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Abstract

In this chapter, we briefly review the thermodynamic ensembles and associated energy
functions using the seven thermodynamic variables. The energy E, the entropy S, and the
system volume V are used to derive the temperature T and pressure P. The chemical
potential μ is derived as the change of the system energy with respect to the number of
matters N in the isobaric-isothermal environment. A dilute solution is defined as a
homogeneous mixture of solvent and inert solutes, where the total number and volume
of solutes are much smaller than those of the solvent. Gibbs free energy of the dilute
solution is used to rigorously derive the osmotic pressure by equilibrating chemical
potentials of solutes and solvent. Nonequilibrium of the filtration systems is reviewed
by introducing the irreversible thermodynamic model with Onsager’s reciprocal theo-
rem. Direct applications of the irreversible thermodynamic model are currently limited
due to the absence of the exact nonequilibrium statistical mechanics. We hope this
chapter, containing a review of statistical mechanics, related to membrane separations
and osmosis phenomena, helps researchers and especially graduate students, who seek
an in-depth understanding of membrane separation from the theoretical statistical phys-
ics as applied to chemical and environmental engineering.

Keywords: membrane thermodynamics, statistical mechanics, thermodynamic ensem-
ble, Gibbs energy function, chemical potential, weak solution, osmotic pressure, Fick’s
law, solution-diffusion model, thermodynamic irreversible model

1. Introduction

A membrane is a selective barrier between two phases, i.e., a thin layer of material that

separates solute and solvent materials when a driving force is applied across it. On membrane

surfaces, flows of different thermodynamic phases are introduced and maintained quasi-

steady with respect to time. These separation processes require driving forces mainly for
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distribution, and reproduction in any medium, provided the original work is properly cited.



mass transfer as gradients of physical quantities associated with the thermodynamic, flowing

phases.

Separation implies collecting masses of the same particles/molecules in specific spatial loca-

tions, which is strongly correlated to diffusion phenomena. Nature tends to move from a

higher energy to a lower energy state, or equivalently highly ordered to randomly disordered

phases. The diffusion of solutes in a free (solvent) medium is a spontaneous tendency, which

must be well understood to analyze the separation phenomena. On the other hand, if the

solutes are spatially confined by permeable interfaces, through which only solvent molecules

can pass, the solvents try to move from their high- to low-concentration sides. This phenomena

is called osmosis, which is equivalent to the solvent moving from low- to high-concentration

regions of solutes. Note that in the solute diffusion and the solvent osmosis processes, mass

transfer phenomena are from high- to low-concentration regions of the transferring masses. In

this light, diffusion and osmosis can be treated equivalently as energy-minimizing and

entropy-increasing phenomena of solutes and solvents, respectively.

Most pressure-driven membrane separations aim to produce clean water (solvent) from con-

centrated solutions. These include ultrafiltration (UF) and microfiltration (MF) for particulate

removal and reverse osmosis (RO) and nanofiltration (NF) for ion removal. UF uses a finely

porous membrane, which is usually antisymmetric, having a mean pore diameter between

1 and 100 nm. UF aims to separate water and microsolutes from macromolecules and colloids

[1–3]. MF uses porous membranes to separate suspended particles with diameters between 0.1

and 10 µm [1, 3, 4]. MF’s filtration capacity is therefore between UF and conventional filtration

methods. Based on the particle size, dominant diffusion mechanisms of these particulate

matters include Brownian diffusion [5–9] and shear-induced diffusion [10–12]. Ballistic motion

of non-Brownian particles (usually bigger than 10 µm) in MF can be treated as dynamics of

inelastic granules. RO is a desalting process for water production using nonporous membranes

that are permeable to water but essentially impermeable to salt. A pressurized feed stream

containing dissolved salts contacts the feed-side of the RO membrane, and salt-depleted water

is withdrawn as a low-pressure permeate stream [13–16]. NF membranes have lower rejection

ratio, i.e., 20–80% of sodium chloride, than that of RO, typically greater than 98–99%. NF

resides therefore between UF and RO in terms of salt rejection capability. High hydraulic

pressure is an essential component for RO and NF to overcome the osmotic pressure of

seawater and brackish water, respectively [17–21].

The concentration (equivalently, osmotic pressure) gradient can be used, however, as a driving

force for forward osmosis (FO) and pressure-retarded osmosis (PRO) processes. FO extracts a

solvent from the low- to high-concentration sides of the solutes in order to equilibrate the

concentrations [22–25]. PRO utilizes the extra gains of hydraulic pressure due to the amount of

the transferred solvent for power generation [26–29]. Both pressure-driven and osmosis-driven

processes aim to achieve a high flux, i.e., a large amount of water produced per unit time per

unit membrane surface area. In order to achieve a steady high flux, increases and decreases in

the osmotic pressure gradient need to be prevented in the pressure- and osmosis-driven

membrane processes, respectively. Therefore, maintaining a stable osmotic pressure is a pri-

mary issue in both types of processes.
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The driving forces for membrane separations described above include gradients of the hydrau-

lic pressure, solute concentration, solution temperature, and external electromagnetic field. In

statistical mechanics, there are seven primary variables used to explain macroscopic thermo-

dynamic phenomena. An ensemble is made using a set of three selected variables, and a

specific energy function of the ensemble is described in terms of the three independent vari-

ables. As the membrane separations are coupled phenomena of momentum, mass, and heat

transfer, a holistic understanding of statistical mechanics can significantly enhance design,

analysis, and optimization of the membrane processes. In this chapter, we explain ensembles

and energy functions in statistical mechanics, represent the osmotic pressure using Gibbs

energy function of a weak (dilute) solution, and apply statistical laws to explain the separation

phenomena using a solution-diffusion model [30].

