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Abstract

Presently, the 5-year survival rate for metastatic osteosarcoma remains low despite advances 
in chemotherapeutics and neoadjuvant therapy. A majority of the morbidity and nearly 
all of the mortality in osteosarcoma rely not in the primary disease but in the metastatic 
disease. The pursuit of novel molecular therapies is attractive due to their targeted abil-
ity to combat metastasis. Unlike traditional chemotherapy agents, which work by tar-
geting rapidly dividing cells, targeted therapies may spare normal cells and decrease 
the adverse effects of chemotherapy by targeting specific pathways. Here, we discuss 
key molecular pathways in osteosarcoma and their ability to be modulated for the goal 
of eradication of primary and metastatic disease. We focus specifically on the aldehyde 
dehydrogenase (ALDH), epidermal growth factor receptor (EGFR), and insulin-like growth 
factor-1 receptor (IGF-1R) pathways.
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1. Introduction

Prior to the use of chemotherapeutics, the 5-year survival rate of osteosarcoma (OS) was 
approximately 20% [1]. Despite new surgical techniques and the adoption of neoadjuvant 
therapy, patients diagnosed with nonmetastatic OS have a 65.8% 10-year survival rate, while 
those diagnosed with metastatic disease have a 15–30% 5-year survival rate [2]. These statis-

tics have not improved in a generation. This stagnation may reflect recurrent disease as well 
as the intrinsic resistance of OS to chemotherapy.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The pursuit of targeted molecular therapies to treat OS has increased in popularity over the 
past decade. The inhibition of specific molecular pathways critical to OS metabolism may 
decrease its metastatic potential, slow its rate of growth, and potentially eliminate the disease 
altogether. Unlike chemotherapeutics, which act on all rapidly dividing cells, targeted thera-

pies may be mechanistically independent in their efficacy. By specifically targeting OS cells, 
we may save normal cells and decrease the risk of adverse clinical side effects [3].

Here, we examine the inhibition of specific molecular targets that are critical to the biologic 
pathways of OS, but may spare other critical organ systems from damage.

2. Aldehyde dehydrogenase (ALDH)

Aldehyde dehydrogenases (ALDHs) are a superfamily of nicotinamide adenine dinucleotide 
phosphate (NADP+)-dependent tetrameric enzymes that participate in aldehyde metabolism 
via catalysis of exogenous and endogenous aldehydes into their corresponding carboxylic 
acids and the cell’s resistance to oxidative stress [4–7]. Inhibition of ALDH can lead to a build-
up of aldehydes that can lead to toxic side-effects, which include enzyme inactivation, DNA 
damage, impairment of cellular homeostasis, and cell death by forming adducts with various 
cellular targets [4, 8, 9].

Cancer stem cells (CSCs) comprise a small, distinct subpopulation of cancer cells that demon-

strate robust self-renewal properties, enhanced differentiation capacity, the ability to propa-

gate tumor growth, and increased resistance to chemotherapeutic drugs. ALDHs have been 
identified in numerous studies as elevated in highly malignant tumors and in CSCs [4, 10–12]. 

ALDHs exert their effects through cellular processes such as target gene expression, protein 
translation, signal transduction, and antioxidative mechanisms. ALDH has, therefore, been 
implicated as a potential CSC marker. Cells found to be high in ALDH have demonstrated 
enhanced tumorigenicity in multiple cancers [7].

Elevated ALDH levels have been associated with poor survival in patients with breast and 
ovarian cancers [13, 14]. ALDH expression also appears to be linked with metastatic potential. 
Semisolid matrigel matrix invasion assays showed a correlation between ALDH levels and 
increased invasiveness when comparing two murine OS cell lines [7]. OS cells treated with 
disulfiram, an ALDH-inhibitor, show reduced ALDH expression and altered cellular mor-

phology, with fewer invadopodia and greater shape uniformity [6, 15, 16].

