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Abstract

We present a distributed computing architecture for smart gridmanagement, composed of
two applications at two different levels of the grid. At the high voltage level, we optimize
operations using a stochastic unit commitment (SUC) model with hybrid time resolution.
The SUC problem is solved with an asynchronous distributed subgradient method, for
which we propose stepsize scaling and fast initialization techniques. The asynchronous
algorithm is implemented in a high-performance computing cluster and benchmarked
against a deterministic unit commitment model with exogenous reserve targets in an
industrial scale test case of the Central Western European system (679 buses, 1037 lines,
and 656 generators). At the distribution network level, we manage demand response from
small clients through distributed stochastic control, which enables harnessing residential
demand response while respecting the desire of consumers for control, privacy, and
simplicity. The distributed stochastic control scheme is successfully tested on a test case
with 10,000 controllable devices. Both applications demonstrate the potential for efficiently
managing flexible resources in smart grids and for systematically coping with the uncer-
tainty and variability introduced by renewable energy.

Keywords: smart grids, stochastic programming, asynchronous distributed algorithm,
stochastic control, demand response

1. Introduction

The progressive integration of renewable energy resources, demand response, energy storage,

electric vehicles, and other distributed resources in electric power grids that has been taking

place worldwide in recent years is transforming power systems and resulting in numerous

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



operational challenges, including uncertainty of supply availability, distributed storage man-

agement, real-time coordination of distributed energy resources, and changing directions of

flow in distribution networks. These challenges demand a shift of the traditional centralized

power system operations paradigm toward the smart grid paradigm [1], where distributed

computing and control stand out as a promising technology with the potential of achieving

operations with optimal performance.

The academic literature includes various applications of distributed computing in power system

operations, including long- and mid-term planning, short-term scheduling, state estimation and

monitoring, real-time control, and simulation [2–5]. Early studies pointed out several challenges

related to communications and the heterogeneous characteristics of distributed computing sys-

tems, which needed to be addressed first in order to implement distributed computing applica-

tions. Nowadays, standard communication protocols are a mature technology and most current

distributed computing resources can perform a broad range of operations. Such advances in

distributed computing technology have paved the way for developing and implementing scal-

able distributed algorithms for power systems.

The prevailing industry view, as we move forward into the future smart grid, is that it will

entail: (i) broadcasting of dynamic prices or other information and (ii) telemetry backhaul to

market participants. In the proposed model, distributed energy resource aggregators are often

regarded as transaction brokers between end customers and various upstream market partic-

ipants. The “failure-free market” design for a pure market-driven solution under this para-

digm has been elusive, despite decades of research and development. In this chapter, we

analyze the deployment of distributed computing as an enabling tool for managing the short-

term operations of smart grids in two levels:

• At the level of the high-voltage grid, we centrally optimize operations using a stochastic

unit commitment (SUC) model, which endogenously allocates reserve capacity by explic-

itly modeling uncertainty. Specifically, we present an asynchronous distributed algorithm

for solving SUC, which extends the asynchronous algorithm proposed in Ref. [6] in three

aspects: (i) we propose a hybrid approach for modeling quarterly dispatch decisions

alongside hourly commitment decisions; (ii) we introduce a stepsize scaling on the itera-

tive method to diminish the error due to asynchronous execution; and (iii) we propose

two methods for a faster initialization of the algorithm. The asynchronous algorithm is

implemented in a high-performance computing (HPC) cluster and benchmarked against a

deterministic unit commitment model with exogenous reserve targets (DUCR). We find

that distributed computing allows solving SUC within the same time frame required for

solving DUCR.

• At the level of the distribution grid, we rely on stochastic distributed control to manage

consumer devices using the ColorPower architecture [7–9], which enables harnessing

flexible residential demand response while respecting the desire of consumers for control,

privacy, and simplicity. The ColorPower control approach is inspired by the very automatic

cooperative protocols that govern Internet communications. These protocols represent a

distributed and federated control paradigm, in which information and decision-making

authority remain local, yet global system stability is ensured.
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Centralized clearing at the high-voltage grid level and distributed clearing at the distribution

grid level can be integrated in a cooptimization framework, as recently proposed by Caramanis

et al. [10]. These two applications of distributed computing in power system operations demon-

strate the potential to fully harness the flexibility of the grid and smoothly integrate large shares

of renewable and other distributed energy resources in power systems without deteriorating the

quality of service delivered to consumers.

The rest of the chapter is organized as follows: Section 2 introduces the deterministic and

stochastic unit commitment problems. Section 3 proposes an asynchronous algorithm for

solving SUC and presents numerical experiments on a network of realistic scale. Section 4

presents the ColorPower architecture for managing demand response in the distribution grid

and demonstrates its capability through a numerical experiment. Finally, Section 5 concludes

the chapter.

