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Abstract

This study presents an apparatus for the measurement of the electrical volume resistivity 
of concrete structures in civil and industrial constructions in 2.5 accuracy class, which oper‐
ates at 500 Hz, for measuring the in situ resistivity of concrete in the range of 5–100 Ωm 
that is immune to errors due to the polarization phenomena at the interface probe/concrete 
sample. Also, a quench protection active system (QPS), which works in tandem with a 
superconducting coil structures (SCSs), in order to prevent the damaging effects when the 
coil structures pass from the superconducting state into normal conduction state (quench), 
is presented. An SCS made of YBCO tape high‐temperature superconductor (HTS) type, 
with a critical temperature of 92 K, has been experimented. In order to minimize the heat 
transfer influx by convection, the SCSs are confined to a cryostat, which is vacuumed 
at about 0.001 mbar. The working temperature of the HTS coil structures is about 77 K, 
ensured by liquid nitrogen as cryogenic agent. Finally, the measurement of the electrical 
resistance of the sensing element (SE) as part of the resistive‐type gas sensor is shown. The 
SE is placed on a Wheatstone bridge. The electrical resistance of the SE is variable by an 
amount ΔR, on when all the resistances of a Wheatstone bridge are nominally equal.

Keywords: electrical resistivity, reinforced concrete structures, coil structures of 

superconducting, quench protection, sensing element, gas sensors

1. Measurement of the electrical resistivity of concrete structures

Measurement of the electrical volume resistivity of concrete structures in civil and industrial 

constructions shows a particular importance in order to establish the status thereof. In practice, 

often, it counts the problem of investigating the degradation of reinforced concrete that was 

not provided with electrodes for monitoring. The degradation of reinforced concrete structures 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



is a complex process concerted and synergy action due to several requests for the nature of the 

physical (mechanical stress, shock and vibration, weather air/diurnal temperature variations, 

especially around the freezing temperature of water, etc.), chemical (salinity of the soil and/or 

of the phreatic water is in contact with the concrete, the content of aggressive atmospheric pol‐

lutants, etc.) and microbiological (load microbiological alteration of the exploitation environ‐

ment). Measurement of the electrical volume resistivity of concrete structures can be achieved 

by using a quadrupole consisting of the power electrodes, E1, E2, by means of which I [A], the 

current and the measurement electrodes, E3, E4, to measure a potential difference, ∆V [V], are 

injected (Figures 1 and 2). An apparent resistivity [1] ρ
app

 [Ωm] is obtained

   ρ  
app

   =   k × ΔV ______ 
I
    (1)

Figure 1. The block diagram of the measurement apparatus of the in situ electrical resistivity of concrete structures.
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Here, k is a sample‐specific geometrical factor and I [A] is the injected current. In this case, 

the RMS value of the injected current is 1 mA. Based on the technical solutions protected by 

patent application [2], we prototyped an apparatus for measuring the in situ resistivity of 

concrete structures.

Measurement apparatus of the in situ electrical resistivity of concrete structures is conceived 

modularly having as components the following electronic modules, as shown in Figures 1 

and 2: constant current generator module positions 1, 2 and 3, signal conditioning module 

position 4, band‐pass filter position 5, rectifier module position 6, measurement and display 
module positions 7–9, and window comparator module positions 10–12 [2–6]. The errors due 

to electrochemical polarization phenomena are eliminated by powering the current electrodes 

E1, E2 with a constant of 1‐mA intensity sinusoidal current [6], of 500 ± 5 Hz. The constant 

current generator module is made by cascading the standard generator sine function sub‐

module and of constant voltage/current converter sub‐module of 1 mA RMS. Accompanying 

the current flow through the concrete sample, a voltage drop of approx. ΔU proportional to the 

resistivity of concrete, ρ, is recorded at the central contacts of the concrete sample, E3 and E4.

The measuring probe is of special construction, so as to ensure the parallelism of the elec‐

trodes E1–E4, Figures 1 and 2 and equal distance between them. The concept of the mea‐

suring probe allows easy manoeuvrability in the field, regardless of the orientation of 
the measuring plane (horizontal, vertical walls and beam‐reinforced concrete) and simul‐

taneously uniform pressing of the electrodes and even on surfaces with dislevelments 

up to 15 mm. In order to ensure as good as possible constant electric contact between 

Figure 2. The functional modules of the measurement apparatus of the in situ electrical resistivity of concrete structures [7].
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electrodes E1–E4 and the  measured concrete structures surface, they are provided with 

sponge patches capped by cotton cloth discs (protective bags attached to the electrodes by 
snap rings). To eliminate the errors due to both AC and DC stray currents, low and high 

frequency, the signal ΔU at E3, E4 electrodes is passed through a ‘band‐pass’ filter of 500 
± 10 Hz [3] (with minimum 40‐dB attenuation for ±150 Hz).

