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Abstract

The aims of this study were to summarize and describe the influences of phytoplankton 
on the larval cycle of rocky shore invertebrates, and to assess the relationship between 
fluctuations in chlorophyll-a concentration and the rates of larval processes. We  carried 
out a mini review of the published data regarding the theme of the chapter, in which 

we described the ecological trends for the most common taxa and key species at small 
and larger spatiotemporal scales. The following topics were addressed: (i) the influence 
of phytoplankton on larval development, rhythms of larval release, larval quality, 
 larval transport, settlement, and recruitment; (ii) the relationships between variations 
in chlorophyll-a concentration and the rates of larval processes; (iii) climate change on 
phytoplankton larva dynamics. The information presented here highlights the role of 
phytoplankton on rocky shore communities, as well as the importance of chlorophyll-a as 
a tool for modeling and forecasting the supply side ecology in rocky shore communities.

Keywords: phytoplankton, chlorophyll-a, supply side ecology, marine invertebrates, 
rocky shores, benthic-pelagic coupling

1. Introduction

Larval supply is the main source of new individuals to the populations of rocky shore  invertebrates 
[1–3]. In these communities, larval success regulates how energy is transferred through the trophic 
web [4–6]; consequently, variations in the supply of propagules are the basis of trophic interactions 
at rocky shores [7, 8]. Since phytoplankton is the main food source for planktonic larvae of marine 
invertebrates [9], variations in phytoplankton biomass and diversity have significant influences on 
the larval cycle. Larval responses to the variability in phytoplankton abundance and diversity are 
species-specific. Larval fitness is influenced by environmental conditions experienced by adults 
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and larvae [10, 11]. The effects of phytoplankton on larval dynamics depend on the phase of larval 
development [12–15] and may be stronger when variations in phytoplankton occur on temporal 
scales that larvae or breeding adults are able to respond [16]. The direct interaction between phy-
toplankton and the larval stages have short-term consequences for larval dynamics (e.g., Ref. [14]), 
and it might have long-term effects as well. Because of that, variations in the rates of the ecological 
processes of rocky shore invertebrates are commonly correlated with fluctuations in chlorophyll-a 
concentration in the ocean (e.g., Refs. [17–20]). These numerical relationships are important tools 
to ecological modeling, and may be used to improve stock management in some extent [21].

2. The role of phytoplankton blooms in reproduction timing and in the 

rhythms of larval release

In the rocky shore communities, filter feeders depend greatly on phytoplankton as their main 
source of food and its consumption results in energy for growth and reproduction [22]. It is 
common to find larger animals with higher fecundity rates at rocky shores located in areas of 
high primary productivity, as a response to the higher concentrations of phytoplankton, and 
thus, food availability [19, 23–25]. Different types of phytoplankton present distinct physi-
ological qualities as food particles [26], thereby both the amount of phytoplankton in the 
water column and their diversity influence the reproductive traits in marine invertebrates.

But not only adults on the rocky shore depend on phytoplankton in order to survive, larvae 
produced by those organisms also rely on these microorganisms to develop and reach the 
juvenile phase [27]. As evolution drives maximum reproductive activity to happen when 
environmental conditions are the best for offspring development, food availability is one of 
the most important factors regulating reproduction and allowing adults to produce viable 
offspring. Thus, it is common to observe peaks of larval release by rocky shore invertebrates 
synchronized with phytoplankton blooms (e.g., Refs. [28, 29]). Some metabolites produced by 
phytoplankton are signs of favorable environmental conditions for the larval development, 
trigging the spawning activity of green sea urchins and blue mussels, for instance Ref. [28]. 
These animals perceive such chemical compounds as an indication of good food abundance, 
so synchronizing the timing of larval release with high abundance of phytoplankton would 
promote higher offspring survival. Barnacles, on the other hand, just need a physical contact 
with phytoplankton cells to trigger their spawning activity, and larger the phytoplankton cell 
is, the stronger is the response [28].