2. Thermodynamics to statistical mechanics

Statistical mechanics is the microscopic version of thermodynamics [31]. Macroscopic quanti-

ties, dealt within thermodynamics, can be fundamentally obtained at the microscopic level

in statistical mechanics. There are seven variables in thermodynamics, which are energy

E, entropy S, temperature T, pressure P, volume V, number of molecules N, and chemical

potential μ. An ensemble is defined as a set, in which three independent variables are used to

define a specific form of an energy and the other four variables are represented as functions of

the three master variables. For example, the elementary microcanonical ensemble has P, V, S,

and μ, represented as functions of three master variables of N, V, and E.

2.1. Primary macroscopic quantities

2.1.1. Temperature

Consider two boxes in contact containing a certain number of particles in equilibrium, forming

a closed system. Then, entropy S of the total system has its maximum value for a given system

energy, E, i.e.,

S ¼ Smax ð1Þ

Since the energy is an additive scalar, the total energy of the entire system is the sum of the

energies:

E ¼ E1 þ E2 ð2Þ

The total entropy can be similarly expressed, knowing that the entropy is a function of the

energy:

Smax ¼ S1ðE1Þ þ S2ðE2Þ ð3Þ

Since the entropy is already maximized in the equilibrium state, it is independent of the energy

variation, i.e.,

Membrane Thermodynamics for Osmotic Phenomena
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dS

dE1
¼

dS1
dE1

þ
dS2
dE2

dE2

dE1
¼

dS1
dE1

�
dS2
dE2

¼ 0 ð4Þ

hence, we obtain

dS1
dE1

¼
dS2
dE2

ð5Þ

The derivative of the entropy S with respect to its energy E is used to define temperature

as follows:

dS

dE
�

1

T
!

1

kBT

� �

ð6Þ

In the original definition, the magnitude of the temperature is too high so Boltzmann’s constant

kB is introduced as shown in the parenthesis of Eq. (6). Temperature T is now represented in

terms of the Kelvin unit. Substitution of Eq. (6) into Eq. (5) for each box provides

T1 ¼ T2 ð7Þ

as a condition for the equilibrium. It is worth noting that the internal energy E and entropy

S are the basic thermodynamic quantities, and the temperature is a derived variable propor-

tional to the variation of E with respect to S (specifically, in the microcanonical ensemble).

2.1.2. Pressure

In fluid mechanics, pressure is often defined as the ratio of applied force per unit surface area

of an object [32]:

P ¼
〈Fn〉

Area
ð8Þ

where 〈Fn〉 is the mean normal component of the force vector F
!
applied to the object’s surface

area. A conservative force can be represented as a negative gradient of the total energy

E ¼ K þU, as a sum of kinetic energy K and potential energy U. Suppose the applied force

causes an infinitesimal change in the volume of the body from V to V þ δV as shown in

Figure 1. Then, the compressed volume is equal to the surface area multiplied by the thickness

variation, i.e., δV ¼ A δs, which is in general, A ¼n
!
�∇V . Using the chain rule, one can repre-

sent the normal component of the applied force as a product of the energy density and the total

surface area, which is

F
!
¼ �∇E ¼ �

∂E

∂V

� �

S

∇V ð9Þ
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where, without losing generality, ∂E=∂Vð ÞS can be interpreted as the isentropic (i.e., of constant

entropy) energy density inside the body volume V. One can operate the dot product by the

normal vector n
!
on the left side of Eq. (9) to have

F
!
� n
!
¼ Fn ¼ �

∂E

∂V

� �

S

A ð10Þ

and dividing both sides of Eq. (10) by the area A gives the conceptual definition of the

pressure:

P ¼ �
∂E

∂V

� �

S

ð11Þ

Here, pressure definition can be extended from the normal force per unit area to the energy

density in magnitude. Because energy E is a scalar quantity, the direction of the force vector

does not need to be considered in the pressure calculation.

2.2. Ensembles and energy functions

2.2.1. Internal energy in microcanonical ensemble

In the previous section, we used three thermodynamic variables of energy E, entropy S, and

volume V to generally define temperature T at a constant volume:

Figure 1. External forces applied to the surface of a body.
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T ¼
∂E

∂S

� �

V

ð12Þ

and pressure P at a constant entropy:

P ¼ �
∂E

∂V

� �

S

ð13Þ

Because the derivative operand of both Eqs. (12) and (13) is the internal energy E, the total

derivative of E can be written in terms of T and P:

dE ¼
∂E

∂S

� �

V

dSþ
∂E

∂V

� �

S

dV ¼ T dS� PdV ð14Þ

which indicates that E is an exact function of S and V, i.e., E ¼ E S;Vð Þ.

