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Abstract

In this chapter, we discuss an approach to obtaining black hole quasi-normal modes
known as the asymptotic iteration method, which was initially developed in mathemat-
ics as a new way to solve for eigenvalues in differential equations. Furthermore, we
demonstrate that the asymptotic iteration method allows one to also solve for the radial
quasi-normal modes on a variety of black hole spacetimes for a variety of perturbing
fields. A specific example for Dirac fields in a general dimensional Schwarzschild black
hole spacetime is given, as well as for spin-3/2 field quasi-normal modes.

Keywords: extra-dimensions, quasi-normal modes, quantum fields in curved space,
supergravity, blackholes

1. Introduction

Quasi-normal modes (QNMs) are one of the most important theoretical results in modern

cosmology, especially for studying the perturbations from various fields on black hole

spacetimes. In this theory, the behaviour of a particle around a black hole is dominated by the

radial equation, and the evolution of QNMs behaves like damped harmonic oscillators with

specific frequencies. The frequencies are constructed by complex modes, where the real part is

the actual frequency and the imaginary part represents the damping rate due to the gravita-

tional emission. In lay terms, the QNMs are the characteristic sounds of the black hole.

With the recent ground breaking progress into the detection of gravitational wave data, where

it is believed that the last part of the gravitational wave emission, called the ring down phase,
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is dominated by the QNMs, it is exciting that perturbation theory in curved spacetimes can now

be possibly tested in a real experimental system, and that a large number of scientists from all

over the world are involved in the data analysis. Related issues of the QNMs within the range of

research into cosmology include studying the stability of black holes and probing the dimen-

sionality of spacetime. It is, however, the observable gravitational wave data from the collisions

of binary black hole systems, which indicates how the background spacetime will finally become

a Kerr black hole spacetime through gravitational wave emission. Perturbation theory on a Kerr

black hole spacetime still includes some difficulties in the higher dimensional cases, which will

be a challenge for the theoretical community for some time to come.

Methods that are used to obtain QNMs can be both semi-analytic and numerical methods and

were introduced by Cho et al. [1], the most famous of these is the WKB approximation

methods [2]. Note that, the WKB approximation has been extended to sixth order [3] and is

powerful in many cases, but like all methods have several limitations. A new method has been

developed in recent years called the asymptotic iteration method (AIM), which is more effi-

cient in some cases. This method was used to solve eigenvalue problems for the second-order

homogeneous linear differential equations [4, 5] and also successfully used in calculating

QNMs [6]. Reviewing this AIM and providing the tools “in detail” for studying QNMs in the

higher dimensional spacetimes are the key focus of this chapter.

As such, this chapter is organised as follows: In the next section, we shall review the recent

progress on perturbation theory in curved spacetimes. More precisely, we shall present a

comparison of the spin-3/2 field in general dimensional Schwarzschild spacetimes with other

spin fields, including the spherical harmonics and the radial equations. In Section 3, we shall

review the AIM and present an exercise detailing how the QNMs of Dirac fields are obtained

in general dimensional Schwarzschild spacetimes. Furthermore, we can also compare to spin-

3/2 QNMs results. We shall conclude with a brief summary.

2. Perturbation theory in a general dimensional Schwarzschild spacetime

2.1. Eigenvalue problem on spheres

For perturbation theory in curved spacetimes, separability can always simplify the equations

of motion and plays an important role. For the maximally symmetric spacetime cases, the

eigenmodes on spheres allow us to separate the angular part for various spin fields and

simplify the equations of motion from the general form into a “radial-time” presentation. For

the case of bosonic fields, an earlier study by Rubin and Ordóñez presented a systematic study

[7, 8] as well as in a later work by Higuchi [9]. For the case of fermionic fields, Camporesi and

Higuchi presented the eigenmodes for spinor fields on arbitrary dimensional spheres [10], and

in a recent work by the authors [11], the spinor-vector eigenmodes on arbitrary dimensional

spheres were derived using a similar approach to Camporesi and Higuchi’s methods. In this

section, we review the structure of these eigenmodes, especially for the case of spinor-vector

fields, which shall be presented with the characteristics of both spinor and vector fields.

The metric of the N-sphere is given by
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dΩ2
N ¼ dθ2

N þ sin2θNdΩ
2
N�1, ð1Þ

where, in this metric, we restrict the sphere to radius r = 1. When we consider the eigenvalue

problem in this spacetime, the bosonic field and fermionic field shall be studied with different

operators. In the case of bosonic fields, the operator for the eigenvalue equation will be the

Laplacian operator ∇μ
∇μ, whereas, in the case of fermionic fields, it will be the Dirac operator

γμ
∇μ, where γμ is the Dirac gamma matrices. In Table 1, we present the structure of the

eigenmodes with various spin fields on the sphere and also the conditions on the specific

mode, such as the transverse, traceless and symmetric conditions.

Looking first at the longitudinal and non-transverse modes for bosonic fields, the longitudinal

and non-transverse eigenfunctions for higher spins are the linear combination of the eigen-

functions for the lower spin one. For example, for the vector fields, the longitudinal eigenvec-

tor is the covariant derivative of a scalar eigenfunction. Furthermore, for the symmetric tensor

fields, there are three types of non-transverse eigenfunctions. The first one is the metric

element multiplied by a scalar eigenfunction, the second one is the longitudinal-longitudinal

eigenfunction, which is the linear combination for longitudinal eigenvectors, and the last one is

Fields Eigenfunction Eigenvalue

Scalar T(l) �lðlþN � 1Þ, l ¼ 0; 1; 2;….

