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Abstract

Graphene paper as a new form of graphene-supported nanomaterials has received world-
wide attention since its first report in 2007. Due to their high flexibility, lightweight and 
good electrical conductivity, graphene papers have demonstrated the promising poten-
tial for crucial applications in electrochemical sensors and energy technologies among 
others. In this chapter, we present some examples to overview recent advances in the 
research and development of two-dimensional (2D) graphene papers as new materials 
for electrochemical sensors. The chapter covers the design, fabrication, functionaliza-
tion and application evaluations of graphene papers. We first summarize the mainstream 
methods for fabrication of graphene papers/membranes, with the focus on chemical 
vapour deposition techniques and solution-processing assembly approaches. A large 
portion of this chapter is then devoted to the highlights of specific functionalization of 
graphene papers with polymer and nanoscale functional building blocks for electrochem-
ical-sensing purposes. In terms of electrochemical-sensing applications, the emphasis is 
on  enzyme-graphene and nanoparticle-graphene paper-based systems for the detection 
of glucose. We finally conclude this chapter with brief remarks and outlook.

Keywords: graphene paper, 2D-layered nanomaterials, electrochemical sensor, metal 
oxide, polymer, nanoparticle

1. Introduction

Precise monitoring of chemical or biological processes is of extreme importance for medical 
and biological applications. Electrochemical sensors can ideally fulfil that goal by convert-
ing a chemical or a biological response into a processable and quantifiable signal. In the past 
two decades, intensive research and development of electrochemical sensors have enabled 
to fabricate different types of devices. After the development of many successful commercial 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



electrochemical sensors in the classic configurations, currently there is a notable transition 
and increasing demands for the development of flexible and wearable sensors. The develop-

ment of flexible electrochemical sensors depends crucially on the discovery and preparation 
of free-standing and flexible new materials.

Flexible electronic devices, especially flexible electrochemical sensors, have become an ad -
vanced technology with the aim at solving some tremendous real-world challenges, such as 
in situ sensing for health and environmental problems. Compared with conventional devices, 
flexible electrode-based devices are versatile and highly adaptive. For example, such devices 
occupy less space and could be compatible with any shape-targeted systems such as human 
body and rough or irregular-shaped substrates. Ideal flexible electrodes should provide high 
conductivity for sensing electrons and thermal energy, high stability and excellent mechani-
cal strength. In this regard, carbon nanotube (CNT)-based devices had dominated research 
and development attention before [1, 2], because of the unique one-dimensional nano-channel 
mechanical strength. However, one has come to realize that CNT-based flexible electrodes are 
largely limited to fundamental interests because of several serious technical challenges, such 
as high cost of producing CNTs, complex process of obtaining high-density vertically aligned 
CNTs, chemical and biocompatibility concerns and difficulties in achieving large-scale produc-

tion, which can hardly overcome. On the other hand, the recent rise of synthesis and processing 
of two-dimensional (2D) graphene and its derivatives offer a new and promising opportunity 
for developing a novel class of flexible electrodes most likely with required physiochemi-
cal properties. Graphene paper, as one of the derivatives from graphene or graphene oxide  
(GO)-supported building blocks, was introduced by Ruoff and co-workers in 2007 [3]. Due 
to their remarkable mechanical property, tunable conductivity and versatile functionality, 
graphene papers could promote the research and development of new-generation flexible elec-

trode-based sensors and other electronic devices. This chapter aims at highlighting some recent 
examples using graphene papers as electrode materials for developing flexible and ultrasensitive 
electrochemical sensors.

2. Synthesis of graphene paper-based electrodes

Thanks to the intrinsic planar structure of graphene sheets, it is feasible to effectively control 
the periodic alignment of graphene nanosheets into 2D graphene papers/films/membranes 
through ionic interaction, hydrophobic effect, hydrogen bonding and/or π-π stacking [4, 5]. 
The resulting 2D graphene materials not only retain some of the key properties of individual 
graphene sheets but also create new or collective properties resulting from their unique struc-

ture. Moreover, a wide range of functionalized materials, such as metal, polymer, metal oxide 
(MO) and other semiconductors, can be loaded into 2D-layered GO papers, endowing the 
graphene papers with multiple functionalities required by specific applications [4–8]. Given 
the excellent physicochemical properties of graphene paper and tunable functional groups, 
these 2D architectures have been widely studied for their applications in water purification, 
biomimetics, sensors, flexible electrodes, energy conversion and storage and optoelectronic 
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devices [7–11]. As outlined below, several crucial methods have been developed to assemble 
the layered structure of graphene papers.

2.1. Chemical vapour deposition

Chemical vapour deposition (CVD) is a chemical process used to produce high quality, high 
performance and solid materials. The CVD technique is a direct and promising method for 
the preparation of large-scale, near-perfect graphene films on various substrates. The gra-

phene films obtained by CVD methods displayed high flexibility, transparency and electrical 
conductivity [12, 13], which is attractive for various electronic devices. Commonly, transition 
metals, such as Ge [14, 15], Ni [16, 17], Cu [18, 19], Rh [20–22] and Co [23, 24], are used as 
the substrates for the CVD growth of graphene films. Due to very low carbon solubility in 
Cu, ease of etching and feasibility of high-quality graphene transfer, Cu has emerged as a 
favoured substrate chosen mostly for the growth of large-area graphene films [25], which was 
first introduced by Ruoff’s research group in 2009 [13]. Large-area and single-layer graphene 
films with a low percentage (less than 5%) of the areas having few layers can be deposited 
on copper substrates by CVD process using methane as a carbon source (Figure 1a). The 
graphene film was robust enough to be transferred onto Si/SiO2 substrates for fabrication 
of dual-gated field-effect transistors. They also demonstrated that as-synthesized graphene 
films could be transferred to other substrates (Figure 1b and c). To meet some special require-

ments, non-metal materials, such as Si [14, 15], SiO2 [26–28], BN [29, 30] and Si
3
N

4
 [31, 32], 

were also used as substrates. However, the non-metal substrates showed the drawback limi-
tations including slow growth rate and discontinuous size. For the CVD growth of graphene 
films on a metal substrate, it is necessary to mention that a transfer step for the following inte-

gration of graphene film into any solid-state electronic devices is usually required. Given the 
polycrystalline nature of the film and roughness of metal foils, industrial roll-to-roll transfer 
technology could be employed. Moreover, free-standing and element-doped (e.g. N and S) [33] 

graphene films can also be prepared directly by the CVD technique. However, the conven-

tional etching method could be satisfied at laboratory scales, but it is very challenging for the 
large-scale preparation of high-quality graphene films arising from high-handling skills and 
time-consuming setback.

Figure 1. (a) SEM image of a graphene film on a copper foil after 30 min CVD growth. (b and c) Digital photographs of 
the CVD graphene film transferred onto a SiO2/Si substrate and a glass plate, respectively [13].
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2.2. Solution-processed assembly

Owing to oxygen containing polar functional groups existing on the surface and at the edges, 
GO is well dispersible in many polar solvents including water [34]. This structural feature 
and chemical capability facilitate GO as a favourite starting material for the assembly of vari-
ous graphene architectures such as graphene papers and three-dimensional (3D) graphene 
sponges.

2.2.1. Vacuum filtration

To build a well-organized 2D macroscopic structure using single-layer GO sheets as a start 
material, Ruoff’s group introduced a facile method for the fabrication of graphene paper. That 
is, GO sheets could be assembled into a paper-like material under a directional flow. Vacuum 
filtration of colloidal dispersions of GO sheets through an anodic membrane filter yielded 
free-standing GO papers with tunable thickness and mechanical property in a dried state. The 
fracture edges of a GO paper sample were imaged by scanning electron microscopy (SEM) 
to reveal its well-ordered layers over almost the entire cross section of the paper sample. The 
sandwiched structure between less densely packed ‘wavy’ skin layers was approximately 100–
200 nm thick. In a typical GO paper specimen, the layer-to-layer distance (d-spacing) was mea-

sured as approximately 0.83 nm by the X-ray diffraction (XRD) spectrum [3]. As a result of its 
facile processability, vacuum filtration has been popularly used to prepare free-standing gra-

phene papers. For example, cellular graphene paper was prepared by the following three steps 
[35]. Firstly, direct filtration of partially reduced GO with ascorbic acid mixture solution was 
performed. Then, the vacuum was disconnected immediately once no free dispersion was left 
on the filter paper and both the filter membrane and partially reduced GO (rGO) paper were 
vertically immersed into a liquid nitrogen bath for a rapid freezing about 30 min. Finally, gra-

phene paper was further reduced by thermal reduction to enhance its electrical  conductivity. 
From low-magnification SEM image of the as-prepared porous graphene paper (Figure 2a), the 
paper has a thickness of about 12.6 μm with continuous open networks. Thanks to  ice-crystal 
templating, graphene paper also displayed honeycomb-like structures with the pore sizes 
varying in the range of hundreds of nanometres to several micrometres, as shown by the high-
magnification SEM images (Figure 2c and d). The porous walls consisting of thin layers of 
graphene sheets were also clearly imaged by both SEM and transmission electron microscopy 
(TEM) (Figure 2a, e and f). High-resolution TEM (HRTEM) images further revealed that there 
are many crumpled 5–10 nm graphene sheets stacked on the surface of the graphene walls that 
are several tens of nanometres thick [35]. Our group has used GO as a starting material and 
further functionalized it with Prussian Blue (PB) nanoparticles (PBNPs) [36] or PB-shelled Au 
nanoparticles, Au@PBNPs [37] to develop a new kind of free-standing and flexible graphene 
papers. These PB-functionalized rGO papers are highly flexible and electroactive, and they 
were tested for use as disposable non-enzymatic electrochemical sensors.