If the system consists of different molecular species, i.e., k ¼ 1; 2;…;nK, where nK is the total

number of species, then the total molecule number N is the sum of the number of molecules of

all the species, i.e.,

N ¼
X

k

Nk ¼ N1 þN2 þ⋯þNnK ð15Þ

where, for example, N2 is the total molecule number of species 2. Then, the infinitesimal

change of E includes the effect of the particle exchange, using the chemical potential μk, as

dE ¼ T dS� PdV þ
X

k

μk dNk ð16Þ

In a closed system, the molecule numbers of multiple species can change simultaneously,

keeping the total molecule number invariant. If the two systems in contact are at an equilib-

rium and molecules in the boxes can be exchanged, then the change of energy as per the

number of exchanged molecules is equivalent to the chemical potential of the species. From

Eq. (16), we can represent an extended version E as an exact function of S, V, and Nk:

E ¼ E S;V;{Nk}ð Þ ð17Þ

If a thermodynamic system is completely controlled by the three variables of N, V, and S, the

system is said to be a microcanonical ensemble.

2.2.2. Helmholtz free energy in canonical ensemble

Since the temperature is a more convenient variable to measure than the entropy S, one can use

the mathematical identity of T dS ¼ d TSð Þ � SdT to rewrite Eq. (16) as

Desalination6



dE ¼ d TSð Þ � SdT � PdV þ μk dNk ð18Þ

where the notation of the summation over the molecular species k,
X

k
is omitted for simplic-

ity. The total derivative, dðTSÞ, is subtracted from both sides of Eq. (18) to have

dA ¼ �SdT � PdV þ μk dNk ð19Þ

where A is the Helmholtz free energy defined as

A ¼ E� ST ð20Þ

If a thermodynamic system is completely described using T, V, and {Nk} (for k ¼ 1; 2…), this

ensemble is called canonical, and the Helmholtz free energy, AðT;V;{Nk}Þ, is the representative

energy function.

2.2.3. Enthalpy in isentropic-isobaric ensemble

Similar to how we derived the Helmholtz free energy, we start from the infinitesimal difference

of the internal energy E of Eq. (16) using the mathematical identity of PdV ¼ d PVð Þ � V dP to

have

dE ¼ T dS� d PVð Þ þ V dPþ μk dNk ð21Þ

We add d PVð Þ in the both sides of the above equation and obtain

dH ¼ T dSþ V dPþ μk dNk ð22Þ

where

H S;P;{Nk}ð Þ ¼ Eþ PV ð23Þ

is defined as the enthalpy as a function of S, P, and {Nk}. Eq. (22) indicates that the enthalpy is

independent of T unlike other energy functions (see the next sections for detailed discussion).

2.2.4. Thermodynamic potential in grand canonical ensemble

To have an ensemble that is independent of the number of particles, one can start from the

infinitesimal change of Helmholtz free energy and use the identity of μk dNk ¼ d μkNk

� �

�

Nk dμk to have

dA ¼ �SdT � PdV þ d μkNk

� �

�Nk dμk ð24Þ

Subtracting d μkNk

� �

from each side of Eq. (24) gives

Membrane Thermodynamics for Osmotic Phenomena
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dΦ ¼ �SdT � PdV þNk dμk ð25Þ

where

Φ T;V;{μk}
� �

¼ A� μkNk ð26Þ

is defined as the thermodynamic potential, varying with respect to T, V , and μk. An ensemble

described using μ, V, and T is called a grand canonical ensemble. The thermodynamic poten-

tial is further derived such that Φ ¼ �PV if the thermodynamic system is homogeneous.

2.2.5. Gibbs energy in isothermal-isobaric ensemble

Finally, we replace PdV in the infinitesimal change of A in Eq. (19) by d PVð Þ � V dP to have

dG ¼ �SdT þ V dPþ μk dNk ð27Þ

where

G T;P;{Nk}ð Þ ¼ Aþ PV ¼ E� TSþ PV ð28Þ

is defined as the Gibbs free energy varying with respect to T, P, and {Nk}. Now we assume that

G is a homogeneous (i.e., linear) function of Nk such that G∝Nk. In this case, the chemical

potential of species k is represented in terms of T and P only as

μk ¼
∂G

∂Nk

� �

T;P

¼ μk T;Pð Þ ð29Þ

For the fixed number of particles, the infinitesimal change of the total chemical potential is

dμ ¼
1

N
dG ¼ �SdT þ V dP ð30Þ

where S ¼ S=N and V ¼ V=N are the entropy and the volume per molecule, respectively, of the

entire system. In practice, it is often convenient to use the entropy and energy per mole of

molecules in engineering applications, but for basic study here we will keep using quantities

divided by the number of molecules. For species k, we have the representation of the infinites-

imal change in the chemical potential of species k:

dμk ¼ �Sk dT þ Vk dP ð31Þ

Keeping the homogeneity assumption, the Gibbs energy function is written as a sum of

products of the chemical potentials and the particle numbers:

G ¼
X

k

∂G

∂Nk

� �

T;P

Nk ¼
X

k

μk T;Pð ÞNk ð32Þ

Desalination8



The thermodynamic potential is generally derived as Φ ¼ A�
X

k
μkNk using the Legendre

transformation from the previous section. If and only if the Gibbs energy function

Gð¼ Aþ PVÞ is homogeneous such as Eq. (32), Φ can be further simplified to

Φ ¼ A� G ¼ �PV ð33Þ

If the molecular interactions are strong, then Eq. (32) requires an extra coupling term propor-

tional to NiNj, and Eq. (26) should be revisited as a general definition for Φ (see Section 1.3 for

details). Dependences of the energy functions on thermodynamic variables in specific ensem-

bles are summarized in Table 1.