One of the important electronic modules is the active fourth‐order band‐pass filter. The 
band‐pass filter is made by cascading a second‐order active band‐pass Bessel filter with a 
second‐order active band‐pass Butterworth filter. Both filters are realized with the use of the 
Texas Instruments integrated active filters UAF42 [3]. Bessel and Butterworth second‐order 
band‐pass filter design was made by using software program FilterPro™ developed by Texas 
Instruments Company dedicated to developing applications for the integrated circuit UAF42 
Texas Instruments—active filter.

With notations required by Texas Instruments, the values of the passive components are 

obtained from Table 1 for the second‐order Bessel band‐pass filter and from Table 2 for 

second‐order Butterworth band‐pass filter, by running the software program FilterPro™.

It can be noted, Figures 3 and 4, that the integrated active filter circuit UAF42 [3] contains an 

operational amplifier unused for filtering function. This is used to achieve signal condition‐

ing, the amplification after filtration, respectively.

The electronic design of the second‐order Bessel band‐pass filter is shown in Figure 3, and 

the electronic design of the second‐order Butterworth band‐pass filter is shown in Figure 4.

Input voltage of the signal conditioning electronic block is sinusoidal, having amplitude peak to 

peak in the range of 10–20 mV, recorded at the central contacts of the concrete sample, E3 and E4, 

Figure 2. This voltage is amplified to the level of 500–1000 mV peak to peak, by using the fourth 

operational amplifier available into the integrated circuit UAF 42 Texas Instruments—active fil‐
ter, Figure 3, used in the inverting connection. In this case, the gain, as the ratio of the output 

voltage at this operational amplifier (i.e. from input of the second‐order Bessel filter) and the 
input voltage at the inverting connection of the operational amplifier, Figure 3, can be written as

   A  
1
   =   

 V  OUT1
  
 _____ 

 V  
IN1

  
   = −   

 R  
A
  
 ___ 

 R  
B
  
   = −   100 ___ 

2
   = − 50  (2)

f
0
 [Hz] R

2A
 [kΩ] R

F1
 [kΩ] R

F2
 [kΩ] C

1A
C

2A
R

Q
 [kΩ]

500 5.49 100 100 – – 34.8

Table 1. The values of the passive components for the second‐order Bessel band‐pass filter.

f
0
 [Hz] R

2A
 [kΩ] R

F1
 [kΩ] R

F2
 [kΩ] C

1A
C

2A
R

Q
 [kΩ]

500 ‐ 316 316 – – 4.75

Table 2. The values of the passive components for the second‐order Butterworth band‐pass filter.
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Input voltage from the second‐order active filter Butterworth is sinusoidal, having maximum 
amplitude peak to peak of 1000 mV. The filter is active, so that the maximum output voltage 
amplitude is the same, 1000 mV peak to peak. This voltage is amplified to the level of 5000 mV 

peak to peak by using the fourth operational amplifier available into the integrated circuit UAF 
42 Texas Instruments—active filter, Figure 4, used in the inverting connection. In this case, the 

gain, as the ratio of the output voltage at this operational amplifier and the input voltage at the 
inverting connection of the operational amplifier, Figure 4, can be written as

   A  
2
   =   

 V  OUT2
  
 _____ 

 V  
IN2

  
   = −   

 P  
1
  
 ___ 

 R  
B
  
   = −   100 ___ 

20
   = − 5  (3)

Figure 3. The second‐order active band‐pass Bessel filter and signal conditioning.

Figure 4. The second‐order active band‐pass Butterworth filter and instrumentation amplifier.
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Experimentation of the second‐order band‐pass active filter Bessel was performed as follows:

 ‐ at the input of the second‐order band‐pass active filter Bessel, Figure 3, a sinusoidal voltage 

with a peak‐to‐peak amplitude of 1000 mV and a frequency range of f = 50–1000 Hz, from 

the arbitrary function generator FLUKE 281, was applied;

 ‐ the output of band‐pass filter Bessel is connected to the LeCroy 324 digital oscilloscope 
channel 1, in order to measure the amplitude of the output voltage;

 ‐ by using the entire spectrum of the frequencies, in the range of f = 50–1000 Hz, for the sine 

wave voltage applied to the input, the characteristic of the second‐order band‐pass active 

filter Bessel, Figure 5, can be drawn.

