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“Since all models are wrong the scientist cannot obtain a “correct” one by

excessive elaboration. On the contrary following William of Occam he should

seek an economical description of natural phenomena. Just as the ability to

devise simple but evocative models is the signature of the great scientist so

overelaboration and overparameterization is often the mark of mediocrity”.

(Box, G.E.P. Science and Statistics, J. Am. Stat. Ass. 1976, 71, 791–796)

Abstract

The aim of this chapter is to show checking the underlying assumptions (the errors are
independent, have a zero mean, a constant variance and follows a normal distribution)
in a regression analysis, mainly fitting a straight-line model to experimental data, via the
residual plots. Residuals play an essential role in regression diagnostics; no analysis is
being complete without a thorough examination of residuals. The residuals should
show a trend that tends to confirm the assumptions made in performing the regression
analysis, or failing them should not show a tendency that denies them. Although there
are numerical statistical means of verifying observed discrepancies, statisticians often
prefer a visual examination of residual graphs as a more informative and certainly more
convenient methodology. When dealing with small samples, the use of the graphic
techniques can be very useful. Several examples taken from scientific journals and
monographs are selected dealing with linearity, calibration, heteroscedastic data, errors
in the model, transforming data, time-order analysis and non-linear calibration curves.
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1. Introduction

The purpose of this chapter is to provide an overview of checking the underlying assumptions

(errors normally distributed with zero mean and constant variance (σi
2), being independent

one of each other) in a regression analysis, via the use of basic residual plot, such as plots of

residuals versus the independent variable x. Compact formulae for the weighted least squares

calculation of the a0 (intercept) and a1 (slope) parameters and their standard errors [1, 2] are

shown in Table 1. The similarity with simple linear regression is obvious, simply making the

weighting factors wi ¼ 1. A number of selected examples taken from scientific journals and

monographs are subject of study in this chapter. No rigorous mathematical treatment will be

given to this interesting topic. Emphasis is mainly placed on a visual examination of residuals

to check for the model adequacy [3–7] in regression analysis. The role of residuals in regression

diagnostics is vital, being necessary with their thorough examination to consider an analysis as

complete [8–10].

The residuals are geometrically the distances calculated in the y-direction [1, 2, 11, 12] (vertical

distances) between the points and the regression line (error free in the independent variable)

ri ¼ yi � ŷi ð1Þ

The calculated regression line

ŷi ¼ a0 þ a1xi ð2Þ

corresponds to the model

yi ¼ α0 þ α1xi þ εi ð3Þ

where εi is the random error (a0 and a1, Eq. (2), are the estimates of the true values α0 and α1),

leading to a sum of squares of the residuals minimum

Qmin ¼
X

r2i

h i

min
ð4Þ

Note that the model error is given by

εi ¼ yi � EðyiÞ ð5Þ

where E(yi) is the expected value of yi [6]. Thus, the residuals ri may be viewed as the

differences between what is really observed, and what is predicted by the model equation

(i.e. the amount that the regression equation is not able to explain). The residuals ri may be

thought as the observed errors [10] in correct models. The residuals reveal the existing asym-

metry [13] in the functions of the response and the independent variable in regression prob-

lems. A number of assumptions concerning the errors [14, 15] have to be made when

performing a regression analysis, for example, normality, independence, zero mean and con-

stant variance (homoscedasticity property).
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An assumption that the errors are normally distributed is not required to obtain the parameter

estimates by the least squares method. However, for inferences and estimates (standard errors,

t- and F-test, confidence intervals) to be made about regression, it is necessary to assume that

the errors are normally distributed [11]. The assumption of normality, nevertheless, is plausible

as in many real situations errors tend to be normally distributed due to the central limit

theorem. The assumption that no residual term is correlated with another, combined with the

normality assumption, means [10] the errors are also independent. Constructing a normal

probability plot of the residuals [16–18] is a way to verify the assumption of normality.

Residuals are ordered and plotted against the corresponding percentage points from the

standardized normal distribution (normal quantities). If the residuals are then situated along

a straight line, the assumption of normality is satisfied.

A standardized residual is the residual divided by the standard deviation of the regression line

eri ¼
ri
sy=x

ð6Þ

The standardized residuals are normally distributed with a mean value of zero and (approxi-

mately) unity variance [10, 19]

VarðriÞ ¼ VarðyiÞ � VarðŷiÞ ¼ σ
2 � σ

2 1
X

wi

þ ðx� xÞ2
SXX

 !

¼ σ
2 1� 1

X

wi

� ðx� xÞ2
SXX

 !

¼ σ
2ð1� hiiÞ

ð7Þ

VarðeriÞ ¼ 1� hii ð8Þ

The hii term may be regarded as measuring the leverage of the data point (xi,yi) (see below). The

estimated residuals are correlated [10], but this correlation does not invalidate the residual plot

when the number of points is large in comparison with the number of parameters estimated by

Equation: ŷi ¼ a0 þ a1 xi Slope: a1 ¼ SXY=Sxx

Weights: wi ¼ 1=s2i Intercept: a0 ¼ y� a1 x

Explained sum of squares: SSReg ¼
X

wiðŷ i � yÞ2 Weighted residuals: w
1=2
i ðyi � ŷiÞ

Residual sum of squares: SSE ¼
X

wiðyi � ŷ iÞ
2 Correlation coefficient: r ¼ SXY=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SXXSYY
p

Mean:
x ¼

X

wixi=
X

wi

y ¼
X

wiyi=
X

wi

Sum of squares about the mean:

SXX ¼
X

wiðxi � xÞ2

SYY ¼
X

wiðyi � yÞ2

SXY ¼
X

wiðxi � xÞðyi � yÞ

Standard errors: s2y=x ¼ SSE
n�2 ¼

SYY�a2
1
SXX

n�2

s2a0 ¼ s2y=x

X

wix
2
i

SXX

X

wi

s2a1 ¼
s2
y=x

SXX

covða0, a1Þ ¼ �xs2y=x=SXX

Table 1. Formulae for calculating statistics for weighted linear regression (WLR).
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the regression. As pointed out by Behnken and Draper [20]: ‘In many situations little is lost by

failing to take into account the differences in variances’. Standardized residuals are useful in looking

for outliers. They should have random values, the 95% falling between �2 and 2 for normal

distribution.