2.1. Pathophysiology

Reactive oxygen species (ROS) are a natural by-product of aerobic metabolism and can lead to 
DNA damage, protein degeneration, and lipid membrane destruction. Cancer cells often gen-

erate abnormally high levels of ROS because of the aberrant metabolism and protein transla-

tion typical of diseased cells [17]. ALDHs play a vital role in clearing ROS and reducing the 
oxidative stress caused by ultraviolet radiation and chemotherapeutic agents. Cells that have 
high levels of ALDH expression have consistently lower ROS than those incapable of such 
expression [18–20].
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CSCs have relatively low levels of ROS, which may be because of elevated antioxidant enzyme 
levels [6, 21, 22]. The protective effects of ALDH for CSCs may also include the inhibition of 
downstream apoptosis-related pathways [18, 23, 24]. ALDH-positive CSCs have also dem-

onstrated resistance to myriad chemotherapeutic agents such as anthracyclines and taxanes 
[25, 26], two classes of drugs commonly used in OS treatment. ALDH-positive cancer cells 
develop this drug resistance in part because of their increased ability to metabolize certain 
drugs into their nontoxic byproducts [27]. Once tumors are treated with chemotherapy or 
radiotherapy, the levels of CSCs with high ALDH expression tend to increase, increasing the 
cells’ abilities to become drug-resistant [25, 28].

Retinoic acid (RA) signaling plays a pivotal role both in embryonic [29] and tumor cells [30]. 

This pathway in fact exerts an antitumor effect. This is due to activation of a series of cellular 
genetic programs that modulate cell differentiation, apoptosis, and growth involved in the 
classical RA pathway [4, 31] (Figure 1 ). In this pathway, retinol is absorbed by cells, oxidized 
to retinal, and then oxidized to RA by ALDH. RA then enters the nucleus and can induce the 
transcriptional activity of downstream effectors through activation of heterodimers of the RA 

Figure 1. Potential retinoic acid-mediated signaling pathway in CSCs. Retinol (vitamin A) absorbed by cells is oxidized 
to retinal by retinol dehydrogenases. Retinal is oxidized to retinoic acid by ALDH enzymes. The metabolized product 
retinoic acid includes ATRA, 9-cis retinoic acid, and 13-cis retinoic acid, entering the nucleus and associated with RARα. 
In the classical pathway, retinoic acid binds to dimers of RARα and RXRs to induce the expression of its downstream 
target genes including RARβ. In the solid tumor type, RARβ promoter is methylated and/or the histones are significantly 
deacetylated, leading to low expression. In the nonclassical pathway, retinoic acid binds to dimers of RXRs and PPARβ/δ 
to induce the expression of its downstream target genes including PDK-1/Akt. In cells expressing ERα, retinoic acid can 
bind to dimers of RXRs and ERα as well as induce the expression of c-MYC and cyclin D1. Retinoic acid which extra-
nuclearly binds with RARα can also induce the expression of c-MYC and cyclin D1 through the PI3K/Akt signaling 
pathway.
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receptor and retinoic X receptors. RA binds its nuclear receptors and activates gene expression 
that affects loss of CSC markers, differentiation, cell cycle arrest, and morphology [32, 33]. The 

upregulation of these receptors generates a positive feedback loop for RA signaling. ALDH 
serves a paradoxical role in the RA pathway, by inducing differentiation of CSCs. The overall 
effect of this is antitumor, and thus exploiting this pathway is the goal for certain therapeutics.

2.2. Therapeutic applications

Disulfiram (DSF) has been shown to enhance the cytotoxicity of several anticancer drugs, as 
well as radiotherapy, which early on indicated its potential role as either a novel chemothera-

peutic agent or a sensitizer for other treatments [34]. Theories of its mechanism include the 

induction of oxidative stress and inhibition of proteasome activity through c-Jun N-terminal 
kinase (JNK), NF-ĸB, and PI3K pathways [35–38].