2.2.2. Layer-by-layer assembly

Self-assembly is a popular approach towards cost-effective preparation of thin films, which 
has also been applied for fabricating multilayer graphene papers with tunable composition 
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and architecture [8, 10, 38]. The driving forces involved in layer-by-layer (LBL) assembly gen-

erally include hydrogen bonding, electrostatic interaction and covalent bonding [8, 39, 40]. 
Zou and Kim reported a diffusion-driven LBL assembly process to prepare graphene-based 
architecture and demonstrated its application for the construction of GO sheets into various 
3D macrostructures [41]. This assembly process is driven by the complexation of the negatively 
charged GO sheets and positively charged branched polyethylenimine (b-PEI) at a defined 
interface. The key step for assembling GO sheets to GO paper is that the diffusion of b-PEI 
molecules allows the complex to continuously grow into foam-like frameworks with tunable 
porosity. In a typical experimental process as shown in Figure 3, a small amount of the b-PEI 
solution was first dropped on certain substrates, for example, a glass plate (Figure 3a) or a filter 
paper (Figure 3e). Then, the b-PEI containing substrate was immersed in a GO suspension and 
left on a shaker for 24 h. After the formation of films, the samples were purified by dialysis in 
distilled (DI) water for 2–3 days. In the final step, the GO film was dried by normal heating 
or by freeze-drying. To their surprise, the GO film obtained by heating dry is a dense, tightly 
packed multilayer film (Figure 3d), which can be explained by the surface tension of water 
pulling the GO sheets together during evaporation. By contrast, freeze-drying the sample min-

imized such effects and helped preserve the porous structure (Figure 3c). Furthermore, the 
pore size could be adjusted by using different solvents [41].

Figure 2. Structural features of rGO paper: (a) Cross-sectional SEM image of rGO paper after complete reduction. 
(b) Digital photograph of as-prepared rGO paper. (c and d) High-resolution cross-sectional SEM images of rGO paper. 
(e) TEM image of a part of graphene paper. (f–h) HRTEM images of the porous walls in the graphene paper. The inset 
image in (f) is the selected area diffraction pattern of the porous wall [35].
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2.2.3. Other solution processing methods

Besides the methods mentioned above, solution casting, spin coating, spray coating and dip 
coating [42–45] have also been explored for the preparation of graphene papers or films. For 
example, GO or rGO solution was deposited on poly(ethylene terephthalate) (PET), SiO2/
P++Si and Au via various techniques to prepare thin films [46–49], although it is still a chal-
lenge to obtain graphene films with uniform thickness and few wrinkles by such type of 
approaches.

2.3. Electrophoretic deposition

Common synthetic approaches for the fabrication of graphene papers often use harsh chemi-
cals and require complex pathways. Furthermore, the subsequent transfer process of the gra-

phene paper onto a specific substrate even makes the overall process more complicated and 
time-consuming. In contrast to these concerns, electrophoretic deposition (EPD) process is use-

ful for applying materials to any electrically conductive surface. With the advantages of low 
cost, easy handling and suitability for industry-scale production, EPD has been an effective 
technique to deposit graphene on conductive substrates for a wide range of applications [50]. 
A number of reports have demonstrated the deposition of GO on various substrates for the 
fabrication of suitable electrodes via EPD process, such as Cu and Ni foams, ITO, stainless 
steel and Pt [50, 51]. As a representative example, Liu et al. developed a two-step procedure, 

Figure 3. (a) A drop of b-PEI solution was first deposited onto the substrate. (b) When the glass slide was immersed in a 
GO suspension, a thick film developed over the b-PEI covered area. (c) Foam-like structured 3D graphene paper sample 
obtained by freeze-drying is revealed by the SEM image. (d) Compact structured graphene paper was prepared by oven 
drying. (e) A large-area (8 cm × 10 cm) film prepared on a filter paper is photographed. (f and g) This shows the graphene 
film formed only on the area to which b-PEI was dropped, allowing to pattern the film into a pre-designed shape such 
as a simplified face shown in (g) [41].
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which involved EPD of GO and its subsequent transformation of GO to rGO by in situ electro-
chemical reduction. More recently, a single-step preparation procedure of metal-supported 
rGO film was reported. A schematic of the electrochemical setup used for the preparation of 
stainless steel-supported rGO is shown in Figure 4 [52]. The wireless graphite was oxidized 
into a colloidal dispersion of GO due to the effect of an electric field, and GO nanosheets 
migrated electrophoretically towards the anodic side of the electrochemical cell where they 
were deposited by van der Waals forces in the form of rGO film (d(002) = 0.395 nm). This method 
introduced a new low-cost, straightforward, up-scalable and green approach for high-yield 
production of large-area rGO thin films [52].

2.4. Other methods

In addition, a number of other approaches have also been reported for constructing graphene 
papers/films with hierarchical structures and high electrochemical or physical performances. 
For instance, Cao et al. constructed graphene films with high conductivity and mechani-
cal stability via reduction-oxidation reactions between GO and active-metal substrates [53]. 
Honeycomb-structured graphene films were prepared by the template method [54, 55]. 
Bubble-like structured graphene film was also fabricated using monodispersed poly(methyl 
methacrylate) (PMAA) latex spheres as the sacrificial templates [56].

Figure 4. In a typical synthesis process, a voltage bias is applied between two stainless steel-feeding electrodes inducing 
a polarization of the wireless graphite. On the cathodic pole, water reduction reaction takes place, whereas GO, resulting 
from the oxidation of the anodic side of the graphite rod, migrates electrophoretically towards the positive stainless steel 
to be deposited in the form of a uniform light yellow thin film consisting of rGO nanosheets [52].
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3. Structural and morphologic characterization

As-synthesized graphene papers are a very promising candidate for energy device and sensor 
applications. Structural characterization is of paramount importance for understanding the 
correlation between their nanostructures and performances. Therefore, some advanced tech-

niques are intensively used to characterize graphene paper-based materials, such as atomic 
force microscopy (AFM), Raman spectroscopy, Fourier transform infrared spectroscopy 
(FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX) 
and thermogravimetric analysis (TGA). In particular, electronic microscopies (SEM and TEM) 
are among the most powerful techniques to reveal the structural details of nanostructured 

graphene papers. For example, a combination of TEM and SEM was used to systematically 
characterize Au@PBNPs hybrid graphene papers. It is shown that Au@PB NPs were well dis-

tributed on graphene sheet surface (Figure 5), and cross-sectional SEM images indicated that 
the Au@PB NPs were successfully doped into the interlayers of the graphene paper to form a 
layer-by-layer sandwiched structure (Figure 6) [37].

Figure 6. Cross-sectional SEM images of Au@PBNP-functionalized rGO papers with various magnifications [37].

Figure 5. TEM images of different types of nanoparticles in the free form and in the immobilized form on GO sheets: (a) 
AuNPs; (b) core/shell Au@PBNPs and (c) core/shell Au@PBNPs on GO sheets [37].
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4. Functionalization of graphene papers

The preparation and applications of graphene paper-based materials are attracting huge 
interests due to their unique electronic, optical, magnetic, thermal and mechanical properties.  
Compared to pure graphene papers, functionalized graphene papers or membranes can offer 
notable advantages ascribed to their hybrid structure, specific functionality and improved 
physicochemical properties. In general, graphene papers could be functionalized with a 
variety of chemical components such as metallic materials, metal oxides, polymers and 
supramolecular units, via various methods. Here, we only focus on three types of functional 
derivation, that is, metallic nanostructures, metal compounds and polymers, which are in 
favour of electrochemical-sensing applications.

4.1. Metallic nanostructures

Nanostructured metals are attracting intensive interests from the scientific community, 
owing to their fabulous properties and diversity of applications [57, 58]. A number of studies 
have explored the cooperation and synergistic effects between nanostructured metals and 
graphene paper, such as Pt nanoparticles (PtNPs) [59], Pt nanowires (PtNWs) [60], Au@Pt 
core-shell NPs [61], Au nanoparticles (AuNPs) [62] and Ag nanoparticles (NPs) [63]. As we 
mentioned in Section 2.1, CVD has made a great contribution to the preparation of graphene 
films. Hydrocarbon gases, through CVD consolidating on metal surfaces, enable the forma-

tion of a uniform and large-size graphene film, which can then be transferred onto solid 
substrates decorated with metallic NPs [64]. For example, Du and co-workers fabricated an 
AuNP-modified graphene film by a CVD-thermal release tape method, which has been used 
as an active substrate for the surface-enhanced Raman scattering (SERS) detection of ana-

lytes [65]. Furthermore, to enhance the electrical properties and surface plasmon signal of 
the graphene film, Ag nanowire was deposited further on the graphene film by a two-step 
procedure. In general, graphene films were first prepared by a CVD method, and then Ag 
nanowire was deposited on the graphene film by either physical loading [66], physical vapour 
deposition (PVD) [67], spin coating [68] or electrochemical pulse deposition [63].