Spinor ψðjÞ �i jþ N�1
2

� �

, j ¼ 1=2; 3=2; 5=2;….

Vector Longitudinal eigenvector

LðlÞμ ¼ ∇μT
ðlÞ �lðlþN � 1Þ þ 1, l ¼ 1; 2; 3;….

Transverse eigenvector

TðlÞ
μ ,∇μTðlÞ

μ ¼ 0 �lðlþN � 1Þ þ ðN � 1Þ, l ¼ 1; 2;….

Spin.- Non-transverse-traceless eigenmode

Vector ψðjÞ
μ ¼ ∇μψ

ðjÞ þ að�Þγμψ
ðjÞ

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2 þ ðN � 1Þjþ 1
4 ðN � 5ÞðN � 1Þ

q

Transverse and traceless eigenmode

ψðjÞ
μ ¼ ðψθN

,ψθi
Þ,∇μψμ ¼ γμψμ ¼ 0 �iðjþ N�1

2 Þ, j ¼ 1=2; 3=2…, N ≥ 3

Sym.- gμνT
ðlÞ �lðlþN � 1Þ, l ¼ 0; 1; 2;….

Tensor Longitudinal-longitudinal (traceless) modes

L
ðlÞ
Lμν ¼ 2∇μ∇νT

ðlÞ � ð 2NÞgμν∇
α
∇αT

ðlÞ �lðlþN � 1Þ þ 2N, l ¼ 2; 3; 4;….

Longitudinal-transverse (traceless) modes

L
ðlÞ
Tμν ¼ ∇μT

ðlÞ
ν þ ∇νT

ðlÞ
μ

�lðlþN � 1Þ þ ðN þ 2Þ, l ¼ 2; 3; 4;….

Transverse-traceless modes

TðlÞ
μν,∇

μTðlÞ
μν ¼ gμνTðlÞ

μν ¼ T
ðlÞ
½μν� ¼ 0 �lðlþN � 1Þ þ 2, l ¼ 2; 3; 4;….

Table 1. Structure of the eigenvalue problem for various fields on N-sphere.
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the longitudinal-transverse eigenfunction, which is the linear combination of transverse eigen-

vectors. Analogous to the non-transverse-traceless modes for fermionic fields, the non-

transverse-traceless eigenspinor-vector is the linear combination of the eigenspinor. We note

that there are two non-transverse-traceless eigenspinor-vectors, due to the a(+) and a(�) being

different factors where

að�Þ ¼ �
i

2
jþ

N � 1

2

� �

� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2 þ ðN � 1Þjþ
1

4
ðN � 5ÞðN � 1Þ

r

: ð2Þ

This indicates a special signature for spinor-vector harmonics that do not have the transverse-

traceless eigenmodes for S2.

Next, we look at the transverse-traceless modes. For the bosonic fields, an unique way to

construct this type of eigenfunction was suggested by Higuchi [9]. Analogous to the fermionic

case, for the transverse-traceless eigenspinor-vector, ψμ ¼ ðψθN
,ψθi

Þ, ψθN
behaves like a spinor

on N – 1 spheres, and ψθi
behaves like a spinor-vector on N – 1 spheres. If we let ψθi

be the

linear combination of the non-transverse-traceless eigenspinor-vector onN – 1 spheres, ψθN
has

to be non-zero to satisfy the transverse and traceless conditions. If we let ψθi
be the linear

combination of the transverse-traceless eigenspinor-vector on N – 1-spheres, ψθN
has to be

zero, because the ψθi
already satisfies the transverse and traceless condition.

On the other hand, we can take a look at the eigenvalue. For the bosonic fields, all of the

eigenvalues contain a similar first term, which is the eigenvalue of the scalar fields; however,

the starting value of the angular momentum quantum number l has to be considered case by

case, as well as the second term for higher spin cases. For the fermionic cases, the eigenvalue of

the non-transverse-traceless eigenspinor-vector has a very different value from the spinor

eigenvalue, though the eigenvalue of the transverse and traceless eigenspinor-vector is exactly

the same as the eigenspinor for the spin-1/2 field.

As a remark on this section, the eigenfunctions and eigenvalues on N-spheres are independent

for bosonic and fermionic fields, even though they have a very similar style of structure, which

indicates that the spherical harmonics for a bosonic field cannot be constructed by the spher-

ical harmonics of a fermionic field, and vice versa. In this section, we presented a review of the

eigenvalue problem for scalar, spinor, vector, spinor-vector, and symmetric tensor fields on

spheres, where further details can be found in the papers referred to in this section.

2.2. Effective potentials

In perturbation theory with various fields in the Schwarzschild black hole spacetime, a radial

equation (Schrödinger-like equation) will be derived from the equations of motion, which shall

be the master equation of this study. In a general way, the studies of perturbation theory in

maximally symmetric spacetimes are well established and include the (A)dS and Reissner-

Nordström spacetimes, but not for the spin-3/2 fields yet. With our recent progress in the study

of spin-3/2 fields, we may now do a comparison of various massless fields in a general

dimensional Schwarzschild black hole spacetime in this section.
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The metric of a general dimensional Schwarzschild spacetime is given by

dS2 ¼ �f ðrÞdt2 þ f�1ðrÞdr2 þ r2dΩ2
D�2, ð3Þ

where f ðrÞ ¼ 1� 2M=rD�3, D is the dimensional factor andM is the mass of the black hole. The

master equation can be obtained from the equations of motion by a change of coordinates to

give the Schrödinger-like equation

d2

dr2�
Ψs þ ðω2 � VsÞΨs ¼ 0; ð4Þ

where the subscript s represents the “spin” and r* represents the “tortoise” coordinate, which

can be defined as follows d
dr�

¼ f ðrÞ d
dr. The mathematical meaning of this coordinate is that a

mapping of the location of the event horizon of the Schwarzschild black hole from r0 (where f

(r0) = 0) is taken to minus infinity.