Experimentation of the second‐order band‐pass active filter Butterworth was performed as 
follows:

 ‐ at the input of the second‐order band‐pass active filter Butterworth, Figure 4, a sinusoidal 

voltage with a peak‐to‐peak amplitude of 1000 mV and a frequency range of f = 50–1000 Hz, 

from the arbitrary function generator FLUKE 281, was applied;

 ‐ the output of band‐pass filter Butterworth is connected to the LeCroy 324 digital oscillo‐

scope channel 2, in order to measure the amplitude of the output voltage;

 ‐ by using the entire spectrum of the frequencies, in the range of f = 50–1000 Hz, for the sine 

wave voltage applied to the input, the characteristic of the second‐order band‐pass active 

filter Butterworth, Figure 6, can be drawn.

The fourth‐order filter, obtained by cascading the two second‐order filters, Bessel and 
Butterworth, was tested in the same conditions. The characteristic of the fourth‐order band‐
pass active filter is shown in Figure 7.

In order to eliminate the measurement error due to the polarization phenomena between 

the reinforced concrete surface (conductor environment of type II) and the electrodes E1, E2 

Figure 5. The characteristic of the second‐order band‐pass active filter Bessel (two poles), test results [7].
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(conductor environment of type I), the apparatus includes the current generator module, 

made by cascading the standard generator sine function sub‐module of 500 ± 5 Hz and of 

constant voltage/current converter sub‐module of 1 mA RMS.

In order to eliminate the measurement error due to the potential leakage currents both in 

DC and in AC, of low and high frequency, and of the interference signals, respectively, 

Figure 6. The characteristic of the second‐order active band‐pass filter Butterworth (two poles), test results [7].

Figure 7. The characteristic of the fourth‐order band‐pass active filter (four poles), for the frequency of 400–600 Hz, 
resulted by cascading the two second‐order Bessel and Butterworth filters, test results.
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with frequencies below 350 Hz and above 1 kHz, the apparatus includes the fourth‐order 

band‐pass active filter made by cascading the two second‐order band‐pass active filter 
modules Bessel and Butterworth filters. As I pointed out, the apparatus for the measure‐

ment of the electrical volume resistivity of concrete structures in civil and industrial con‐

structions provides the measurements of resistivity in the range of 5–100 Ωm, the 2.5 
accuracy class. By using a window comparator electronic module, Figure 1, the apparatus 

allows the optical viewing of the values less than 5 Ωm and over 100 Ωm, through two 
leads. The apparatus shows the good functional stability, observed during experiments 

for a wide range of types of concrete structures. Also, the calibration can be done easily by 

using a potentiometer P1, Figure 4.

As concrete structures degrade (through decrease of the alkalinity, carbonation, increase in 

chloride content, etc.), the resistivity decreases substantially [8]. Today at important build‐

ings, from design phase is provided  embedding  electrodes that allowing both measuring/

monitoring of the concrete resistivity and determination of the potential of corrosion of the 

reinforcement [9–11].

Experiments were performed in two stages.

Stage 1. Calibration

Standard concrete sample (SCS) for which precisely the electrical resistivity is known, deter‐

mined by the classical method [12], is measured in order to calibrate the apparatus:

(A1) it is checked using a ‘TRUE RMS AC + DC’ multimeter set on the mA scale and having 
probes connected to E1 and E2 electrodes, respectively, that RMS value of the injected current 

is to 1 mA;

(B1) the sponge and protective bag for probes (up to saturation) are soaked with a solution of 

3–5% NaCl concentration;

(C1) the electrodes E1–E4 are applied on the SCS sample surface;

(D1) the measurement apparatus of the in situ electrical resistivity of concrete structures is 

calibrated, through adjusting the amplification of the instrumentation amplifier, by rotating 
the calibration potentiometer on the front panel, Figures 1 and 2, until the apparatus indicates 

the known resistivity value of the SCS sample.

Stage 2. Measuring the electrical resistivity of concrete structures

(A2) before performing a new measurement, the sponge and the protective bag are soaked 

again (to saturation) with a solution of 3–5% NaCl concentration;

(B2) the electrodes E1–E4 are applied on the concrete structure surface;

(C2) the measured value of the electrical resistivity of concrete structures is read on the digital 

display of 3 1/2 digits.