Self-assembly provides a simple and time-saving way to prepare large-scale nanostructure-
modified graphene paper by precisely controlling the experimental parameters. For example, 
AgNP-graphene hybrid paper was assembled through electrostatic self-assembly. Firstly, poly-

cation-modified AgNPs were synthesized and then conjugated to a GO sheet. The reduction of 
GO and absorption of AgNPs occurred simultaneously, resulting in the formation of AgNP-
graphene hybrid paper [69]. With the similar strategy, a homogeneous mixture of a GO sus-

pension with AuNPs allowed self-assembly at the air/liquid interface to form a multi-layered 
GO-AuNP composite film [70]. As shown in Figure 7a, UV-vis absorption spectra of GO, AuNP, 
GO-AuNP and GO-SWCNT solutions indicate that AuNPs did not influence the π-electronic 
transitions in the aromatic carbon-carbon of GO, but the electrostatic repulsion between the 
deprotonated carboxylic groups at the edge of GO nanosheet and negatively charged AuNPs 
modulated the electronic environment of AuNPs, causing the blue shift of the absorption of 
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AuNPs by 4 nm. The resulting rGO-AuNP film (Figure 7b) showed an enhanced electrode kinet-
ics and a cyclic voltammetric response in proportion to the amount of AuNPs incorporated. 
An enhancement of anodic peak current was clearly observed compared with that of the pure 
rGO films [70]. Zhang et al. developed a one-step strategy to synthesize self-assembled AuNP-
graphene hybrid paper [71]. A mixture solution containing both GO and HAuCl

4
 was directly 

used as a starting material. The two precursors were reduced into rGO and AuNPs, respectively, 
by glucose under heat treatment, and rGO and AuNPs then self-assembled into a multi-layered 
paper structure upon solvent evaporation. Finally, a PET film was used to harvest the formed 
AuNP-graphene hybrid paper [71]. Moreover, rGO/Ni(OH)2 paper was prepared by the EPD 
process, which offered a facile, rapid, scalable and environmentally friendly method for making 
graphene paper [72]. NiCo2O4

 was grown on the surfaces of porous N-doped graphene sheets 
through hydrogen bonding, van der Waals forces or covalent bonding with the functional groups 
of graphene such as –COOH groups. The as-prepared hierarchically porous graphene paper with 
NiCo2O4

 displayed a remarkable catalytic activity towards oxygen evolution reaction (OER) [73]. 

Figure 7. (a) UV-vis absorption spectra and digital images (inset) of 1: GO, 2: AuNP, 3: GO-AuNP and 4: GO–SWCNT 
solution. (b) Top-layered GO-AuNP composite films with a variation of the AuNP concentration from 1 to 30 p mol [70].
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N-doped graphene-SnO2 papers were prepared by inducing the 7,7,8,8-tetracyanoquinodimeth-

ane anion as both the nitrogen source and a complexing agent to formulate a sandwich structure, 
which exhibited a large capacity, high-rate capability and excellent cycling stability for electro-

chemical energy storage, such as lithium-ion batteries [74]. As noted, metallic nanostructure-
modified graphene papers could also be prepared by the EPD process or vacuum filtration 
method [8, 75].

4.2. Metallic compound nanostructures

Metallic compounds, especially transition metal oxides (TMOs) or transition metal hydrox-

ides (TMHs), are a key family of materials in a variety of current demanding needs for sen-

sor, catalysis, energy storage and conversion, optical electronics and piezoelectric mechanics, 
attributed to their nature of versatile functionality [76]. Given such a fact, metallic compound-
functionalized graphene papers have been a hot topic in recent years. Commonly, metal oxide 
and GO were synthesized separately, and then MO-graphene paper was fabricated through 
mixing the two (or more) components and applying a typical vacuum filtration process. For 
example, our group has reported the fabrication of free-standing graphene–Prussian blue (PB) 
composite paper through the filtration of chemically compatible graphene–PB nanohybrids, 
with the overall procedure shown in Figure 8. PB nanoparticles were first attached into rGO by 
the electrostatic attraction, and the hybrid material was then directly assembled into 2D flex-

ible graphene paper sensor [36]. SnO2 nanosphere hybrid graphene paper was prepared by 
direct vacuum filtration method. Using the similar strategy, Fe2O3

 NPs [77], Na2/3Fe1/2Mn1/2O2 

NPs [78] and MnO2 NPs [79] were successfully combined with graphene paper. In addition, 
graphene/MnO2 paper could be fabricated by filtration of the mixture of GO with Mn(NO

3
)2 

and KMnO
4
 solution and was then subjected to the reduction of GO to rGO [80]. In some 

cases, nanostructured metallic compounds only functionalized the graphene-paper surface 
rather than the interlayers. Such metallic compound-functionalized graphene hybrid materi-
als were obtained mainly by the growth of nanostructured metallic compounds on the surface 
of graphene films by various techniques. For example, pulse laser deposition was applied to 
deposit V2O5

 film on the graphene paper surface to yield flexible energy storage devices [81]. 
NiO [82], TiO2 [83–85], indium-gallium-zinc oxide [86] and PtNPs/MnO2 nanowires [61] were 

all successfully deposited onto graphene paper surfaces for specific functionalization.

Figure 8. Schematic illustration of the preparation procedure for PBNP-functionalized graphene papers: (a) chemical 
reduction of GO to rGO, (b) synthesis procedure of PNBPs, (c) preparation of PBNPs–rGO hybrid nanosheets, (d) vacuum 
filtration to produce graphene paper and (e) annealing process to enhance the paper conductivity [36].
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In addition, non-metallic nanostructures such as those carbon-containing building blocks 
(e.g. CNTs, fullerenes, carbon black, carbon fibre and carbon spheres), Si, SiO2, Si

3
N

4
 and 

others [7, 10, 51] were also widely used to functionalize graphene papers.

4.3. Polymers

Besides inorganic nanocomposites, polymer-functionalized graphene papers also have 
widely been used for sensor and energy conversion and storage applications. In general, 
the polymer could be stabilized with graphene paper through the two approaches: (1) cova-

lent bonding. Because GO contains a notable number of oxygen-containing groups, it pro-

vides remarkable opportunities for further modification with polymer either by ‘grafting to’ 
or by ‘grafting from’ techniques. (2) Non-covalent attachment such as electrostatic attrac-

tion, hydrogen bonding or π–π stacking; a variety of polymers have been incorporated into 
graphene-based films with a uniform multilayer structure and novel functionality, such as 
polyaniline [87–91], poly(sodium 4-styrenesulfonate) [92] and poly(p-phenylene vinylene) 
[48]. Recently, Mu et al. developed a series of PVDF-modified graphene monolayer papers 
with a gradient rGO/GO structure. In the gradient graphene paper, the GO region could 
respond to the environment stimuli including changes in humidity, temperature or light, 
leading to shrinking or swelling of the GO sheets [93]. In another example, poly-dopamine 
was used to functionalize graphene paper, the as-prepared graphene paper displayed high 
performance of responses to moisture, heat and light. The response of this water-driven 

Figure 9. Schematic illustration of structure, electron transfer and bioelectrocatalysis of Fc-rGOP-enzyme hybrid systems [95].
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 actuator to multiple stimuli allows the artificial muscles and electric generators to be fabri-
cated [94]. In our recent work, as shown in Figure 9, a highly branched PEI (b-PEI) was used 
for reduction and simultaneous derivation of GO to form a biocompatible polymeric matrix 
on rGO nanosheet. Ferrocene redox moieties were then grafted onto rGO nanosheets through 
the polymer matrix. The as-prepared functional composite is electrochemically active and 
enabled to accommodate enzymes stably. For proof-of-the concept studies, two crucial redox 
enzymes for biosensors (i.e. cholesterol oxidase and glucose oxidase (GOx)) were used to test 
the platform with good outcomes [95].

5. Applications of graphene paper as electrochemical-sensing platforms

Graphene papers with the advantages of low price, high quality and simple synthesis pro-
cess have a potential to apply in electronic and optoelectronic devices, electrochemical energy 
devices, water treatment and sensors [7, 8, 10, 50, 51]. Especially the self-assembled 2D graphene 
papers/films/membranes functionalized with nanostructured metals, polymers and biomole-
cules are promising candidates for sensing applications, as summarized in Table 1, which is an 
overview of enzyme-based and non-enzymatic graphene papers/films sensors for the detection 
of glucose. In particular, in the field of electrochemical biosensors with high sensitivity, these 
candidates have found widespread uses in clinic diagnosis, environment monitoring and for 

Composite material Electrocatalyst Linear range LOD Sensitivity

(μA cm–2 mM–1)

References

PBNPs/GP/

GOD

GOD 6-8 mM 10 μM 25 [36]

MnO2/PtNPs/GP PtNPs 10-46000  µM 20 µM 52.36 [60]

AuNPs/GP AuNPs 100-30000 µM 5 μ M 58.54 [61]

AuNPs/PANI/

GP/GOD

GOD 200-11200 µM 100  µM [88]

Fc/GP/GOD GOD 100-15500 µM 5 µM 3.45 [95]

CuO NC/GP CuO 2-4000 µM 0.7 µM 1360 [100]

CuO/S-GP CuO 100-10500 µM 0.08 µM 1298 [101]

CS/N-GP/GOD GOD 200-1800  µM 64 μM 10.5 [111]

AuNPs/GP/

GOD

GOD 20-2260  µM 4.1 μM 3.855 [112]

ZrO2/GP/GOD GOD 200-1600  µM 45.6 μM 7.6 [113]

AuNPs/PBNPs/

CS/GP/GOD

GOD 25-3200 µM 10 μM 58.7 [114]

GOD/CS/Fc/GO GOD 20-6780 µM 7.6 µM 10 [115]

TEOS/APTES/Fc/

CS/GP/GOD

GOD 20-5390 µM 6.5 µM 19.5 [116]

NiNPs/GP NiNPs 1-110  μM - 813 [117]

NiO/GP NiO 20-2100  µM 0.1 μM 1020 [118]

PtNPs/GP PtNPs 2-2100 µM  1 µM 1508 [119]

CuO/GP CuO 1-8000  µM 1 µM 1065 [120]

Co3O4/gP Co3O4 up to 80 μM 25 nM 669.78 [121]

PANi, polyaniline; GP, graphene paper or graphene film; GOD, glucose oxidase; CS, chitosan; Fc, ferrocene.

Table 1. Overview of enzyme-contained and non-enzymatic graphene paper/film sensors for detection of glucose.
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quality control in industrial, food and agricultural products [9, 34, 59, 61, 96]. In Section 5, we 
mainly address the applications of graphene papers as different types of electrochemical sensor.