In metastatic OS, the phenomenon of CSCs plays a large role in the ability of the disease to 
withstand a great amount of stress and remain invasive. ALDH is considered not only a surro-

gate marker for these cells but also a functionally important target [39]. The beauty of ALDH 
serving both roles is that the effects of DSF can be targeted to tumor cells exclusively due to 
their high ALDH content and additionally exert its antitumor effects. As described above, 
ALDH serves a pivotal role in reducing ROS to protect CSCs from oxidative stress and sub-

sequent intracellular destruction. DSF as an inhibitor of this process has been shown to make 
the cancer cells more susceptible to oxidative stress and subsequently to improve survival in 
many cancer patients [40, 41].

DSF has also demonstrated efficacy in defeating the invasive nature of cancer by inhibiting 
matrix metalloproteinases (MMPs). In metastatic cancer physiology, the degradation of the 
extracellular matrix allows for primary tumor metastasis and distal site invasion. MMPs facili-
tate this process and are known to be closely associated with tumor growth and metastasis. In 
one study, nontoxic ranges of DSF successfully suppressed MMP-2 and MMP-9 activity and 
expression, producing a near complete growth inhibition at a 10 μM concentration of DSF [42].

Various studies have demonstrated that the cytotoxicity of DSF is copper dependent [38, 

43, 44]. Copper plays an essential role in redox reactions and triggers generation of ROS in 
both normal and tumor cells [37, 44]. As a bivalent metal ion chelator, DSF forms a complex 
with copper and allows for Ctrl-transporter-independent transport of copper into tumor cells 

[43, 45]. For this reason, the DSF-copper complex is a much stronger inducer of ROS [46]. 

Furthermore, the abundance of copper in cancer cells enables DSF to specifically target cancer 
as opposed to normal tissues [47].

Copper ions promote ROS formation, which has been shown in multiple cancer cell lines [44]. 

Two forms of intracellular copper (cupric and cuprous) induce the formation of hydroxyl 
radicals from hydrogen peroxide, which serve to damage a variety of intracellular molecules 
[48]. Since studies have demonstrated that cytotoxicity of DSF appears to be copper depen-

dent, the high concentration of copper in CSCs allows for an excellent substrate on which DSF 
can act in the treatment of cancer [43].

RA has been shown to inhibit proliferation of malignant tumors and induce apoptosis and dif-
ferentiation [32, 49–53]. Most notably, all-trans-retinoic acid (ATRA) is an effective treatment 
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for acute promyelocytic leukemia (APL) and has been shown to result in complete remission 
[50, 54]. RA is derived from ATRA by the action of ALDHs. Since ALDH is often specifically 
upregulated in CSCs, clever design can exploit this pathway for tumor suppression [49].

In mouse model studies, the highly metastatic K7M2 OS cells seem to be preferentially targeted 
by RA [49]. The role of retinal in decreasing cell proliferation and cell survival was demonstrated 
by exposing cells to oxidative stress in the form of hydrogen peroxide. ALDH-high K7M2 cells 
exhibited a greater increase in apoptosis compared to ALDH-low cells. Additionally, RT-PCR 
demonstrated that retinal treatment resulted in downregulation of various genes involved in 
cell proliferation and cell survival in a dose-dependent manner [49]. This would suggest that 
retinal can effectively be used as a cellular “Trojan Horse” of sorts to specifically target OS cells, 
as the very ALDH-rich nature that is crucial to their metastatic potential leads to their willful 
acceptance and rapid metabolism of retinal, leading ultimately to their demise.

3. Epidermal growth factor receptor (EGFR)

In order to obtain enough EGFR protein to biochemically purify and sequence, scientists ini-
tially used an epidermoid carcinoma cell line which was found to contain 100-fold higher 
levels of the receptor tyrosine kinase (TK). Since then, aberrant EGFR signaling has been 
implicated in the development and progression of many types of carcinomas including small 
cell lung, breast, stomach, prostate, ovarian, and glioblastoma. In the past decade, more atten-

tion has been placed on the role of EGFR signaling in OS.