Figures 8 and 9 present two successive measurements of resistivity of a concrete pillar.
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2. Protection to quench hazard in high‐temperature superconducting coil 

structures

2.1. The case of a single HTS superconducting coil

The superconducting coil structures can get out of the superconducting state (can normalize), 

for various reasons, such as the following:

• if temperature exceeds the critical temperature;

• if the injected current growth slope is too steep, after entering the superconducting coil 

structures in the superconducting state and stabilizing to the temperature regime at a value 

of 77 K (liquid nitrogen temperature);

Figure 8. The measurement of a concrete pillar, first measurement.

Figure 9. The measurement of a concrete pillar, second measurement.
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• if the injected current through the superconducting coil structures exceeds the critical 

current;

• if the superconducting coil structures are subjected to mechanical vibrations [13].

Therefore, the superconducting coil structures always work in tandem with a protection sys‐

tem, called quench protection, in order to prevent the damaging effects of their exit from the 
superconducting state, for the reasons previously described.

This study refers to the quench protection active system (QPS), which works in tandem with 

a superconducting coil structure. In our case, the superconducting coil structures are made 

from a tape of material based on YBCO, having a critical temperature of 92 K. Since cooling is 

made with liquid nitrogen, the working temperature of the superconducting coil structures is 

in the temperature range of 77 K. The superconducting coil structures are arranged in a cryo‐

stat within which a high vacuum of about 0.001 mbar is achieved, in order to minimize the 

heat transfer to the outside by removing the convective heat transfer. Also, the superconduct‐

ing coil structures are immersed in liquid nitrogen. Table 3 presents the electrical resistance 

of the superconducting coil structures versus the cryostat temperature.

At the critical temperature, the resistance of the coil temperature ensemble is 0.52 Ω (super‐

conducting coil resistance to which the connecting wire resistance and the junction resistance 

are added). All the connecting wires are made of superconducting material YBCO, HTS type 

that has a thermal conductivity of ∼1 W/mK. The connecting wires are introduced in a sheath 

of nonmagnetic stainless steel pipe and the terminals are made by copper. Bonding the HTS 

strip of copper terminals is carried out with a mixture of indium and 5% Ag (to minimize the 

junction resistance).

Figure 10 presents the variation of the voltage measured on the superconducting coil struc‐

tures after entering into the superconducting state, depending on the injected current. The 

Temperature in the cryostat T [K] The measured resistance of the superconducting coil R [Ω]*

119 0.58

114 0.55

104 0.52

84 0.517

77.6 0.495

77.54 0.465

77.52 0.452

77.51 0.44

77.53 0.434

77.46 0.43

*The superconducting coil structures resistance was measured in the conditions in which no current was injected in the 

coil.

Table 3. The electrical resistance of the superconducting coil structures versus the cryostat temperature.
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current is injected through the superconducting coil structures, with a slope of 1 A/s [14] by 

the programmable power supply type AMI 03300PS‐430‐601. Critical current value is deter‐

mined from the curve U = f (I), Figure 10, by coming down with a tangent at exponential area 

of the curve. The value of the critical current was determined using this procedure and it is 

120 A. The intersection with current axis, Figure 10, will give the exact value of critical current 

of the superconducting coil structures at 77 K. For a current greater than or equal to the critical 

current, the voltage measured on the superconducting coil structures has a sudden increase. 

The superconducting coil structures get out of the superconducting state, and the quench 

protection must act accordingly in order to prevent the damaging effects.

The quench protection system (QPS) is made of two ultrafast switches made with high‐power 

IGBT's transistors (Isolate Gate Bipolar Transistor). The key parameters of the active protec‐

tion system are as follows:

• The maximum quench detection time is t
Q
 = 800 ns;

• The actual reaction time is in the interval t
R
 = 2.78–3.5 μs;

• The energy is discharged in the range of 1–10 kJ.

A quench active protection system, Figure 11, for HTS coil structures must solve the following 

problems:

1. The detection of the QUENCH.

2. Decoupling the HTS coil structures from the programmable power supply.

3. The coupling of the HTS‐type superconducting coil structures on a discharge resistance 

R
D
. In this case, the magnetic energy stored in the coil inductivity L, W

M
 = Li2/2, is dissipat‐

ed through Joule effect, W
J
 = Ri2, by the discharge resistance R

D
 and the dynamic resistance 

of the semiconductor device that compose the command power electronic switch.

Figure 10. The voltage drop on the superconducting coil structures versus the current, at 77 K [14].
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To comply with its aim, the quench protection active system, Figures 11 and 27, must com‐

prise the following parts: ultrafast electronic switches, T1 and T2 (K1 and K2, respectively), an 

electronic circuit for quench detection and a discharge resistance, R
D
.