2.3. Gibbs energy and anisothermal equilibrium

2.3.1. Thermodynamics variables: extensive and intensive

Consider a thermodynamic system in equilibrium, shown in Figure 2. The system is made by

adding two identical systems, which are now in contact with each other. In this case, the seven

thermodynamic variables change as follows:

• Additive (extensive): N ! 2N, V ! 2V, S ! 2S, and E ! 2E

• Nonadditive (intensive): T ! T, P ! P, and μk ! μk

As expected, the number of particles, volume, entropy, and energy are doubled by adding the

two identical systems, and they are called additive. On the other hand, temperature, pressure,

and chemical potential remain invariant, and they are called nonadditive.

The independence of the temperature to the system size can be understood using its basic

definition of Eq. (12) as the change ratio of E to S as they are additive quantities. The pressure is

defined in Eq. (13) as the negative ratio of changes of E to V. The chemical potential,

Ensemble Energy functions and relationships

Microcanonical (NVS) Internal energy E N;V;Sð Þ

dE ¼ TdS� PdV þ μdN

Canonical (NVT) Helmholtz energy A N;V;Tð Þ ¼ E� TS

dA ¼ �SdT � PdV þ μdN

Grand canonical (μVT) Thermodynamic potential Φ μ;V;T
� �

¼ A�
X

k
μkNk

dΦ ¼ �SdT � PdV �Ndμ

Isothermal-isobaric (NPT) Gibbs energy G N;P;Tð Þ ¼ Aþ PV ¼ μN

dG ¼ �SdT þ VdPþ μdN

Isentropic-isobaric (NPS) Enthalpy H N;P;Sð Þ ¼ Eþ PV

dH ¼ TdSþ VdPþ μdN

Table 1. Specific ensembles and associated energy functions.

Membrane Thermodynamics for Osmotic Phenomena
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interpreted as the ratio of the internal energy change with respect to creation/disappearance of

a molecule, must be independent of the number of molecules. Among the seven master vari-

ables in thermodynamics, additive quantities are E, S, N, and V, called extensive, and nonaddi-

tive ones are T, P, and μ
k
, called intensive. Note that the intensive quantities are defined as

ratios of extensive quantities.

In the previous sections, we reviewed the five standard ensembles with their energy functions

derived from three independent variables as

• Internal energy E S;V; Nkf gð Þ

• Helmholtz energy A T;V; Nkf gð Þ

• Thermodynamic potential Φ T;V; μ
k

� �� �

• Enthalpy H S;P; Nkf gð Þ

• Gibbs energy G T;P; Nkf gð Þ

Among these energy functions, E, A, Φ, and H depend on at least one extensive variable, S or

V. Gibbs energy function is the only one that depends on two intensive variables, T and P.

Although G basically varies with Nk, if the system is homogeneous, the chemical potential

μ
k
T;Pð Þ is independent to the number of particles Nk. In many engineering applications

dealing with mass transfer phenomena, temperature and pressure are often maintained as

(pseudo-) constants. Molecules and particles translate spatially from one location to other, or

are converted to another species (i.e., created or annihilated through physical and chemical

reactions). In this light, the Gibbs energy G T;P; Nkf gð Þ is the most convenient representation of

the system undergoing mass and/or heat transfer in the isobaric and isothermal environment.

Figure 2. A closed system consisting of two identical boxes in a thermal equilibrium. The outer boundaries (gray) insulate

mass and energy transfer from the environment, and each box has the same T, P, and N. If the central wall is removed,

then the two identical systems are combined.
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Enthalpy H S;P; Nkf gð Þ is often used to characterize mass transfer phenomena under an iso-

baric-isentropic environment between two different temperatures, allowing volume expansion

or compression. H is mainly used to link two temperature-dependent quantities such

as equilibrium constants of chemical reactions in the NPT ensemble because it does not vary

with T.

2.3.2. Anisothermal equilibrium

Consider two heterogeneous systems in equilibrium. This is similar to the case shown in

Figure 2, but boxes 1 and 2 are not thermodynamically identical. In each box, the internal

energy is fully represented using Ni, V i, and Si of box i for i ¼ 1 and 2. Assume their volumes

do not change so that dV i ¼ 0. We express the infinitesimal change of the entropy from

Eq. (16) as

dSi ¼
dEi

Ti
�

μi

Ti
dNi ð34Þ

If the total number of particles N ¼ N1 þN2ð Þ is constant, we simply derive

∂N2

∂N1
¼

∂

∂N1
N �N1ð Þ ¼ �1 ð35Þ

In equilibrium, the total entropy S ¼ S1 þ S2 must be already maximized, having a constant

value Smax:

∂S

∂N1
¼

∂Smax

∂N1
¼ 0 ¼

∂S1
∂N1

þ
∂N2

∂N1

∂S2
∂N2

¼
∂S1
∂N1

�
∂S2
∂N2

ð36Þ

As the internal energy of each box, Ei, is kept invariant in Eq. (34), we derive

∂S1
∂N1

¼ �
μ1

T1
and

∂S2
∂N2

¼ �
μ2

T2
ð37Þ

Substitution of Eq. (37) into (36) gives

μ1 T1;P1ð Þ

T1
¼

μ2 T2;P2ð Þ

T2
ð38Þ

which is simplified, if T1 ¼ T2, to

μ1ðP1Þ ¼ μ2ðP2Þ ð39Þ

for an isothermal environment. Note that Eqs. (38) and (39) consist of only intensive thermo-

dynamic quantities. The chemical potential can be readily derived using Eq. (29) if the Gibbs

energy is known.