The tendencies followed by the residuals should confirm the assumptions we have previously

made [21], or at least do not deny them. Remember the sentence of Fischer [22, 23]: ‘Every

experiment may be said to exist only in order to give the facts a chance of disproving the null

hypothesis’. Conformity assays of the assumptions inherent to regression fall mainly in the

examination of residual pattern. Although there are statistical ways of numerically measuring

some of the observed discrepancies [24], graphical methods play an important role in data

analysis (Table 2) [25–31]. A quick examination of residuals often allows obtaining more

information than significance statistical tests of some limited null hypothesis. Nevertheless,

objective, unambiguous determination should be based on standard statistical methodology.

This chapter is mainly focused on residual plots rather than on formulas, or hypothesis testing.

As we will see in the selected examples, the plots easily reveal violations of the assumptions if

they are severe enough as to warrant any correction.

The main forms of representation [10] of residuals are (i) global; (ii) in temporal sequence, if its

order is known; (iii) faced to the adjusted values, y-hat; (iv) facing the independent variable xji
for j ¼ 1,2… k; and (v) in any way that is sensitive to the problem subject of analysis.

The following points can be verified in the representation of the residuals: (i) the form of the

representation, (ii) the number of positive and negative residuals should be equivalent of

vanishing median, (iii) the sequence of residual signs must be randomly distributed between

þ and�, and (iv) it is possible to detect spurious results (outliers); their magnitudes are greater

than the rest of the residuals.

Residual plots appear more and more frequently [32–39] in papers published in analytical

journals. In general, these plots as well as those discussed in this chapter are very basic and

Sentence Author(s)/reference

‘Most assumptions required for the least squares analysis of data using the general linear model

can be judged using residuals graphically without the need for formal testing’

Darken [25]

‘Graphical methods have an advantage over numerical methods for model validation because they

readily illustrate a broad range of complex aspects of the relationship between the model and the

data’.

NIST/

SEMATECH [26]

‘There is no single statistical tool that is a powerful as a well-chosen graph’ Huber [27]

‘Although there are statistical ways of numerically measuring some of the observed discrepancies,

statistician themselves prefer a visual information of the residual plots as being more informative

and certainly more convenient’

Belloto and

Sokoloski [28]

‘Eye-balling can give diagnostic insights no formal diagnostic will ever provide’ Chambers et al. [29]

‘Graphs are essential to good statistical analysis’ Anscombe [30]

‘One picture says more than a thousand equations’ Sillen [31]

Table 2. Sentences of some authors about the use of graphical methods.
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can undergo some criticism. For example, the residuals are not totally distributed independent

of x, since [10, 19] the substitution of the estimates by the parameters introduces some depen-

dence. However, more sophisticated methods have been developed [40–44] based on stan-

dardized, studentized, jack-knife, predictive, recursive residuals, and so on (Table 3). In spite

of their importance, they are considered beyond the scope of this contribution.

Despite the frequency with which the correlation coefficient is referred to in the scientific

literature as a criterion of linearity, this assertion is not free from reservations [1, 45–49] as

evidenced several times throughout this chapter.

The study of linearity not only implies a graphic representation of the data. It is also necessary

to carry out a statistical check, for example, the analysis of the variance [50–54], which requires

repeated measurements. This implies the fulfilment of two requirements: the homogeneity

(homoscedasticity) of the variances and the normality of the residuals. Incorporating replicates

to the calibration estimation offers a possibility to look at the calibration not only in the context

of fitting but also of the uncertainty of measurements [15]. However, if replicate measurements

are not made, and an estimate of the mean square error (replication variance) is not available,

the regression variance

s2y=x ¼
X

ðyi � ŷiÞ
2

n� 2
¼

X

r2i
n� 2

ð9Þ

may be compared with the estimated variance around the mean of the yi values [55]

s2y ¼
X

ðy� yÞ2

n� 1
ð10Þ

by means of an F-test. The goodness of fit of non-linear calibration curves is improved by

raising the degree of the fitting polynomial, performing then an F-test (quotient of the residual

variance for the kth to k þ first-polynomial degree) [56]. A suitable test can also be carried out

according to Mandel [56, 57]. However, this contribution is essentially devoted to the use of

basic graphical plots of residuals, a simple and at the same time a powerful diagnostic tool, as

we will have the occasion to claim through this chapter.

Symbol Name Formula Comments

ei Classical residuals ei

eNi
Normalized residuals ei

sy=x

eSi Standardized residuals ei

sy=x
ffiffiffiffiffiffiffiffi

1�hii
p Identification of heteroscedasticity

eJi Jack-knife residuals
ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n�m�1
n�m�e2

Si

r

Identification of outliers

ePi
Predicted residuals ei

1�hii

eRi
Recursive residuals Identification of autocorrelations

Table 3. Types of residuals and suitability for diagnostic purposes [42–44].

Fitting Models to Data: Residual Analysis, a Primer
http://dx.doi.org/10.5772/68049

137



Several examples taken from scientific journals and monographs are selected in order to

illustrate this chapter: (1) linearity calibration methods: fluorescence data [58] as an example;

(2) calibration graphs: the question of intercept [59] or non-intercept; (3) errors are not in the

data, but in the model: the CO2 vapour pressure [59] versus temperature dependence; (4) the

heteroscedastic data: high-performance liquid chromatography (HPLC) calibration assay [60]

of a drug; (5) transforming data: preliminary investigation of a dose-response relation-

ship [61, 62]; the microbiological assay of vitamin B12; (6) the variable that has not yet been

discovered; the solubility of diazepan [28] in propylene glycol; and (7) no models perfect:

nickel(II) by atomic absorption spectrophotometry.

2. Linearity in calibration methods: fluorescence data as example

Calibration is a crucial step, an essential part, the key element, the soul of every quantitative

analytical method [38, 40, 63–69], and influences significantly the accuracy of the analytical

determination. Calibration is an operation that usually relates an output quantity to an input

quantity for a measuring system under given condition (The International Union of Pure and

Applied Chemistry (IUPAC)). The topic has been the subject of a recent review [67] focused on

purely practical aspects and obviating the mathematical and metrological aspects. The main

role of calibration is transforming the intensity of the measured signal into the analyte concen-

tration in a way as accurate and precise as possible. Guidelines for calibration and linearity are

shown in Table 4 [70–81].