We shall first look at the four-dimensional cases, where, for the bosonic fields, the radial

equation can be represented with the potential [12]

Vs ¼ f
lðlþ 1Þ

r2
þ ð1� s2Þ

2M

r3

� �

, ð5Þ

where l is an integer, s = 0 represents the effective potential for scalar fields, s = 1 for the

electromagnetic fields, and s = 2 represents the “vector-type” perturbation for gravitational

fields (which is the Regge-Wheeler equation). The “scalar-type” perturbation for the gravita-

tional field in the four-dimensional case is the Zerilli equation, with an effective potential

VZ, s¼2 ¼
2f

r3
9M3 þ 3λ2Mr2 þ λ

2ð1þ λÞr3 þ 9M2
λr

ð3Mþ λrÞ2

" #

, ð6Þ

where λ ¼ ðl� 1Þðlþ 2Þ=2.

For the fermionic fields in the four-dimensional Schwarzschild case, the effective potential can

be shown as follows [13, 14]:

Vs ¼ �f
dW s

dr
þW2

s , ð7Þ

where

W s¼1
2
¼

ffiffiffi

f
p

ðjþ 1
2Þ

r
, j ¼

1

2
,
3

2
;…: ð8Þ

W s¼3
2
¼

ffiffiffi

f
p

ðj� 1
2Þðjþ

1
2Þðjþ

3
2Þ

r ðjþ 1
2Þ

2 � f
h i , j ¼

3

2
,
5

2
;…: ð9Þ
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Note that the “�” represents two isospectral potentials, which were known as the supersym-

metric partner potentials.

For the higher dimensional cases, there are more types of effective potentials, which can be

presented in the four-dimensional case, which indicates that some special cases will not exist in

the four-dimensional cases but will exist in the higher dimensional one. In the following

sections, we shall discuss the higher dimensional effective potentials as presented in Table 2.

Starting with bosonic fields, we have one effective potential for scalar fields in the higher

dimensional Schwarzschild spacetime, and it is necessary to satisfy Eq. (5) when D = 4 and s = 0.

For the case of electromagnetic fields, there are two types of effective potentials, which are the

Fields Vs

Scalar [12]

Vs¼0 ¼ f lðlþD�3Þ
r2

þ D�2
4

D�4
r2

f þ 2f 0

r

	 
h i

l ¼ 0; 1; 2;….

Dirac [13]

Vs¼1=2 ¼ �f
dW s¼1=2

dr þW2
s¼1=2

where

W s¼1=2 ¼ f ðjþ
D�3
2

r Þ, j ¼ 1=2; 3=2; 5=2;….

Electromagnetic [15]

Scalar-type perturbation

VS, s¼1 ¼ f
lðlþD�3ÞþðD�2ÞðD�4Þ

4

r2 � ð3D�8ÞðD�4ÞM
2rD�1

� �

.

l ¼ 1; 2; 3;….

Vector-type perturbation

VV,s¼1 ¼ f
lðlþD�3ÞþðD�2ÞðD�4Þ

4

r2
� DðD�4ÞM

2rD�1

� �

.

l ¼ 1; 2; 3;….

Rarita-Schwinger [11]

Related to the non-TT eigenmodes

VNTT, s¼3=2 ¼ �f
dWNTT, s¼3=2

dr þW2
NTT,s¼3=2

where

WNTT,s¼3=2 ¼
ffiffi

f
p

ðjþD�3
2 Þ

r

ð 2
D�2Þ

2ðjþD�3
2 Þ2�1�D�4

D�2ð 2M
rD�3Þ

ð 2
D�2Þ

2ðjþD�3
2 Þ2�f

� �

, j ¼ 1=2; 3=2; 5=2….

Related to the TT eigenmodes

VTT, s¼3=2 ¼ �f
dWTT,s¼3=2

dr þW2
TT, s¼3=2

where

WTT, s¼3=2 ¼ f ðjþ
D�3
2

r Þ, j ¼ 1=2; 3=2; 5=2;….
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“scalar-type perturbation potential” and the “vector-type perturbation potential”. It is acciden-

tal that both of these effective potentials satisfy Eq. (5) when D = 4 and s = 1, but it has been

shown they have different behaviours in the higher dimensional cases. It is believed that these

two types of effective potentials are strongly linked to two types of eigenvectors on spheres,

which are longitudinal and transverse ones. For the case of gravitational fields, the “scalar-

type perturbation potential” becomes the potential for the Zerilli equation, and the “vector

type perturbation potential” becomes the potential for the Regge-Wheeler equation whenD = 4

and s = 2. The “tensor-type perturbation potential”will be present whenD ≥ 5 but absent in the

four-dimensional case.

For the fermionic fields, the “�” still represents two isospectral supersymmetric partner poten-

tials in the higher dimensional cases. We have one set of effective potentials for the Dirac field,

which is strongly related to the eigenspinor on the sphere and reduces to Eq. (8) when D = 4.

