We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

4,800 122,000 135M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



Chapter 5

Mechanics of Electric Rope Shovel Performance and

Reliability in Formation Excavation

Muhammad Azeem Raza and Samuel Frimpong

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/65333

Abstract

Large-capacity rope shovels are used as primary production equipment in many surface
mining operations. Current rope shovels have payload capacities in excess of 100 tons
per pass. The dynamic payload and formation resistive forces result in severe stress
loading of the shovel front-end assembly. Material flaws, high stresses, and harsh
excavation conditions can initiate cracks in the dipper-teeth assembly. These cracks,
under high stresses, can propagate to critical lengths resulting in fatigue failure of front-
end assembly. Dipper-related problems can significantly reduce shovel availability.
There is no fundamental research for understanding dipper fatigue failure resulting
from high stress intensity, crack initiation, and propagation, the subject matter of this
study. The Newton-Euler algorithm is used to build kinematics and dynamic models of
the cable shovel front-end assembly. The models incorporate the dynamic resistive
forces on the dipper-teeth assembly. Numerical simulations are used to generate the
dynamic payload force and its dynamic left. Virtual simulation, based on the P&H
4100XPC shovel prototype in ANSYS (R15), is run to generate stress loading of the
dipper-teeth assembly and equivalent (von Mises) stresses. Stress intensity factors are
computed for various crack lengths in the dipper-teeth assembly, and the crack-
propagation lives are computed for these cracks. The results show that a 75-mm crack
can propagate to the critical length in 16 days. This research study provides a pioneering
effort toward understanding shovel dipper fatigue failure due to high stress intensity,
crack initiation, and propagation for understanding shovel reliability and availability
for production efficiency and bulk production economics.

Keywords: formation excavation, machine kinematics and dynamics, virtual simula-
tion, stress profile intensity
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1. Introduction

Cable shovels are used as primary excavation equipment in large-scale surface mining
operations. The overall efficiency of shovel-truck surface mining operationsislargely dependent
onshovel efficiency. Dipper payloads of the shovelshave seen anincreasing trend over the years,
and current shovels have payloads in excess of 100 tons per scoop [1, 2]. The payloads, combined
with dipper weight, rigging, and variable material diggability, result in varying mechanical
energy inputs and stress loading of the shovel’s front-end assembly across the working bench.
Furthermore, the repeated shovelloading and unloading cycles induce fatigue stresses in shovel
components. The induced stresses over time may exceed the yield strength of steel/material of
the shovel leading to fatigue failure, teeth losses, and boom and handle cracks. High stresses
and fatigue failure in shovel front-end assembly cause unplanned downtimes resulting in
reduced efficiency and increased production costs. Dipper-related problem can be a significant
contributor to the shovel downtime [3]. The current practice for the shovel front-end assembly
repair is based on experience and history rather than science.

Electric rope shovel consists of the lower, upper, and the front-end assembly as illustrated in
Figure 1. The lower assembly consists of the propel drive and crawler systems and provides
a solid and stable base for the excavator. This helps excavator propel, reposition, and relocation
during its operation.

/Upper Assembly

Alquassy pua-juoi4

Di
|_Dipper

. . Lower
Assembly

Figure 1. Nomenclature of a cable shovel.

— Teet-h)

The shovel’s upper assembly is a roller and left-pin system mounted on the lower mechanism.
The upper assembly consists of multiple decks with housing for the hoist and swing machinery
and electronic control cabinet on the lower deck and the operator’s cab on the upper deck.
Additionally, the upper assembly provides a platform for boom attachment and the counter
weight for the dipper. The front end consists of the boom, crowd machinery, dipper handle,
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dipper, and ropes. During the normal duty cycle, the shovel stays at one position, and only the
front end engages with the formation.

2. Shovel resistance forces and modeling

The dipper excavation processes can be categorized into penetration, cutting, and scooping
processes [4, 5]. Penetration is the insertion of a tool into a medium, and cutting is the lateral
movement of a tool, executed at a constant depth. The dipper teeth penetrate the formation,
and the lip cuts the material. Excavation models are based on the formation resistive forces
acting on the cutting tool. The resistive forces combine the cutting forces at the dipper teeth
and lip and the excavation forces due to material movement along, ahead, and inside the
dipper. Both the experimental and analytical models are based on these resistive forces. The
model proposed by Hemami [6] is by far the most comprehensive model and consists of six
component forces (f; to f;), which must be overcome during excavation, as in Figure 2. All these
forces, except f,, are dynamic forces. The six forces acting on the dipper, from the initial to the
end point on trajectory, consist of the following:

f,: The force required to overcome the payload weight in and above the dipper
f,: The resultant resistive force due to material movement toward the dipper

f;: The friction force between the bucket walls and the excavated material as it slides into the
dipper

f,: The resistance to cutting and/or penetrating that acts at the dipper tip and side walls
f5: The inertia force of the material inside and above the dipper

fs: The force required to move the empty dipper (modeled as part of f;)

Centre of mass
of dipper

centre of mass
of dipper payload

Ground Level

Figure 2. Forces on a dipper during excavation [7].
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The forces, f; and f;, are the dynamic forces [7], where f; changes both in magnitude and the
point of application, and f; depends on the bucket acceleration. The force (f;) was originally
defined as a part of f; and f;5. The dipper payload force (f,) is the dominant force for the large-
capacity dippers [6, 8, 9]. Awuah-Offei et al. [8] proposed a model based on the Balovnev [10]
excavation model using the six forces. The force (f,) can be set to zero [6]. Forces, f; and f,, are
the cutting forces and can be combined as a single force and estimated using the empirical
model [11] given by Eq. (1).