Membrane Thermodynamics for Osmotic Phenomena
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3. Dilute solution

3.1. Chemical potentials

Now we consider a dilute (or weak) solution, in which the number of dissolved molecules in

the solvent is much less than that of the solvent molecules. Without losing generality for

environmental engineering purposes, we set water as the solvent. Gibbs free energy of the

weak solution of a single solute species is [31]

G ¼ Nμ0 P;Tð Þ þ nkBT ln
n

Ne

� �

þ nψ P;Tð Þ ð40Þ

where N and n are the numbers of solvent and solute molecules, respectively, μ0 is the

chemical potential of the pure solvent, and ψ P;Tð Þ is an arbitrary function for the chemical

potential of the pure solute. Euler’s number e ¼ 2:71828218… in the denominator of the

logarithmic function on the right-hand side of Eq. (40) stems from Starling’s formula, used for

entropy calculations: ln n! ≃ n ln n� n ¼ n ln n=eð Þ

If the weak solution contains multiple species of solutes, then the Gibbs energy function is

generalized as

G ¼ Nμ0 P;Tð Þ þ kBT

X

i

ni ln
ni

Ne

� �

þ
X

i

niψi
P;Tð Þ ð41Þ

One can easily calculate the chemical potentials for the solvent μ
w
and solute μ

s
as partial

derivatives of G in Eq. (41) with respect to N and n, respectively. The former and latter are

μ
w
¼

∂G

∂N
¼ μ0 P;Tð Þ � kBTx ð42Þ

and

μ
s
¼

∂G

∂n
¼ ψ P;Tð Þ þ kBT lnx ð43Þ

respectively, where x ¼ n=Nð Þ is the number (or mole) fraction of solute molecules to solvent

molecules. In a dilute solution, x≪ 1.

3.2. Osmotic pressure

Let’s consider an isothermal system consisting of two boxes (1 and 2) of the same size in

contact. Box 1 (and 2) has the solute mole fraction x1 (and x2) and pressure P1 (and P2). Since

the total system is in isothermal equilibrium, the two boxes have the same temperature:

T1 ¼ T2 ¼ T.

Desalination12



3.2.1. Using solvent chemical potential

In this thermodynamic environment, the chemical potentials of water in the two boxes should

be equal to each other from Eq. (39):

μw;1 ¼ μw;2 ð44Þ

μ0 P1;T
� �

� x1kBT ¼ μ0 P2;Tð Þ � x2kBT ð45Þ

We assume that the pressure difference is small enough to use the weak solution approxima-

tion without drastic thermodynamic changes but large enough to maintain the balance

between the two boxes. Then, we expand μ0 P2;Tð Þ around P1 using Taylor’s series

μ0 P2;Tð Þ≃μ0 P1;Tð Þ þ
∂μ0

∂P

� �

T

ΔP ð46Þ

at a fixed temperature T. We substitute Eq. (46) into Eq. (45) to obtain

∂μ0

∂P

� �

T

ΔP ¼ x2 � x1ð ÞkBT ð47Þ

where ΔP ¼ P2 � P1 and Δx ¼ x2 � x1 are differences of pressure and solute mole fraction,

respectively, between box 1 and 2. Using Eq. (31), the fundamental representation of the infini-

tesimal chemical potential, we replaced ∂μ0=∂P with the volume per solvent, V=N. Then, the

pressure difference ΔP is calculated as

ΔP ¼ kBT
NΔx

V
¼ RT

Δn

NAV
ð48Þ

and finally denoted as

Δπ ¼ RTΔC ð49Þ

using

Δn ¼ NΔx ¼ Nx2 �Nx1 ¼ n2 � n1 ð50Þ

ΔC ¼ Δn=NA ¼ C2 � C1 ð51Þ

where ni and Ci ¼ ni=NAVð Þ are the (absolute) number and the mole concentration of solutes in

box i for i ¼ 1 and 2, NA is Avogadro’s number, and R is the universal gas constant. Eq. (49) is

called the van’t Hoff equation,1 which resembles the ideal gas law [33]. If the solution contains

multiple species of solutes, Eq. (49) can be easily extended to

1Jacobus H. van’t Hoff received the first Nobel Prize in Chemistry in 1901 for the discovery of osmotic pressure in

solutions. https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1901/
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Δπ ¼
X

i

Ci;2 � Ci;1

� �

RT ¼ RTΔC ð52Þ

where ΔC ¼
X

i
Ci;2 � Ci;1

� �

is, in general, the difference of total mole concentration of solutes.