Therefore, the presence of phytoplankton may overcome other environmental factors in the 
regulation of reproduction timing and larval release [30]. Spring and summer are the main 
reproductive periods for rocky shore invertebrates at temperate and upwelling regions [31], 
as it is during these seasons that phytoplankton blooms occur. Mussels from the Baltic sea, for 
example, start to develop their gonads when temperature starts to drop in the beginning of 
winter; but its maturation and ripening processes proceed in a way that the animals are ready 
to reproduce at the same time that phytoplankton blooms occur in the beginning of spring 
[32]. Some barnacles are even able to maintain their fully developed nauplii in the mantle 
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cavity until a high abundance of phytoplankton is perceived by the adults and only then, 
the nauplii will be released, a strategy that enhances the offspring survival due to the higher 
chance of facing a favorable feeding environment [33].

Similar reproductive timing was registered in the Indian coasts, where phytoplankton 
blooms occur during the monsoons and barnacles spawn their nauplii short after a break of 
the  monsoon conditions [34]. However, these are not the best conditions for nauplii devel-
opment, as these breaks stop and unfavorable monsoon conditions for larval development 
return soon after. Such misleading cue could result in lower recruitment rates for barnacles 
in this region. In subtropical coasts, peaks of larval production in intertidal barnacles are also 
preceded by high concentrations of chlorophyll-a in the water column [35]. On the daily scale, 
phytoplankton diversity might be as important as biomass in the regulation of larval release [36]. 
The presence of phytoplankton may overcome other environmental factors known to act as 
synchronization cues for reproduction timing and larval release [30].

3. How do changes in phytoplankton affect larval development from 
release to competency?

As seen in the previous section, phytoplankton has an important role in the reproductive 
success of marine invertebrates inhabiting the rocky shores. Part of this reproductive success 
involves the survival of larvae up to the juvenile stage, and a successful return to the benthic 
habitat is essential to the maintenance of rocky shore populations [2, 37]. It is straightforward 
to think that larval development is strictly linked to changes in phytoplankton community, 
since these cells are the main food items for marine planktotrophic larvae [9]. Because of 
that, the physiological quality of a larva would be determined in the plankton during its 
 development and influenced directly by the phytoplankton in the water column. However, 
phytoplankton may change larval physiological quality much before that same larva is 
 produced, through maternal effects, that is, when maternal individuals have the capacity to 
 perceive the environment and manipulate the energy allocated for propagule production [38].

The amount of energetic reserves allocated to each propagule produced depends on the 
amount of energy the maternal individual can provide to its offspring. This capacity, in turn, 
is limited by the food available for the mothers, their perception of it, and their competency to 
gather and assimilate energy [38, 39]. For those marine organisms that produce  lecithotrophic 
larvae, maternal effects are extremely important for shaping larval physiological quality 
because these larvae depend exclusively on the energetic resources from embryogenesis to 
survive [40]. If food ration is low, mothers can either preserve the energy acquired for their 
own metabolism and produce lower quality larvae (a selfish strategy, Ref. [39]) or invest all 
energy possible into their propagules, enhancing the survival potential of that higher qual-
ity larvae (an anticipatory strategy, Ref. [39]). In a scenario where maternal individuals are 
 feeding mainly on phytoplankton, as the majority of filter feeding invertebrates in the rocky 
shores are, it is possible to understand the effect that oscillations in the quantity and type of 
phytoplankton available for these animals to feed has on larval quality.
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However, most invertebrates that inhabit the rocky shores produce planktotrophic larvae. 
These larvae are submitted to transport and dispersion; they will feed in the plankton and 
will probably not experience the same conditions of the maternal environment, hypothetically 
reducing the necessity of energy transfer from mother to larvae. Thus, one could assume 
that the food environment experienced by mother would not impact the quality of the lar-
vae produced. Interestingly, few authors have shown that, under stressful temperatures and 
low phytoplankton concentrations, maternal individuals of a tropical barnacle are able to 
manipulate the transfer of different types of fatty acids to their nauplii, a possible strategy 
to guarantee higher survival rates until this same nauplii encounters better food conditions 
in the water column [41]. Variations in the amount and type of phytoplankton available for 
planktotrophic larvae during development cycle interfere in the different larval traits, includ-
ing in the success of metamorphosis into the juvenile stage. Larvae of gastropods [15, 16, 42], 
bivalves [36, 43, 44], and barnacles [45, 46] vary in size, development rate, and survival to the 
juvenile stage, in direct association with the quality and amount of phytoplankton offered 
them during their development.