5.1. Enzyme-graphene paper sensors

Graphene paper displayed outstanding physical and electrochemical properties, such as high 
conductivity, large surface area, abundant defect sites, superior electrocatalytic activity and 
fast electron transfer rate, hence various enzyme biosensors based on this attractive material 
have been fabricated recently [11, 95]. We have successfully fabricated graphene paper doped 
with chemically compatible PBNPs as a nanohybrid electrocatalyst [36]. Prussian blue was 
loaded on the graphene nanosheet by electrostatic attraction. The as-prepared PBNPs–rGO 
papers are further capable of biocompatible accommodation of enzymes for the development 
of free-standing enzyme-based biosensors.

The correlation between the electrocatalytic current and glucose concentration shows a linear 
relation up to about 6–8 mM with a sensitivity of 25 μA mM−1 cm−2 and the detection limit 

down to about 10 μM. Furthermore, our group had recently explored a facile way for the 
successful synthesis of redox active and bioengineering of rGO for the development of versa-

tile biosensing platform [95]. We developed a simple way for the synthesis of ferrocene (Fc) 
functionalization of highly b-PEI-linked rGO as well as the development of biocompatible 
matrix for accommodation of different bio-recognition elements. Ferrocene redox moieties 
were attached to rGO nanosheets through PEI. The polymer acts as both a reducing agent 
and a molecular spacer for rGO. Fc-PEI-rGO is electrochemically active and can offer a bio-

compatible microenvironment for immobilization of cholesterol oxidase and glucose oxidase. 
The as-constructed electroactive matrix was further used for the development of integrated 
biosensing platforms for cholesterol and glucose sensing. As measured, the current-time (I-t) 
and calibration curves are shown in Figure 10, the detection limit of the biosensors for glu-

cose and cholesterol is 5 and 0.5 μM (S/N = 3), respectively. The linear response range of the 
biosensor is from 0.1 to 15.5 mM for glucose. Furthermore, this biosensing platform shows 
good anti-interference ability and reasonable stability. The nanohybrid biosensing materi-
als can be further combined with screen-printed electrodes, which were successfully used for 
measuring the glucose level of real human serum samples. In addition to these two enzymes, 
other enzymes can also be immobilized onto graphene-based electrodes for the construction of 
various enzyme biosensors, including horseradish peroxidase (HRP), alcohol dehydrogenase 
(ADH), catalase and urease [87, 97–99].

5.2. Non-enzymatic sensors for detection of small biomolecules

Glucose oxidase-modified electrode is the most common class of amperometric biosensors 
for glucose detection because GOx enables catalytic oxidation of glucose with high sensitivity 
and selectivity. However, enzyme-modified electrodes have some disadvantages such as the 
instability of the electrode and unsatisfactory reproducibility, complicated enzyme immobi-
lization procedure and high cost of enzymes. For addressing such challenging issues, non-
enzymatic glucose biosensors based on graphene papers have been explored. As mentioned 
above, nanostructured MO displayed high performance for the fabrication of electrochemical 
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sensors. The working principles of using MO as an electrochemical catalyst for the detection 
of glucose can be described by Eqs. (1) and (2). A couple of redox peaks are obtained in a 
basic solution, and MO(OH) can then oxidize glucose to glucolactone, leading to a remark-
able increase in the anodic peak current. Graphene paper plays a key role as supporting 
electrode and speeding up electron transfer reaction. Several studies have reported that 
MO-functionalized graphene papers can sensitively detect glucose without any biological 
materials involved in the fabrication of sensors. For example, CuO, a p-type semiconductor 
with a narrow band gap of 1.2 eV, is very promising for the development of glucose sensors 
because of high specific surface area, good electrochemical activity and the possibility of pro-
moting electron transfer reactions at a lower overpotential. For example, CuO nanocubes were 
deposited on a graphene film by the EPD process, under the optimized conditions, a linear 

Figure 10. (a) Current-time (I-t) curve obtained at Fc-rGOP-GOx/GCE electrode upon successive injection of glucose, 
(b) dependence of electrocatalytic currents on the glucose concentration, (c) amperometric responses to cholesterol with 
Fc-rGOP-ChOx/GCE electrode and (d) calibration curve for cholesterol. The insets in (b) and (d) are the linear part of 
current responses to the substrates. Electrolyte: 10 mM PBS (pH 7.0); the working electrode potential fixed at 0.4 V 
(vs SCE); substrate (either glucose or cholesterol) solution was injected at a regular time interval to the supporting 
electrolyte which was under stirring [95].
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range up to 4 mM with a sensitivity of 1360 μA mM−1 cm−2 at a positive potential (i.e. 0.55 V)  
was achieved [100]. In order to improve the performance of CuO-modified graphene paper 
as non-enzymatic sensor, CuO-functionalized S-doped graphene was successfully synthe-

sized through a facile microwave-assisted approach. The CuO/S-doped graphene-based sen-

sor exhibited a rapid response of 2s (Figure 11), a wide linear range of 0.1–10.5 mM, a high 
sensitivity of 1298.6 μA mM−1 cm−2 and a low detection limit of 80 nM. Moreover, this biosens-

ing platform showed good anti-interference ability and reasonable stability (Figure 11) [101].  
In another case, PtNPs/MnO2 nanowires/graphene paper used as a free-standing paper elec-

trode for non-enzymatic detection of glucose, the sensor response is linear to the glucose 
concentrations in the range from 0.1 to 30.0 mM with a detection limit of 0.02 mM (S/N = 3) 
and detection sensitivity of 58.54 μA cm−2 mM−1 [61]. Moreover, nanostructured NiO [102] 

and CoO [103] were loaded on graphene paper through various advanced techniques for the 

fabrication of ultrasensitive non-enzymatic sensors

 MO + OH− → MO(OH) + e−  (1)

 MO(OH) + glucose → MO + gluconolactone (2)

Figure 11. (a) Amperometric responses to the successive addition of glucose in 0.1 M NaOH at 0.50 V (the inset showing 
the response time upon the addition of 0.1 mM glucose). (b) The calibration curve of the current response to glucose.  
(c) Interference test with continuous injections of glucose (1.0 mM) and UA, DA, AA, fructose and lactose (with the same 
concentration of 0.1 mM). (d) Interference tests with continuous injections of 1.0 mM glucose and 0.10 mM of other ions [101].
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Ascorbic acid (AA), dopamine (DA), uric acid (UA) and other small biomolecules are among 
the key small biomolecules that affect human health. Therefore, electrochemical sensing of 
those small biomolecules has played a vital role in monitoring the health. Recently, build-

ing electrochemical-sensing platforms based on graphene-supported nanomaterials for the 
detection of those small biomolecules has been a hot topic, due to the fast electron transfer 
kinetics and superior electrocatalytic activity of graphene-based materials. Dopamine is one 
of the mostly studied small biomolecules using graphene-based biosensors. Determination of 
dopamine, ascorbic acid and uric acid concentration is crucial, because the concentration level 
of these molecules in human body is closely linked to the health status. Graphene film-based 
electrodes as electrochemical sensors have shown high performance towards the analysis of 
dopamine, ascorbic acid and uric acid [104–110]. For example, Xia and co-workers developed 
a multifunctional electrochemical sensor based on N-doped graphene (NG), which can be 
used to simultaneously determine AA, DA and UA [105].

N-doped graphene exhibited high performance for electrochemical sensing of AA, DA and 
UA due to its unique structure and physiochemical property. The electrochemical sensor had 
a wide linear response to AA, DA and UA [105]. Moreover, some important small molecules 
for food safety control also could be detected by using graphene paper-based electrodes. As 
an example, an Orange II sensor was fabricated based on PtNP-functionalized rGO film. This 
sensor was evaluated for the detection of Orange II in an acetate buffer. The results showed 
a wide linear range (1 × 10−8–6 ×10−7 M) and the detection limit could be down to 3.4 × 10−10 M 
(at S/N = 3). The as-prepared electrochemical sensor also showed high selectivity, impressive 
stability and promising responses to real samples with an excellent recovery [59].

5.3. Electrochemiluminescence sensors

Electrochemiluminescence (ECL) is a kind of luminescence induced by electrochemical reac-

tions normally at liquid/solid interfaces. ECL has proven to be a highly sensitive and selective 
method and is a very useful tool in analytical science. The ECL method combines the advan-

tages of chemiluminescent analysis with the ease of reaction control by applying an elec-

trode potential. Therefore, ECL-based sensors have recently been developed using graphene 
papers. For example, based on Ru(bpy)

3
2+ and alcohol dehydrogenase-modified graphene/

bovine serum albumin composite film, ethanol biosensor was developed [122]. In another 
case, Li et al. developed an ultrasensitive ECL sensor for the detection of DA. In this study, 
cationic polythiophene derivative, poly[3-(1,10-dimethyl-4-piperidinemethylene)thiophene-
2,5-diyl chloride] (PTh-D), was used to improve stability, and NH2–graphene acted as elec-

tron transfer accelerator. Under the optimal experimental conditions, the ECL signal linearly 
decreased with the increase of DA concentration in the range of 0.1–50.0 mM with a detection 
limit of 0.04 mM (Figure 12). This simple prepared ECL sensor also exhibited high selectivity, 
good reproducibility and long-term stability. The proposed ECL sensor was also evaluated 
by detecting DA in real samples [123]. Xu et al. obtained a paper-based solid-state ECL sensor 
based on poly(sodium 4-styrenesulfonate)-functionalized graphene/Nafion composite film. 
Very impressively, the detection limit could be down to (S/N = 3) 5.0 nM. The sensor exhibited 
excellent reproducibility and long-term stability. Moreover, highly porous Fe

3
O

4
 nanocrystal 

clusters were added to poly(sodium 4-styrenesulphonate) hybrid graphene paper for further 
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enhancing the specific ability of graphene paper. This type of graphene paper-based sensors 
showed a high performance to detect those specific compounds containing tertiary amino 
groups and DNA with guanine and adenine [92, 124].