3.1. Pathway physiology

Epidermal growth factor (EGF) was the first growth factor to be discovered and was found 
to have significant mitogenic effects of multiple cell types. Its receptor EGFR is a receptor 
tyrosine kinase (TK) which contains an extracellular domain where binding occurs to ligands 
of the EGF family such as, TGF-α, EGF, β-cellulin, epiregulin, and heparin-binding EGF. 
EGFR also contains a hydrophobic transmembrane region and a cytoplasmic TK domain [55]. 

Ligands bind to the cell surface domain and cause a conformational shift in the intracellular 
domain of the protein, which leads to dimerization and autophosphorylation. This phosphor-

ylation then activates several other proteins downstream such as JNK, Akt, and mitogen-
activated protein kinases (MAPK), which are responsible for normal cellular functions such 
as proliferation, apoptosis, adhesion, DNA synthesis, and migration. Signaling also occurs 
through other related TKs: HER2, HER3, and HER4. EGFR also has been shown to activate 
NFκB signaling, as well as being linked to certain G protein-coupled receptor signaling.

3.2. Pathophysiology

EGFR structure and function is closely related to erbB oncogene of avian erythroblastosis 
virus. The oncogene erbB is a part of a larger family of ErbB TKs including ErbB2 or HER2, 
HER3, and HER4. In addition, sequence anomalies found in the extracellular domain of EGFR 
were found to cause constitutive signal transduction independent of binding. Overexpressed 
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EGFR levels in cancer cells also cause EGFR to undergo ligand-independent firing due to 
spontaneous activation of TK activity [56].

Recently, more attention to the action and therapeutic intervention of aberrant EGFR signal-
ing in OS has been studied. Immunohistochemistry demonstrated high EGFR protein expres-

sion in 57% of 37 established bone tumor-derived cell lines [57]. Additionally, 90% of 27 OS 
biopsy samples showed moderate-to-high EGFR protein levels, as well as in four established 
OS cell lines HOS, KHOS/NP, MG-63, and U-2 OS . EGFR expression was not found to corre-

late to response to preoperative chemotherapy or survival [58]. Another group demonstrated 
that OS cell lines, MG-63 and Saos-2 proliferative abilities, were decreased by natural flavo-

noid Icariside II. Treatment also inactivated EGFR/mTOR signaling pathway including PI3K, 
serine/threonine protein kinase (Akt), mitogen-activated protein kinase kinase (MEK), and 
Extracellular-Signal-Regulated Kinases (ERK) [59].

3.3. Therapeutic applications

3.3.1. Gefitinib (Gef)

This molecular inhibitor of EGFR acts by binding to the cytoplasmic adenosine triphosphate 
binding site of the TK domain [60]. Signaling dysfunction leads to an inhibition of down-

stream malignant phenotypes through Akt, MAPK, and Ras signal cascades. Gef is used clini-
cally in non–small-cell lung cancer known to be harboring aberrant EGFR levels, typically 
used in combination with other chemotherapy regimens.

Researchers have shown under serum starvation, EGFR inhibition in OS cells by Gef was 
more pronounced compared to normal conditions, suggesting that aberrant EGFR signaling 
contributes to OS progression but is not the major driver for proliferation. The EGFR inhibitor 
Gef was found to moderately synergize with doxorubicin and methotrexate in attenuating the 
proliferative capabilities of OS cell lines U-2 OS, Saos-2, OS-9, and others. Gef EGFR inhibition 
antagonized the cytotoxic effects of cisplatin [61].

3.3.2. Erlotinib (Erl)

Erl is another molecular inhibitor of EGFR via the ATP binding site of the cytoplasmic domain 
[62]. Erl is used in treating advanced metastatic non–small-cell lung cancer and pancreatic 
cancer, usually in combination with other chemotherapies.

Canine OS cell lines treated with another selective EGFR inhibitor Erl did not inhibit down-

stream protein kinase B (PKB/Akt) activation, and vascular endothelial growth factor (VEGF) 
levels increased. Conversely, Erl enhanced the effects of radiation therapy on a subset of OS 
cell lines [63].