If the total mass concentration of multiple species is known, then it should be carefully converted to total

mole concentration using molecular weights of the contained species. The underlying assumptions of

the van’t Hoff equation (49) are summarized as follows:

1. The solute concentration is much smaller than the solvent concentration.

2. Temperature gradient between the two boxes is zero.

3. The Gibbs free energy of a dilute solution is described using the weak solution approach.

3.2.2. Using solute chemical potential

If the solvent chemical potentials of boxes 1 and 2 are equal, then the solute chemical potentials

should be also the same:

μs;1 ¼ μs;2 ð53Þ

which leads to

ψ P1;T
� �

þ kBT lnx1 ¼ ψ P2;Tð Þ þ kBTln x2 ð54Þ

Using the same approximation for the pressure difference, we derive

�
∂ψ

∂P

� �

T

ΔP ¼ kBTΔðlnxÞ ð55Þ

¼ kBTln
x2
x1

� �

ð56Þ

where Δlnx ¼ lnx2 � lnx1 is the logarithmic difference between concentrations in two boxes.

Eq. (56) can further be approximated as follows:

�kBTln
x2
x1

� �

¼ �kBTln 1þ
Δx

x1

� �

⋍� kBT
Δx

x1
ð57Þ

We treat the negative derivative of ψ with respect to P as the volume per each solute

molecule, i.e.,

�
∂ψ

∂P

� �

T

¼
V

n1
�

V

n2
�

V

n̄
ð58Þ

where n ¼ ðn1 þ n2Þ=2, implicitly assuming N≫ ni ≫Δn for i ¼ 1; 2. The pressure difference is

then calculated as
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ΔP ¼
n1
V

Δx

x1
kBT ¼

n1=N

x1

NΔx

V
kBT ¼ 1 �

Δn

V
kBT ¼

Δn=NA

V
RT ð59Þ

which reduces to the identical result of Eq. (49):

Δπ ¼ RTΔC ð60Þ

The same result can be obtained in a slightly more mathematical way by directly using

Eq. (55):

ΔP ¼
kBT

�ð∂ψ ∂p½ ÞT

dlnx

dx

� �

Δx ð61Þ

¼
kBT

�ð∂ψ ∂p½ ÞT

Δx

x
ð62Þ

where

ΔðlnxÞ ⋍
dlnx

dx

� �

Δx ¼
Δx

x
ð63Þ

is used. If Δx is finite, a similar approximation can be suggested:

ΔðlnxÞ ¼
Δlnx

Δx
Δx

� �

¼
Δx

〈x〉ln
ð64Þ

where

〈x〉ln ¼
Δx

Δlnx
ð65Þ

is the logarithmic average of the solute mole fraction across the membrane interior. Employing

Eq. (58) and Δx=x ¼ ΔC=C, we confirm that the osmotic pressure of the dilute concentration is

Δπ ¼
RT

�NA ð∂ψ ∂p½ ÞT

Δx

x
¼ RT

n

NAV

� �

ΔC

C
¼ RTΔC ð66Þ

In this section, we mathematically proved that the osmotic pressure (of Eqs. (49), (60), and (66))

is valid for dilute solution consisting of weakly interacting molecules. Without losing general-

ity, the absolute value of the osmotic pressure can be expressed as (similar to the ideal gas law)

π ¼ CRT ð67Þ

Finally, it is worth noting that in Eq. (58), the negative sign of the partial derivative indicates that the

gradients of solvent and solute concentrations have opposite signs. If the middle wall between the

two boxes in Figure 3 is partially removed, then solvent and solutes will diffuse in opposite
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directions. This should be treated in principle as a binary diffusion of two species (i.e., solvent

and solute) by exchanging their positions.

4. Solution-diffusion model revisited

4.1. Solvent (water) transport

For pressure-driven membrane processes such as RO and NF, the applied pressure should

overcome the osmotic pressure difference across the membrane. In feed and permeate solu-

tions, salts are dissolved as solutes in the solvent water. The hydraulic pressure generates

solvent flow through the membrane, which may contribute to solute transport through the

membrane surface. Water molecules, however, dissolve as solutes in the membrane material

(as solvent). Due to the high density of the membrane, water molecules can migrate via

diffusion from a higher concentration region to a lower concentration region. This normal

diffusion is reversed by applying hydraulic pressure to the feed solution with a high concen-

tration such as seawater. Water permeation through a RO membrane can be pictured as

diffusion driven by the external hydraulic pressure, which allows us to neglect convective

transport of solutes through the membrane. The phenomenological phase of water in the

membrane leads to solute transport as Fickian, which is also closely related to the osmotic

pressure gradient between two subsystems. The above-mentioned mechanisms are included in

solution-diffusionmodel, proposed by Lonsdale et al. [30]. An extensive overview of RO models

can be found elsewhere [34–39].

Consider a semipermeable membrane of thickness δm, with high and low concentrations on

two sides. The solvent flux through the membrane is assumed to be Fickian [40, 41]:

Jw ¼ �Dw
dCw

dx
ð68Þ

Figure 3. Osmotic pressure schematic: two boxes separated by the semipermeable wall in the isothermal environment.