5.4. Others

Immunosensors are among the most important sensors for biomedical applications. Due to 
high flexibility and conductivity, the development of graphene paper-based electrochemical 
immunosensors is highly desirable [125]. Indeed, there are some striking examples in this 
regard. For example, a simple and label-free electrochemical impedimetric immunosensor 
for immunoglobulin G (IgG) based on chemically modified graphene was prepared by the 
Martin group [126]. In another example, an efficient, low cost and robust impedimetric immu-

nosensor for the rapid and sensitive detection of Escherichia coli O157:H7 (E. coli O157:H7) 
was developed by using AuNP-functionalized free-standing graphene paper electrodes. 

Figure 12. (a) The response of ECL to DA, from (a) to (g): 0.1 to 50 mM. (b) Corresponding calibration curve of response 
ECL versus DA concentrations. (c) The ECL intensity of the sensor in a solution containing 0.1 M KCl and 0.5 mM DA 
under continuous scanning for 15 cycles. (d) The interference tests of the ECL sensor [123].
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Electrochemical impedance spectroscopy (EIS) was used to detect E. coli O157:H7 captured on 
the paper electrode, and a broad linear range (1.5 × 102–1.5 × 107 cfu mL−1) and a low  detection 
limit (1.5 × 102 cfu mL−1) were achieved [127].

6. Concluding remarks and outlook

In summary, worldwide researchers have explored graphene paper-based sensors by 
exploiting their unique advantages including high sensitivity, conductivity and in situ 
sensing. The recent research advances suggest that graphene paper-based materials could 
play a significant role in developing flexible sensors and electronic devices due to their 
intriguing structural and functional features. However, the progresses are accompanied 
by new challenges. Among the possibly critical challenges, the biocompatibility, electronic 
conductivity and stretchable capability are likely mostly concerned. In this regard, the fur-

ther development of graphene papers by incorporation of biocompatible and conducting 
polymers is particularly encouraged. Although there are these challenges to be overcome 
in order to meet practically capable applications in real world, we would like to believe 
that flexible and free-standing graphene papers should continue emerging as a widely 
useful material platform for developing electrochemical-sensing technologies in the near 

future.

Acknowledgements

This work was supported by DFF_FTP, the Danish Research Council for Technology and 
Product Science (to Q.C., Project No. 12-127447). M.Z. acknowledges the CSC PhD scholarship 
(No. 201306170047).

Author details

Minwei Zhang, Arnab Halder, Xianyi Cao, Chengyi Hou and Qijin Chi*

*Address all correspondence to: cq@kemi.dtu.dk

Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark

References

[1] Wang J, Musameh M. Carbon nanotube/Teflon composite electrochemical sensors and 
biosensors. Analytical Chemistry. 2003;75:2075–2079. doi:10.1021/ac030007+

[2] Ahammad AJS, Lee J-J, Rahman MA. Electrochemical sensors based on carbon nanotubes. 
Sensors. 2009;9:2289–2319. doi:10.3390/s90402289

Graphene-Paper Based Electrochemical Sensors
http://dx.doi.org/10.5772/intechopen.68186

51



[3] Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen 
ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature 2007; 
448:457-60. doi:10.1038/nature06016 

[4] Wu D, Zhang F, Liang H, Feng X. Nanocomposites and macroscopic materials: Assembly of 
chemically modified graphene sheets. Chemical Society Review. 2012;41:6160. doi:10.1039/
c2cs35179j

[5] Xu Y, Shi G. Assembly of chemically modified graphene: Methods and applications. 
Journal of Material Chemistry. 2011;21:3311. doi:10.1039/c0jm02319a

[6] Joshi RK, Alwarappan S, Yoshimura M, Sahajwalla V, Nishina Y. Graphene oxide: The 
new membrane material. Applied Material Today. 2015;1:1–12. doi:10.1016/j.apmt.2015. 
06.002

[7] Liu G, Jin W, Xu N. Graphene-based membranes. Chemical Society Review. 2015;44: 
5016–5030. doi: 10.1039/C4CS00423J

[8] Cong H-P, Chen J-F, Yu S-H. Graphene-based macroscopic assemblies and architectures: 
An emerging material system. Chemical Society Review. 2014;43:7295–325. doi:10.1039/
c4cs00181h

[9] Gao H, Duan H. 2D and 3D graphene materials: Preparation and bioelectrochemical 
applications. Biosensors and Bioelectronics. 2015;65:404–419. doi:10.1016/j.bios.2014. 
10.067

[10] Shao Y, El-Kady MF, Wang LJ, Zhang Q, Li Y, Wang H, Mousavi MF, Kaner RB. Graphene-
based materials for flexible supercapacitors. Chemical Society Review. 2015;44:3639–3665. 
doi:10.1039/C4CS00316K

[11] Zhang Y, Shen J, Li H, Wang L, Cao D, Feng X, Liu Y, Ma Y, Wang L. Recent progress 
on graphene-based electrochemical biosensors. The Chemical Record. 2016;16:273–294. 
doi:10.1002/tcr.201500236

[12] Lee DH, Kim JE, Han TH, Hwang WJ, Jeon SW, Choi SY, Hong SH, Lee WJ, Ruoff RS, 
Kim SO. Versatile carbon hybrid films composed of vertical carbon nanotubes crown 
on mechanically compliant graphene films. Advanced Materials. 2010;22:1247–1252. 
doi:10.1002/adma.200903063

[13] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, 
Colombo L, Ruoff RS. Large area synthesis of high quality and uniform graphene films on 
copper foils. Science. 2009;324:1312–1314. doi:10.1126/science.1171245

[14] Pasternak I, Wesolowski M, Jozwik I, Lukosius M, Lupina G, Dabrowski P, Baranowski JM, 
Strupinski W. Graphene growth on Ge(100)/Si(100) substrates by CVD method. Scientific 
Reports. 2016;6:21773. doi:10.1038/srep21773

[15] Dabrowski J, Lippert G, Avila J, Baringhaus J, Colambo I, Dedkov YS, Herziger F, Lupina 
G, Maultzsch J, Schaffus T, Schroeder T, Kot M, Tegenkamp C, Vignaud D, Asensio M-C. 
Understanding the growth mechanism of graphene on Ge/Si(001) surfaces. Scientific 
Reports. 2016;6:31639. doi:10.1038/srep31639

Electrochemical Sensors Technology52



[16] Baraton L, He ZB, Lee CS, Cojocaru CS, Châtelet M, Maurice J-L, Lee YH, Pribat D. On 
the mechanisms of precipitation of graphene on nickel thin films. EPL. 2011;96:46003. 
doi:10.1209/0295-5075/96/46003

[17] Losurdo M, Giangregorio MM, Capezzuto P, Bruno G. Graphene CVD growth on cop-
per and nickel: Role of hydrogen in kinetics and structure. Physical Chemistry Chemical 
Physics. 2011;13:20836. doi:10.1039/c1cp22347j

[18] Zhang J, Wang Z, Niu T, Wang S, Li Z, Chen W. Elementary process for CVD graphene 
on Cu(110): Size-selective carbon clusters. Scientific Reports. 2014;4:4431. doi:10.1038/
srep04431

[19] Niu T, Zhou M, Zhang J, Feng Y, Chen W. Growth intermediates for CVD graphene 
on Cu(111): Carbon clusters and defective graphene. Journal of the American Chemical 
Society. 2013;135:8409–8414. doi:10.1021/ja403583s

[20] Gotterbarm K, Zhao W, Höfert O, Gleichweit C, Papp C, Steinrück H-P. Growth and 
oxidation of graphene on Rh(111). Physical Chemistry Chemical Physics. 2013;15:19625. 
doi:10.1039/c3cp53802h

[21] Liu M, Gao Y, Zhang Y, Zhang Y, Ma D, Ji Q, Gao T, Chen Y, Liu Z. Single and polycrys-
talline graphene on Rh(111) following different growth mechanisms. Small. 2013;9:1360–
1366. doi:10.1002/smll.201202962

[22] Kordatos A, Kelaidis N, Giamini SA, Marquez-Velasco J, Xenogiannopoulou E, Tsipas P, 
Kordas G, Dimoulas A. AB stacked few layer graphene growth by chemical vapor 
deposition on single crystal Rh(1 1 1) and electronic structure characterization. Applied 
Surface Science. 2016;369:251–256. doi:10.1016/j.apsusc.2016.02.023

[23] Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo CM, Tsuji M, Ikeda KI, Mizuno S. 
Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film 
crystallized on sapphire. ACS Nano. 2010;4:7407–7414. doi:10.1021/nn102519b

[24] Cabrero-Vilatela A, Weatherup RS, Braeuninger-Weimer P, Caneva S, Hofmann S. 
Towards a general growth model for graphene CVD on transition metal catalysts. 
Nanoscale. 2016;8:2149–2158. doi:10.1039/C5NR06873H

[25] Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi 
T, Beschoten B, Stampfer C. Ultrahigh-mobility graphene devices from chemical vapor 
deposition on reusable copper. Science Advance. 2015;1:1–6. doi:10.1126/sciadv.1500222

[26] Xu SC, Man BY, Jiang SZ, Chen CS, Yang C, Liu M, Gao XG, Sun ZC, Zhang C. Direct 
synthesis of graphene on SiO2 substrates by chemical vapor deposition. CrystEngComm. 
2013;15:1840. doi:10.1039/c3ce27029g

[27] Kim H, Song I, Park C, Son M, Hong M, Kim Y, Kim JS, Shin HJ, Baik J, Choi HC. Copper-
vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer 
graphene on amorphous SiO2 substrate. ACS Nano. 2013;7:6575–6582. doi:10.1021/
nn402847w

Graphene-Paper Based Electrochemical Sensors
http://dx.doi.org/10.5772/intechopen.68186

53



[28] McNerny DQ, Viswanath B, Copic D, Laye FR, Prohoda C, Brieland-Shoultz AC, 
Polsen ES, Dee NT, Veerasamy VS, Hart AJ. Direct fabrication of graphene on SiO2 
enabled by thin film stress engineering. Scientific Reports. 2014;4:5049. doi:10.1038/
srep05049