The design of the quench protection system (QPS) is modular, and it comprises the electronic 

modules presented next.

A. Quench detection and signal processing electronic module. This module, named 1. on the  

Figure 11, contains the following parts:

• An operational amplifier electronic block with galvanic isolation;

• A precision, differential amplifier electronic block with the common mode rejection fac‐

tor CMRR = 100 dB;

• An amplifier electronic block with the gain A = 10 and CMRR = 100 dB;

• An electronic block, which performs the module mathematical function;

• An optical interface electronic block, double opto‐coupler, with TTL signals recovery;

• A logic sequence programming electronic block.

B. The power electronic module. This module, named 2. on the Figure 11, comprises the fol‐

lowing electronic blocks:

• Two drivers electronic blocks IGBT T1/IGBT T2 (Block 1 Driver IGBT T1 and Block 2 

Driver IGBT T2);

• An electronic block of ultrafast switches made with the power transistors IGBT T1/IGBT T2;

• A discharge resistance block, R
D
.

C. Electronic module of voltage stabilized power supplies. This module, named 3. on the 

Figure 11, comprises the following blocks:

• The ±12 V
DC

 differential power supply for powering the analogical electronic circuits and 
the power supply +5 V

DC
 for powering the digital electronic circuits;

• The ±15 and ±12 V
DC

 differential voltage power supply for powering the operational am‐

plifier electronic circuit with optical isolation for the quench signal processing;

• The 2x20 V
DC

 power supply with galvanic isolation for powering the drivers that com‐

mand the two IGBT power transistors, T1 and T2.

The discharge resistance R
D
, Figures 11 and 12, was made from 99.9% pure Cu wire, solenoid 

shape, having four turns with section Φ = 2 mm, with the wire diameter of D = 50 mm, and 

the value of the DC resistance of R
D
 = 0.128 Ω. The DC measurement was performed with the 

Agilent 34461A multimeter.

One of the important electronic modules is the amplifier block with galvanic isolation. Design 
of the amplifier block with galvanic isolation, Figure 13, is made with the integrated circuit 
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IC1 type ISO 124, Burr Brown manufacturing by Texas Instruments. It is noticed that the use‐

ful signal is acquired through a divider, made with four potentiometers P1–P4, respectively. 

Figure 11. The block diagram of the experimental model of the QPS, which provides the HTS coil structures protection 

to quench, for the case of a HTS coil [14].
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In this way, the dividing factor is adjustable allowing the useful signal threshold setting for 
which the voltage of the amplifier input is interpreted as quench voltage. Also, it can be seen 
the separation way of the power supply, Figure 13. A differential stabilized power supply of 
DC voltage of ±15 V

DC
, which is powering the first part of the amplifier block with galvanic 

isolation type ISO 124, which acquires the useful signal and a differential stabilized power 
supply of DC voltage of ± 12 V

DC
, which is completely galvanic isolation from first is powering 

the part of the output amplifier.

The power electronic module of the active electronic protection system QPS contains two 

electronic ultrafast switches made with the power transistors IGBT T1/IGBT T2 type Fuji 

2MBI600NT—060, Figures 14 and 15, two drivers electronic blocks IGBT T1/IGBT T2, type 

VLA 517—01R—FUJI [15] Figures 16 and 17, and a discharge resistance R
D
, Figures 11 and 12, 

with the role of picking the energy stored in a superconducting coil that is composed of two 

identical sections, serially connected, when at least one of the coils is normalized.

Figure 12. The discharge resistance R
D.

Figure 13. The electronic design of the amplifier block with galvanic isolation [14].
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The first ultrafast switch made with the power transistors IGBT T1, Figures 11 and 18, allows 

the supply of the superconducting coil from the voltage power supply, in normal operation, 

as well as voltage power supply decoupling when the coil is normalized. The second switch 

Figure 14. The ultrafast switches block made with the IGBT T1/IGBT T2 [14].

Figure 15. IGBT power transistors, T1/T2 type 2MBI 600 U2 E—060—FUJI [14].

Figure 16. The IGBT T1/IGBT T2 driver block [14].

Measurement of the Electrical Resistivity for Unconventional Structures
http://dx.doi.org/10.5772/67854

67



made with the power transistors IGBT T2, Figures 11 and 18, enables the coupling of the 

superconducting coil on the discharge resistance R
D
, when at least one of the coils L1 and L2 

serially connected is normalized (leaves the superconducting state).