Linearity is the basis of many analytical procedures. It has been defined as [78] the ability

(within a certain range) to obtain test results that are directly proportional to the concentration

(amount) of analyte in the sample. Linearity is one of the most important characteristics for the

Scientific Association or Agency Reference

Calibration

International Union of Pure and Applied

Chemistry (IUPAC)

Guidelines for calibration in analytical chemistry [70]

International Organization for

Standardization (ISO)

ISO 8466-1:1990 [70]; ISO 8466-2:2001 [71]; ISO 11095:1996 [72]; ISO 28037:2010

[73]; ISO 28038:2014 [74]; ISO 11843-2: 2000 [75]; ISO 11843-5: 2008 [76]

LGC Standards Proficiency Testing LGC/VAM/2003/032 [77]

Linearity

International Conference on

Harmonization (ICH)

Guideline Q2A [78]

Clinical Laboratory Standard Institute

(CLSI)

EP6-A [79]

Association of Official Analytical

Chemists (AOAC)

AOAC Guidelines 2002 [80]

European Union EC 2002/657 [81]

Table 4. Scientific organizations that approve calibration guidelines [70–81].
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evaluation of accuracy and precision in assay validation, and as seldom is the case where a

calibration curve is perfectly linear, it is crucial to access linearity during method validation.

Such evaluation is also recommended in regulatory guidelines [78–81]. Although it may seem

that everything has been said on the subject of linearity, it is still an open question and subject

to debate. It is therefore not surprising that some proposals are made from time to time to

resolve this issue [54, 82–92].

However, in calibration, statistical linearity tests between the variables are rarely performed in

analytical studies. When dealing with regression models, the most convenient way of testing

linearity beside a visual assessment is plotting the residual sequence in the concentration domain.

A simple nonparametric statistical test for linearity, known as ‘the sign test’ [9, 16, 28], is based on

the examination of the residuals (ri) sign sequence.

The residuals should be distributed in a random way. That is, the number of plus and minus

residuals sign should be equal with the error symmetrically distributed (null hypothesis for the

assay) when the variables are connected through a true linear relationship. The probability to

get a random residual signs pattern is related to the number of runs in the sequence of signs.

Intuitively and roughly speaking, the more these changes are randomly distributed [93] the

best is the fit. A run is a sequence of the same sign with independence of its length. A pattern of

residual signs of the kind [þ - - þ þ - þ - þ - þ], from independent measurements, is

considered as random, whereas a pattern like this [- - - þ þ þ þ þ þ - -] is not. Though a

formal statistical test may carry out [94] with the information afforded by the residual plot, it is

necessary a number of points greater than is usual in calibrate measurements.

The fluorescence in arbitrary units of a series of standards is shown in Table 5. To these data

that appear to be curved, a straight line may be fitted (Figure 1, top) which results in an

evident lack of fit, though the correlation coefficient (R) of the line is equal to 0.995 2. A plot

of the resulting residuals ri against the x-values (reduced residuals on the secondary axis) is

also shown in Figure 1 (top), and allows checking for systematic deviations between data and

model.

The pattern of the sign of the residuals indicates that fitting the fluorescence data by a straight-

line equation is inadequate, higher-order terms should possibly be added to account for the

curvature. Note that the straight-line model is not adequate even though the reduced residuals

are less than 1.5 in all cases. When an erroneous equation is fitted to the data [95–97], the

Concentration (μM) Fluorescence (arbitrary units) Concentration (μM) Fluorescence (arbitrary units)

0 0.2 6 20.4

1 3.6 7 22.7

2 7.5 8 25.9

3 11.5 9 27.6

4 15 10 30.2

5 17

Table 5. Calibration fluorescence data [58].
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Figure 1. Fitting a straight line (top), a quadratic function (middle) and a cubic function (bottom) to fluorescence data

compiled in Table 5.

Uncertainty Quantification and Model Calibration140



information contained in the form of the residual plots is a valuable tool, which indicates how

the model equation must be modified to describe the data in a better way. A curved calibration

line may be fitted to a power series. The use of a quadratic (second-degree) equation is enough

in this case to obtain a good fit: the scattering of the residuals above and below the zero line is

similar, as shown in Figure 1 (middle). Then, when no obvious trends in the residuals are

apparent, the model may be considered to be an adequate description of the data. The simplest

model or the model with the minimum number of parameters that adequately fit the data in

question is usually the best choice. ‘Non sunt multiplicanda entia praeter necessitatem’ (Occam’s

razor) [98]. In fact, the order of the polynomial (k) must not rise above 2 since [sy/x]k ¼ 2 ¼

0.3994 < [sy/x]k ¼ 3 ¼ 0.4142.

In summary, when it is assumed a correct relationship between the response and the indepen-

dent variable (s), the residual plot should resemble that of Figure 2 (left). All residuals should

fall into the gravelled area, with a non-discernable pattern, that is, random. If the representa-

tion of the residuals resembles that of Figure 2 (right), where curvature is appreciated, the

model can probably be improved by adding a quadratic term or higher-order terms, which

should better describe the model with the required curvature.

Calibration curves with a non-linear shape also appear in analytical chemistry [99–104].

When the data in the x-range (calibration) vary greatly as it does in many real problems, the

response becomes non-linear (Table 6) [101, 105–107] at sufficiently large x-values. The

linear range of liquid chromatography-tandem mass spectrometry (LC-MS/MS) is typically

about three orders of magnitude. The analyst’s usual response in this case is to restrict

sometimes the concentration range with the purpose of using a linear response, thus intro-

ducing biases in the determination, since the choice of the ‘linear region’ is usually done in

an arbitrary way. The use of a wider range in standard curve is preferred in order to avoid

the sample dilution, saving time and labour [108]. An acceptable approach to extend the

dynamic range of the standard curve is the use of quadratic regression. Among the possible

causes of standard curve non-linearity are saturation at high concentration during ioniza-

tion, the formation of dimer/multimer/cluster ions, or detector saturation. It has been

established that when the analyte concentration is above ∼10�5 M, its response starts to

saturate providing non-linear response.

Figure 2. Residuals in a random (left) and parabolic (right) form.
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Quadratic curve-fitting calibration data are more appropriate [104, 109–117] than straight-line

linear regression, in the case of some quantification methods. Matrix-related non-linearity is

typical of methods such as LC-MS/MS. In order to provide an appropriate validation strategy

for such cases, the straight-line fit approximation has been extended to quadratic calibration

functions. When such quadratic terms are included [10, 118–120], precautions should be taken

because of the consequent multicollinearity problems.

However, the use of quadratic regression model is considered as less appropriate or even

viewed with suspicion by some regulatory agencies and, as a result, not often used in regu-

lated analysis. In addition, the accuracy around the upper limit of quantitation (ULOQ) can be

affected if the curve range is extended to the point where the top of the curve is flat.

Statistical tests may also be considered for providing linearity, like Mandel’s test [57] for

comparison errors of residuals of quadratic and linear regression by means of an F-test at a

determined significance level, or like lack-of-fit test by analysis of variance (ANOVA) or testing

homoscedasticity (the homogeneity of variance residuals).