2. High-voltage power grid optimization models

2.1. Overview

Operations of the high-voltage power grid are typically scheduled in two stages: (i) day-ahead

scheduling, where operations are planned based on forecast conditions for the system and the

on/off status of slow generators is fixed and (ii) real-time scheduling, where system operators

balance the system for the actual conditions using the available flexibility in the system.

Models for short-term scheduling are solved on a daily basis, and they occupy a central role

in clearing power markets and operating power systems.

Until recently, power system operators have relied ondeterministic short-term schedulingmodels

with reserve margins to secure the system against load forecast errors and outages [11–14].

The integration of renewable energy sources has placed these practices under question because

they ignore the inherent uncertainty of renewable energy supply, thereby motivating system

operators and researchers to look for systematic methods to address uncertainty in real-time

operations. A consistent methodology for mitigating the impacts of renewable energy uncer-

tainty—and operational uncertainty in general—is stochastic programming. Stochastic models

for short-term scheduling (i.e., SUC models) were originally considered in the seminal work of

Takriti et al. [15] and Carpentier et al. [16], as an approach for mitigating demand uncertainty and

generator outages. Subsequently, numerous variants of the SUC model have been proposed,

which differ on the number of stages, the source of uncertainty, the representation of uncertainty,

and the solution methods that are used. See Ref. [17] and references therein for a recent survey.

In the present work, we use the deterministic and stochastic unit commitment models for day-

ahead scheduling presented in Sections 3.1 and 3.2. The proposed models differ from previ-

ously proposed models in the literature in which they use hybrid time resolution: hourly

commitment decisions (u, v, w and z) and 15-min dispatch decisions (p, r and f). This formula-

tion allows modeling subhourly phenomena, which have been shown to be important for the

operation of systems with significant levels of renewable energy integration [18].

A Distributed Computing Architecture for the Large-Scale Integration of Renewable Energy and Distributed…
http://dx.doi.org/10.5772/67791

23



2.2. Deterministic unit commitment with exogenous reserve targets

Using the notation provided in the beginning of the section, we model deterministic unit

commitment with reserves (DUCR) as the minimization problem Eqs. (1)–(9).

min
p, r, u, v, f

X

g∈G

�

X

τ∈T60

ðKgug,τ þ Sgvg,τÞ þ
X

t∈T15

Cgðpg, tÞ
�

ð1Þ

s:t:
X

g∈GðnÞ

pg, t þ
X

l∈ Lð�, nÞ
f l, t þ ξn, t ≥Dn, t þ

X

l∈ Lðn, �Þ
f l, t ∀n∈N, t∈T15 ð2Þ

X

g∈GðaÞ

r2g, t ≥R
2
a ,

X

g∈GðNðaÞÞ

ðr2g, t þ r3g, tÞ ≥R
2
a þR

3
a ∀a∈A, t∈T15 ð3Þ

f l, t ¼ Bl

�

θnðlÞ, t � θmðlÞ, t

�

, � F�l ≤ f l, t ≤ F
þ
l ∀l∈L, t∈T15 ð4Þ

P�
g ug,τðtÞ ≤ pg, t, pg, t þ r2g, t þ r3g, t ≤P

þ
g ug,τðtÞ ∀g∈GSLOW , t∈T15 ð5Þ

P�
g ug,τðtÞ ≤ pg, t, pg, t þ r2g, t ≤P

þ
g ug,τðtÞ, pg, t þ r2g, t þ r3g, t ≤P

þ
g ∀g∈G\GSLOW , t∈T15 ð6Þ

�TLg þ ðTLg � R�
g Þ ug,τðtÞ ≤ pg, t � pg, t�1 ∀g∈G, t∈T15 ð7Þ

pg, t þ
15

ΔT2
r2g, t � pg, t�1 ≤TLg � ðTLg � Rþ

g Þ ug,τðt�1Þ,

pg, t þ
15

ΔT3
ðr2g, t þ r3g, tÞ � pg, t�1 ≤TLg � ðTLg � Rþ

g Þ ug,τðt�1Þ ∀g∈G, t∈T15

ð8Þ

ug,τ ∈ f0, 1g, vg,τ ∈ f0, 1g ∀g∈G, τ∈T60 ð9Þ

The objective function Eq. (1) corresponds to the total operating cost, composed by the no-load

cost, the startup cost, and the production cost. Constraints Eq. (2) enforce nodal power balance,

while allowing for production shedding. Demand shedding can be included in the present

formulation as having a very expensive generator connected to each bus. Eq. (3) enforces the

reserve margins on each area of the system, allowing for reserve cascading (secondary reserve

capacity can be used to provide tertiary reserve). Eq. (4) models DC power flow constraints in

terms of bus angles and thermal limits of transmission lines.