Larvae must be able to survive from pelagic to benthic conditions and return to the rocky 
shore communities, in order to reach the adult phase. Settlement success and post-settlement 
survivorship are also matters of larval history [12, 15, 21], and many more. Contrary of what 
has been accepted for a long time, settlement of larvae in the benthic environment, and its 
metamorphose to the juvenile stage do not result in a “new beginning” for those individuals, 
but the feeding conditions experienced by larvae and its results on their physiological qual-
ity can be carried over to the next stage, and those individuals who faced low phytoplankton 
concentrations during its life in the plankton might become juveniles with lower growth and 
survival potential, influencing directly on the fate of that population [46–51].

4. Larval transport, settlement, and recruitment

Phytoplankton and larval abundances are sometimes controlled by the same oceanographic 
processes. Phytoplankton grows and reproduces under very specific environmental  conditions, 
driven mainly by turbulence and nutrient availability [52]. Ocean movements, such as tur-
bulence, vertical mixing, and currents, also affect larval abundance at small (e.g., Ref. [53]) 
and larger scales (e.g., Ref. [54]). Marine larvae take advantage of meso- and large-scale 
oceanographic features for transport and dispersion. These larvae have different responses 
depending on the velocity at that depth, assuming a specific swimming or orientation pat-
tern (e.g., Ref. [55]). Besides, larvae are able to control their position in the water column 
and move together with the main current at that specific depth [56–58], what in turn might 
result in variability of larval supply in time and space [59]. Some oceanographic features that 
accumulate and transport marine invertebrate larvae are responsible for disturbing phyto-
plankton as well. For example, upwelling currents, which cause phytoplankton blooms by 
injecting cold nutrient-rich waters in the photic zone, may move larvae of rocky shore inver-
tebrate to shallower waters (e.g., Refs. [60, 61]). Storms are other  meteorological-oceanographic 
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phenomena that disturb both chlorophyll-a concentration at the nearshore environments 
(e.g., Ref. [62]) and the larval abundances close to the rocky shores [63].

Settlement is a function of larval supply [64]. Consequently, successful settlement relies on 
larvae, which need to find suitable settlement sites and be able to metamorphose. In this 
phase of the larval cycle, biochemical and physical cues either stimulate or block settlement. 
The presence of biofilm on the rocks is very important for settling larvae, in particular for 
the sessile larvae, because biofilm may define if that is a favorable settlement spot. Biofilm 
 characteristics control larval behavior during settlement [65]; as a result, settlement rates and 
the chlorophyll-a content in the biofilm are correlated [66]. Settlement may also be corre-
lated with fluctuations in chlorophyll-a concentration just as a consequence of the coupling 
between phytoplankton blooms and larval release [12, 28]. When the latter situation is true, 
fluctuations in chlorophyll-a concentration and variations in settlement rates are time lagged 
in several days [35], what may depend on the time that the larva takes to fully develop. On the 
other hand, if larval supply and phytoplankton dynamics are controlled by the same features, 
as it was explained in the previous paragraph, peaks in chlorophyll-a concentrations and 
settlement rates will occur simultaneously (e.g., Ref. [20]).

Recruitment rates are regulated by fluctuations in the pelagic environment affecting larval 
supply [67]. Recruitment success means that settled larvae survived until they are able to 
reproduce. In the post-settlement period, phytoplankton availability in the benthos and pela-
gial can control the survivorship of settlers in rocky shore communities. Although most early 
recruits of rocky shore invertebrates are filter feeders, they do not have the same diet and 
they may be very selective [68], choosing determinate phytoplankton species as food items 
depending on their size. Changes in the phytoplankton community might benefit one or the 
other species depending on their feeding behavior [68]. Although the relationship between 
recruitment and chlorophyll-a concentration is influenced by  species-specific characteristics, 
information on this subject is still relatively scarce for rocky shore invertebrates. Small- and 
large-scale spatial variability in recruitment of rocky shore invertebrates are related to local 
and regional gradients of chlorophyll-a concentration in the surface waters. Geographic bar-
riers that restrict phytoplankton abundance are also responsible for setting geographical 
limits for recruitment at the rocky shores. Recruitment rates may vary in several orders of 
magnitude among regions and sites, potentially due to persistent gradients in phytoplank-
ton availability, and in turn gradients in chlorophyll-a concentration (e.g., Refs. [69, 70]. Even 
sites within the same bay or just less than 1 km apart may present high contrasts in recruit-
ment rates as a consequence of differences in the phytoplankton dynamics [71].