For the case of the Rarita-Schwinger field, the potentials related to the non-transverse-traceless

eigenmodes are the leading equation both for the four-dimensional case and the higher dimen-

sional one, which are strongly linked to the “non-transverse-traceless” eigenspinor-vector on

spheres. Another effective potential for the Rarita-Schwinger fields is the one related to the

transverse and traceless eigenmodes; however, this type of eigenspinor-vector was absent on

the 2-sphere, which indicates that the potentials related to the transverse and traceless eigen-

modes exist for the cases whenD ≥ 5. We must note that, in this case, the effective potentials are

exactly the same as the Dirac case.

Lastly, note that, most of the effective potentials in Table 2 are simple barrier like potentials.

Nevertheless, some cases in the higher dimensions, or for the lowest energy state with j = 1/2,

for the potentials related to the non-transverse-traceless eigenmodes exhibit special behaviours

but not a simple barrier potential, which strongly suggests a link with the instabilities of the

black hole [18] and warrants further study.

Fields Vs

Gravitational [16, 17]

Scalar-type perturbation

VS, s¼2 ¼
f H

16r2 mþ1
2NðNþ1Þð1�f Þ½ �

2 , N ¼ D� 2

H ¼ N4ðN þ 1Þ2ð1� f Þ3

þNðN þ 1Þ½4ð2N2 � 3N þ 4ÞmþNðN � 2ÞðN � 4ÞðN þ 1Þ�ð1� f Þ2

� 12N½ðN � 4ÞmþNðN þ 1ÞðN � 2Þ�mð1� f Þ þ 16m3 þ 4NðN þ 2Þm2:
m ¼ lðlþN � 1Þ �N, l ¼ 2; 3; 4…:

Vector and tensor type perturbation

VV=T, s¼2 ¼
f
r2 lðlþD� 3Þ þ ðD�2ÞðD�4Þ

4 �
μV=T

2
ðD�2Þ2M

rD�3

h i

.

μV ¼ 3;lV ¼ 2; 3; 4… for vector-type perturbation.

μT ¼ �1;lT ¼ 1; 2; 3;… for tensor-type perturbation.

Table 2. The effective potential for various fields in the higher dimensional cases (D ≥ 5).
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To summarise, we have in this section provided a brief review of the effective potentials, which

play an important role in the perturbation theory of various spin fields in the general dimen-

sional Schwarzschild black hole spacetimes.

3. QNM frequencies by AIM

3.1. AIM methods

The AIM is a well-established approach in solving the eigenvalue problem for the second-

order differential equations, for example, Schrödinger-like equations. As mentioned in the

previous section, the radial equations of the perturbation theory with various spin fields in

general dimensional Schwarzschild spacetimes were presented as Schrödinger-like equations.

The QNMs, which are the signature modes in the black hole perturbation theory, can be

obtained naturally by using the AIM. In this subsection, we shall present a brief review of the

AIMs, and in the next subsection, we shall present an example calculation, showing the

methods used to obtain the quasi normal frequencies. We shall start with the second-order

differential equation for the function χðxÞ

χ″ ¼ λ0ðxÞχ
0 þ s0ðxÞχ, ð10Þ

where χ0 ¼ dχ=dx. The symmetric structure of the right-hand side of Eq. (10) leads to the

method, where we differentiate on both sides of the equation we find that

χ″ ¼ λ0χ
″ þ ðλ0

0 þ s0Þχ
0 þ s00χ,

¼ ðλ0
0 þ s0 þ λ2

0Þχ
0 þ ðs00 þ s0λ0Þχ,

� λ1χ
0 þ s1χ:

ð11Þ

Taking the second derivative of Eq. (10) we have

χð4Þ ¼ λ2χ
0 þ s2χ, ð12Þ

where

λ2 ¼ λ0
1 þ s1 þ λ0λ1 ; s2 ¼ s01 þ s0λ1: ð13Þ

Differentiating iteratively to the ðnþ 1Þth and the ðnþ 2Þth order, we have

χðnþ1Þ ¼ λn�1χ
0 þ sn�1χ ; χðnþ2Þ ¼ λnχ

0 þ snχ, ð14Þ

where

λn ¼ λ0
n�1 þ sn�1 þ λ0λn�1 ; sn ¼ s0n�1 þ s0λn�1: ð15Þ

In the AIM, we suppose that for sufficiently large n, which represents the iterating number, the

coefficients λn and sn will have the relation
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sn
λn

¼
snþ1

λnþ1
¼ βðxÞ, ð16Þ

where the general solution of Eq. (10) is

χðxÞ ¼ exp
	

�

ðx

βðx0Þdx0



½C2 þ C1

ðx

expð

ðx

ðλ0ðx
″Þ þ 2βðx″ÞÞdx″Þdx0�: ð17Þ

C1 and C2 are constants determined by the normalisation, and the QNMs (or the energy

eigenstates) can be obtained by the termination condition

snλnþ1 � snþ1λn ¼ 0: ð18Þ

This is the basic idea for the AIM, where to appreciate the effectiveness of this methods, we

refer the reader to Ciftci et al. [4, 5], which presented some studies for the constant coefficient,

harmonic oscillator, and the energy eigenvalue problem for several well-known potentials. For

the study of perturbation theory in curved spacetimes by the AIM, Cho et al. [1] present a

review of the QNMs for the bosonic fields in the four-dimensional maximally symmetric and

the Kerr black hole spacetimes. In the next subsection, as an example, we shall present how to

obtain the QNMs for Dirac fields in the higher dimensional Schwarzschild black hole

spacetimes by the AIM and compare these with other numerical semi-analytic results.