3. Calibration graphs: the question of intercept or non-intercept

Absorption spectrometry is an important analytical technique, and, to be efficient, the calibra-

tion must be accomplished with known samples. Data for the calibration of an iron analysis, in

which the iron is complexed with thiocyanate, are shown in Table 7. The absorption of the iron

Response function Name Technique

y ¼ a0 þ a1x Beer law Absorption spectrophotometry

y ¼ Aþ Blogx Nernst equation Electrochemistry

y ¼ axn

ðlogy ¼ n logxþ logaÞ
Scheibe-Lomakin Emission spectroscopy ESI-MS; ELSD; CAD

y ¼ a xn þ a0 ð0 < y < y0Þ
y ¼ k xþ y0 ðy > y0Þ

TLC-densitometry“

bny
n þ b1y ¼ x DAD

b
ffiffiffi

y
p þ b0 ¼

ffiffiffi

x
p

ESI-MS

y ¼ a0 þ a1xþ a2x
2 Wagenaar et al. Atomic absorption spectrophotometry, liquid chromatography/MS/MS

logy ¼ a0 þ a1logxþ a2logx
2 CAD

y ¼ a0 þ a1xþ a2x
2 þ a3x

3 Ion-Trap-MS

y ¼ Aþ Bð1� exp �CxÞ Andrews et al. Atomic absorption spectrophotometry

y ¼ A�D

1þ x
Cð ÞB

þD Rodbard Radioimmunoassay

ESI-MS: electrospray ionization mass spectrometry; TCD: thermal conductivity detector; TLC-densitometry: TLC with

detection by optical densitometry; ELSD: evaporative light scattering detector; CAD: charged aerosol detection.

Table 6. Response functions used in instrumental analysis [105–107].
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complex is measured and depicted versus iron concentration in ppm. The standard deviation

of the regression line, sy/x, obtained from the experimental data, quantifies the quality of fit and

the accuracy of the model to predict the values of y (the measured quantity), for a given value

of x (the independent variable).

The regression line is first computed by forcing it to pass through the coordinate origin (a0 ¼ 0),

since the absorbance should be directly proportional to the concentration (at zero concentration, a

zero absorbance might be expected). However, the adjustment thus obtained is not very good. The

representation of residuals shows the pattern of signs þ þ þ þ þ - (Figure 3, lower left). If we

compute the regression line with intercept (Figure 3, upper right), the correlation coefficient

increases from 0.990 8 to 0.994 7, but the pattern of non-random signs persists, that is, - - - þ þ -

(Figure 3, lower right). What is a reasonable explanation? If the highest concentration point

(32.8 ppm) is discarded, all the other points appear to fall on a straight line. However, this point

cannot be discarded on the basis of its deviation from the best-fit line, because it is closer to the line

than other calibration points in the series. As a matter of fact, the last point (32.8 ppm) defines

where the line must pass: being so distant, it has a great influence (leverage) and forces the least

squares regression line in its direction. The non-robustness behaviour is a general weakness of the

least squares criterion. Very bad points [59] have a great influence just because their deviation from

the true line, which rises to the square, is very large. One has to be aware of dubious data by

Concentration, Fe (ppm) Absorbance Concentration, Fe (ppm) Absorbance

0.3644 0.0268 3.644 0.248

0.7288 0.0506 7.288 0.495

1.083 0.0783 32.8 1.52

Table 7. Absorbance data for Fe3þ calibration (as Fe-SCN2þ complex) [59].

Figure 3. Calibration curve and residuals for the Fe-SCN2þ system without intercept (left) and with intercept (right)

included in the model for all data compiled in Table 7.
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correcting obvious copying errors and adopting actions coherent with the identified causes.

Improper recording of data (e.g. misreading responses or interchange of digits) is frequently a

major component of the experimental error [121].

A few high or low points [8] can alter the value of the correlation coefficient in a great extension.

Larger deviations present at larger concentrations tend to influence (weight) the regression line

more than smaller deviations associated with smaller concentrations, and thus the accuracy in

the lower end of the range is impaired. It is therefore very convenient [122–124] to analyse the

plotted data and to make sure that they cover uniformly (approximately equally spaced) the

entire range of signal response from the instrument (85). Data should be measured at random (to

avoid confusing non-linearity with drift). The individual solutions should be prepared from the

same stock solution, thus avoiding the introduction of random errors from weighing small

quantities from individual standards. Depending on the location of the outliers, the correlation

coefficient may increase or decrease. In fact, a strategically situated point can make the correla-

tion coefficient varies practically between �1 and þ1 (Figure 4), so precautions should be taken

when interpreting its value. However, points of influence (e.g. leverage points and outliers)

(Table 8) are rejected only when there is an obvious reason for their anomalous [125] behaviour.

The effect of outliers is greater as the sample size decreases. Duplicate measurements, careful

scrutiny of the data while collecting and testing discrepant results with available samples may

aid to solve problems [28] with outliers.

Figure 4. Influence of an anomalous result on the least squares method (solid line) and on the correlation coefficient.

Gross errors Caused by outliers in the measured variable or by the leverage points extremes

Golden points Special chosen points which have been very precisely measured to extend the prediction capability

of the system

Latently influential

points

Consequence of a poor regression model

According to data location

Outliers Differs from the other points in values of the y-axis

Leverage points Differ from the other points in values of the x-axis or in a combination of these quantities (in the

case of multicollinearity)

Table 8. Influential points [44].
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If the regression analysis is made without the 32.8 ppm influence point forcing to pass through

the origin, the correlation coefficient reaches the 0.999 91 value (Figure 5, top left). This point

was not considered because a high deviation standard values were above the new line.

Perhaps, the problem observed with the 32.8 ppm point is due to the fact that sulphocyanide

(thiocyanate) is not in enough excess to complex all the iron present. However, the inspection

of residuals (þ þ þ þ -) shows systematic, non-random deviations (Figure 5, bottom left),

which may indicate an incorrect or inadequate model. Systematic errors of analysis translate into

(systematic) deviations from the fit equation (negative residuals correspond to low estimated

values, and positive residuals to high). An erroneous omission of the intercept term in the model

may be the cause of this effect. The standard deviation of the regression line improves notably,

from 0.0026 to 0.0017, when the intercept is introduced (Figure 5, top right) in the model

(correlation coefficient equals 0.999 97), the residual pattern being now random (- - þ - þ)

(Figure 5, bottom right). The calibration is then appropriate and linear, at least up to 8 ppm.