This empirical model is a result of extensive experimentation on frozen soils [11]. z is the
coefficient that accounts for the blade impact on cutting force, which depends on w and d.
Table 1 is used to estimate z for d (between 25 cm and 50 cm). z increases as d decreases, and
italso depends on the ratio T/T,, (T, is the spacing between the teeth, and T,, is the tooth width).
Table 2 lists the multiplying factors for z based on T,/T,,. Force £; can also be set to zero if the

dipper moves with a uniform velocity through the muck pile. Force f, can be modeled as part
of f;:

Length of horizontal surface (w, m) 0.25-0.50 0.50-0.75 0.75-1.00 1.00-1.25

Coefficient z 0.55-0.75 0.63-0.78 0.69-0.8 0.71-0.82

Table 1. Dependence of “z” on “d,” and “w”.

Ratio T/T,, T.=T, T,=2T,-3T,, T,= 4T, T.=5T,,

z 1.2 1 1.1 1.25

Table 2. Dependence of z on T,/T,, [11].

P=10C, d'* (1+2.6w)(1+0.00758")z (1)

3. Kinematic model of the cable shovel front end

A kinematic model of the shovel is required to completely describe the motions (accelerations,
velocities, and displacements). The kinematic model further provides a basis for the dynamic
model, which can be used to calculate the torques and forces on individual components. The
complete shovel digging process involves propel, crowd, and swing motions. However, during
the normal duty cycle, the shovel positions itself against the working face without propel. In
this situation, only the front-end assembly moves. Further, the maximum forces are involved
during the excavation phase. Therefore, a dynamic model of the front-end assembly alone can
suffice to describe the normal duty cycle of cable shovel. Figure 3 shows the shovel front-end
assembly, whose mechanism is modeled as a three-link system (saddle, crowd arm, and dipper)
with three links and three joints. The saddle is a fixed length link and is free to rotate in the
vertical plane. The rotation of the saddle block controls the vertical position of the dipper. The
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crowd arm is connected to the saddle block through a prismatic joint, and its length varies
during the crowding action of the digging operation.

The length of the crowd arm controls the horizontal position of the dipper. The crowd arm and
the saddle have the same rotation cycle, while the dipper is oriented at a fixed angle, 3, to the
crowd arm. The dipper is also a fixed length link. The rotation of the saddle block and the
length of the crowd arm together control the position of the dipper in the vertical plane and
its trajectory. The structural kinematic parameters of the shovel using the Denavit-Hartenberg
(D-H) notation [12] are represented in Figure 3 and Table 3. Here, four values are assigned to
each link following the D-H notation.

3
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Figure 3. Structural kinematics using D-H procedure.

Link i Joint description Qa; a, d; 6
1 Saddle-boom joint 0 0 0 0,
2 Saddle-dipper handle joint 90 a, 0 0
3 Dipper handle-dipper joint -90 0 d, 0

Table 3. Structural kinematic parameters.

The two values (ai, di) are for the links and represent the constant and variable lengths of the
links, while the other two (ai, 0i) are for the connection between links (i.e., joints), and, thus,
represent the rotation of the coordinate frame and rotation of the joint, respectively. For a
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revolute joint, ai, ai, and di are fixed and 0i is a variable. On the other hand, for a prismatic
joint (or translational motion), ai, ai, and Oi are fixed and di is a variable. The crowd-arm
movement is via a prismatic joint. A kinematic scheme relates the movements of the links and
translates the motions and rotations in the reference coordinate frame. The D-H scheme is used
to relate the movements and rotation of the links. The movements and rotations of individual
links are measured in the coordinate frames assigned at every joint location using the D-H
scheme [12]. The lower part of the shovel is stationary and fixed for this analysis.

The X,Y,Z, frame, the reference coordinate frame, is selected with Z  along the rotating axis
of the saddle block. The coordinate frame X,Y,Z, coincides with the XY Z_ frame and measures
the rotation of the dipper handle via the saddle block. Next, the coordinate frame X,Y,Z, is set
at the intersection of the saddle block and the dipper handle, with the Z, axis along the
translation movement of the dipper handle (joint 2 being a prismatic joint). The movement of
the dipper handle is measured along this Z, axis. The coordinate frame X;Y;Z; is set at the end
point of the dipper handle with Z; normal to Z,. This frame is at a fixed angle from coordinate
frame 2. And finally, the frame X,Y,Z, is set at the tip of the dipper with Z,-axis parallel to Z;.
The material resistive forces acting on the shovel are defined in this frame. The coordinate
frame assignments are also shown in Figure 3.

