theorem [27, 28], all eigenvalues of Acij are real, resulting in the aperiodic dynamics, that is,

Figure 1. TS fuzzy static output control structure in a forced mode.
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ñ Ac11ð Þ ¼ �0:6751, � 1:0816, � 5:4598f g , ñ Ac21ð Þ ¼ �0:6756, � 1:0842, � 5:4620f g ,

ñ Ac31ð Þ ¼ �0:6757, � 1:0861, � 5:4613f g , ñ Ac12ð Þ ¼ �0:6745, � 1:0805, � 5:4593f g ,

ñ Ac22ð Þ ¼ �0:6750, � 1:0831, � 5:4615f g , ñ Ac32ð Þ ¼ �0:6751, � 1:0851, � 5:4609f g ,

ñ Ac13ð Þ ¼ �0:6742, � 1:0795, � 5:4588f g , ñ Ac23ð Þ ¼ �0:6748, � 1:0820, � 5:4610f g ,

ñ Ac33ð Þ ¼ �0:6748, � 1:0840, � 5:4604f g :

Figure 1 gives the associated TS fuzzy static output control structure in a forced mode.

For Eqs. (88)–(91), it can find the following feasible solutions by using the given design procedure

S
∘ ¼

0:6194 �0:0614 0:0000 0:0000 0:0000 0:0000

�0:0614 0:1305 0:0000 0:0000 0:0000 0:0000

0:0000 0:0000 0:8724 0:0000 0:0000 0:0000

0:0000 0:0000 0:0000 0:7066 0:0000 0:0000

0:0000 0:0000 0:0000 0:0000 0:7066 0:0000

0:0000 0:0000 0:0000 0:0000 0:0000 0:7066

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

,

H
∘ ¼

0:7066 0:0000 0:0000 0:0000 0:0000

0:0000 0:7066 0:0000 0:0000 0:0000

0:0000 0:0000 0:7066 0:0000 0:0000

0:0000 0:0000 0:0000 0:6808 �0:0614

0:0000 0:0000 0:0000 0:4889 0:0691

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

,

Y1 ¼

�0:5668 0:0000 0:0000 0:0000 0:0000

0:0000 �0:5668 0:0000 �0:0001 0:0000

0:0000 0:0000 �0:5667 0:0000 0:0000

0:0000 0:0000 0:0000 0:3612 �0:2783

0:0000 0:0000 0:0000 0:7396 �1:1397

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

,

Y2 ¼

�0:5668 0:0000 0:0000 0:0000 0:0000

0:0000 �0:5668 0:0000 �0:0001 0:0000

0:0000 0:0000 �0:5667 0:0000 0:0000

0:0000 0:0000 0:0000 0:3615 �0:2784

0:0000 0:0000 0:0000 0:7397 �1:1397

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

,

Y3 ¼

�0:5667 �0:0001 0:0000 0:0000 0:0000

�0:0001 �0:5667 0:0000 �0:0001 0:0000

0:0000 0:0000 �0:5668 0:0000 0:0000

0:0000 0:0000 0:0000 0:3519 �0:2859

�0:0001 0:0000 �0:0001 0:7486 �1:1421

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

and, computing the biproper dynamic output controller parameters, then
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J1 ¼

�0:8022 0:0000 0:0000

0:0000 �0:8021 0:0000

0:0000 0:0000 �0:8021

2

6

4

3

7

5
, L1 ¼ 10�3

0:0394 0:0048

�0:3143 0:3318

0:0221 �0:0508

2

6

4

3

7

5
,

M1 ¼ 10�4
�0:2041 0:1504 �0:0600

�0:5318 0:0915 �0:3275

" #

, N1 ¼
2:0889 �2:1701

7:8914 �9:4765

" #

,

J2 ¼

�0:8022 0:0001 0:0000

0:0001 �0:8022 0:0000

0:0000 0:0000 �0:8021

2

6

4

3

7

5
, L2 ¼ 10�3

�0:2009 0:3531

0:0453 �0:2017

�0:1903 0:1765

2

6

4

3

7

5
,

M2 ¼ 10�4
�0:2022 0:1779 0:1796

�0:4575 0:0413 0:2985

" #

, N2 ¼
2:0897 �2:1707

7:8915 �9:4766

" #

,

J3 ¼

�0:8020 �0:0001 0:0000

�0:0001 �0:8021 0:0000

0:0000 0:0000 �0:8022

2

6

4

3

7

5
, L3 ¼ 10�3

�0:0641 0:0139

�0:1516 0:2382

�0:2116 0:2630

2

6

4

3

7

5
,

M3 ¼ 10�4
�0:0135 0:0020 �0:0238

�0:0917 0:0218 �0:1102

" #

, N3 ¼
2:1286 �2:2445

7:9148 �9:4907

" #

:

It is evident that all matrices Ji, i = 1.2.3 are Hurwitz, which rise up a TS fuzzy stable dynamic

output controller, and based on the solutions obtained, the TS fuzzy dynamic controller can be

designed via the concept of PDC.

Verifying the closed-loop stability, it can compute the eigenvalue spectra as follows

ñ Ac11ð Þ ¼ �0:8022, � 0:8021, � 0:8021, � 4:3774, � 1:2919� 0:2804 if g ,

ñ Ac21ð Þ ¼ �0:8022, � 0:8021, � 0:8021, � 4:3774, � 1:2919� 0:2804 if g ,

ñ Ac21ð Þ ¼ �0:8022, � 0:8021, � 0:8021, � 4:3774, � 1:2919� 0:2804 if g ,

ñ Ac12ð Þ ¼ �0:8022, � 0:8021, � 0:8021, � 4:3774, � 1:2919� 0:2805 if g ,

ñ Ac22ð Þ ¼ �0:8022, � 0:8021, � 0:8021, � 4:3774, � 1:2919� 0:2805 if g ,

ñ Ac32ð Þ ¼ �0:8022, � 0:8021, � 0:8021, � 4:3788, � 1:2946� 0:2963 if g ,

ñ Ac13ð Þ ¼ �0:8020, � 0:8023, � 0:8023, � 4:3713, � 1:2919� 0:2797 if g ,

ñ Ac23ð Þ ¼ �0:8020, � 0:8023, � 0:8023, � 4:3713, � 1:2919� 0:2797 if g ,

ñ Ac33ð Þ ¼ �0:8020, � 0:8023, � 0:8023, � 4:3728, � 1:2945� 0:2958 if g :

7. Concluding remarks

New approach for static and dynamic output feedback control design, taking into account the

affine properties of the TS fuzzy model structure, is presented in the chapter. Applying the

fuzzy output control schemes relating to the parallel-distributed output compensators, the

method presented methods that significantly reduces the conservativeness in the control
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design conditions. Sufficient existence conditions of the both output controller realization,

manipulating the global stability of the system, implies the parallel decentralized control

framework which stabilizes the nonlinear system in the sense of Lyapunov, and the design of

controller parameters, resulting directly from these conditions, is a feasible numerical problem.

An additional benefit of the method is that controllers use minimum feedback information

with respect to desired system output and the approach is flexible enough to allow the

inclusion of additional design conditions. The validity and applicability of the approach is

demonstrated through numerical design examples.
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