3.2. Example: How to obtain the QNMs for Dirac fields in general dimensional

Schwarzschild black hole spacetimes by the AIM

The QNMs for Dirac particles in the higher dimensional Schwarzschild black hole spacetimes

had been done in the earlier work by some of the authors [13] using the third-order WKB

approximation but not the AIM. With recent progress in spin-3/2 fields [11], we find that these

results greatly overlap with some of the spin-3/2 particles, which are represented by the

relations in the radial equations of the transverse and traceless eigenmodes. In this section, as

an example, we are going to show how to reproduce the results by the AIM.

In Table 2, the effective potential of the radial equation, Eq. (4), for the Dirac particle is as

follows:

Vs¼1=2 ¼ f
dWs¼1=2

dr
þW2

s¼1=2 , W s¼1=2 ¼ f
jþ D�3

2

r

� �

, j ¼
1

2
,
3

2
;…: ð19Þ

As we are going to reproduce the results in Ref. [13], a similar choose of f(r) will be

f ðrÞ ¼ 1�
rH
r

	 
D�3
, rD�3

H ¼
8πMΓððD� 1Þ=2Þ

πðD�1Þ=2ðD� 2Þ
, M � 1; ð20Þ

where rH represents the location of the event horizon and M represents the mass of the black

hole. By making a coordinate transformation
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ξ2ðrÞ ¼ 1�
rH
r
, ð21Þ

the radial equation becomes

f
dξ

dr

d

dξ
f
dξ

dr

d

dξ

� �

þ ω2 � Vs¼1=2

� �

Ψs¼1=2 ¼ 0: ð22Þ

Simplifying Eq. (22), we have

d2

dξ2
þ

f 0

f
þ
ξ0

0

ξ0

 !

d

dξ
þ
ω2 � Vs¼1=2

f 2ξ0
2

" #

Ψs¼1=2 ¼ 0; ð23Þ

where

f 0 ¼
d

dξ
f ðξÞ , ξ0 ¼

d

dr
ξðrÞjr¼ rH

1�ξ2
, ξ″ ¼

d

dξ
ξ0: ð24Þ

Next, by setting the boundary behaviour of Ψs¼1=2 ¼ αðξÞχðξÞ and together with Eq. (23), we

have

d2

dξ
χ ¼ �

f 0

f
þ
ξ″

ξ
þ
2α0

α

� �

d

dξ
χ�

ω2 � Vs¼1=2

f 0ξ0
2

þ
α″

α
þ

f 0

f
þ
ξ″

ξ

� �

α0

α

" #

χ: ð25Þ

This is the second-order differential equation, which is the same as Eq. (10) with

λ0 ¼ �
f 0

f
þ
ξ″

ξ
þ
2α0

α

� �

, s0 ¼ �
ω2 � Vs¼1=2

f 0ξ0
2

þ
α″

α
þ

f 0

f
þ
ξ″

ξ

� �

α0

α

" #

: ð26Þ

Note that the last parameter we have to define is the asymptotic behaviour function α(ξ), and

we approach this by starting with the asymptotic behaviour of Ψs¼1=2, which can be

represented as an outgoing plane wave

Ψs¼1=2 ~ eiωr� for r ! ∞,
Ψs¼1=2 ~ e�iωr� for r ! �∞,

ð27Þ

with r* being the tortoise coordinate, which has the relation with r

d

dr�
¼ f ðrÞ

d

dr
: ð28Þ

Solving Eq. (28) in the four-dimensional case, we have

r� ¼ rþ rHln
rH
r
� 1

	 


, ð29Þ

together with Eqs. (21) and (27), we have
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Ψs¼1=2 ~ e
iωrH

1�ξ2ð1� ξ2Þ�iωrHξ2iωrH for ξ ! 1,

Ψs¼1=2 ~ e
�

iωrH

1�ξ2ð1� ξ2ÞiωrHξ�2iωrH for ξ ! 0:

ð30Þ

Collecting the leading terms, we can define α(ξ) in the four-dimensional case as follows:

αðξÞ ¼ e
iωrH

1�ξ2 ð1� ξ
2Þ�iωrHξ

�2iωrH : ð31Þ

If we now consider the higher dimensional cases, Eq. (29) will become more complicated with

r� ¼ rþ
X

D�3

a¼1

rHε

D� 3
ln

r

rHε
� 1

� �

, ð32Þ

where ε ¼ e
ia2π
D�3. Eq. (27) in the higher dimensions can be presented in the general form

Ψs¼1=2 ~ e
iωrH

1�ξ2
Y

D�3

a¼1

	

εð1� ξ
2Þ

�

iωrH ε

D�3
	

1� εð1� ξ
2Þ



iωrH ε

D�3

for ξ ! 1,

Ψs¼1=2 ~ e
�

iωrH

1�ξ2
Y

D�3

a¼1

	

εð1� ξ
2Þ



iωrHε

D�3
	

1� εð1� ξ
2Þ

�

iωrHε

D�3

for ξ ! 0:

ð33Þ

Next, we shall consider how to define the asymptotic behaviour function α(ξ) in the higher

dimensional cases, where in our experience, finding the dominant terms in Eq. (33) is helpful to

the AIM calculation. When D = 5, Eq. (33) becomes

Ψs¼1=2 ~ e
iωrH

1�ξ2ðξ2 � 2Þ�
iωrH
2 ðξ2Þ

iωrH
2 for ξ ! 1,

Ψs¼1=2 ~ e
�

iωrH

1�ξ2ðξ2 � 2Þ
iωrH
2 ðξ2Þ�

iωrH
2 for ξ ! 0:

ð34Þ

By considering the dominant term for the boundary behaviour, a suitable choice of the asymp-

totic behaviour function is as follows:

αðD¼5ÞðξÞ ¼ e
iωrH

1�ξ2ðξ2Þ�
iωrH
2 : ð35Þ

For D = 6, Eq. (33) becomes

Ψs¼1=2 ~ e
iωrH

1�ξ2 e
i2π
3 ð1� ξ

2Þ
	 
�

iωrHe

i2π
3

3

1� e
i2π
3 ð1� ξ

2Þ
	 


iωrHe

i2π
3

3

e
i4π
3 ð1� ξ

2Þ
	 
�

iωrHe

i4π
3

3

1� e
i4π
3 ð1� ξ

2Þ
	 


iωrHe

i4π
3

3

ð1� ξ
2Þ�

iωrH
3 ð1� ξ

2Þ�
iωrH
3 for ξ ! 1;

Ψs¼1=2 ~ e
�

iωrH

1�ξ2 e
i2π
3 ð1� ξ

2Þ
	 


iωrHe

i2π
3

3

1� e
i2π
3 ð1� ξ

2Þ
	 
�

iωrH e

i2π
3

3

e
i4π
3 ð1� ξ

2Þ
	 


iωrHe

i4π
3

3

1� e
i4π
3 ð1� ξ

2Þ
	 
�

iωrHe

i4π
3

3

ð1� ξ
2Þ�

iωrH
3 ð1� ξ

2Þ�
iωrH
3 for ξ ! 0:

ð36Þ
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The dominant term for the boundary behaviour can be chosen as follows:

αðD¼6ÞðξÞ ¼ e
iωrH

1�ξ2ðξ2Þ�
iωrH
3 ð1� ξ2Þ�

iωrH
3

: ð37Þ

For a similar discussion on the higher dimensional cases, we find that α(ξ) can be defined

separately for the odd dimensional and even dimensional cases, where

αðξÞ ¼ e
iωrH

1�ξ2ðξ2Þ�
iωrH
D�3 , D∈ odd;

αðξÞ ¼ e
iωrH

1�ξ2ðξ2Þ�
iωrH
D�3ð1� ξ2Þ�

iωrH
D�3 , D∈ even:

ð38Þ

Substituting Eqs. (19), (20), (21) and (38) into Eq. (26), we find λ1 and s1 by the relation in

Eq. (15). Next, by defining a suitable initial value of ω0, which represents the parameter ω in s0,

with the termination condition Eq. (18), we can solve the parameter ω1, which represents the

parameter ω in s1. This loop iterates, as with ω1 we can solve for ω2 in the next iteration and so

on. For a sufficiently large number of iterations, the ωn-1 and ωn will become stable, and it will

be the quasi normal frequency we are seeking.

The QNM results are obtained with the iteration number = 200 in Table 3, for the D = 5,6

dimensional Schwarzschild spacetimes, and in Table 4, for D = 7,8. The results using the third-

order WKB methods are the same as presented in our previous work [13], where for complete-

ness we also list the sixth-order WKB results.

5 Dimensions

l n Third-order WKB Sixth-order WKB AIM

0 0 0.7247–0.3960 i 0.7823–0.3635 i 0.7252–0.3960 i

1 0 1.3158–0.3839 i 1.3301–0.3852 i 1.3163–0.3839 i

1 1 1.1490–1.2192 i 1.1800–1.2021 i 1.1495–1.2192 i

2 0 1.8754–0.3838 i 1.8801–0.3844 i 1.8802–0.3840 i

2 1 1.7541–1.1818 i 1.7672–1.1791 i 1.7674–1.1779 i

2 2 1.5588–2.0318 i 1.5620–2.0517 i 1.5593–2.0318 i

3 0 2.4251–0.3839 i 2.4271–0.3840 i 2.4256–0.3839 i

3 1 2.3322–1.1686 i 2.3382–1.1674 i 2.3327–1.1686 i

3 2 2.1704–1.9891 i 2.1691–1.9980 i 2.1709–1.9891 i

3 3 1.9611–2.8411 i 1.9385–2.9063 i 1.9616–2.8411 i

4 0 2.9716–0.3839 i 2.9726–0.3839 i 2.9721–0.3839 i

4 1 2.8963–1.1624 i 2.8994–1.1618 i 2.8968–1.1624 i

4 2 2.7596–1.9668 i 2.7574–1.9711 i 2.7601–1.9668 i

4 3 2.5773–2.7984 i 2.5569–2.8330 i 2.5778–2.7984 i

4 4 2.3583–3.6512 i 2.3126–3.7665 i 2.3588–3.6512 i

5 0 3.5166–0.3838 i 3.5171–0.3838 i 3.5171–0.3838 i

5 1 3.4533–1.1591 i 3.4550–1.1588 i 3.4538–1.1591 i

5 2 3.3353–1.9536 i 3.3333–1.956 i 3.3358–1.9536 i
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5 Dimensions