Forward kinematics of cable shovel front-end assembly: The forward kinematic model defines the
positions and motions of the dipper with known dipper-handle rotation and extension.
External dynamic forces act on the shovel dipper during excavation. A transformation scheme
is used to translate point coordinates in one coordinate frame to the first coordinate frame. The
homogenous transformation matrix for transferring coordinates from i—1 coordinate frame to
i frame, in its general form for revolute and prismatic joints is given in Egs. (2) and (3),
respectively [13]. These equations can be derived considering two links (i1 and 7) connected
through revolute or prismatic joints, respectively. These transformation equations are a
combination of rotation and translation matrices:

cosB; —cosa;a;sinB;  sing;sinB;  a;cos6;

Ti-1 = sin6; cosa;cosB; —sinajcosB;  a;sinb; (2)
¢ 0 sing cosqy d;
0 0 0 1
cosB; —cosa;q;sinB;  sina;sing; 0

Tl-i_l _ [sin®; cosqicosei —sinq;cosh; 0 (3)
0 sing CoSQ d;
0 0 0 1

The individual transformation matrices Ti ~ 1 are formulated using Egs. (2) and (3). These

matrices relate the geometry of a point in the two adjacent coordinate frames as in Figure 3
and can further be multiplied together to obtain a transformation matrix between any two
coordinate frames. These transformations are required for the shovel front-end kinematic and
dynamic models using the Newton-Euler procedure. The Newton-Euler method is an iterative
method for computing the velocities, accelerations, joint torques, and forces from crowd arm
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to dipper in the forward direction and from dipper tip to the saddle block in the reverse
direction. Newton-Euler method has an advantage of being iterative, which makes it more
suitable for computer simulations.

The propagation of angular and linear velocities from joint to joint is given by Egs. (4) through
(7) [13]. For rotational motion, the angular and linear velocities are defined by Egs. (4) and (5),
respectively. For prismatic joint, the angular and linear velocity relations are given by Egs.
(6) and (7), respectively:

H@m = iHiR i(‘)14'9#1 Mzm (4)
My, = "R(v,+ e X P,) )
e MR g ©

Hy = "R(v.+'0 X 'P,)+dZ @)

The required rotation matrices are derived from the transformation matrices in Egs. (2) and (3).

1

The 3x3 matrix, within a transformation matrix Ti ~ 7, represents the corresponding rotation

matrix Ri ~ 1 The forward kinematic starts from the first link (saddle block) and moves

outward toward the last link (dipper). The objective is to determine the propagation of the joint
rotation and velocities from the joint 1 to the dipper tip. The model uses the same start point
equations and basic simplifying assumption from Frimpong et al. [14], and as a result, the
kinematic equations are very similar as well. However, the resulting dynamic model is different
due to the improved resistive forces in this model. The reference frame {0} is fixed with the
lower frame through the boom. The lower structure of the shovel is fixed, so its linear and
angular velocities and accelerations remain zero at all times during the excavation as shown
in Egs. (8) and (10). These values change only during the propel motion of shovel which is not
considered in this research. The joint velocity can be determined by taking the derivative of
rotation of joint 1 as shown in Egs. (9) and (11), respectively. Similarly, the linear velocity of
the stationary lower structure of the shovel is zero:

0
‘w,=|0 8)
0
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0
d’w, .
="w, =0 9
=, ©)
0
Ovoz 0 (10)
0
0
dOVo_o‘-/ _lo (11)
dt 0 0

Eq. (12) is obtained from Eq. (4) for joint 1 (i =0), a revolute joint. It is evident from this equation
that the angular velocity of the first link is only around Z-axis and is equivalent to the rate of
change of angular rotation around joint 1. The linear velocity propagation to joint 1 can be
computed using Eq. (5) as Eq. (13). The first link experiences only the rotational motion.
Therefore, the linear velocity of joint 1 is zero:

0
1 . _ 1po 3y 15 _1po 3 15
o =R 0,+60, Z =0,=,R 0,+6, Z =|0 (12)
4
0
'v, = qR(°v,+’0, X °P,) =| 0 (13)
0

For the prismatic joint 2 (i = 1), Eq. (6) computes the angular velocity of the link 2 (the crowd
arm). The propagation of angular velocity to joint 2, as given in Eq. (14), shows that the angular
velocity of joint 2 is dependent upon the rate of change of angular rotation of joint 1, and there
is only an axis shift involved (from Z-axis to Y-axis) during the propagation:

0
2w, =R'w, +60,°Z,=| 6,
0 (14)

~.6,, 0,,and 0, are zero
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0
2 _2p /] 1 1 _
v, = R(vi+ 0, X Pz)— 0 (15)

—a,0,

The linear velocity propagation to joint 2 is calculated as Eq. (15). Similarly, the angular and
translational velocities are calculated for joint 3 as Egs. (16) and (17). Again, the angular velocity
of joint 3 is equivalent to the rate of change of angular rotation of joint 1. There is only one
rotation of the joint involved for the front end during the digging cycle. Thus, the angular
velocity of joint 4 is also the same as the angular velocity of joint 1. Alternately, it can be stated
that the whole front-end assembly gets the same rotation as the joint 1 during the digging cycle,
and the angular velocity only involves the axis shift. Egs. (8) through (18) define the forward
kinematics of the shovel front end. The angular and linear velocities of the shovel front-end
components are defined using these equations with known initial rotation and crowd-arm
extension:

0
30)3 _lo (16)
Z
d,h,
vy = 3R(Cv,+0, X *P,)=| a,b, 17
0
dzélcﬁ +(al +32)GISB
‘v, = RCv;+0, X °P) = -dzéls[s +(al +a2)9108 (18)
0
¢y P 0 a +azcﬁ
s, ¢, 0 as,—d
T |8 B 14 ?
4 0 0 1 0 "
0 0 1

Inverse kinematics of cable shovel front-end assembly: The inverse shovel kinematics determine the
set of joint angles and the length for the crowd arm when the desired position and orientation
of the shovel dipper are known in the reference coordinate frame 0. This inverse kinematic is
useful when the dipper traverses a known trajectory to determine the joint rotation and crowd-
arm extension required to achieve this trajectory. An approach, similar to the one used by Wu
[15] for the reverse kinematic model of cable shovel, is used to determine the crowd-arm
extension and rotation with known trajectory points. The inverse kinematic model can be
achieved by coordinate transformations to obtain the dipper coordinate in coordinate frame
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4, relative to coordinate frame 1. The modifications of the transformation matrix equations

result in Egs. (19), (20), and (21):

T41 _ |:T10J*' T40 (20)

(1)

Ry 1y Iy P

The individual matrix elements are given as follows:

1y CCs = 8,8 g

Ty i =CS 5 = S,Cy;

15105

Ty 18,Cs €S

Ty i =885+ CCh5

7y 1 0;

731051, 0

1y 00

P rayccy—ayss, +ac, +d,s;
P raysic, +a,cs,+as —dc;

P:0

Here, (p,, p,, and p,) are the coordinates of the dipper tip in the reference coordinate frame 0.
Eq. (22) canbe derived from Eq. (2) and Eq. (23) from Eq. (20). Comparing the individual matrix
elements on both sides of Eq. (23) and using simple arithmetic and trigonometric operations,
the crowd-arm extension and rotation can be computed using Egs. (25) and (26), respectively.
The inverse kinematic model can be used to compute the positions and velocities of individual

links and joints of the front-end assembly for a known trajectory:

¢, s, 00
-1 s, ¢ 00
TO — 1 1
%1 =10 0 1 o (22)
0 0 01
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- - = Clpx+slpy cﬁ _Sﬂ 0 4, +a2cﬁ
- — — ssp.top S c, 0 as,—d
1 Wy | _|°8 B 2°p 2 (23)
_ _ _ D. 0 0 1 0
_ o _ 1 0 0 O 1
d, = a8, +\/p§ +pj —af —c122 —2a1azcﬂ +(azsﬁ.)2 (24)
2
6, = AtanZ(azsﬁ -d,, i\/pi +p; —(azsﬂ —d2) j—Atan2(py,px) (25)

4. Dynamic model of the cable shovel front-end assembly

The dynamic model defines forces and torques acting on the shovel links and joints from the
kinematics parameters, such as accelerations. The forces require the computation of angular
and linear accelerations, which can be obtained by time integration of the angular and linear
velocities computed in the kinematic model. In its general form, the dynamic model can be
defined as in Eq. (26) from Frimpong et al. [16]:

D(0)0 + C(0,0)0 + G(0) = F — Fipaq(Fy, Fy)
D(®) = mass matrix
C(G), @) = centrifugal and Coriollis terms
G(®) = gravity terms

(26)

This dynamic model for a shovel is built using the Newton-Euler method and the position,
velocity, and acceleration relationships computed from the kinematic model. The Newton-
Euler dynamic algorithm for computing the crowd force and the hoist torque comprises of the
following steps:

1. Compute the angular acceleration (@) of every link in the forward direction, starting from
the saddle and moving outward toward the last link (the dipper).

2. Compute the acceleration (Vi) of every link in the system in the forward direction.

3. Compute the acceleration (Vic) at the left of mass (centroid) of every link in the system in the
forward direction.
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4. Determine the force (F,) acting on every link at the centroid of the link using (Vic) and mass
of the link.

5. Compute the joint torque (N,) for every link.

The force and torque are computed at the centroid of each link. Therefore, the velocity and the
acceleration of the centroid are computed for every link.

5. Numerical modeling and simulation of the dipper-formation
interaction

The dynamic model is a system of ordinary differential equations (ODEs), which results from
an iterative process and includes a number of ODE subprocesses. The ODEs are numerically
solved in MATLAB using the embedded Runge-Kutta algorithm. The simulation model
consists of MATLAB programs (.m files) and SIMULINK design-based models and sub-
models. The simulation model consists of the main model and sub-models. These sub-models
define the dipper’s trajectory, the crowd-arm extension and rotation, and the resistive forces
(cutting forces, material, and dipper’s weight) on the dipper. The following sub-models and
main model are created:

1.  Test bench geometry and trajectory: Figure 4 shows the test bench geometry created for the
digging process simulation. The excavated material characteristics can be selected for
various digging conditions. A simulation step size is selected to make the dipper move
with a constant linear velocity following field experimental results [17]. The failure surface
is modeled as a quadratic function given by Eq. (27), and bench face is modeled as a
straight-line function L(x). During the simulation process, the coordinates of the dipper
tip (O,(x,y)) and the dipper depth into the working bench (d) are continuously computed
at every time step using Egs. (28) and (29), respectively:

y=0.9927x* - 22.557x + 117.68 (27)

O,x,y =[-048371 +2.4351¢+12.053,  0.9927*x* ~22.557*x+117.68 | (28)

(29)
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2.  Crowd-arm extension and rotation angle: This sub-model calculates the extension and
rotation of the crowd arm at every simulation step using Egs. (24) and (25).