However, the intercept value, 0.0027, is of the same order of magnitude as the standard devia-

tion, sy/x, of the regression line. A calibration problem (of minor order) may be apparent, for

example, the spectrophotometer was not properly set to zero or the cuvettes were not conve-

niently matched.

Residual analysis of small sample sizes has [126] some complications. Firstly, residuals are not

totally distributed in an independent way from x, because the substitution of the parameters

by the estimators introduces [10, 19] certain dependence. Secondly, a few points far from the

bulk of the data may eventually condition the estimators, residuals and inferences.

4. Error is not in the data, but in the model: the CO2 vapour pressure versus

temperature case

The linear variation of physical quantities is not a universal rule, although it is often possible to

find a coordinate transformation [18] that converts non-linear data into linear ones. The vapour

Figure 5. Calibration curve and residuals for the Fe-SCN2þ system without intercept (left) and with intercept (right)

included in the model (data in Table 7 with the exception of the 32.8 ppm point).
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pressure, P, in atmospheres, of carbon dioxide (liquid) as a function of temperature, T, in

degrees Kelvin, is not linear (Table 9). Carbon dioxide found its use in chemical analysis as a

supercritical fluid for extracting the caffeine from the coffee. We may expect, on the basis of the

Clausius-Clapeyron equation, to fit the data compiled in Table 9 into an equation of the form

lnP ¼ Aþ B=T ð11Þ

This requires a transformation of the data. If we define

Y ¼ lnP ð12Þ

and

X ¼ 1=T, ð13Þ

this form is linear,

Y ¼ Aþ BX ð14Þ

The resulting graph (Figure 6, middle solid line) examined, appears to be fine, like calculated

statistics, and so there is no reason at first to esteem any problem. Results lead to a correlation

coefficient of 0.999 988 76. This almost perfect adjustment is indeed very poor when attention

is paid to the potential quality of the fit as shown by the sinusoidal pattern of residuals [þ þ -

þ -þþþþþ - -], which are incorporated in the figure to the resulting least squares regression

line. As the details of measurements are unknown, it is not possible to test for systematic error

in the experiments. The use of an incorrect or an inadequate model is the reason, which

explains in this case the systematic deviations. The Clausius-Clapeyron equation does not

exactly describe the phenomenon when the temperature range is wide. Results similar to those

shown in Figure 6 are also obtained by applying weighted linear regression by using

weighting factors defined by [6, 7, 127–129]

Temperature (�K) Vapour pressure Temperature (�K) Vapour pressure

216.5500 5.11023 266.4944 28.70169

222.0500 6.44393 272.0500 33.39684

227.6056 8.04301 277.6056 38.63636

233.1611 9.92107 283.1611 44.47469

238.7167 12.09853 288.7167 50.93903

244.2722 14.62303 294.2722 58.07022

249.8278 17.50817 299.8278 65.91589

255.3833 20.78797 304.1611 72.76810

260.9389 24.51007

Table 9. CO2 vapour pressure versus temperature data [59].
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wi ¼
1

∂Yi

∂yi

� �2
¼

1

∂lnPi

∂Pi

� �2
¼ P2

i ð15Þ

on the basis of the transformation used.

Figure 6. Top: CO2 vapour pressure against temperature data (top). Middle: representation of ln P against the reciprocal

of temperature (Clausius-Clapeyron equation) including the residuals plot. Bottom: CO2 vapour pressure as a function of

temperature according to the expanded (MLR) model.
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The error does not lie in the data then, but in the model. We may try to improve the latter by

using a more complete form of the equation

lnP ¼ Aþ B=T þ ClnT þDT ð16Þ

The results now obtained (analysis by multiple linear regression) depicted in Figure 6 (bottom) are

better than those obtained by using the single linear regression equation, with the residuals ran-

domly distributed. Values of ln Pmay be calculated with an accuracy of 0.001 (or an accuracy level

of 0.1%), as suggested by the standard deviation of the regression line obtained. In addition, as T is

used as a variable, instead of its inverse, interpolation calculations are carried out in an easier way.

The moral of this section is that there are not perfect models [130, 131], but models that are

more appropriate than others.

5. The heteroscedastic data: HPLC calibration assay of a drug

In those cases in which the experimental data to be used in a given analysis are more reliable

than others [6, 61, 63], gross errors may be involved when the conventional method of least

squares is applied in a direct way. The assumption of uniform or regular variance of y may be

no correct when the experimental measurements cover a wide range of x-values. There are two

possible solutions to this non-constant, irregular, non-uniform or heteroscedastic variance

problem: data transformation or weighted least squares regression analysis.

The squared sum of the weighted residuals [132, 133, 64]

Qmin,w ¼
X

wir
2
i

h i

min
ð17Þ

wi ¼
1

σ
2
i

ð18Þ

is minimized in theweighted least squares procedure. The idea underlyingweighted least squares is

to attribute the greatest worth [2, 40, 132, 66, 101, 135, 136] to the most precise data. The greater the

deviation from the homoscedasticity, the greater the profit that can be extracted from the use of the

weighted least squares procedure. The homoscedasticity hypothesis is usually justified in analytical

chemistry in the framework of the calibration. However, when the range of abscissa values (concen-

tration) covers several orders of magnitude, for example, in the study of (calibration) drug concen-

trations in urine or in other biological fluids, the accuracy of y-values is strongly dependent of the x

ones. In those cases, the homoscedastic requirement implied in single linear regression is violated,

thus the introduction of weighting factors being mandatory. Some typical cases of heteroscedasticity

appear [137, 138] involving a constant relative standard deviation (Figure 7)

RSD ¼
σi

x
ð19Þ

or a constant relative variance (radioactive accounts, Poisson distribution). Photometric absor-

bances by Beer’s law cover a wide concentration range and like chromatographic analysis in
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certain conditions, tend to be heteroscedastic. Inductive plasma-coupling emission spectrome-

try coupled to mass spectrometry (ICPMS) requires weighted least squares estimates even

when the calibration covers a relatively small concentration range. The standard deviation

(absolute precision) of measurements σi usually increases with the concentration xi, whereas

the relative standard deviation (relative precision, RSD) decreases instead.

It is possible to derive [138] relationships between precision and concentration through the

concentration range essayed so that chemical methods are applied to found analytes present at

varying concentrations. A number of different relationships [2, 139–142] have been proposed

(Table 10) for different authors, and ISO 5725 gives [143] indications to assist in obtaining a

given C ¼ f(σi) relationship.