The feasible production set of thermal generators is described by Eqs. (5)–(9). Production and

reserve provision limits are expressed as Eq. (5) for slow generators, that can provide reserves

only when they are online, and as Eq. (6) for the remaining set of generators, which can provide

secondary reserves when they are online and tertiary reserves both when they are online and

offline. Ramp rate constraints Eqs. (7)–(8) are based on the formulation provided by Frangioni

et al. [19]. Ramp-up rate constraints Eq. (8) enforce, in addition to the ramp-up rate limit on

production, that there is enough ramping capability between periods t� 1 and t to ramp-up r2g, t

MW within ΔT2 minutes (which can be used to provide secondary reserve), and to ramp-up

r2g, t þ r3g, t MW within ΔT3 minutes (which can be used to provide tertiary reserve). Constraints

Eq. (9) enforce minimum up and down times, as proposed by Rajan and Takriti [20].
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Boundary conditions of the problem are modeled by allowing the time indices to cycle within

the horizon, in other words, for any commitment variable x�,τ with τ < 1, we define

x�,τ :¼ x�, ððτ�1Þ mod jT60jþ1Þ. Similarly, for any dispatch variable x�, t with t < 1 or t > jT15j, we

define x�, t :¼ x�, ððt�1Þ mod jT15jþ1Þ. In this fashion, we model initial conditions (τ < 1, t < 1) and

restrain end effects of the model (τ ¼ jT60j, t ¼ jT15j), simultaneously. In practical cases, initial

conditions are given by the current operating conditions and end effects are dealt with by

using an extended look-ahead horizon.

2.3. Two-stage stochastic unit commitment and scenario decomposition

Following Papavasiliou et al. [21], we formulate SUC as the two-stage stochastic program of

Eqs. (10)–(17).

min
p, u, v, f
w, z

X

s∈S

πs

X

g∈G

�

X

τ∈T60

ðKgug, s,τ þ Sgvg, s,τÞ þ
X

t∈T15

Cgðpg, s, tÞ
�

ð10Þ

s:t:
X

g∈GðnÞ

pg, s, t þ
X

l∈ Lð�, nÞ
f l, s, t þ ξn, s, t ≥Dn, t þ

X

l∈ Lðn, �Þ
f l, s, t ∀n∈N, s∈ S, t∈T15 ð11Þ

f l, s, t ¼ Bl

�

θnðlÞ, s, t � θmðlÞ, s, t

�

, � F�l ≤ f l, s, t ≤F
þ
l ∀l∈ L, s∈S, t∈T15 ð12Þ

P�
g ug, s,τðtÞ ≤ pg, s, t ≤P

þ
g ug, s,τðtÞ ∀g∈G, s∈S, t∈T15 ð13Þ

�TLg þ ðTLg � R�
g Þ ug,τðtÞ ≤ pg, s, t � pg, s, t�1 ≤

TLg � ðTLg � Rþ
g Þ ug,τðt�1Þ ∀g∈G, s∈S, t∈T15

ð14Þ

vg, s,τ ≥ug, s,τ � ug, s,τ,
X

τ

σ¼τ�UTgþ1

vg, s,σ ≤ug, s,τ,
X

τ

σ¼τ�DTgþ1

vg, s,σ ≤ 1� ug, s,τ�DTg
,

ug, s,τ ∈ f0, 1g, vg, s,τ ∈ f0, 1g ∀g∈G, s∈S, τ∈T60

ð15Þ

πsug, s,τ ¼ πswg,τ ! μg, s,τ,πsvg, s,τ ¼ πszg,τ ! νg, s,τ ∀g∈GSLOW , s∈ S, τ∈T60 ð16Þ

zg,τ ≥wg,τ � wg,τ,
X

τ

σ¼τ�UTgþ1

zg,σ ≤wg,τ,
X

τ

σ¼τ�DTgþ1

zg,σ ≤ 1� wg,τ�DTg

wg,τ ∈ f0, 1g, zg,τ ∈ f0, 1g ∀g∈G, τ∈T60

ð17Þ

The objective function in Eq. (10) corresponds to the expected cost over the set of scenarios S,

with associated probabilities πs. Constraints in Eqs. (11)–(12) are analogous to Eqs. (2) and (4).

No explicit reserve requirements are enforced in the stochastic unit commitment model, since

reserves are endogenously determined by the explicit modeling of uncertainty. Consequently,

generator constraints of the deterministic problem, Eqs. (5)–(10), become identical for all ther-

mal generators and can be expressed as Eqs. (13)–(15). Nonanticipativity constraints Eq. (16) are
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http://dx.doi.org/10.5772/67791

25



formulated using state variables w and z for the commitment and startup decisions of slow

thermal generators (first-stage decisions). We associate Lagrange multipliers μ and ν with

nonanticipativity constraints. Constraints in Eq. (17) enforce minimum up and down times on

unit commitment variables.

3. An asynchronous distributed algorithm for stochastic unit commitment

3.1. Scenario decomposition of the SUC problem

The SUCproblem in Eqs. (10)–(17) grows linearly in sizewith the number of scenarios. Hence, SUC

problems are in general of large scale, even for small systemmodels. ThismotivatedTakriti et al. [15]

and Carpentier et al. [16] to rely on Lagrangian decompositionmethods for solving the problem.