3.  Payload and force f;: The payload forms the basis for the dynamic payload force (f,). Figure 4
defines the dipper trajectory in such a way that the dipper is filled as it leaves the bank
without any material spillage. At any instant, therefore, the payload is equivalent to the
area between the trajectory curve and bench face.

Figure 4. Representative bench geometry.

At each simulation step, the (x, y) trajectory coordinates and the area excavated (A,) are
numerically computed using Eq. (30) [8] and built-in routines in MATLAB R2012a. This area
is used to calculate the force (f;) due to the payload weight using Eq. (31) [8]. An optimization
algorithm [8] is used to define the geometry of the payload based on the material distribution
from Hemami [6]. The centroid of each material geometry, a polygon inside the dipper, is
computed using a special algorithm [18]. This centroid is a dynamic point, which is used as
the point of application for the dynamic force f,. This force (f;) is computed continuously at
every instant of the excavation process:

A = %(xt - X, )2 tano — }f(x) dx (30)

Ji=A4.0pg (31)

4.  Material resistive force f;: The force, due to the weight of the dipper, is calculated during the
digging cycle along the trajectory. The computation of centroids of payload geometry and
dipper suggests that these two centroids can be considered concentric. Therefore, both f;
and f, are combined into single force acting at the dynamic left of the payload geometry.
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5.  Digging resistive forces f; and f,: The resistive forces, f; and f,, are combined as a single cutting
force (F,) and calculated using Eq. (1) [11]. The cutting force (F,) acts along the tangent of
the trajectory at the dipper tip. This force is resolved into its rectangular components, one
along the dipper base and the other normal to it. These tangent and normal components
(F, and F,) of the resistive force (F,) are computed at every trajectory point in this sub-
model.

6.  The main model and numerical simulation: The dynamic model of the dipper-teeth assembly
is solved in the main model. The outputs from all the sub-models, along with system
constants and time steps are fed into the main model as inputs. The main model then
numerically solves the mathematical model and generates the desired outputs. Two of the
important results or outputs from this solution are the hoisting force (F;) and crowd-arm
torque (T,).

During this numerical simulation process, four of the six resistive forces (f,, f; f, f;) are
computed as separate subsystems, while the other two resistive forces (f, and £;) are set to zero.
The resistive force f, is set to zero by selecting an appropriate trajectory of the dipper [6]. The
excavation trajectory is selected in such a way that the dipper stays clear off the material and
does not compress the material. This assumption is reasonable in the sense that it involves
proper bench geometric design and operator skill. Animproper bench geometric design would
lead to undue stresses on the shovel, which must be avoided during the excavation process.
The force f; represents the dipper and payload inertia. This force can be set to zero if the dipper
moves through the material with a constant velocity and hence with zero acceleration. For this
research, it is assumed that the dipper moves through the bench with a constant velocity and
hence a zero acceleration. This assumption is consistent with the field observations [17] for
hoist rope extension.

6. Virtual shovel prototype simulation

A virtual 3D prototype of the rope shovel is built in AutoCAD-2012 as shown in Figure 5. The
dimensions of the shovel front-end assembly are chosen to represent the dimensions of the
P&H 4100XPC shovel and are measured from a scaled model [19]. The front-end geometry is
simplified to avoid unnecessary geometric complications. The model consists of one revolute
and two prismatic joints that control the motion of the dipper into the formation. The boom
and saddle are modeled as rigid bodies. The boom is considered fixed to the ground. Both
joints are constrained; the revolute joint allows rotation only in the z-axis, and the prismatic
joints allow motion only in the x-axis. The resistive forces of the formation are applicable as a
remote force available at the teeth. The material force is also modeled as a remote force acting
on the dipper. The revolute joint is given a fixed rotation at every time step to ensure the
completion of the digging cycle in 3 s. The contacts and boundary conditions are shown in
Figure 6. The dipper body is modeled using brick elements with a minimum of three elements
through the thickness of the dipper.
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The dipper trajectory is given as an input function to the shovel simulation process in MAT-
LAB/SIMULINK. The dipper traverses the known trajectory, and the reverse kinematic model
is used to determine the crowd-arm extension (d,) and rotation (0,) requirements to achieve
this trajectory. These two output parameters from the numerical simulation process are used
as inputs for the shovel prototype. Together, these two inputs define the dipper trajectory.
Similarly, the resistive forces computed during the shovel dynamic simulation are modeled as
higher order polynomial in MATLAB and are fed into the system as time functions. The
payload also exerts a force on the dipper side walls. This force is modeled using the earth
pressure at-rest theory [20] and is considered to be acting uniformly over the side wall.