The advantages of the least squares method may be impaired if the appropriate weights are

not included in the equations, despite being a powerful tool. The least squares criterion is

highly sensitive to outliers, as we have seen in Figure 4. An undesirable paradox may often

occur consisting in the fact that the experimental data of worst quality contribute most to the

Figure 7. Left: hypothetical HPLC response versus concentration for a typical serum. Right: examples of relationships

between concentration of analyte (x), standard deviation (SD), and coefficient of variation (CV).

σc ¼ pCk ðk ¼ 0:5, 1, > 1,…Þ

σc ¼ pðCþ 1Þk

σc ¼ peq C

σc ¼ pCk þ q

σc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0 þ a1C
q

p

ðq ¼ 1, 2Þ

σc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0 þ a1Cþ a2C
2

p

σc ¼ pyk

σc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0 þ a1yþ a2y2
p

Table 10. Relationship types between the standard deviation and the concentration of the analyte.
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estimation of the parameters. Although replication may be severely limited [15, 132], it possesses

the advantage to provide a certain kind of robust regression [144]. The most common method of

performing a weighted regression is using weights values reciprocal to the corresponding vari-

ances values, that is,

wi ¼
1

s2i
ð20Þ

where si
2 is the experimental estimate of σi

2. Eq. (14) warrants that in using replication, the

lower weights correspond to the outliers of yi. The incorporation of heteroscedasticity into the

calibration procedure is preconized [145, 146] by several international organizations such as

ISO 9169, and ISO/CD 13-752. The International Union of Pure and Applied Chemistry

(IUPAC) includes the heteroscedasticity [147, 148] or non-constant variance topic for the

calculation of the limits of detection and quantification.

The assumption of constant variance in the physical sciences may be erroneous [34, 149–157].

The data from a calibration curve (Table 11) relating to the readings of an HPLC assay to the

drug concentration in ng/mL in blood [60] are shown in Figure 8. A regression model reason-

able for the mean values is y¼ α0 þ α1 x, in the first approximation. However, the variability of

the response increases in a systematic way with increasing the concentration level. This indi-

cates that the constant variance assumption of the response through the range of concentra-

tions assayed is not followed. In fact at the highest level of concentration, a very large response

value is produced. There is no physical justification that allows excluding this value from the

Doses

0 5 15 45 90

Response 0.0016 0.0118 0.0107 0.106 0.106

0.0019 0.0139 0.0670 0.026 0.158

0.0002 0.0092 0.0410 0.088 0.272

0.0030 0.0033 0.0087 0.078 0.121

0.0042 0.0120 0.0410 0.029 0.099

0.0006 0.0070 0.0104 0.063 0.116

0.0006 0.0025 0.0170 0.097 0.117

0.0011 0.0075 0.0320 0.066 0.105

0.0006 0.0130 0.0310 0.052 0.098

0.0013 0.0050

0.0020 0.0180

0.0050

0.0050

Table 11. Calibration data for an HPLC blood concentration (ng/mL) assay of a drug [60].
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others in the analysis. Assuming in the first instance constant variance, the least squares are

used to obtain as estimated parameters a0 ¼ 0.0033 and a1 ¼ 0.0014, with sy/x ¼ 0.0265. The

representation of the residuals versus the values of x should show variability with a constant

band, if the model was appropriate. Note that, in Figure 9 (bottom left), the pattern of funnel

shape or trumpet indicates that the measurement error is increasing as it does the mean

response. The assumption of constant variance is thus not satisfied. On the other hand, the

Figure 8. Calibration curve obtained by single linear regression (top) and corresponding residuals plot (bottom).

Figure 9. Residuals in the form of funnel (left) and ascending (right).
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intercept value, 0.0033, is not in good agreement with the mean response value (13 replicates)

at zero dose, 0.0021, which supposes another additional problem. The result of ignoring the non-

constant variance in this case results in a poor fit of the model. The weighted linear regression

straight-line model led instead (Figure 10, top) to the equation y¼ 0.0015 xþ 0.0021, the band of

residuals being now rectangular (Figure 10, bottom).

The weighted least squares method requires a higher number of replicates than the conventional

least squares method. The estimation of the minimum number of replicates varies between six

and 20, according to different authors. In practice, it is often difficult to reach such high level of

replication [2, 15] for different reasons, such as cost or availability of calibration, standards and

reagents, time demands on previous operations, or by recording of the chromatograms.

In order to apply the weighted least squares analysis, it is mandatory to assign weighting

factors to the corresponding observations. In fact, the weighting factor is related with the

information contained in the yi value, being proportional to the reciprocal of the variance of

yi. The results of single-trial assay without additional information seldom contain enough

information as to model the variance in a satisfactory way. The independent variable may be

usually choice, fortunately, by the researcher, and the corresponding values for the dependent

thus replicated.

Figure 10. Response versus concentration obtained by weighted linear regression (top) and residuals plot for this model

(bottom).
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The general phenomenon of non-constancy of variance is called as we have previously seen

heteroscedasticity. It can be addressed [2, 15] by the weighted least squares method. A second

method of dealing with heteroscedasticity is to transform the response [18] so that the variance

of the transformed response is constant, proceeding then in the usual way, as in the following.

6. Transforming data: preliminary investigation of a dose-response

relationship

The non-linear relationship between two variables may be sometimes handled as linear by

means of [158] a transformation. A transformation consists in the application of a mathemati-

cal function to a set of data. The transformation leading finally to a straight-line fit to the data

can be carried out on a variable or on both. The transformation of data is sometimes under-

stood as a device which statisticians use, a conviction founded on the preconceived idea that

the natural scale of measurement [159] is something like sacrosanct. This is not like this, and in

fact some measurements, for example, those of pH, are actually logarithmic, transformed

values [160]

As much as the analyst wants the mould of nature to be linear, often in the curves truth is

simply found [118, 160]. Real-world systems sometimes do not fulfil the essential requirements

for a rigorous or even an approximate validity of the method of analysis. In many cases, a

transformation (change of scale) can sometimes be applied to the experimental data [18] in

order to carry out a conventional analysis. Although it may seem that the best way to estimate

the coefficients of a non-linear equation is the direct use of a non-linear regression program

(NLR), NLR itself [161] is not without drawbacks and problems.

The data of turbidimetric measurements of the growth response of Lactobacillus leichmannii to

vitamin B12 [61] provide a good illustration of a preliminary investigation of dose-response

relationships. Table 12 shows the responses to the eight different doses of vitamin B12 mea-

sured in six independent tubes per dose, which are depicted in Figure 11.