Desalination16



where Cw is the concentration of water dissolved in the membrane. Assuming that the dissolved

water in the membrane material can be treated as a Henrian solution, the chemical potential of

the pure water (in the membrane solvent) is

μw ¼ constant þRTlnCw ð69Þ

In this model, the underlying assumptions are:

1. The water and solute molecules dissolve into a membrane material.

2. The solution is considered as Henrian for water.

3. The feed and permeate streams are immiscible with the membrane.

Substitution of Eq. (69) into Eq. (68) gives

Jw ¼ �Dw

Cw

RT

dμw

dx
≈
DwCw

RTδm
Δμw ð70Þ

where Δμw is the transmembrane difference of μw at a constant temperature T, which can be

written as

Δμw ¼

ð
∂μw

∂Cs

dCs þ VwΔP ð71Þ

where Cs is the solute concentration. In the previous section, we proved that the chemical

potential difference between two subsystems should vanish in the isothermal equilibrium (i.e.,

ΔT ¼ 0): Δμw ¼ 0. In this case, the transmembrane pressure difference is equal to the osmotic

pressure difference, i.e., ΔP ¼ Δπ, which gives

ð
∂μw

∂Cs

dCs ¼ �VwΔπ ð72Þ

Then, Eq. (71) is simplified to

Δμw ¼ Vw ΔP� Δπð Þ ð73Þ

Substitution of Eq. (73) into Eq. (70) provides

Jw ¼ A ΔP� Δπð Þ ð74Þ

which is the governing equation of solvent transport through the membrane as a medium in

which water and solutes can dissolve. Here, A is the water permeability through the membrane:

A ¼
DwCwVw

RTδm
ð75Þ
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which is a characteristic value of the membrane. It is challenging to predict or measure the

diffusion coefficient Dw and dissolved concentration Cw of water molecules in the membrane

material. Therefore, the water permeability A is often experimentally estimated by a linear

regression plot of Jw versus ΔP using fresh water as a solute-free feed solution.

4.2. Solute transport

The solute transport through the membrane is also assumed to follow Fick’s law:

Js ¼ �Ds
dCs

dx
⋍ Ds

ΔCs

δm
ð76Þ

where Cs and Ds are the concentration and diffusivity of solutes dissolved in the membrane,

respectively, and ΔCs is the solute concentration difference across the membrane interior. Simi-

larly to Cw, Cs is hard to measure. Therefore, ΔCs is assumed to be proportional to that between

membrane surfaces ΔCm. The partition coefficient K is then defined as

K ¼
ΔCs

ΔCm
< 1ð Þ ð77Þ

where ΔCm is often approximated as the difference between feed concentration Cf and perme-

ate concentration Cp in the RO processes. Substitution of Eq. (77) into Eq. (76) provides

Js ¼ BΔCm ð78Þ

where

B ¼
DsK

δm
ð79Þ

is the solute permeability through the membrane. Note that B conventionally has the same

dimension as Jw. Similarly to A, B can be macroscopically measured by independent experi-

ments, providing a Js versus ΔCm graph. The slope of the graph, estimated using linear

regression, is equal to B.

5. Thermodynamic irreversibility of filtration

A thermodynamic system has three types: open, closed, and isolated. In the open system, mass

and heat can pass in and out of the system in contact with the environment. Only heat can be

transferred between the closed system and the environment, and neither mass nor heat can be

exchanged in the isolated system. Rigorously saying, all the filtration processes are

open systems, having entering feed streams to be treated. Temperature gradients across the

membrane are often negligible in the pressure- or osmosis-driven filtration processes, but

significant in thermal membrane processes such as membrane distillation processes [42–45].

To address the open filtration processes, nonequilibrium statistical mechanics (NESM) should
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be used [46–48]. To the best of our knowledge, the NESM still burgeons in pure theoretical

physics. Therefore, general solutions for irreversible engineering processes are barely found.

The minimum condition for us to use equilibrium filtration theory is that the filtration system

is already in a steady state, in which no physical quantities vary explicitly with respect to time,

i.e., mathematically,

∂½ �

∂t
¼ 0 ð97Þ

where [ ] can hold any variables associated to the filtration system. The steady state is, in

principle, far away from static equilibrium. Note that the osmotic pressure is derived from a

pure equilibrium state, especially for the isobaric-isothermal ensemble. This implies that the

solution-diffusion model becomes less accurate if fluid flows in the membrane channels are

fast enough or almost turbulent.

To investigate the intrinsically nonequilibrium filtration processes, the irreversible thermody-

namic models were developed using the Onsager2 reciprocal theorem [49]. Kedem and

Katchalsky represented the local dissipation rate of free energy per unit volume as dissipation

function for isothermal, nonelectrolyte systems in a steady state [50]:

φ ¼
X

n

k¼1

J
!

k � ∇ �μk

� �

> 0 ð80Þ

for species k, having a constant flux J
!

k. In the irreversible (i.e., nonequilibrium) process,

entropy must increase and therefore the dissipation rate is positive-definite, i.e., φ > 0. The

dissipation function for RO is

φ ¼ JvΔPþ JDΔπ ð81Þ

where Jv and JD are the total volumetric flux and the solute velocity relative to the solvent

velocity, respectively. One can write

Jv ¼ L11ΔPþ L12Δπ ð82Þ

JD ¼ L21ΔPþ L22Δπ ð83Þ

where Lij are coupling coefficients of the phenomenological fluxes, Jv and JD. In order to satisfy

Eq. (81), the following two conditions must be met

L11; L22 > 0 ð84Þ

and

2Lars Onsager received the Nobel Prize in Chemistry in 1968 for the discovery of the reciprocal relations in the funda-

mental thermodynamics of irreversible processes. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1968/
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L11 L22 ≥ L12L21 ¼ L212 ð85Þ

where L12 ¼ L21.