/ Crowd-arm

Fixed Dipper-
Handle to
Dipper joint

Dipper-teeth assembly
" (Fixed teeth with dipper)

Figure 5. Simplified 3D model of cable shovel and dipper.

[ 7ANSYS

Noncommercial use only

Figure 6. Boundary conditions and external forces on shovel front end.
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7. Shovel stress modeling and analysis

The steel used for cable shovel dippers and teeth has high strength properties. The yield
strength is the most important strength property, as the shovel experiences high levels of stress
loading. Limited data is available for shovel components [21]. One research reported csa-
g40.21-350WT steel used for shovel boom [21]. This steel has high yield strength of 320 MPa
[21, 22]. It is assumed in this study that the same steel is used for the dipper and the shovel
boom, and their properties are given in Table 4. The angular rotation and extension of the
dipper arm, external digging forces, and dynamic material weight forces from the dynamic
simulated model are used as inputs for the virtual prototype. The shovel stress analysis is
performed in ANSYS Workbench-R15.0 [30]. First, a rigid-body analysis is performed to ensure
that the dipper follows the given trajectory for the given angular rotation, crowd-arm exten-
sion, and external forces. Afterward, a transient analysis is performed for the dipper and teeth
stress analysis in ANSYS Workbench R15. For this analysis, the dipper-teeth assembly and
crowd arm are converted into flexible bodies, allowing ANSYS to compute stresses on the
dipper components. All force functions are the same as that used for the rigid-body analysis.
The joint functions are defined for the desired trajectory generation. The flexible dipper bodies
are meshed appropriately, using sweepable bodies and controlled meshing. The simulations
are performed for a 3 s interval. The simulation is run in two steps with multiple sub-steps for
better convergence.

Property Value Unit
Density 7900 kg/m?
Young’s modulus 2.3E+11 Pa
Poisson’s ratio 0.3

Tensile yield strength 3.2E+08 Pa
Compressive yield strength 3E+08 Pa
Tensile ultimate strength 4.6E+08 Pa

Table 4. Properties of steel for dipper and teeth.

Stress loading (von Mises) is computed for the dipper-teeth assembly, dipper bottom plate,
dipper side wall, and teeth. Figure 7 shows the representative stress profile. The stresses on
the dipper-teeth assembly vary with time. The maximum stress values vary from 151 MPa to
282 MPa. These stress values are higher than the lower limits of yield strengths for low,
medium, and high carbon steel (Table 5). Permanent damage to the dipper components is
possible, if the steel used has lower yield strength. The stress contour maps are used to identify
the high and lower stress regions for fatigue fracture modeling and analysis.
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Figure 7. Equivalent stress (von Mises) profile of dipper.

Steel Yield strength [MPa]
Low carbon steel 140-2400
Medium carbon steel 245-1740
High carbon steel 375-3340

Table 5. Yield strengths of steel [23].

8. Fatigue failure modeling of dipper components

Rope shovel excavation is cyclic in nature. The stresses on the front-end assembly vary
continuously during the duty cycle [24]. This variation, combined with the material flaws, can
initiate fatigue cracks in shovel components. Environmental factors (e.g., freezing tempera-
tures and corrosive materials) affect metal toughness. Fatigue crack may grow rapidly to
undesirable lengths under cyclic loading conditions. There are three modes for metal fatigue
failure: (i) mode-I (crack opening), (ii) mode-II (in-plane shear or crack opening), and mode-
III (out-of-plane shear or crack twist). Metal failure can also be a result of mixed-mode fatigue.
Mode-I fatigue research has dominated the fatigue analysis and life-expectancy field. Three
common fatigue failure analysis approaches are typically used, including the stress life, strain
life, and fracture mechanics. Each approach has its own application with overlapping boun-
daries. The fracture mechanics approach is used to estimate a crack’s propagation life. For this
approach, the initial crack lengths are either assumed or known (welds, known defects,
porosities, and cracks found during nondestructive testing). Fracture mechanics principles and
theories are applied to estimate crack-propagation rates and, thus, crack-propagation lives.
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A typical crack-growth curve has three distinct regions: crack initiation, crack propagation,
and rapid increase in crack growth leading to failure. Fatigue life may, however, occur for a
longer period of time during the crack-propagation phase as the majority of crack time is spent
during this phase. A number of models are available to predict the crack-propagation phase
(the middle region on the curve). Paris” law [25], defined by Eq. (32), is the most commonly
used method to estimate the crack propagation. The slope of the linear region of the fatigue
curve defines the crack-growth rate with every cycle. The material constants (C, m) can be
found for different metals in literature or computed using standard tests (ASTM E647):

da
v = C(&K) (32)

Kis the stress intensity factor (SIF). According to the linear elastic fracture mechanics (LEFM)
theory, computation of stress intensity factor (SIF) at the crack tip is necessary to predict the
crack growth. SIFs for many simple geometries and loading situations are available in
published literature [26-29]. For complex geometries and stress loading conditions, numerical
methods are used to compute the reliable SIF values. The most common methods for calcu-
lating SIF are the J-integral and energy release rate. Finite element techniques evaluate the SIF
using the energy release rate method. Many commercial software packages, such as ANSYS
Workbench (R15), have options for calculating these parameters. In these techniques, energy
release is estimated around the crack tip nodes in close loops, in the form of contours. For 2D
cases, the node at the crack tip forms the first contour, while for 3D cases, all nodes forming
the crack front determine the first contour. The shape, length, and depth of a crack determine
the crack life at a specific location.