5. The numerical relationships between chlorophyll-a concentration and 

larval processes

Phytoplankton is a limiting resource to the survival of marine invertebrate larvae, as it was 
described throughout the chapter; consequently, chlorophyll-a concentration is a key  factor 
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regulating larval dynamics in rocky shore communities. Variations in larval processes and 
fluctuations in chlorophyll-a concentration tend to be highly correlated (e.g., trends of 
 recruitment rates [69]). These correlations could be incorporated to ecological and numerical 
models to predict larval processes based on the values of chlorophyll-a concentration in the 
water (e.g., Ref. [72]). Although there are daily measurements of chlorophyll-a concentration 
in the ocean surfaces at a global scale, the levels of correlation between chlorophyll-a and 
 larval dynamics are described only for a few species and some coastal areas.

Trends may be divided in groups according to the relationship between larval and phyto-
plankton dynamics. If the oceanographic processes promoting larval supply and settlement 
are also responsible for enabling phytoplankton growth and reproduction, variations in larval 
processes and in chlorophyll-a concentration may be positively correlated. On the other hand, 
if larval supply and settlement are enabled by less favorable conditions for phytoplankton, 
the fluctuations in the rates of larval processes may be negatively related to the concentra-
tions of chlorophyll-a. Evidences of both trends were registered for rocky shore invertebrates 
in several regions [20, 21, 73]. Although the oceanographic and ecological processes that 
affect community dynamics are similar at the rocky shores, the correlation degrees between 
 phytoplankton abundance and larval processes vary among sites and taxa. Correlations are 
stronger when reproduction and larval processes are regulated by the same mechanisms 
controlling phytoplankton blooms. For instance, in upwelling regions, these correlations are 
expected to be stronger [74], but may not be significant depending on the site (e.g., Ref. [75]). 
Barnacle and mussel recruits that occupy the same intertidal zone are not necessarily affected 
by fluctuations in chlorophyll-a concentration in similar ways, even presenting opposite 
trends in recruitment [21].

6. Climate change on phytoplankton larval dynamics

Climate change has important consequences for benthic-pelagic dynamics. Global warming 
has already caused alterations in the patterns of sea surface temperature and ocean currents, 
which in turn directly influenced the trends of phytoplankton abundance. Larvae and 
recruits of rocky shore invertebrates have to cope with such alterations in food availability 
concomitant to other climatic changes. The effects of phytoplankton and other climatic 
 factors, such as water temperature, tend to be synergic [76]. Global warming conditions 
might not be positive for marine invertebrate larvae which, on one hand, survive under a 
wide range of conditions, but their fitness is highly influenced by changes in food availability. 
Short- and long-term consequences of climate change on phytoplankton larval dynamics 
were already detected for rocky shore communities. On the scale of decades, longer events 
of upwelling in the recent 20 years doubled the recruitment rates in some shores [77]. 
Results showed that, in small scale conditions, variability in phytoplankton has different 
effects on larval performance under different levels of climate change (Kasten, personal 
communication). However, how species will respond to multiple factors under in situ oceanic 

climatic conditions are hard to forecast, since information in larval dynamics are not available 
for most species and rocky shore systems.
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7. Final considerations

Phytoplankton has a high regulatory potential in larval dynamics in the rocky shore com-
munities. Rates of larval processes in rocky shore invertebrates are highly correlated with 
spatiotemporal fluctuations in chlorophyll-a concentration in the sea surfaces. The role of 
phytoplankton in larval dynamics at the community levels is not known, because information 
for most species is incipient. It is important to highlight that scientific improvements are 
needed to allow that use of variations chlorophyll-a concentration as a tool for modeling and 
forecasting the supply side ecology in rocky shore communities.
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