Recent SUC studies have focused on designing decomposition algorithms, capable of solving

the problem in operationally acceptable time frames. Papavasiliou et al. [21] proposed a dual

scenario decomposition scheme where the dual is solved using the subgradient method, and

where the dual function is evaluated in parallel. Kim and Zavala [22] also used a dual scenario

decomposition scheme, but solved the dual problem using a bundle method. Cheung et al. [23]

present a parallel implementation of the progressive hedging algorithm of Rockafellar and

Wets [24].

All previously mentioned parallel algorithms for SUC are synchronous algorithms, i.e., scenario

subproblems are solved in parallel at each iteration of the decomposition method; however, it is

necessary to solve all scenario subproblems before advancing to the next iteration. In cases where

the solution times of subproblems differ significantly, synchronous algorithms lead to an under-

utilization of the parallel computing infrastructure and a loss of parallel efficiency. We have

found instances where the time required to evaluate subproblems for difficult scenarios is 75

times longer than the solution time for easy scenarios.

Aiming at overcoming the difficulties faced by synchronous algorithms, we propose an asyn-

chronous distributed algorithm for solving SUC. The algorithm is based on the scenario

decomposition scheme for SUC proposed in Ref. [21], where the authors relax the nonantici-

pativity constraints Eq. (16) and form the following Lagrangian dual problem

max
μ,ν

h0ðμ,νÞ þ
X

s∈ S

hsðμs,νsÞ, ð18Þ

where h0ðμ,νÞ and hsðμs,νsÞ are defined according to Eqs. (19) and (20), respectively. We use

boldface to denote vectors and partial indexation of dual variables with respect to scenarios, so

that μs :¼ ½μg1, s,1
… μgjGj, s,1

�T . The constraints within the infimum in Eq. (20) refer to constraints

Eqs. (11)–(15) for scenario s (dropping the scenario indexation of variables).

h0ðμ,νÞ :¼ inf
w, z

X

g∈GSLOW

X

τ∈T60

�

�
�

X

s∈S

ðπsμg, s,τÞ
�

wg,τ �
�

X

s∈S

ðπsνg, s,τÞ
�

zg,τ

�

: ð17Þ

8

<

:

9

=

;

ð19Þ

Recent Progress in Parallel and Distributed Computing26



hsðμs,νsÞ :¼ πs inf
p, u, v, f

X

g∈G

X

t∈T15

Cgðpg, tÞ þ
X

g∈G∖GSLOW

X

τ∈T60

ðKgug,τ þ Sgvg,τÞþ

X

g∈GSLOW

X

τ∈T60

�

ðKg þ μg, s,τÞug,τ þ ðSg þ νg, s,τÞvg,τ

�

: ð11sÞ � ð15sÞ

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

ð20Þ

Both h0ðμ,νÞ and hsðμs,νsÞ for all s∈S are nondifferentiable convex functions. Evaluating

h0ðμ,νÞ amounts to solving a small integer programming problem, for the constraints of which

we have a linear-size convex hull description [20]. Evaluating hsðμs,νsÞ amounts to solving a

deterministic unit commitment (DUC) problem without reserve requirements, which is a

mixed-integer linear program of potentially large scale for realistic system models. In practice,

the run time for evaluating hsðμs,νsÞ for any s and any dual multipliers is at least two orders of

magnitude greater than the run time for evaluating h0ðμ,νÞ.

The proposed distributed algorithm exploits the characteristics of h0ðμ,νÞ and hsðμs,νsÞ in

order to maximize Eq. (18) and compute lower bounds on the optimal SUC solution, while

recovering feasible nonanticipative commitment schedules with associated expected costs

(upper bounds to the optimal SUC solution). The dual maximization algorithm is inspired by

the work of Nedić et al. on asynchronous incremental subgradient methods [25].

3.2. Dual maximization and primal recovery

For simplicity, assume that we have 1þDPþ PP available parallel processors which can all

access a shared memory space. We allocate one processor to coordinate the parallel execution

and manage the shared memory space, DP ≤ jSj processors to solve the dual problem in Eq. (18)

and PP processors to recover complete solutions to the SUC problem in Eqs. (10)–(17). Interactions

between different processors are presented in Figure 1.

Figure 1 Asynchronous algorithm layout. Information within square brackets is read or written at a single step of the

algorithm.
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We maximize the dual function in Eq. (18) using a block coordinate descent (BCD) method, in

which each update is performed over a block of dual variables associated with a scenario,

ðμ
s
,νsÞ for certain s∈S, following the direction of the subgradient of the dual function in the

block of variables ðμ
s
,νsÞ. The BCD method is implemented in parallel and asynchronously by

having each dual processor perform updates on the dual variables associated with a certain

scenario, which are not being updated by any other dual processor at the same time. Scenarios

whose dual variables are not currently being updated by any processor are held in the dual

queue QD, to be updated later.