5 3 3.1741–2.7711 i 3.1580–2.7908 i 3.1746–2.7711 i

5 4 2.9785–3.6089 i 2.9383–3.6779 i 2.9790–3.6089 i

5 5 2.7525–4.4625 i 2.6857–4.6302 i 2.7530–4.4625 i

6 Dimensions

0 0 1.2806–0.6391 i 1.4364–0.5821 i 1.2811–0.6391 i

1 0 2.1006–0.6276 i 2.1350–0.6423 i 2.1011–0.6276 i

1 1 1.7071–2.0417 i 1.8139–1.9981 i 1.7076–2.0417 i

2 0 2.8671–0.6308 i 2.8797–0.6354 i 2.8676–0.6308 i

2 1 2.5777–1.962 i 2.6235–1.9629 i 2.5782–1.962 i

2 2 2.1056–3.4196 i 2.1297–3.4716 i 2.1061–3.4196 i

3 0 3.6132–0.6321 i 3.6194–0.6329 i 3.6196–0.6325 i

3 1 3.3917–1.9342 i 3.4143–1.9318 i 3.4180–1.9342 i

3 2 3.0002–3.3204 i 3.0081–3.3404 i 3.0007–3.3204 i

3 3 2.4883–4.7849 i 2.4206–4.9568 i 2.4888–4.7849 i

4 0 4.3518–0.6324 i 4.3550–0.6325 i 4.3523–0.6324 i

4 1 4.1724–1.9214 i 4.1845–1.9192 i 4.1729–1.9214 i

4 2 3.8423–3.2694 i 3.8437–3.2771 i 3.8428–3.2694 i

4 3 3.3973–4.6831 i 3.3411–4.7697 i 3.3978–4.6831 i

4 4 2.8578–6.1516 i 2.6999–6.4718 i 2.8583–6.1516 i

5 0 5.0872–0.6325 i 5.0890–0.6324 i 5.0877–0.6325 i

5 1 4.9359–1.9143 i 4.9428–1.9128 i 4.9364–1.9143 i

5 2 4.6513–3.2399 i 4.6503–3.2435 i 4.6518–3.2399 i

5 3 4.2586–4.6195 i 4.2147–4.6677 i 4.2591–4.6195 i

5 4 3.7773–6.0494 i 3.6482–6.2378 i 3.7778–6.0494 i

5 5 3.2168–7.5218 i 2.9732–8.0104 i 3.2173–7.5218 i

Table 3. Low-lying (n ≤ l, with l ¼ j� 1=2) spin-1/2 field QNM frequencies using the WKBmethods and the AIMwith D = 5,6.

7 Dimensions

l n Third-order WKB Sixth-order WKB AIM

0 0 1.7861–0.8090 i 2.0640–0.7502 i 1.7866–0.8090 i

1 0 2.7344–0.8066 i 2.7827–0.8558 i 2.7349–0.8066 i

1 1 2.0521–2.6832 i 2.2892–2.6106 i 2.0526–2.6832 i

2 0 3.6130–0.8166 i 3.6327–0.8322 i 3.6135–0.8166 i

2 1 3.1092–2.5590 i 3.2053–2.5943 i 3.1097–2.5590 i

2 2 2.2671–4.5340 i 2.3344–4.6355 i 2.2676–4.5340 i

3 0 4.4610–0.8206 i 4.4730–0.8233 i 4.4615–0.8206 i

3 1 4.0779–2.5187 i 4.1298–2.5218 i 4.0784–2.5187 i
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7 Dimensions