Five possible cases of conduction are distinguished for ultrafast switches made with IGBT 

power transistors T1/T2, according to the conduction state of the two identical sections of 

superconducting coil L1 and L2 as follows:

1. Coil inductance L = L1 + L2 is in the superconducting state, in which case IGBT power 

transistor T1 is in a state of conduction (ON) and IGBT power transistor T2 is found in the 

locked state (OFF), Figure 19;

2. Inductance coil L1 was normalized and both IGBT power transistors T1 and T2 are in a 

state of conduction (ON) for a period of t
M1

 = 300 ns, Figure 20;

3. Inductance coil L1 was normalized and IGBT power transistor T1 is in the locked state 

(OFF) and IGBT power transistor T2 is found in a state of conduction (ON), Figure 21;

4. Inductance coil L2 was normalized and both IGBT power transistors T1 and T2 are in a 

state of conduction (ON) for a period of t
M1

 = 300 ns, Figure 22;

Figure 17. Hybrid integrated circuit, type VLA 517—01R—FUJI, driver [14].

Figure 18. The power electronic module of the active electronic QPS system, practical design.
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5. Inductance coil L2 was normalized and IGBT power transistor T1 is in the locked state 

(OFF) and IGBT power transistor T2 is found in a state of conduction (ON), Figure 23.

The logic sequence programming electronic block, Figure 11, performs the following functions:

• Should the coils L
1
 and L

2
 work in their superconducting state, in which case the IGBT 

power transistor T1 will be in the conducting state (saturated), and the IGBT power tran‐

sistor T2 is in the locked state. In this case, through the superconducting coil L = L1 + L2, 

Figure 11 flows the current I1 = 80A.

• When the quench phenomenon appears, when at least one of the coils L1 or L2 is normal‐

ized, V
COMMAND

 transits from ‘0’ logic to ‘1’ logic. V
COMMAND

 triggers the voltage U
M1

 over a 

period t
M1

 and both the IGBT transistors T1 and T2 are conducting, for a period of t
M1

 = 300 

ns. In the following sequence, Figures 24–26, the IGBT power transistor T1 will be in the 

locked state, and the IGBT power transistor T2 will be in the conducting state. Note that the 

U
Q1

 is the command voltage applied onto IGBT T1 and the U
Q2

 is the command voltage ap‐

plied onto IGBT T2. In this way, the superconducting coil L = L1 + L2 will be in parallel with 

the discharge resistance R
D
. The magnetic energy accumulated in the superconducting coil 

L = L1 + L2 is dissipated through the protection resistor, discharge resistance R
D
. The energy 

is discharged in the range of 1–10 kJ.

Figure 19. Coil inductance L = L1 + L2 is in the superconducting state, in which case IGBT power transistor T1 is in a state 

of conduction (ON) and IGBT power transistor T2 is found in the locked state (OFF).
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Figure 20. Inductance coil L1 was normalized and both IGBT power transistors T1 and T2 are in a state of conduction 

(ON) for a period of t
M1

 = 300 ns.

Figure 21. Inductance coil L1 was normalized and IGBT power transistor T1 is in the locked state (OFF) and IGBT power 

transistor T2 is found in a state of conduction (ON).
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Figure 22. Inductance coil L2 was normalized and both IGBT power transistors T1 and T2 are in a state of conduction 

(ON) for a period of t
M1

 = 300 ns.

Figure 23. Inductance coil L2 was normalized and IGBT power transistor T1 is in the locked state (OFF) and IGBT power 

transistor T2 is found in a state of conduction (ON).
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Figure 24. The time command diagram of ultrafast switches IGBT T1/IGBT T2, when the quench phenomenon appears 

[14].

Figure 25. Simultaneous recording of signals U
M1

 (overhead), U
Q2

 (in the middle) and U
Q1

 (on the bottom), for a time 

base set at 500 ns [14].

Figure 26. Simultaneous recording of signals V
COMMAND

 (overhead), U
Q2

 (in the middle) and U
Q1

 (on the bottom), for a time 

base set at 500 ns [14].
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From Figures 25 and/or 26, the maximum quench detection time of the QPS as t
Q
 = 800 ns can 

be determined by assessing transition from logic zero to logic one (positive logic) of the signal 

U
Q2

 or by assessing transition from logic one to logic zero (positive logic) of the signal U
Q1,

 

respectively. The reaction time of the QPS, t
R,

 will take into account and by the actual transi‐

tion from logic zero to logic one (positive logic), ‘t
on

’, for both the command driver's and the 

IGBT's transistors, respectively. Thus, the transition from logic zero to logic one and transition 

from logic one to logic zero, respectively, for the driver command type VLA 517—01R—FUJI 
[15], t

on
‐driver = toff‐driver = t

DRIVER
 = 1.5 μs.