We maintain shared memory registers of QD. We denote the current multipliers as
�

μkðsÞ
s

,ν
kðsÞ
s

�

∀s∈S, where kðsÞ is the number of updates to the block of scenario s; the previous-to-current

dual multipliers as
�

μkðsÞ�1
s

, ν
kðsÞ�1
s

�

and their associated lower bound on hs

�

μkðsÞ�1
s

, ν
kðsÞ�1
s

�

as

�h
kðsÞ�1

s , ∀s∈ S; the global update count as k; and the best lower bound found in Eqs. (10)–(17) as

LB. Additionally, a shared memory register of the primal queue QP is required for recovering

primal solutions. Then, each dual processor performs the following operations:

1. Read and remove the first scenario s from Q
D.

2. Read
�

μkðsÞ
s

,ν
kðsÞ
s

�

and evaluate hs

�

μkðsÞ
s

, ν
kðsÞ
s

�

approximately.

3. Read
�

μkðωÞ�1
ω , ν

kðωÞ�1
ω

�

and �h
kðωÞ�1

ω for all ω∈S∖fsg.

4. Construct the delayed multiplier vectors,

μ :¼
�

μkðs1Þ�1
s1

,…,μkðsÞ
s

,…,μkðsMÞ�1
sM

�

ν :¼
�

ν
kðs1Þ�1
s1 ,…,ν

kðsÞ
s ,…,ν

kðsMÞ�1
sM

�

,

and evaluate h0ðμ,νÞ approximately.

5. Read the current global iteration count k and perform a BCD update on the dual multi-

pliers

μkðsÞþ1
s

:¼ μkðsÞ
s

þ
αk

β
s

� πsðu
�
SLOW � w�Þ

ν
kðsÞþ1
s :¼ ν

kðsÞ
s þ

αk

β
s

� πsðv
�
SLOW � z�Þ,

where ðw�, z�Þ is an approximate minimizer of Eq. (19) for ðμ,νÞ, ðp�, u�, v�, f�Þ is an

approximate minimizer of Eq. (20) for
�

μkðsÞs ,ν
kðsÞ
s

�

and ðu�SLOW , v�SLOW Þ corresponds to the

commitment and startup for slow generators in ðp�, u�, v�, f�Þ.
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6. Compute a new lower bound as

LBnew
:¼ �h0ðμ,νÞ þ �hs

�

μ
kðsÞ
s ,νkðsÞ

s

�

þ
X

ω∈S\fsg

�h
kðωÞ�1

ω ,

where �h0ðμ,νÞ ≤ h0ðμ,νÞ and �hs

�

μkðsÞ
s ,ν

kðsÞ
s

�

≤ hs

�

μkðsÞ
s

, ν
kðsÞ
s

�

are the lower bounds of the

MILP solution of Eqs. (19) and (20).

7. Let kðsÞ :¼ kðsÞ þ 1 and update in memory:

a. kþ ¼ 1.

b. LB :¼ maxfLB, LBnewg.

c.

�

μkðsÞ
s

,ν
kðsÞ
s

�

d.

�

μkðsÞ�1
s

,ν
kðsÞ�1
s

�

and �h
kðsÞ�1

s :¼ �hs

�

μkðsÞ�1
s ,ν

kðsÞ�1
s

�

e. Add fu�SLOWg � S to the end of QP.

8. Add s at the end of QD and return to 1.

Steps 1–3 of the dual processor algorithm are self-explanatory. Step 4 constructs a compound

of the previous iterates which is useful for computing lower bounds.

During the execution of the algorithm, step 5 will perform updates to the blocks of dual

variables associated to all scenarios. As hsðμs,νsÞ is easier to evaluate for certain scenarios than

others, the blocks of dual variables associated to easier scenarios will be updated more fre-

quently than harder scenarios. We model this process, in a simplified fashion, as if every

update is performed on a randomly selected scenario from a nonuniform distribution, where

the probability of selecting scenario s corresponds to

βs :¼
Tbetween
s

X

ω∈ S
Tbetween
ω

,

where Tbetween
s is the average time between two updates on scenario s (Tbetween

s is estimated

during execution). The asynchronous BCD method can then be understood as a stochastic

approximate subgradient method [26, 27]. This is an approximate method for three reasons:

(i) as the objective function contains a nonseparable nondifferentiable function h0ðμ,νÞ, there is

no guarantee that the expected update direction coincides with a subgradient of the objective

of Eq. (8) at the current iterate, (ii) h0ðμ,νÞ is evaluated for a delayed version of the multipliers

ðμ,νÞ, and (iii) h0ðμ,νÞ and hsðμs,νsÞ are evaluated only approximately up to a certain MILP

gap. Provided that we use a diminishing, nonsummable and square-summable stepsize αk of

the type 1=kq, and that the error in the subgradient is bounded, the method will converge to an

approximate solution of the dual problem in Eq. (8) [26, 27].
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In step 6, we compute a lower bound on the primal problem Eqs. (10)–(17) using previous

evaluations of hsðμs
,νsÞ recorded in memory, as proposed in Ref. [6]. Step 7 updates the shared

memory registers for future iterations and step 8 closes the internal loop of the dual processor.