Doses (ng/tube)

0.23 0.35 0.53 0.79 1.19 1.78 2.67 4

Response 0.15 0.28 0.36 0.51 0.68 0.85 1.06 1.21

0.14 0.20 0.36 0.53 0.63 0.80 0.91 1.22

0.19 0.23 0.34 0.54 0.64 0.71 1.09 1.29

0.19 0.25 0.37 0.45 0.61 0.85 0.93 1.24

0.17 0.23 0.33 0.57 0.65 0.94 1.09 1.18

0.16 0.23 0.38 0.49 0.68 0.83 1.12 1.24

Table 12. Microbiological assay of vitamin B12 [61, 62].
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The transformation [62]

z ¼ log x ð21Þ

can be used (Figure 12). The inspection of Figure 12, however, suggests the existence of a

marked curvature. The graph of the residuals, the deviation of each point of the model,

indicates that the straight line is incorrect, due to the observed systematic pattern. There is a

Figure 11. Representation of the dose-response data for the microbiological assay of vitamin B12.

Figure 12. Top: fitting a straight line to response versus logarithm of dose (microbiological assay of vitamin B12). Bottom:

plot of the residuals against the logarithm of the doses for the straight-line model.
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tendency towards curvature, as it is not randomly distributed around zero. It should be

assumed that the model is susceptible to improvement, requiring either higher-order addi-

tional terms or a transformation of the data.

If a second-degree polynomial is fitted to the response data as a function of the logarithm of

the dose, the adjustment to the naked eye seems adequate (Figure 13, top). The representation

of the residuals as a function of the abscissa values (Figure 13, bottom), however, adopts a

funnel shape. The non-random pattern of residuals carries the message that the assumption of

homogeneous (regular or constant) variance is not satisfied, which would require the applica-

tion of the weighted least squares method, rather than simple linear regression.

The shape of Figure 13 (top) suggests a simple possibility, that of transformation [43] also in

the response

u ¼ ffiffiffi

y
p ð22Þ

A simple inspection of Figure 14 (top) now shows that the linear regression is valid throughout

the entire range. Both transformations to achieve homogeneity of variance and normality

(Tables 13 and 14) go together (hand in hand) and then both postulates are (almost) often

simultaneously fulfilled, fortunately, on applying an adequate transformation.

The stabilization of variance usually takes precedence over improving normality [160]. As

stated by Acton [86] ‘The gods who favour statisticians have frequently ordained that the world be

Figure 13. Top: fitting a second-degree polynomial to the response versus logarithm of dose (microbiological assay of

vitamin B12). Bottom: plot of the residuals against the logarithm of the dose for the second-degree polynomial model:
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well behaved, and so we often find that transformation to obtain one of these desiderata in fact achieves

them all (well, almost achieves them¡)’.

Linear regression is a linear (in the parameters) modelling process. However, non-linear terms

may be introduced into the linear mathematical context by performing a transforma-

tion [162, 163] of the variables (Table 15). Note that when a transformation is used, a transfor-

mation-dependent weight (Table 16) should be used (in addition to any weight based on

replicate measurements). When a non-linear function is capable of being transformed into

another one linear, it is called ‘intrinsically linear’. Non-linear functions that cannot be

transformed into linear are instead called ‘intrinsically non-linear’.

Figure 14. Top: fitting a straight line to the transformed data, square root of the response against the logarithm of the dose

(microbiological assay of vitamin B12). Bottom: plot of the residuals versus the logarithm of the doses for the straight-line

model applied to the data transformed in both axes.

Date type Transformation

Poisson (counts) (y)
ffiffiffi

y
p

Small counts (y)
ffiffiffiffiffiffiffiffiffiffiffi

yþ 1
p

or
ffiffiffi

y
p þ

ffiffiffiffiffiffiffiffiffiffiffi

yþ 1
p

Binomial ð0 < P < 1Þ a sin
ffiffiffi

P
p

Variance ¼ (mean)2 lny

Correlation coefficient 0.5[ln(1þr)�ln(1�r)]

Table 13. Transformations to correct for homogeneity and approximate normality [18, 162].
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7. The variable that has not yet been discovered: the solubility of diazepan

in propylene glycol

The study of the solubility of diazepan in mixed solvents [28] requires the representation of

Beer’s law of a set of data corresponding to the solubility of diazepan in propylene glycol. The

experimental data are shown in Table 17.

Estimated relationship α λ ¼ 1� α Transformation

s ¼ kby
2 2 �1 Reciprocal

s ¼ kby
3=2 3/2 �1/2 Inverse square root

s ¼ kby
2 1 0 Logarithmic

s ¼ kby
1=2 1/2 1/2 Square root

s ¼ k 0 1 Without transformation

Table 14. Transformations to stabilize variance [18, 158] W ¼ ðyλ � 1Þ=λðλ 6¼ 0Þ; W ¼ lnyðλ ¼ 0Þ.

Function Formula Transformation Linear form

Power function y ¼ αxb y0 ¼ logy

x0 ¼ logx

y0 ¼ logαþ βx0

Exponential grow model y ¼ αeβx y0 ¼ logy y0 ¼ logαþ βx

Logarithmic y ¼ αþ βlogx x0 ¼ logx y ¼ αþ βx0

Hyperbolic y ¼ x
αx�β y0 ¼ 1=y

x0 ¼ 1=x

y0 ¼ α� βx0

Logit y ¼ eαþβx

1þeαþβx
y0 ¼ logð y

1�yÞ y0 ¼ αþ βx

Table 15. Linearizable non-linear functions [18, 162].

Transformation Weighting factor (*)

1
y

y4

lny y2

y2 1
4y2

ey 1
e2y

logit y2ð1� yÞ2

(*) in units of σ20=σ
2
y; σ

2
0 is a proportionality factor, that is, the variance of a function of unit weight [2]

Table 16. Weighting factors associated with a given transformation [2, 127, 128].
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The relationship obtained between absorbance and concentration is (Figure 15)

A ¼ 0:11767C� 0:003568 ð23Þ

These data can be used to corroborate the previously made statement that the correlation

coefficient is not necessarily a measure of the suitability of the model. The R2-value of the above

equation is 0.998 (r ¼ 0.999). Many researchers would settle for this, but they would be wrong.

In spite of the high coefficient of correlation (r¼ 0.999), when the residuals are represented as a

function of the numerical order in which the samples were measured, we obtain Figure 15

(bottom). The pattern obtained is not random by marking the residual trend with a positive

slope. This behaviour is indicative of the situation in which the assumption of independence is

not satisfied. The slope in a representation of the residuals as a function of the order of measure

(time) indicates that a linear term must be included in the model.

When time is included in the model, Eq. (21) results

A ¼ �0:070193þ 0:118394Cþ 0:000336936t ð24Þ

giving rise to a value of R2 equal to 0.999.