[29] Shautsova V, Gilbertson AM, Black NCG, Maier SA, Cohen LF. Hexagonal boron nitride 
assisted transfer and encapsulation of large area CVD graphene. Scientific Reports. 
2016;6:30210. doi:10.1038/srep30210

[30] Li Q, Liu M, Zhang Y, Liu Z. Hexagonal boron nitride-graphene heterostructures: 
Synthesis and interfacial properties. Small. 2016;12:32–50. doi:10.1002/smll.201501766

[31] Sun J, Lindvall N, Cole MT, Teo KBK, Yurgens A. Large-area uniform graphene-like thin 
films grown by chemical vapor deposition directly on silicon nitride. Applied Physics 
Letters. 2011;98. doi:10.1063/1.3602921

[32] Schmid S, Bagci T, Zeuthen E, Taylor JM, Herring PK, Cassidy MC, Marcus CM, 
Guillermo Villanueva L, Amato B, Boisen A, Shin YC, Kong J, Sørensen AS, Usami K, 
Polzik ES. Single-layer graphene on silicon nitride micromembrane resonators. Journal 
of Applied Physics. 2014;115. doi:10.1063/1.4862296

[33] Iyer GRS, Wang J, Wells G, Bradley MP, Borondics F. Nanoscale imaging of freestand-
ing nitrogen doped single layer graphene. Nanoscale. 2015;7:2289–2294. doi:10.1039/
c4nr05385k

[34] Zhang M, Hou C, Halder A, Ulstrup J, Chi Q. Interlocked graphene Prussian blue 
hybrid composites enable multifunctional electrochemical applications. Biosensors and 
Bioelectronics. 2017;89:570–577. doi:10.1016/j.bios.2016.02.044

[35] Shao Y, El-Kady MF, Lin CW, Zhu G, Marsh KL, Hwang JY, Zhang Q, Li Y, Wang H, 
Kaner RB. 3D Freeze-casting of cellular graphene films for ultrahigh-power-density 
supercapacitors. Advanced Materials. 2016:6719–6726. doi:10.1002/adma.201506157

[36] Zhu N, Han S, Gan S, Ulstrup J, Chi Q. Graphene paper doped with chemically com-

patible Prussian Blue nanoparticles as nanohybrid electrocatalyst. Advanced Functional 
Material. 2013;23:5297–5306. doi:10.1002/adfm.201300605

[37] Zhang M, Halder A, Hou C, Ulstrup J, Chi Q. Free-standing and flexible graphene papers 
as disposable non-enzymatic electrochemical sensors. Bioelectrochemistry. 2016;109:87–94. 
doi:10.1016/j.bioelechem.2016.02.002

[38] Choi W, Choi J, Bang J, Lee JH. Layer-by-layer assembly of graphene oxide nanosheets 
on polyamide membranes for durable reverse-osmosis applications. ACS Applied 
Material Interfaces. 2013;5:12510–12519. doi:10.1021/am403790s

[39] Lin X, Jia J, Yousefi N, Shen X, Kim J-K. Excellent optoelectrical properties of graphene 
oxide thin films deposited on a flexible substrate by Langmuir-Blodgett assembly. Journal 
of Material Chemistry C. 2013;1:6869–6877. doi:10.1039/c3tc31497a

[40] Zheng Q, Ip WH, Lin X, Yousefi N, Yeung KK, Li Z, Kim JK. Transparent conductive 
films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assem-

bly. ACS Nano. 2011;5:6039–6051. doi:10.1021/nn2018683

Electrochemical Sensors Technology54



[41] Zou J, Kim F. Diffusion driven layer-by-layer assembly of graphene oxide nanosheets 
into porous three-dimensional macrostructures. Nature Communication. 2014;5:5254. 
doi:10.1038/ncomms6254

[42] Dai M-K, Lian J-T, Lin T-Y, Chen Y-F. High-performance transparent and flexible inor-
ganic thin film transistors: a facile integration of graphene nanosheets and amorphous 
InGaZnO. Journal of Material Chemstry C. 2013;1:5064–5071. doi:10.1039/c3tc30890a

[43] Bae SH, Kahya O, Sharma BK, Kwon J, Cho HJ, Özyilmaz B, Ahn JH. Graphene-P(VDF-
TrFE) multilayer film for flexible applications. ACS Nano. 2013;7:3130–3138. doi:10.1021/
nn400848j

[44] Borini S, White R, Wei D, Astley M, Haque S, Spigone E, Harris N, Kivioja J, Ryhänen T. 
Ultrafast graphene oxide humidity sensors ACS Nano. 2013;7:11166–11173. doi:10.1021/
nn404889b

[45] Bin Yao H, Ge J, Wang CF, Wang X, Hu W, Zheng ZJ, Ni Y, Yu SH. A flexible and highly 
pressure-sensitive graphene-polyurethane sponge based on fractured microstructure 
design. Advanced Material. 2013;25:6692–6698. doi:10.1002/adma.201303041

[46] Seo S, Min M, Lee J, Lee T, Choi SY, Lee H. Solution-processed reduced graphene oxide 
films as electronic contacts for molecular monolayer junctions. Angewendte Chemie 
International Edition. 2012;51:108–112. doi:10.1002/anie.201105895

[47] Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H. Highly conducting graphene sheets 
and Langmuir-Blodgett films. Nature Nanotechnology. 2008;3:538–42. doi:10.1038/
nnano.2008.210

[48] Li T, Hauptmann JR, Wei Z, Petersen S, Bovet N, Vosch T, Nygãrd J, Hu W, Liu Y, 
Bjørnholm T, Nørgaard K, Laursen BW. Solution-processed ultrathin chemically 
derived graphene films as soft top contacts for solid-state molecular electronic junctions. 
Advanced Material. 2012;24:1333–1339. doi:10.1002/adma.201104550

[49] Wee BH, Hong JD. A method for fabricating an ultrathin multilayer film composed 
of poly(p-phenylenevinylene) and reduced graphene oxide on a plastic substrate for 
flexible optoelectronic applications. Advanced Functional Material. 2013;23:4657–4666. 
doi:10.1002/adfm.201300224

[50] Sha MSP, Boccaccini AR. Applications of graphene electrophoretic deposition. A Review. 
Physical Chemistry B. 2012;117:1502–1515. doi:org/10.1021/jp3064917

[51] Zhang M, Hou C, Halder A, Wang H, Chi Q. Graphene papers: smart architecture and 
specific functionalization for biomimetics, electrocatalytic sensing and energy storage. 
Materials Chemistry Frontiers. 2017;1:37–60. doi:10.1039/C6QM00145A

[52] Anis A, Mohammad AA, Hussain A, Ahmed SE. Reduced graphene oxide thin film 
on conductive substrates by bipolar electrochemistry. Scientific Reports. 2016;6:21282. 
doi:10.1038/srep21282

[53] Cao X, Qi D, Yin S, Bu J, Li F, Goh CF, Zhang S, Chen X. Ambient fabrication of large-
area graphene films via a synchronous reduction and assembly strategy. Advanced 
Materials. 2013;25:2957–2962. doi:10.1002/adma.201300586

Graphene-Paper Based Electrochemical Sensors
http://dx.doi.org/10.5772/intechopen.68186

55



[54] Yin S, Goldovsky Y, Herzberg M, Liu L, Sun H, Zhang Y, Meng F, Cao X, Sun DD, 
Chen H, Kushmaro A, Chen X. Functional free-standing graphene honeycomb films. 
Advanced Functional Materials. 2013;23:2972–2978. doi:10.1002/adfm.201203491

[55] Yin S, Zhang Y, Kong J, Zou C, Li CM, Lu X, Ma J, Boey FYC, Chen X. Assembly of 
graphene sheets into hierarchical structures for high-performance energy storage. ACS 
Nano. 2011;5:3831–3838. doi:10.1021/nn2001728

[56] Chen C-M, Zhang Q, Huang C-H, Zhao X-C, Zhang B-S, Kong Q-Q, Wang M-Z, Yang Y-G, 
Cai R, Sheng Su D. Macroporous “bubble” graphene film via template-directed ordered-
assembly for high rate supercapacitors. Chemical Communication. 2012;48:7149. 
doi:10.1039/c2cc32189k

[57] Ping H, Zhang M, Li H, Li S, Chen Q, Sun C, Zhang T. Visual detection of melamine in 
raw milk by label-free silver nanoparticles. Food Control. 2012;23:191–197. doi:10.1016/j.
foodcont.2011.07.009

[58] Zhang M, Cao X, Li H, Guan F, Guo J, Shen F, Luo Y, Sun C, Zhang L. Sensitive fluores-
cent detection of melamine in raw milk based on the inner filter effect of Au nanopar-
ticles on the fluorescence of CdTe quantum dots. Food Chemistry. 2012;135:1894–1900. 
doi:10.1016/j.foodchem.2012.06.070

[59] Yun M, Choe JE, You JM, Ahmed MS, Lee K, Üstündağ Z, Jeon S. IGH catalytic activ-
ity of electrochemically reduced graphene composite toward electrochemical sensing of 
Orange II. Food Chemistry. 2015;169:114–119. doi:10.1016/j.foodchem.2014.07.143

[60] Xiao F, Song J, Gao H, Zan X, Xu R, Duan H. Coating graphene paper with 2D-assembly 
of electrocatalytic nanoparticles: A modular approach toward high-performance flexible 
electrodes. ACS Nano. 2012;6:100–110. doi:10.1021/nn202930m

[61] Xiao F, Li Y, Gao H, Ge S, Duan H. Growth of coral-like PtAu-MnO2 binary nanocom-

posites on free-standing graphene paper for flexible nonenzymatic glucose sensors. 
Biosensors and Bioelectronics. 2013;41:417–423. doi:10.1016/j.bios.2012.08.062