For fracture modeling of the dipper, representative cracks can be induced in the virtual shovel.
Figure 8 illustrates the location and geometry of an elliptical crack in the dipper’s bottom plate.
The crack is induced in the high stress region and is along the stress lines. This representative
crack is 3 in. long and is 1 in. deep. A localized reference system defines the geometry of this
crack. The crack plane lies on this XZ plane, while the width of crack is along the Y direction
of this plane. The crack grows along the X and Z directions. A number of parameters control
the crack failure modeling, including crack geometry, shape, orientation, and stress environ-
ment. The crack definition is explained in Figure 9. This crack front is divided into a number
of segments, and six circular contours (also divided into segments) are generated around the
crack front. All these divisions represent the node locations for the finite element model. The
J-integral values are computed for every contour along the crack front. These values are used
to compute the SIFs at the crack tip and for life estimations.

The crack size is the most critical aspect of fatigue crack modeling and dipper life estimation.
The SIFs are highly dependent upon the crack size (length and depth). The relationship
between SIF and crack length is nonlinear. Estimating the variation of SIFs with size is the most
important and critical aspect for life estimation. The experimentation is performed for multiple
size cracks. ANSYS R15 software is used to compute the J-integrals around the predefined
crack tips. As explained in Figure 9, contours are generated around the crack front to represent
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the closed paths for J-integral. There are six contours around every modeled crack as illustrat-
ed in Figure 10. A very fine mesh size is generated around the crack tip, and J-integrals are
computed for all these contours. The first contour is very close to the tip and may represent
erroneous results. Therefore, the J-integral values for the first contour are ignored to ensure
accuracy [30].

fusss
\ Academi;

Rl

Figure 8. Elliptical crack at the side of the dipper bottom plate.

ANSYS

R15.0
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Circumferential |
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Figure 9. Crack definition in ANSYS for J-integral computations.
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Figure 10. ANSYS contours for J-integral computations.

SIFs are computed, using plane stress conditions for all the contours, and an average value of
five contours (contour 2-6) is used for further fatigue analysis. Crack lengths are increased
from smaller to larger crack sizes at selected locations, and SIFs are computed for each crack
size. The results are used to generate the crack-growth curves and for life expectancy of dipper
components. The SIF variation curves for the bottom-plate crack tip are obtained through a
least square regression and curve fitting process, Eq. (33), and are plotted in Figure 11. The
crack is in a high stress region, and, thus, the SIF is very high. Further, the SIFs show a steep
increase with crack size. It is expected that the cracks at this location will propagate rapidly:

SIF = 4.98E —04a’ —8.75E —02a” + 5.14a + 2.96E + 01 (33)
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Figure 11. SIFs for the bottom-plate crack tip.
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9. Remaining life expectancy of dipper components

Fatigue life is modeled by integrating the Paris” law [25] in Eq. (34). The equation has three
input parameters (¢, m, and AK). The two material constants are computed following standard
laboratory procedures. For common materials, the values for these variables can also be found
in literature [31, 32]. The “c¢” values are between 3 and 4, and some common values for “m”
are available in literature [33]. For this research, the material constants are taken from research
conducted by Yin et al. [21, 22]. They estimated the crack growth for the shovel boom cracks
and measured the material constants (“c” and “m”) following the ASTM standard E1820:

:"Jf da

Vo (aKY (34)

P

It is also assumed that the steel properties for the dipper and teeth are similar to that for the
boom. With these parameters, Eq. (34) becomes Eq. (35). As the computations become complex,
it is numerically solved using Gauss-Legendre quadrature in MATLAB. The outputs from Eq.
(35) include number of cycles (N) for a crack to propagate from an initial length (a;) to a final
length (a;). The number of cycles is converted to number of days assuming that one digging
cycle of shovel is equivalent to one fatigue cycle:

as

da
N, = _[ 5.89_'2(AK)3'27 (35)

Following the Palmgren-Miner’s rule [34] for equivalent damage, the total number of fatigue
cycles per day is equal to the digging cycles of the shovel per day. The total number of cycles
for a shovel per day is counted using the cycle time and the operational efficiency. The shovel
digging cycle is assumed to be 3 s for this research. However, a typical complete excavation
cycle time for P&H 4100XPC is about 30 s. The 3 s cycle time is consistent with the numerical
simulation results. Using this cycle time and assuming a 95% shovel operational efficiency, the
total number of digging cycles for shovel is calculated as 2730 cycles per day. This assumption
is very close to field observations [22] where researchers counted 2880 cycles per day for a cable
shovel working continuously over a period of 2 weeks. For this research, a middle-ground
value of 2800 cycles per day is assumed to convert the cycles to days.