Also, the transition from logic one to logic zero for high‐power IGBT transistor type Fuji 

2MBI600NT – 060 toff‐IGBT is determined based on the dispersion of such semiconductor 

device fabrication: (toff‐IGBT)
MIN

 = 0.48 μs and (toff‐IGBT)
MAX

 = 1.20 μs. The reaction time t
R
 can 

be calculated as follows:

(a) The minimum reaction time is

t
RMIN

 = t
Q
 + t

DRIVER
 + (toff – IGBT)

MIN
 = 0.8 μs + 1.5 μs + 0.48 μs = 2.78 μs.

(b) The maximum reaction time is

t
RMAX

 = t
Q
 + t

DRIVER
 + (toff – IGBT)

MAX
 = 0.8 μs + 1.5 μs + 1.2 μs = 3.5 μs.

The actual detection time lies in the interval t
R
 = 2.78–3.5 μs.

Advantages of the QPS [16], which provides the HTS coil structures protection to quench, are 

as follows:

• Makes a quench detection under quench detection time t
0
 = 800 ns;

• Makes a decoupling of the power supply, which supplies the superconducting coil through 

an electronic ultrafast switch, capable of commuting under 1 μs;

• Makes the crossing of the superconducting coil in parallel on a discharge resistance, R
D,

 

after the decoupling from the voltage power supply, through an electronic ultrafast switch 

capable of commuting under 1 μs.

2.2. The case of a variable number of HTS superconducting coils, which may form 

dipolar, cuadripolare, sextupolare or octupolare structures

Active protection for multipolar set of superconducting coils, whose block diagram is given 

in Figure 27, operates in the following way:

Constructively, a multiple number of 2, the superconducting coils 2–8 multipolar BS1, …, 

BS8 superconducting coils forming the multipole assembly are connected in series. A mul‐

tiple number of 2, from 2 to 8 electronic amplifiers with galvanic isolation blocks, equal 
to the number of superconducting coil assembly previously established, BIG1, BIG2, …, 

BIG8, having the role of individually conditioning the useful signal originated from each 

superconducting coil in part, are disposed in parallel with each superconducting coil in 

part, Figure 27. The two ultrafast electronic switches, Figure 27, K1 and K2, respectively, 
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Figure 27. The block diagram of the experimental model of the QPS, which provides the HTS coils structures protection 

to quench, for the case of a variable number of HTS coils, that may form dipolar, cuadripolare, sextupolare or octupolare 

structures.
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perform connecting and disconnecting the power source voltage and discharge resistance 

R
D,

  respectively [17].

The first ultrafast electronic switch, K1, allows for powering the superconducting multipolar 

coils BS1, …, BS8 from the power supply voltage, in normal operation, when all the super‐

conducting coils are in a superconducting state. Also, the first ultrafast electronic switch, K1, 

allows power supply decoupling when at least one of the multipolar superconducting coils 

assemblies BS1, …, BS8 was normalized.

The second ultrafast electronic switch, K2, allows coupling of the superconducting coils mul‐

tipolar BS1, …, BS8 on a discharge resistance, R
D
, in the case when at least one of the multipo‐

lar superconducting coils assemblies BS1, …, BS8 was normalized. Also, the second ultrafast 

electronic switch K2 allows multipolar superconducting coil BS1, …, BS8 decoupling from 

discharge resistance, R
D
, in normal operation, when all the superconducting coils are in a 

superconducting state.

One of the important electronic modules is the precision analogue summing circuit, Figures 27 

and 28. The precision analogue summing circuit is achieved using three analogue‐integrated 

circuits type AMP 03, instrumentation operational amplifier from Analog Devices [18]. Each 

of these operational amplifiers is used in specific connection of summing [18]. At the exit VOUT, 

Figure 28, we obtain the sum of all four signals that are applied to the inputs IN1, IN2, IN3 

and IN4.

The performance of an active electronic protection system (QPS), in both cases A and B, can be 

evaluated by the visualization and recording of dissipated energy on the discharge resistance 

R
D
, Figures 11 and 27, by using the system shown in Figure 29. When a high‐temperature 

superconductor (HTS) coil structure that is in a superconductive state is shifting into normal 

conduction state (quench), the evolution of voltage drop on the superconducting coil struc‐

tures will be that around the critical current, Figure 10 and Table 4.