3.3.3. Trastuzumab (Tra)

As the name suggests, Tra is a monoclonal antibody which interferes with normal HER2 recep-

tor functioning of EGFR [64]. It has been suggested that Tra does not alter receptor expression 
but instead causes inhibition of downstream Akt and MAPK proliferation  signaling. A phase 
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II clinical trial of metastatic OS with EGFR2 overexpression showed that Tra can be safely 
delivered in combination with anthracycline-based chemotherapy [65].

Targeting one substrate of the receptor TK signaling cascade is likely insufficient to effec-

tively abrogate downstream effects. Incremental improvements for the treatments of OS will 
depend on the novel chemotherapeutic interactions now being observed in the laboratory. 
BreAkthroughs will occur by further testing intricate combination therapies including sensi-
tizers like EGFR inhibitors (Erl and Gef) with traditional chemotherapeutics such as doxoru-

bicin, methotrexate, and cisplatin.

4. Insulin-like growth factor-1 receptor (IGFR-1R)

Insulin-like growth factor-1 receptor (IGF-1R) has been shown to play role in various cancers, 
including pediatric sarcomas. IGF-1R is just one cog in the complicated system of insulin-like 
growth factor (IGF) and insulin family of growth factors and is located in various tissues 
including bone. It plays an important role in regulating bone homeostasis, and activation of 
this unique TK receptor leads to several important downstream signaling cascades that play a 
crucial role in cell proliferation and protein synthesis. Aberrant signaling in the IGF-1R path-

way may be implicated in the development of OS. Studying the basic physiology and patho-

physiology in this pathway has been critical to the development of OS-targeted therapy. Here, 
we examine the basic biology of IGF-1R in relation to OS- and molecular-targeted therapies 
that exploit this signaling pathway.

4.1. Physiology

IGF-1R signaling is involved in normal osteogenesis and bone homeostasis [66]. IGF-1R is a 
type II receptor TK consisting of two α- and two β-subunits. The binding of IGF-1 to IGF-1R 
induces autophosphorylation of tyrosine residues in the kinase domain. This autophosphoryla-

tion leads to the downstream activation of insulin receptor substrate (IRS) proteins and Shc, an 
adapter protein between IGF-IR and the network of their signaling pathways [67, 68] (Figure 2). 
Phosphorylation of Shc and its binding to Grb2 is required for the activation of mitogen-activated 
protein kinases (MAPK)/extracellular-signal-regulated kinases (ERK), both important regulators 
of proliferation, invasion, angiogenesis, and inflammatory responses [69, 70].

There are four isomers of IRS, and of these isomers, IRS1 and IRS2 are expressed in osteoblasts. 
These adaptors are important in normal bone turnover. Furthermore, deficiencies in IRS1/2 
impair osteoblast proliferation and differentiation and result in decreased bone mass [71, 

72]. IRS1 is one of the many activators of phosphatidylinositol 3 kinase (PI3K). PI3K converts 
phosphatidylinositol 4,5-biphosphate (PIP2) into phosphatidylinositol 3,4,5-triphosphate 
(PIP3), which then recruits the signaling proteins PDK1 and Akt to the plasma membrane [73]. 

The PI3K/Akt pathway is implicated in the proliferation and invasion of malignant OS via 
multiple pathways, such as increasing the expression of cyclins and cyclin-dependent kinases 
that act as positive regulators of the cell cycle in OS [74]. The mammalian target of rapamycin 
(mTOR) is one of the most important downstream effectors of PI3K/Akt and controls cell 
cycling and protein synthesis by activation of its downstream targets p70S6K and 4E-BP [68].
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Aside from regulating insulin’s control of carbohydrate metabolism, the ligands IGF-1 and 
IGF2 may play a role in the neoplasticity of OS [75]. It has been demonstrated that there may 
be increased local IGF-1 levels in primary OS, which may affect survival, aggressiveness, and 
chemotherapeutic response [76]. Activation of IGF-1R by IGF-I stimulates OS cell growth in 

vitro and in vivo [77]. IGF-1 levels peak during adolescence, also the same age where OS inci-
dences peak [78]. Interestingly, IGF-2 levels are increased in OS after chemotherapy treatment 
and may increase OS cell survival by inducing an autophagic state of dormancy, protecting 
OS against chemotherapy [79]. These ligands’ influences in the tumorigenicity of OS have 
made them attractive targets in OS treatment. However, the only IGF-1 neutralizing antibody 
in clinical trials is MEDI-573 and is still in the early stages of development [80].