When the residuals are calculated for this model and are plotted as a function of the concentra-

tion, a graph similar to that of Figure 15 (middle) is obtained (Figure 16, top). However, if the

residuals are represented for this model as a function of time (which is reflected in the order in

which the samples were measured), the resulting pattern is obtained in Figure 16 (bottom), in

which it is observed that the independence of the error has been accommodated (compare

Figure 15, bottom), and the fit has improved, although it could probably do so even more.

C (mg/mL) T (min) A C (mg/mL) T (min) A

16.0760 0.00 1.799 12.8608 87.50 1.481

3.2152 6.00 0.335 12.8608 92.75 1.503

6.4304 10.50 0.700 12.8608 97.75 1.522

12.8608 21.50 1.487 16.0760 102.75 1.868

6.4304 33.50 0.670 12.8608 117.25 1.508

9.6500 39.25 1.068 9.6500 122.25 1.108

16.0760 45.75 1.840 9.6500 130.50 1.109

9.6500 50.75 1.088 9.6500 135.75 1.128

16.0760 56.75 1.842 6.4304 141.00 0.720

3,2152 67.25 0.358 6.4304 146.25 0.719

6.4304 71.75 0.703 3.2152 150.75 0.349

16.0760 77.75 1.869 3.2152 155.75 0.367

3.2152 82.50 0.345

Table 17. Solubility of diazepan in propylene glycol (absorbance as a function of concentration and time) [28].
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Figure 15. Top: absorbance as a function of concentration for (solubility) of diazepam. Middle: plot of the residuals as a

function of the concentration. Bottom: plot of the residuals as a function of the measurement time (measurement order).
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The order in the analysis time demonstrates the significant fact that a representation of the

residuals allows the observation of the effect of the time that otherwise would not have been

perceived. This is possible in the case of diazepam solubility because the researcher was careful

to record the time to which the samples were measured.

The appearance of a pattern in residuals as a function of time in a study of Beer’s law could

indicate that some contaminant is affecting, or that the light source is decaying, or perhaps that

it has not yet been warmed. The pattern of the residuals indicates if there is a time-dependent

variable, but not the reason for that dependency, which must be ascertained, in its case.

8. Nickel by atomic absorption: all models are wrong

Nickel nitrate (II) hexahydrate reagent analysis (Merck) is used to prepare a standard solution of

1 g/L Ni. The salt of 5.0058 g is weighed into the analytical balance and brought into a 1-L

volumetric flask with ultrapure water. From this solution containing 1000 mg/L, a working

solution contains 125 mg/L. Appropriate volumes of this solution (triplicates) are added to 25-mL

Figure 16. Top: residuals as a function of concentration for the extended model including the measurement time. Bottom:

residuals as a function of time (order of measurement) for the model with the time included.
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volumetric flasks to obtain the calibration curve, thinning with ultrapure water. The measure-

ments are carried out in an ‘Analyst 200 Atomic Spectrometer’ operating in absorption mode

with a Cu-Fe-Ni multi-element Lumma lamp (Perkin Elmer), at 232 nm, with an acetylene air

flame. The obtained absorbances, given below, are superior to those described in Perkin

Elmer [164]. The measurements depend on the flow, for example, of the nebulizer system,

different in each case.

Absorbance data (in arbitrary units) in the triplicate of aqueous solutions of Ni2þ in mg/L (ppm)

are compiled in Table 18. It has been tried to adjust Eq. (2), third-degree and fourth-degree

polynomial models (Figure 17) (left figures with mean and right values with individual values),

observing that as the degree of the polynomial increases, the goodness of the adjustment

increases, although the residuals detect pattern. There are no perfect models, but models more

appropriate than others [165, 166]. It is possible to use rational form polynomials with the

Ni2þ (ppm) Absorbance (arbitrary units) Ni2þ (ppm) Absorbance (arbitrary units)

2.5 0.217 0.207 0.226 17.5 0.743 0.742 0.744

5.0 0.399 0.396 0.389 20.0 0.767 0.767 0.771

7.5 0.523 0.513 0.519 22.5 0.787 0.786 0.789

10.0 0.618 0.615 0.612 25.0 0.808 0.813 0.807

12.5 0.672 0.664 0.664 27.5 0.820 0.821 0.824

15.0 0.713 0.715 0.707 30 0.835 0.835 0.831

Table 18. Atomic absorption spectrophotometry calibration data of nickel(II).

Figure 17. Atomic absorption spectrophotometry nickel(II) calibration data.
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SOLVER function of Excel. Even so, the residuals show a pattern similar to that presented when

a fourth-degree polynomial is fitted to the data.

9. Final comments

Calibration is an essential part of every quantitative analytical method, with the exception of

primary methods of analysis (isotope dilution mass spectrometry, coulometry, gravimetry,

titrimetry and a group of colligative methods). The correct performance of calibration is a vital

part of method development and validation. Parameter estimation models are often employed

to obtain information concerning chemical systems, forming on this way a fundamental part of

analytical chemistry. In those cases in which a wrong equation is fitted to data, the form of the

residuals plot contains useful information which helps to modify and improve the model in

order to get a better explanation of the data. Examples extracted from the literature show how

residual plots reveal any violation of the assumptions severe enough as to deserve correction.

As a matter of fact, some authors [12, 25, 28, 59, 96] are in favour of using residuals graphically

to evaluate the inherent assumptions in the least squares method.

If there is a true linear relationship between the variables with the error symmetrically distrib-

uted, the sign of residuals should be distributed at random between plus and minus with an

equal number of each. A plot of residuals allows checking for systematic deviation between data

and model. Systematic deviations may indicate either a systematic error in the experiment or an

incorrect or inadequate model. A curvilinear pattern in the residuals plot shows that the equation

being fitted should possibly contain higher-order terms to account for the curvature. A system-

atic linear trend (descending or ascending) may indicate that an additional term in the model is

required. The ‘fan-shaped’ residual pattern shows that experimental error increases with mean

response (heteroscedasticity) so the constant variance assumption is inappropriate. This phe-

nomenon may be approached by the weighted least squares method or by transforming the

response. Time-order analysis proves sometimes the more noteworthy fact that a residual plot

permits the observation of a time effect that otherwise might not have become known. However,

note that there are no perfect models, but models that are more suitable than others.

Many more sophisticated methods have been devised (standardized, studentized, jack-knife,

predicted and recursive residuals). However, in spite of their worth and importance they are

considered beyond the scope of this chapter, devoted to a primer on residuals. The analyses

presented in this chapter were mainly done using an Excel spreadsheet.
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