After some theoretical steps, Kedem and Katchalsky [50] derived

Jv ¼ L11 ΔP� σΔπð Þ ð86Þ

Js ¼ Cs 1� σð ÞJv þ ωΔπ ð87Þ

where Cs is the logarithmic average of concentrations on the two membrane sides,

σ ¼ �L12=L11 assuming L11 > 0 and L12 < 0, and

ω ¼ Cs
L11L22 � L212

L11
¼ Cs L22 � σjL12jð Þ ð88Þ

Here, σ is defined as the “filtration coefficient,” representing the solute rejection property.

Kedem and Katchalsky [50] interpret the physical meaning of σ as follows: when σ ¼ 1:0, the

membrane is completely impermeable to solute and rejection is 100%, and when σ ¼ 0:0, the

membrane is completely permeable to solute and rejection is zero. It is worth noting that the

irreversible thermodynamic theory includes the solution-diffusion model as a special case. If

σ ¼ 1:0, then Eqs. (86) and (87) reduce to

Jv ¼ L11 ΔP� Δπð Þ ! A ΔP� Δπð Þ ð89Þ

Js ¼ Cs L22 � jL12jð ÞΔπ ! BΔC ð90Þ

where L11 ¼ A and B ¼ ωΔπ=ΔC, assuming the osmotic pressure is linearly proportional to the

solute concentration.

In our opinion, σ ¼ 1 can be interpreted in a different way. Because the unity σ in Eqs. (86)

and (87) indicates that the effect of Δπ is maximized, the thermodynamic state of the mem-

brane surface is quite close to the static equilibrium state. The solvent flux can be considered

as the barometric diffusion of water as Jv increases with ΔP, overcoming Δπ across the mem-

brane. The solute flux in this case is purely Fickian, which is dominated by only ωΔπ ∝ΔCð Þ

in Eq. (87). The limiting value of σ ! 1, however, does not guarantee the perfect rejection of

solutes because it does not satisfy Js ¼ 0 in Eq. (90). Knowing L12 < 0, one can rewrite Eq. (85)

to give

L22 � jL12j ≥
L212
L11

þ L12 ¼ σ
2L11 þ L12 ¼ L11σ σ� 1ð Þ ð91Þ

which indicates that the solute flux Js may vanish if σ ¼ 0 or 1. Here, we have to discard σ ¼ 0

because Js in Eq. (87) reaches its maximum at σ ¼ 0. Then, the condition σ ¼ 1 applied to

Eq. (91) must be only a necessary condition for Js ¼ 0. The inequality relationship in Eq. (91)
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indicates that the perfect rejection can be achieved if L22 � jL12j ¼ 0 in addition to σ ¼ 0. In

membrane separations, the perfect rejection is related not only to the thermodynamic state of

the membrane surface, but also to the specific membrane materials having salt rejecting

capabilities.

Furthermore, variations of Jv and Js with respect to σ can be investigated by calculating

1

L11

∂Jv

∂σ
¼ �Δπ ð92Þ

1

CsL11

∂Js
∂σ

¼ �½ΔPþ Δπ� þ Δπσ ð93Þ

and substitution of Eq. (92) into Eq. (93) gives

1

CsL11

∂Js
∂σ

� σΔπ ¼
1

L11

∂Jv
∂σ

� ΔP ð94Þ

which is valid for an arbitrary σ between 0 and 1. Eq. (92) indicates that Jv monotonously

decreases with respect to σ. If the filtration system is in a transient, nonequilibrium state far

from the pure static equilibrium, the volumetric flux Jv must be higher than that in the

quasiequilibrium state. The left-hand side of Eq. (93) is �ΔP at σ ¼ 1 and �½ΔPþ Δπ� at

σ ¼ 0: as σ decreases, the magnitude of ∂Js=∂σ increases.

Overall, σ can be physically interpreted not only as the filtration coefficient, but also as the

equilibrium coefficient. When σ ! 1, the effect of the osmotic pressure difference reaches its

maximum of the quasiequilibrium state, but the zero solute flux is not automatically

guaranteed. The perfect rejection is achieved if the additional condition L22 ¼ jL12j is satisfied,

which is, however, independent of σ. The difference of σ indicates how much the filtration

system is phenomenologically close to the static equilibrium. On the other side, if σ ! 0, then

the filtration system can be in a steady state, but it is far from the static equilibrium. Jv and Js
approach their theoretical maximum values, and the solute transport is significantly

influenced by convection. Although σ is a fundamentally and practically important parameter,

to the best of our knowledge, there are no standard theories to directly predict σ. This is

because the irreversible thermodynamic model relaxes the equilibrium restriction, but the

NESM has not been fully developed yet.
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