We recover primal solutions by taking advantage of the fact that ðu�
SLOW

, v�
SLOW

Þ is a feasible

solution for ðw, zÞ in Eqs. (10)–(17). Therefore, in order to compute complete primal solutions and

obtain upper bounds for problem in Eqs. (10)–(17), we can fix w :¼ u
�
SLOW and z :¼ v

�
SLOW and

solve the remaining problem, as proposed in Ref. [28]. After fixing ðw, zÞ, the remaining problem

becomes separable by scenario; hence, in order to solve it, we need to solve a restricted DUC for

each scenario in S. These primal evaluation jobs, i.e., solving the restricted DUC for fu�
SLOW

g � S,

are appended at the end of the primal queue QP by dual processors after each update (step 7.e).

Note that we do not require storing v
�
SLOW because its value is implied by u

�
SLOW.

The primal queue is managed by the coordinator process, which assigns primal jobs to primal

processors as they become available. The computation of primal solutions is therefore also

asynchronous, in the sense that it runs independently of dual iterations and that the evaluation

of candidate solutions u�
SLOW

does not require that the previous candidates have already been

evaluated for all scenarios. Once a certain candidate ul has been evaluated for all scenarios, the

coordinator can compute a new upper bound to Eqs. (10)–(17) as

UB :¼ min UB,
X

s∈S

UBl
s

( )

, ð25Þ

where UBl
s is the upper bound associated with u

l on the restricted DUC problem of scenario s.

The coordinator process keeps track of the candidate associated with the smaller upper bound

throughout the execution.

Finally, the coordinator process will terminate the algorithm when 1� LB=UB ≤ E, where E is a

prescribed tolerance, or when reaching a prescribed maximum solution time. At this point, the

algorithm retrieves the best-found solution and the bound on the distance of this solution from

the optimal objective function value.

3.3. Dual algorithm initialization

The lower bounds computed by the algorithm presented in the previous section depend on

previous evaluations of hsðμs
,νsÞ for other scenarios. As the evaluation of hsðμs

,νsÞ can require

a substantial amount of time for certain scenarios, the computation of the first lower bound

considering nontrivial values of hsðμs
,νsÞ for all scenarios can be delayed significantly with

respect to the advance of dual iterations and primal recovery. In other words, it might be the

case that the algorithm finds a very good primal solution but it is unable to terminate because

it is missing the value of hsðμs
,νsÞ for a single scenario.

In order to prevent these situations and in order to obtain nontrivial bounds faster, in the first

pass of the dual processors over all scenarios, we can replace hsðμs
,νsÞ with a surrogate

η
s
ðμ

s
,νsÞ which is easier to compute, such that η

s
ðμ

s
,νsÞ ≤ hsðμs

,νsÞ for any ðμ
s
,νsÞ. We propose

two alternatives for η
s
ðμ

s
,νsÞ:
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1. The linear relaxation of the scenario DUC (LP):

ηsðμs,νsÞ :¼ πs inf
p, u, v, f

X

g∈G

X

t∈T15

Cgðpg, tÞ þ
X

g∈G∖GSLOW

X

τ∈T60

ðKgug,τ þ Sgvg,τÞþ

X

g∈GSLOW

X

τ∈T60

�

ðKg þ μg, s,τÞug,τ þ ðSg þ νg, s,τÞvg,τ

�

:

linear relaxation of ð11sÞ � ð15sÞ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

2. An optimal power flow for each period (OPF):

ηsðμs,νsÞ :¼ πs

X

t∈T15

inf
p, u, v, f

X

g∈G

CgðpgÞ þ
1

4

X

g∈G∖GSLOW

Kgugþ

1

4

X

g∈GSLOW

��

Kg þ μg, s,τðtÞ

�

ug þ
�

Sg þ νg, s,τðtÞ

�

vg

�

:

ð11stÞ � ð13stÞ, u∈ f0,1gjGj, v∈ f0,1gjGSLOW j

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

,

where (11st) – (13st) correspond to constraints Eqs. (11)–(13) for scenario s and period t.

The LP approach requires solving a linear program of the same size as the original problem in

Eq. (20), but it has the advantage that it can be obtained as an intermediate result while

evaluating hsðμs,νsÞ (the LP approach does not add extra computations to the algorithm). The

OPF approach, on the other hand, requires solving many small MILP problems, which can be

solved faster than the linear relaxation of Eq. (20). The OPF approach ignores several con-

straints and cost components, such as the startup cost of nonslow generators, and it adds extra

computations to the algorithm.