[62] Xi Q, Chen X, Evans DG, Yang W. Gold nanoparticle-embedded porous graphene thin 
films fabricated via layer-by-layer self-assembly and subsequent thermal annealing for 
electrochemical sensing. Langmuir. 2012;28:9885–9892. doi:10.1021/la301440k

[63] Zhong L, Gan S, Fu X, Li F, Han D, Guo L, Niu L. Electrochemically controlled growth 
of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic 
H2O2 biosensor. Electrochimica Acta. 2013;89:222–228. doi:10.1016/j.electacta.2012.10.161

[64] Kholmanov IN, Magnuson CW, Aliev AE, Li H, Zhang B, Suk JW, Zhang LL, Peng E, 
Mousavi SH, Khanikaev AB, Piner R, Shvets G, Ruoff RS. Improved electrical conductiv-
ity of graphene films integrated with metal nanowires. Nano Letters. 2012;12:5679–5683. 
doi:10.1021/nl302870x

[65] Du Y, Zhao Y, Qu Y, Chen C-H, Chen C-M, Chuang C-H, Zhu Y. Enhanced light-mat-
ter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS 
detection. Journal of Material Chemistry C. 2014;2:4683–4691. doi:10.1039/c4tc00353e

Electrochemical Sensors Technology56



[66] Liu Y, Chang Q, Huang L. Transparent, flexible conducting graphene hybrid films 
with a subpercolating network of silver nanowires. Journal of Material Chemistry C. 
2013;1:2970. doi:10.1039/c3tc30178h

[67] Mulpur P, Podila R, Lingam K, Vemula SK, Ramamurthy SS, Kamisetti V, Rao AM. 
Amplification of surface plasmon coupled emission from graphene-ag hybrid films. 
Journal of Physics and Chemistry C. 2013;117:17205–17210. doi:10.1021/jp406122s

[68] Dao TD, Hong JE, Ryu KS, Jeong HM. Super-tough functionalized graphene paper as a 
high-capacity anode for lithium ion batteries. Chemical Engineering Journal. 2014;250: 
257–266. doi:10.1016/j.cej.2014.04.051

[69] Zhou Y, Yang J, Cheng X, Zhao N, Sun H, Li D. Transparent and conductive reduced 
graphene oxide/silver nanoparticles multilayer film obtained by electrical self-assem-

bly process with graphene oxide sheets and silver colloid. RSC Advances. 2013;3:3391. 
doi:10.1039/c2ra22256f

[70] Liu F, Piao Y, Choi KS, Seo TS. Fabrication of free-standing graphene composite films 
as electrochemical biosensors. Carbon. 2012;50:123–133. doi:10.1016/j.carbon.2011.07.061

[71] Zhang P, Zhang X, Zhang S, Lu X, Li Q, Su Z, Wei G. One-pot green synthesis, char-

acterizations, and biosensor application of self-assembled reduced graphene oxide–
gold nanoparticle hybrid membranes. Journal of Materials Chemistry B. 2013;1:6525. 
doi:10.1039/c3tb21270j

[72] Zhang H, Zhang X, Zhang D, Sun X, Lin H, Wang C, Ma Y. One-step electrophoretic 
deposition of reduced graphene oxide and Ni(OH)2 composite films for controlled syn-

theses supercapacitor electrodes. Journal of Physics and Chemistry B.2013;117:1616–
1627. doi:10.1021/jp305198j

[73] Chen S, Qiao SZ. Hierarchically porous nitrogen-doped graphene-NiCo2O4
 hybrid paper 

as an advanced electrocatalytic water-splitting material. ACS Nano. 2013;7:10190–10196. 
doi:10.1021/nn404444r

[74] Wang X, Cao X, Bourgeois L, Guan H, Chen S, Zhong Y, Tang DM, Li H, Zhai T, Li L, 
Bando Y, Golberg D. N-doped graphene-SnO2 sandwich paper for high-performance 

lithium-ion batteries. Advanced Functional Materials. 2012;22:2682–2690. doi:10.1002/
adfm.201103110

[75] Chen D, Tang L, Li J. Graphene-based materials in electrochemistry. Chemical Society 
Reviews. 2010;39:3157. doi:10.1039/b923596e

[76] Zhng M, Hou C, Halder A, Chi Q. Ultralight, flexible and semi-transparent metal oxide 
papers for photoelectrochemical water splitting. ACS Applied Materials Interfaces. 
2017;9:3922–3930. doi:10.1021/acsami.6b14036

[77] Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS. Nanostructured reduced graphene oxide/
Fe2O3

 composite as a high-performance anode material for lithium ion batteries. ACS 
Nano. 2011;5:3333–3338. doi:10.1021/nn200493r

Graphene-Paper Based Electrochemical Sensors
http://dx.doi.org/10.5772/intechopen.68186

57



[78] Zhu H, Lee KT, Hitz GT, Han X, Li Y, Wan J, Lacey S, Cresce AVW, Xu K, Wachsman E, 
Hu L. Free-standing Na2/3Fe1/2Mn1/2O 2@Graphene film for a sodium-ion battery cathode. 
ACS Applied Materials Interfaces. 2014;6:4242–4247. doi:10.1021/am405970s

[79] Xiao F, Li Y, Zan X, Liao K, Xu R, Duan H. Growth of metal-metal oxide nanostructures 
on freestanding graphene paper for flexible biosensors. Advanced Functional Materials. 
2012;22:2487–2494. doi:10.1002/adfm.201200191

[80] Sumboja A, Foo CY, Wang X, Lee PS. Large areal mass, flexible and free-standing reduced 
graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. 
Advanced Materials. 2013;25:2809–2815. doi:10.1002/adma.201205064

[81] Cheng J, Wang B, Xin HL, Yang G, Cai H, Nie F, Huang H. Self-assembled V2O5
 nanosheets/

reduced graphene oxide hierarchical nanocomposite as a high-performance cathode mate-

rial for lithium ion batteries. Journal of Materials Chemistry A. 2013;1:10814. doi:10.1039/
c3ta12066j

[82] Zou Y, Wang Y. NiO nanosheets grown on graphene nanosheets as superior anode mate-

rials for Li-ion batteries. Nanoscale. 2011;3:2615–2620. doi:10.1039/c1nr10070j

[83] Gan T, Sun J, Meng W, Song L, Zhang Y. Electrochemical sensor based on graphene and 
mesoporous TiO2 for the simultaneous determination of trace colourants in food. Food 
Chemistry. 2013;141:3731–3737. doi:10.1016/j.foodchem.2013.06.084

[84] Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, 
Liu J. Self-assembled TiO2 – graphene hybrid nanostructures for enhanced Li-ion inser-

tion. ACS Nano. 2009;3:907–914. doi:10.1021/nn900150y

[85] Fan Y, Huang K-J, Niu D-J, Yang C-P, Jing Q-S. TiO2-graphene nanocomposite for elec-

trochemical sensing of adenine and guanine. Electrochimica Acta. 2011;56:4685–4690. 
doi:10.1016/j.electacta.2011.02.114

[86] Lee CH, Kim YJ, Hong YJ, Jeon SR, Bae S, Hong BH, Yi GC. Flexible inorganic nano-

structure light-emitting diodes fabricated on graphene films. Advanced Materials. 
2011;23:4614–4619. doi:10.1002/adma.201102407

[87] Feng XM, Li RM, Ma YW, Chen RF, Shi NE, Fan QL, Huang W. One-step electrochemi-
cal synthesis of graphene/polyaniline composite film and its applications. Advanced 
Functional Materials. 2011;21:2989–2996. doi:10.1002/adfm.201100038

[88] Kong FY, Gu SX, Li WW, Chen TT, Xu Q, Wang W. A paper disk equipped with graphene/
polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed 
electrode: Toward whole blood glucose determination. Biosensors and Bioelectronics. 
2014;56:77–82. doi:10.1016/j.bios.2013.12.067

[89] Chi K, Zhang Z, Xi J, Huang Y, Xiao F, Wang S, Liu Y. Freestanding graphene paper 
supported three-dimensional porous graphene-polyaniline nanocomposite synthesized 
by inkjet printing and in flexible all-solid-state supercapacitor. ACS Applied Materials 
Interfaces. 2014;6:16312–16319. doi:10.1021/am504539k

Electrochemical Sensors Technology58



[90] Cong HP, Ren XC, Wang P, Yu SH. Flexible graphene-polyaniline composite paper for 
high-performance supercapacitor. Energy Environmental Science. 2013;6:1185–1191. 
doi:10.1039/c2ee24203f

[91] Xiang J, Drzal LT. Improving thermoelectric properties of graphene/polyaniline paper 
by folding. Chemical Physics Letters. 2014;593:109–114. doi:10.1016/j.cplett.2013.12.079

[92] Xu Y, Lou B, Lv Z, Zhou Z, Zhang L, Wang E. Paper-based solid-state electrochemilumi-
nescence sensor using poly(sodium 4-styrenesulfonate) functionalized graphene/nafion 
composite film. Analytica Chimica Acta. 2013;763:20–27. doi:10.1016/j.aca.2012.12.009

[93] Mu J, Hou C, Zhu B, Wang H, Li Y, Zhang Q. A multi-responsive water-driven actua-
tor with instant and powerful performance for versatile applications. Scientific Reports. 
2015;5:9503. doi:10.1038/srep09503

[94] Mu J, Hou C, Wang H, Li Y, Zhang Q, Zhu M. Origami-inspired active graphene-based 
paper for programmable instant self-folding walking devices. Scientific Advances. 2015;1

[95] Halder A, Zhang M, Chi Q. Electroactive and biocompatible functionalization of gra-
phene for the development of biosensing platforms. Biosensors and Bioelectronics. 
2017;87:764–771. doi:10.1016/j.bios.2016.09.030

[96] Zhao X, Zhang P, Chen Y, Su Z, Wei G. Recent advances in the fabrication and struc-
ture-specific applications of graphene-based inorganic hybrid membranes. Nanoscale. 
2015;7:5080–5093. doi:10.1039/C5NR00084J