3 2 3.3809–4.3622 i 3.4158–4.4006 i 3.3814–4.3622 i

3 3 2.4624–6.363 i 2.3163–6.6549 i 2.4629–6.363 i

4 0 5.2968–0.8218 i 5.3035–0.8220 i 5.3033–0.8220 i

4 1 4.9878–2.5009 i 5.0176–2.4966 i 4.9883–2.5009 i

4 2 4.4049–4.2771 i 4.4224–4.2810 i 4.4054–4.2772 i

4 3 3.6066–6.1782 i 3.4954–6.3058 i 3.6071–6.1782 i

4 4 2.6393–8.1950 i 2.2624–8.7432 i 2.6398–8.1950 i

5 0 6.1273–0.8221 i 6.1310–0.8219 i 6.1309–0.8221 i

5 1 5.8671–2.4910 i 5.8847–2.4870 i 5.8676–2.4910 i

5 2 5.3673–4.2295 i 5.3756–4.2263 i 5.3678–4.2295 i

5 3 4.6654–6.0660 i 4.5819–6.1252 i 4.6659–6.0660 i

5 4 3.8002–8.0044 i 3.5047–8.3081 i 3.8007–8.0044 i

5 5 2.7964–10.035 i 2.1874–10.910 i 2.7969–10.0348i

8 Dimensions

0 0 2.2437–0.9238 i 2.6486–0.8930 i 2.2442–0.9238 i

1 0 3.2663–0.9359 i 3.3105–1.0469 i 3.2668–0.9359 i

1 1 2.2397–3.1796 i 2.6722–3.0659 i 2.2402–3.1796 i

2 0 4.2077–0.9556 i 4.2279–0.9928 i 4.2082–0.9556 i

2 1 3.4491–3.0091 i 3.6051–3.1428 i 3.4496–3.0091 i

2 2 2.1453–5.4463 i 2.2891–5.5740 i 2.1458–5.4463 i

3 0 5.1097–0.9641 i 5.1285–0.9704 i 5.1102–0.9642 i

3 1 4.5378–2.9607 i 4.6284–2.9895 i 4.5383–2.9607 i

3 2 3.4576–5.1805 i 3.5481–5.2651 i 3.4581–5.1805 i

3 3 2.0383–7.6877 i 1.7944–8.0198 i 2.0388–7.6877 i

4 0 5.9947–0.9669 i 6.0062–0.9669 i 5.9952–0.9669 i

4 1 5.5365–2.9415 i 5.5943–2.9365 i 5.5370–2.9415 i

4 2 4.6421–5.0549 i 4.6967–5.0480 i 4.6426–5.0549 i

4 3 3.4017–7.3877 i 3.2284–7.5066 i 3.4022–7.3877 i

4 4 1.9199–9.9347 i 1.2118–10.564 i 1.9204–9.9347 i

5 0 6.8720–0.9677 i 6.8785–0.9669 i 6.8772–0.9659 i

5 1 6.4875–2.9309 i 6.5231–2.9224 i 6.4880–2.9309 i

5 2 5.7272–4.9883 i 5.7608–4.9630 i 5.7277–4.9883 i

5 3 4.6390–7.2092 i 4.5109–7.2241 i 4.6395–7.2092 i

5 4 3.3023–9.6186 i 2.7516–9.9294 i 3.3028–9.6186 i

5 5 1.7759–12.195 i 0.5680–13.282 i 1.7764–12.1949 i

Table 4. Low-lying (n ≤ l, with l ¼ j� 1=2) spin-1/2 field QNM frequencies using the WKB methods and the AIM with

D = 7,8.
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4. A remark on the spin-3/2 field QNMs

In this section, we are going to present a discussion of our recent work [11] on the spin-3/2

fields in general dimensional Schwarzschild spacetimes. Note that, this section will not go

into as great a detail as the previous one but shall just list some improvements made in light

of recent considerations. Starting with the radial equation related to the “non-TT eigen-

modes”, the radial equation can still be represented as the Schrödinger like one, Eq. (4),

where

VNTT, s¼3=2 ¼ �f
dWNTT, s¼3=2

dr
þW2

NTT, s¼3=2,

WNTT, s¼3=2 ¼

ffiffiffi

f
p

ðjþ
D� 3

2
Þ

r

ð 2
D�2Þ

2ðjþ D�3
2 Þ2 � 1�

D� 4

D� 2
ð
2M

r
ÞD�3

ð 2
D�2Þ

2ðjþ D�3
2 Þ2 � f

2

6

4

3

7

5
,

ð39Þ

and

f ðrÞ ¼ 1�
2M

r

� �D�3

: ð40Þ

Because the general form of the radial equation is the same as the Dirac case, Eqs. (22)–(38) are

still sufficient in this case, but the effective potential will be Eq. (39), not Eq. (19). What we need

to consider here is that the asymptotic behaviour function is simpler than what we had used

previously and successfully generates better results for the QNMs.

In Table 5, for some lower modes in the seven-dimensional spacetime, the new AIM results

(with the current choice of boundary behaviour function, Eq. (38)) are better than the previous

7 Dimensions

l n Third-order WKB Sixth-order WKB AIM (earlier) AIM (new)

0 0 0.7725–0.2978 i 0.7530–0.3037 i 0.7008–0.3036 i 0.7535–0.3036 i

1 0 1.1441–0.2893 i 1.1415–0.2831 i 1.1231–0.2976 i 1.142–0.2831 i

1 1 0.9465–0.9065 i 0.9267–0.8783 i 0.9266–0.8782 i 0.9271–0.8782 i

… … … … … …

8 Dimensions

… … … … … …

4 4 1.0674–3.5290 i 0.7606–3.5381 i 1.0674–3.5290 i 1.0679–3.5291 i

5 4 1.5711–3.4654 i 1.3755–3.4609 i 1.5711–3.4653 i 1.5716–3.4654 i

5 5 1.0321–4.3822 i 0.5837–4.5299 i 1.0321–4.3822 i 1.0326–4.3822 i

… … … … … …

Table 5. Selected QNM frequencies of low-lying (n ≤ l, with l ¼ j� 3=2) for spin-3/2 field related to the non-TT

eigenmodes by using the WKB methods and the AIM.
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results for the first few modes. This is why we believe Eq. (38) is a suitable choice of the

boundary behaviour function for the AIM methods in the higher dimensional spacetimes.

5. Summary

In this chapter, we presented a brief review of recent progress on perturbation theory with

various fields in curved spacetimes, especially for a systematic comparison to the fermionic

and bosonic fields. Generally, the first step in this topic is the obtaining of the radial equations

as discussed in Section 2. There are then various methods, but no unique approach for consid-

ering a specific field on a specific spacetime, where we strongly suggest the reader follow the

references provided to develop a step-by-step approach. On the other hand, the process for

obtaining the radial equations always relates to the separability of a spacetime, this being the

main reason that we still have difficulties for perturbation theory in the higher dimensional

Kerr spacetimes. As such we mentioned in the introduction section that for the gravitational

wave experiments, the QNMs in the higher dimensional Kerr spacetimes are definitely an

interesting next stage of study for this area, and it shall be interesting seeing further progress

in this direction.

In Section 3, we presented the AIM, giving an in detail example to study the perturbation

theory in the higher dimensional spacetimes and also presented a remark for our recent work

on the spin-3/2 fields. Since there are several numerical methods for obtaining the QNMs, we

believe that the AIM is a straightforward way to study the QNMs due to its simple mathemat-

ical structure.
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