The remaining useful life for the cracked components can be estimated, with knowledge of
critical crack lengths for dipper material. The critical crack length is the length of the crack at
which the material at the crack tip starts behaving like a plastic material, and the crack
propagation becomes very rapid. It is represented as the boundary between the second and
third zones for a fatigue crack. The critical lengths for metals are generally measured using
laboratory fatigue toughness tests following the standard procedures. A critical length limit
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may also be implemented based on field operating conditions or using the crack-growth
curves.

The crack-growth curve for the dipper bottom plate is shown in Figure 12. It is observed that
the crack-propagation rates become very high after a certain crack length. A critical length' of
100 mm is set for this crack. As illustrated in this figure, the estimated life for a 50 mm bottom-
plate crack is 38 days. However, once the crack grows to 75 mm, the remaining life is only 16
days for the same crack.

250
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Figure 12. Critical crack length and remaining life expectancy for an initial length of 50 mm.

10. Significant contributions

The research underlying this chapter is a pioneering effort for understanding electric rope
shovel dipper stress analysis using dynamic resistive forces. The research results contribute to
the existing body of knowledge on health and longevity of shovel dipper-teeth assembly. It
advances shovel reliability, maintainability, and availability, which influence surface mining
productivity. Previous research generally ignored the dynamic forces due to the weight of the
dipper and payload. Given the size of current large shovels with 100+ tons per pass, these
forces must be accounted for in any meaningful and comprehensive dynamic model. The
research models provide detailed information on the forces and torques for all joints and links
within the shovel front-end assembly. This research is also the first attempt to model the fatigue
life of the shovel dipper-teeth assembly. It lays a foundation for understanding dipper fatigue
failure resulting from high stress intensity, crack initiation, and propagation for rope shovel
front-end assembly. Research shows that dipper-related breakdowns are among the highest
for shovel excavation downtimes [4]. The current maintenance practice for the shovel front-
end assembly is based on experience rather than science. This chapter lays a foundation for

! Crack length in this text (and in literature) is always referred as half of the total length of crack. A critical length of
100 mm would be 200 mm total length of the crack.
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the scientific modeling and understanding of the shovel dipper-teeth stress and fatigue failure
studies. The life expectancy of the shovel components should help reduce the operating costs
of shovel excavation. Overall, the study contributes to the health and longevity of the large
rope shovels by providing a more scientific basis to the subject matter and should be helpful
in the design and development of the next generation of excavators. The results of these models
can be used to design and build the next generation of shovel dippers for the surface mining
industry and advance frontiers and knowledge in shovel dipper stress and fatigue failure
modeling.

11. Conclusions

Estimating electric rope shovel health and longevity is a complicated task and requires a
thorough understanding of the shovel digging process. Thus far, the shovel front-end assembly
repair model is based on experience and judgment rather than science. Shovel kinematic and
dynamic models provide a scientific basis for shovel repair and fatigue failure modeling. The
shovel dynamic model requires a good estimation of shovel digging forces. Current rope
shovels have large dipper capacities, and their digging resistive forces can be significant.
Shovel payload is a dynamic and significant contributor of these digging forces. The dynamic
forces result in stress loading of shovel front-end components. The maximum stress values can
be as high as 282 MPa and can be higher than the lower yield strength limits for low, medium,
and high carbon steel. Material flaws, high stresses, and other environmental factors can
initiate cracks on the dipper. Under severe stress loading conditions, these cracks can propa-
gate to critical lengths in no time. The estimated life for a 50 mm bottom-plate crack was found
to be 38 days. However, once the crack grows to 75 mm, the remaining life can be as low as 16
days only. This chapter lays a foundation for the fatigue failure analysis of dipper-teeth
assembly. The virtual prototype is a scaled and simplified model. It is recommended that the
work be extended for real full-scale virtual prototype for the actual steel materials used.

Nomenclature

G, number of impacts to sink a cylindrical tip in a standardized test by 10 cm
0 the angle that the rupture surface makes with the horizontal

B tool cutting angle for Zelenin model

d tool working depth, depth of dipper into the bench

w width of tool

Z coefficient for teeth configuration in the Zelenin model [11]

w dipper width

da/dN crack-growth rate per cycle as defined by Paris’ law
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a crack length
N¢ number of cycles to failure
K stress intensity factor

C,m material constants for Paris’ law
a, a; initial and final/critical known/assumed crack length

c® é) generalized Coriolis and centripetal torque

D(©) generalized inertia matrix
G(©) generalized gravity torque

m; m, mass of crowd arm and dipper, respectively

ad rotation of coordinate frame with respect to i-1 frame

B constant inclination of link 3 from link 2 (inclination of X, from Xj;)

0, rotation of ith coordinate frame

0 inclination of coordinate frame {4'} from coordinate frame 3

a length of the ith link

a crowd-arm length from pivot to connection point between arm and dipper (length of 1st link)
a, length between dipper tip and connect point of arm and dipper (length of second)

Sy G sin@; and cos0;, respectively

di offset distance of the gravity left in link i

F,F, normal and tangential cutting resistive forces on dipper tip

T, transformation matrix to transfer the coordinates from i to i+1
HR, rotational matrix, extracted from *'T;
L(x) straight-line function representing the bench face
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