3.4. Implementation and numerical experiments

We implement the DUCR model using Mosel and solve it directly using Xpress. We also

implement the proposed asynchronous algorithm for SUC (described in the previous subsec-

tions) in Mosel, using the module mmjobs for handling parallel processes and communications,

while solving the subproblems with Xpress [29]. We configure Xpress to solve the root node

using the barrier algorithm and we set the termination gap to 1%, for both the DUCR and SUC

subproblems, and the maximum solution wall time to 10 hours. Numerical experiments were

run on the Sierra cluster hosted at the Lawrence Livermore National Laboratory. Each node of

the Sierra cluster is equipped with two Intel XeonEP X5660 processors (12 cores per node) and

24GB of RAM memory. We use 10 nodes for the proposed distributed algorithm, assigning 5

nodes to dual processors, with 6 dual processors per node (DP ¼ 30), and 5 nodes to primal

recovery, with 12 primal processors per node. The coordinator is implemented on a primal

node and occupies one primal processor (PP ¼ 59).

We test the proposed algorithm on a detailed model of the Central Western European system,

consisting of 656 thermal generators, 679 nodes, and 1037 lines. The model was constructed by
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using the network model of Hutcheon and Bialek [30], technical generator information pro-

vided to the authors by ENGIE, and multiarea demand and renewable energy information

collected from national system operators (see [31] for details). We consider eight representative

day types, one weekday and one weekend day per season, as being representative of the

different conditions faced by the system throughout the year.

We consider 4 day-ahead scheduling models: the DUCR model and the SUC model with 30

(SUC30), 60 (SUC60), and 120 (SUC120) scenarios. The sizes of the different day-ahead sched-

uling models are presented in Table 1, where the size of the stochastic models refers to the size

of the extensive form. While the DUCR model is of the scale of problems that fit in the memory

of a single machine and can be solved by a commercial solver, the SUC models in extensive

form are beyond current capabilities of commercial solvers.

Table 2 presents the solution time statistics for all day-ahead scheduling policies. In the case of

SUC, we report these results for the two dual initialization alternatives proposed in Section 3.2.

The results of Table 2 indicate that the OPF initialization significantly outperforms the LP

approach in terms of termination time. This is mainly due to the fact that the OPF approach

provides nontrivial lower bounds including information for all scenarios much faster than the

LP approach. On the other hand, the solution times of SUC60 and DUCR indicate that, using

distributed computing, we can solve SUC at a comparable run time to that required by

commercial solvers for DUCR on large-scale systems. Moreover, as shown in Table 3, for a

given hard constraint on solution wall time such as 2 h (which is common for day-ahead

power system operations), the proposed distributed algorithm provides solutions to SUC with

up to 60 scenarios within 2% of optimality, which is acceptable for operational purposes.

Model Scenarios Variables Constraints Integers

DUCR 1 570.432 655.784 9.552

SUC30 30 13334.400 16182.180 293.088

SUC60 60 26668.800 32364.360 579.648

SUC120 120 53337.600 64728.720 1152.768

Table 1. Problem sizes.

Model Nodes used Initialization Running time [h] avg. (min.–max.) Worst final gap [%]

DUCR 1 – 1.9 (0.6–4.2) 0.95

SUC30 10 LP 1.1 (0.7–2.2) 0.93

10 OPF 0.8 (0.3–1.8) 1.00

SUC60 10 LP 3.2 (1.1–8.4) 1.00

10 OPF 1.5 (0.6–4.7) 0.97

SUC120 10 LP >6.1 (1.6–10.0) 1.68

10 OPF >3.0 (0.6–10.0) 1.07

Table 2. Solution time statistics over 8 day types.
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4. Scalable control for distributed energy resources

4.1. Overview

Residential demand response has gained significant attention in recent years as an underutilized

source of flexibility in power systems, and is expected to become highly valuable as a balancing

resource as increasing amounts of renewable energy are being integrated into the grid. However,

the mobilization of demand response by means of real-time pricing, which represents the

economists’ gold standard and can be traced back to the seminal work of Schweppe et al. [32],

has so far fallen short of expectations due to several obstacles, including regulation issues,

market structure, incentives to consumers, and technological limitations.

The ColorPower architecture [7, 8, 9] aims at releasing the potent power of demand response by

approaching electricity as a service of differentiated quality, rather than a commodity that

residential consumers are willing to trade in real time [33]. In this architecture, the coordination

problem of determining which devices should consume power at what times is solved through

distributed aggregation and stochastic control. The consumer designates devices or device

modes using priority tiers (colors). These tiers correspond to “service level” plans, which are

easy to design and implement: we can simply map the “color” designations of electrical devices

into plans. A “more flexible” color means less certainty of when a device will run (e.g., time

when a pool pump runs), or lower quality service delivered by a device (e.g., wider temperature

ranges, slower electrical vehicle charging). These types of economic decision-making are emi-

nently compatible with consumer desires and economic design, as evidenced by the wide range

of quality-of-service contracts offered in other industries.