[97] Dinesh B, Mani V, Saraswathi R, Chen S-M. Direct electrochemistry of cytochrome 
c immobilized on a graphene oxide–carbon nanotube composite for picomolar detection 
of hydrogen peroxide. RSC Advances. 2014;4:28229. doi:10.1039/c4ra02789b

[98] Ensafi AA, Jafari-Asl M, Dorostkar N, Ghiaci M, Martinez-Huerta MV, Fierro JLG. The 
fabrication and characterization of Cu-nanoparticle immobilization on a hybrid chitosan 
derivative-carbon support as a novel electrochemical sensor: Application for the sensi-
tive enzymeless oxidation of glucose and reduction of hydrogen peroxide. Journal of 
Materials Chemistry B. 2014;2:706–717. doi:10.1039/C3TB21434F

[99] Sun Z, Fu H, Deng L, Wang J. Redox-active thionine-graphene oxide hybrid nanosheet: 
One-pot, rapid synthesis, and application as a sensing platform for uric acid. Analytica 
Chimica Acta. 2013;761:84–91. doi:10.1016/j.aca.2012.11.057

[100] Luo L, Zhu L, Wang Z. Nonenzymatic amperometric determination of glucose by 
CuO nanocubes-graphene nanocomposite modified electrode. Bioelectrochemistry. 
2012;88:156–163. doi:10.1016/j.bioelechem.2012.03.006

[101] Tian Y, Liu Y, Wang WP, Zhang X, Peng W. CuO nanoparticles on sulfur-doped gra-
phene for nonenzymatic glucose sensing. Electrochimica Acta. 2015;156:244–251. 
doi:10.1016/j.electacta.2015.01.016

[102] Zhu X, Jiao Q, Zhang C, Zuo X, Xiao X, Liang Y, Nan J. Amperometric nonenzymatic deter-
mination of glucose based on a glassy carbon electrode modified with nickel(II) oxides 
and graphene. Microchimica Acta. 2013;180:477–483. doi:10.1007/s00604-013-0955-1

Graphene-Paper Based Electrochemical Sensors
http://dx.doi.org/10.5772/intechopen.68186

59



[103] Ci S, Mao S, Huang T, Wen Z, Steeber DA, Chen J. Enzymeless glucose detection based 
on CoO/graphene microsphere hybrids. Electroanalysis. 2014;26:1326–1334. doi:10.1002/
elan.201300645

[104] Pandikumar A, Soon How GT, See TP, Omar FS, Jayabal S, Kamali KZ, Yusoff N, 
Jamil A, Ramaraj R, John SA, Lim HN, Huang NM. Graphene and its nanocomposite 
material based electrochemical sensor platform for dopamine. RSC Advance. 2014;4: 
63296–63323. doi:10.1039/C4RA13777A

[105] Sheng Z-H, Zheng X-Q, Xu J-Y, Bao W-J, Wang F-B, Xia X-H. Electrochemical sensor 
based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, 
dopamine and uric acid. Biosensors and Bioelectronics. 2012;34:125–131. doi:10.1016/j.
bios.2012.01.030

[106] Dong X, Wang X, Wang L, Song H, Zhang H, Huang W, Chen P. 3D graphene foam 
as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS 
Applied Materials Interfaces. 2012;4:3129–3133. doi:10.1021/am300459m

[107] Li M, Liu C, Zhao H, An H, Cao H, Zhang Y, Fan Z. Tuning sulfur doping in gra-

phene for highly sensitive dopamine biosensors. Carbon New York. 2015;86:197–206. 
doi:10.1016/j.carbon.2015.01.029

[108] Yu B, Kuang D, Liu S, Liu C, Zhang T. Template-assisted self-assembly method to prepare 
three-dimensional reduced graphene oxide for dopamine sensing. Sensors Actuators,  
B Chemistry. 2014;205:120–126. doi:10.1016/j.snb.2014.08.038

[109] Yu X, Sheng K, Shi G. A three-dimensional interpenetrating electrode of reduced 
graphene oxide for selective detection of dopamine. Analyst. 2014;139:4525–4531. 
doi:10.1039/c4an00604f

[110] Bagherzadeh M, Heydari M. Electrochemical detection of dopamine based on pre-
concentration by graphene nanosheets. Analyst. 2013;138:6044–51. doi:10.1039/c3an0 

1318a

[111] Barsan MM, David M, Florescu M, Ţugulea L, Brett CMA. A new self-assembled 
layer-by-layer glucose biosensor based on chitosan biopolymer entrapped enzyme 
with nitrogen doped graphene. Bioelectrochemistry. 2014;99:46–52. doi:10.1016/j.
bioelechem.2014.06.004

[112] Cao X, Ye Y, Li Y, Xu X, Yu J, Liu S. Self-assembled glucose oxidase/graphene/gold 
ternary nanocomposites for direct electrochemistry and electrocatalysis. Journal of 
Electroanalytical Chemistry. 2013;697:10–14. doi:10.1016/j.jelechem.2013.03.001

[113] Cai C-J, Xu M-W, Bao S-J, Lei C, Jia D-Z. A facile route for constructing a graphene-chi-
tosan-ZrO2 composite for direct electron transfer and glucose sensing. RSC Advance. 
2012;2:8172–8178. doi:10.1039/c2ra20926h

[114] Zhong X, Yuan R, Chai YQ. Synthesis of chitosan-Prussian blue-graphene composite 
nanosheets for electrochemical detection of glucose based on pseudobienzyme chan-

neling. Sensors Actuators, B Chemistry. 2012;162:334–340. doi:10.1016/j.snb.2011.12.091

Electrochemical Sensors Technology60



[115] Qiu J-D, Huang J, Liang R-P. Nanocomposite film based on graphene oxide for high per-

formance flexible glucose biosensor. Sensors Actuators B Chemistry. 2011;160:287–294. 
doi:10.1016/j.snb.2011.07.049

[116] Peng H, Huang Z, Zheng Y, Chen W, Liu A, Lin X. A novel nanocomposite matrix 
based on graphene oxide and ferrocene-branched organically modified sol-gel/chitosan 
for biosensor application. Journal of Solid State Electrochemistry. 2014;18:1941–1949. 
doi:10.1007/s10008-014-2415-1

[117] Wang Z, Hu Y, Yang W, Zhou M, Hu X. Facile one-step microwave-assisted route 
towards Ni nanospheres/reduced graphene oxide hybrids for non-enzymatic glucose 
sensing. Sensors. 2012;12:4860–4869. doi:10.3390/s120404860

[118] Zhang Y, Xiao X, Sun Y, Shi Y, Dai H, Ni P, Hu J, Li Z, Song Y, Wang L. Electrochemical 
deposition of nickel nanoparticles on reduced graphene oxide film for nonenzymatic 
glucose sensing. Electroanalysis. 2013;25:959–966. doi:10.1002/elan.201200479

[119] Liang B, Fang L, Hu Y, Yang G, Zhu Q, Ye X. Fabrication and application of flexible gra-

phene silk composite film electrodes decorated with spiky Pt nanospheres. Nanoscale. 
2014;6:4264–4274. doi:10.1039/c3nr06057h

[120] Hsu YW, Hsu TK, Sun CL, Nien YT, Pu NW, Der Ger M. Synthesis of CuO/graphene 
nanocomposites for nonenzymatic electrochemical glucose biosensor applications. 
Electrochimica Acta. 2012;82:152–157. doi:10.1016/j.electacta.2012.03.094

[121] Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, 
Chen P. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and 
enzymeless glucose detection. ACS Nano. 2012;6:3206–3213. doi:10.1021/nn300097q

[122] Gao W, Chen Y, Xi J, Lin S, Chen Y, Lin Y, Chen Z. A novel electrochemiluminescence 
ethanol biosensor based on tris(2,2’-bipyridine) ruthenium (II) and alcohol dehydroge-

nase immobilized in graphene/bovine serum albumin composite film. Biosensors and 
Bioelectronics. 2013;41:776–782. doi:10.1016/j.bios.2012.10.005

[123] Li J, Li X, Zhang Y, Li R, Wu D, Du B, Zhang Y, Ma H, Wei Q. Electrochemiluminescence 
sensor based on cationic polythiophene derivative and NH 2 –graphene for dopamine 
detection. RSC Advance. 2015;5:5432–5437. doi:10.1039/C4RA14595J

[124] Xu Y, Lv Z, Xia Y, Han Y, Lou B, Wang E. Highly porous magnetite/graphene nano-

composites for a solid-state electrochemiluminescence sensor on paper-based chips. 
Analytical and Bioanalytical Chemistry. 2013;405:3549–3558. doi:10.1007/s00216-012- 
6510-9

[125] Delle LE, Huck C, Bäcker M, Müller F, Grandthyll S, Jacobs K, Lilischkis R, Vu XT, 
Schöning MJ, Wagner P, Thoelen R, Weil M, Ingebrandt S. Impedimetric immunosensor 
for the detection of histamine based on reduced graphene oxide. Physica Status Solidi 
Applied Materials Science. 2015;212:1327–1334. doi:10.1002/pssa.201431863

Graphene-Paper Based Electrochemical Sensors
http://dx.doi.org/10.5772/intechopen.68186

61



[126] Loo AH, Bonanni A, Ambrosi A, Poh HL, Pumera M. Impedimetric immunoglobulin 
G immunosensor based on chemically modified graphenes. Nanoscale. 2012;4:921–925. 
doi:10.1039/c2nr11492e

[127] Wang Y, Ping J, Ye Z, Wu J, Ying Y. Impedimetric immunosensor based on gold nanopar-
ticles modified graphene paper for label-free detection of Escherichia coli O157:H7. 
Biosensors and Bioelectronics. 2013;49:492–8. doi:10.1016/j.bios.2013.05.061

Electrochemical Sensors Technology62