Figure 28. The electronic design of the precision analogue summing circuit, for the case of a HTS coils, cuadripolare 

structures.
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Figure 29. The block diagram of the measurement apparatus, which allows the visualization and recording the dissipated 

energy on the discharge resistance R
D.

I [A] U [mV]

10 3.75

20 10.4

20 9.5

30 14

40 19

45 21

50 24.6

55 28.6

60 32.44

65 37.64

70 44.22

75 52

80 61.4

85 70

90 81.35

95 94

100 147

110 650

120 >650 (Quench)

Table 4. The voltage U picked from the superconducting coil L, versus the injected current I, at 77.46 K temperature.
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The QPS will detect a quench situation. By multiplying the instantaneous current i(t) that 

passes through the discharge resistance R
D
 with the instantaneous voltage u(t) from the dis‐

charge resistance R
D,

 the instantaneous power is obtained, Figure 29. The dissipated energy 

on the discharge resistance R
D
 is obtained by integrating the instantaneous power.

The YBCO tape high‐temperature superconductor, with a critical temperature of 92 K, is used 

in the construction of superconducting coils tested. The superconducting coil structures are 

immersed to a cryostat filled with liquid nitrogen as cryogenic agent to decrease the working 
temperature of the HTS coil structures at about 77 K. Heat transfer by convection is mini‐

mized by creating a vacuum at a level of 0.001 mbar.

The experimental results confirm that the quench protection works as expected for the work‐

ing conditions of the YBCO tape HTS coil structures. Figure 30 shows the QPS of the super‐

conducting coil during the experiments.

3. Measurement of the electrical resistance of the sensing element as part 

of the resistive type gas sensors

Rare‐earth oxides have been extensively explored for several advanced applications, such as 

in electronics, optics and heterogeneous catalysis, thanks to their peculiar properties arising 

from the availability of the 4f shell [19]. Ceria, either in its pure form or doped with cations 

Ca2+, Mg2+, Sc2+, Y3+, Zr4+, potentially has a wide range of applications like gas sensors [20], 

Figure 30. The experimental setup of the quench protection system of the superconducting coil during the experiments 

(the superconducting coil and the power supply are connected) [14].
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oxygen pumps and amperometric oxygen monitors and is adopted in three‐way catalysts for 

reducing the emission of the toxic pollutants (CO, NOx and hydrocarbons, etc.) from auto‐

mobile, owing to its high oxygen storage capacity, associated with its rich oxygen vacancies 

and low redox potential between Ce3+ and Ce4+. CeO
2
 doped with rare‐earth ions exhibits 

high oxide ion conductivity at a relatively low temperature (about 600°C) and thus has been 
applied in solid oxide fuel cells [21, 22]. In case of rare‐earth‐doped CeO

2
, the Y

2
O

3
 (YDC) 

system has been studied due its relatively high electrical conductivity and the relative abun‐

dance of the yttrium element. The measured electrical conductivity value is 3.0 × 10−3 S/cm at 

500°C and 6.0 × 10−2 S/cm at 700°C. If the sensing element is resistance, as components of the 
gas sensor can range from less than 100 ΩΩto several hundred of kΩ, depending on the sens‐

ing element design and the physical environment in which to be measured, you can use two 

main methods, as follows: measuring resistance indirectly, using a constant current source or 

measuring resistance using the Wheatstone bridge for which a single element varies.

3.1. Measuring resistance of the sensing element indirectly, by using a constant current 

source

If the power dissipation through the resistive sensing element is small, a technique for mea‐

suring resistance can be used, as shown in Figure 31. This technique consists of measuring 

the voltage output when a constant current is injected through the resistive sensing element, 

using an accurate means of measuring the voltage and an accurate current source, respec‐

tively. Thereby, any change in the current will be interpreted as a resistance change.

3.2. Measuring resistance of the sensing element by using the Wheatstone bridge for 

which a single element varies

A Wheatstone bridge measures resistance indirectly by comparison with a similar resistance, 

Figure 32(a). In this case, all the resistances are nominally equal, but one of them (the sensing 

element) is variable by an amount ΔR. As the equation indicates, Figure 32(b), the relationship 

between the bridge output and ΔR is not linear. By using an instrumentation operational ampli‐

fier, (in‐amps) as a Wheatstone bridge amplifier, is performed a better gain accuracy. Usually, 
this gain accuracy is set with a single resistor, RG and does not unbalance the bridge  [23].

Excellent common mode rejection can be achieved with modern in‐amps. The excitation volt‐

age V
B
 is typically 10 V

CC
 stabilized.

Figure 31. Method of indirect measurement of the resistance, using a constant current source.
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