It is not completely clear yet whether mutations in IGF-1R contribute to cell growth, differen-

tiation, apoptosis, and so on. Interestingly, mutations in IGF-1R are rare and produce growth 
retardation rather than neoplasia [81]. The recent discovery of somatic mutations in the IGF-1R 
kinase catalytic domain showed a small reduction in peptide phosphorylation. However, the 
mutant kinase domains were active, not hyper-activated relative to the wildtype [82]. Interactions 
between wildtype and mutant variants of the tumor suppressor gene, p53, and IGF-1R have also 
been studied. Normally, p53 suppresses the activity of IGF-1R, thus preventing cell proliferation. 
However, mutant variants of p53 derived from tumor have shown to enhance promotor activity 
and increase the transcription of IGF-1R, increasing the survivability of malignant cells [81, 83, 84].

4.2. Therapeutic applications

Currently, there are several IGF-1R inhibitors categorized into TK inhibitors, monoclonal anti-
bodies, or microRNA targets of IGF-1R. Monoclonal antibodies against IGF-1R ligands have been 
studied but may be ineffective because of the redundancy in autocrine and paracrine secretion 

Figure 2. IGF-1 signaling pathway which can activate MAPK and PI3K signaling pathways.
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of this growth factor [85]. Several monoclonal antibodies against IGF-1R, such as Ganitumab or 
Dalotuzumab, are still being tested but tend to have a stronger inhibitory effect when combined 
with other therapies such as Rapamycin, an mTOR inhibitor [80 ]. Here, we focus on one small 
molecular IGF-1R inhibitor, OSI-906, and assess its current status in OS therapy.

The ATP-binding or substrate-binding site in the IGF-1R kinase domain can be targeted by 
small-molecule inhibitors, thus inhibiting IGF-1R signaling. An example of these inhibitors is 
OSI-906 (Linsitinib), a highly selective, small-molecule dual IGF-1R/IR kinase inhibitor given 
in an oral formulation that is in clinical trial. It has been shown that OSI-906 inhibits the 
downstream effectors of IGF-1R, ERK1/2 and Akt, thus affecting cell survival and prolifera-

tion [86]. One of the issues with molecular targeting of IGF-1R is the high degree of homology 
between the binding sites in IGF-1R and the insulin receptor. Molecular targets that cross-
react with the insulin receptor may produce unwanted side effects such as dysregulating glu-

cose metabolism [87]. Fortunately, OSI-906 exhibits a nine-fold selectivity for human IGF-1R 
over human insulin receptor [88]. The inhibitory effect of OSI-906 was tested on four unique 
OS cell lines and was found to inhibit phosphorylation of IRS-1 and proliferation in three of 
the four OS cell lines tested [89]. OSI-906 in combination with the EGFR inhibitor, Erl, has also 
been tested on human colorectal cancer cell lines and found to exhibit a synergistic inhibition 
of cell proliferation and survival [88]. Though OSI-906 has been somewhat successful as a 
single-agent for inhibiting IGF-1R in OS, further studies examining combination therapies 
with OSI-906 are necessary.

5. Conclusion

There is definitely hope and evidence to apply targeted molecular therapies to treat OS. As 
our understanding of the different molecular pathways that affect OS improves, we will be 
better equipped to attack this disease in ways that were not available before. Though numer-

ous molecular pathways have been described here, it is important to understand that there are 

many more pathways that exist or are under investigation. Clearly, there is still much to learn 
about the biology of OS and its targeted therapies. The weight of evidence described above 
suggests that we are steadily moving forward in the right direction.
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