Furthermore, the self-identified priority tiers of the ColorPower approach enable retail power

participation in wholesale energy markets, lifting the economic obstacles for demand response:

since the demand for power can be differentiated into tiers with a priority order, the demand in

each tier can be separately bid into the current wholesale or local (DSO level) energy markets.

The price for each tier can be set according to the cost of supplying demand response from that

tier, which in turn is linked to the incentives necessary for securing customer participation in

the demand response program. This allows aggregated demand to send price signals in the

Model Initialization Worst gap [%]

1 h 2 h 4 h 8 h

SUC30 LP 7.59 1.02 0.93

OPF 1.90 1.00

SUC60 LP 23.00 5.32 5.22 4.50

OPF 4.60 1.57 1.03 0.97

SUC120 LP 70.39 31.66 4.61 1.87

OPF 46.69 27.00 1.42 1.07

Table 3. Worst optimality gap (over 8 day types) vs. solution wall time.
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form of a decreasing buy bid curve. Market information thus flows bidirectionally. A small

amount of flexible demand can then buffer the volatility of the overall power demand by

yielding power to the inflexible devices as necessary (based upon the priority chosen by the

customer), while fairly distributing power to all customer devices within a demand tier.

Technological limitations to the massive deployment of demand response are dealt with by

deploying field-proven stochastic control techniques across the distribution network, with the

objective of subtly shifting the schedules of millions of devices in real time, based upon the

conditions of the grid. These control techniques include the CSMA/CD algorithms that permit

cellular phones to share narrow radio frequency bands, telephone switch control algorithms,

and operating system thread scheduling, as well as examples from nature such as social insect

hive behaviors and bacterial quorum sensing. Moreover, the ubiquity of Internet communica-

tions allows us to consider using the Internet platform itself for end-to-end communications

between machines.

At a high level, the ColorPower algorithm operates by aggregating the demand flexibility state

information of each agent into a global estimate of total consumer flexibility. This aggregate

and the current demand target are then broadcast via IP multicast throughout the system, and

every local controller (typically one per consumer or one per device) combines the overall

model and its local state to make a stochastic control decision. With each iteration of aggrega-

tion, broadcast, and control, the overall system moves toward the target demand, set by the

utility or the ISO, TSO, or DSO, allowing the system as a whole to rapidly achieve any given

target of demand and closely tracking target ramps. Note that aggregation has the beneficial

side-effect of preserving the privacy of individual consumers: their demand information sim-

ply becomes part of an overall statistic.

The proposed architectural approach supplements the inadequacy of pure market-based control

approaches by introducing an automated, distributed, and cooperative communications feedback

loop between the system and large populations of cooperative devices at the edge of the network.

TSOmarkets and the evolvingDSO local energymarkets of the futurewill have both deepmarkets

and distributed control architecture pushed out to the edge of the network. This smart grid

architecture for demand response in the mass market is expected to be a key asset in addressing

the challenges of renewable energy integration and the transition to a low-carbon economy.

4.2. The ColorPower control problem

A ColorPower system consists of a set of n agents, each owning a set of electrical devices

organized into k colors, where lower-numbered colors are intended to be shut off first (e.g., 1

for “green” pool pumps, 2 for “green” HVAC, 3 for “yellow” pool pumps, etc.), and where

each color has its own time constants.

Within each color, every device is either Enabled, meaning that it can draw power freely, or

Disabled, meaning that has been shut off or placed in a lower power mode. In order to prevent

damage to appliances and/or customer annoyance, devices must wait through a Refractory

period after switching between Disabled and Enabled, before they return to being Flexible and

can switch again. These combinations give four device states (e.g., Enabled and Flexible, EF),
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through which each device in the ColorPower systemmoves according to the modifiedMarkov

model of Figure 2: randomly from EF toDR andDF to ER (becoming disabled with probability

poff and enabled with probability pon) and by randomized timeout from ER to EF andDR toDF

(a fixed length of T�F plus a uniform random addition of up to T�V ).

The ColorPower control problem can then be stated as dynamically adjusting pon and pof f for

each agent and color tier, in a distributed manner, so that the aggregate consumption of the

system follows a demand goal given by the operator of the high-voltage network.

4.3. The ColorPower architecture

The block diagram of the ColorPower control architecture is presented in Figure 3. Each

ColorPower client (i.e., the controller inside a device) regulates the state transitions of the devices

under its control. Each client state sðt, aÞ is aggregated to produce a global state estimate ŝðtÞ,

which is broadcasted along with a goal gðtÞ (the demand target set by the utility or the ISO, TSO,

or DSO), allowing clients to shape demand by independently computing the control state cðt, aÞ.

The state sðt, aÞ of a client a at time t sums the power demands of the device(s) under its control,

and these values are aggregated using a distributed algorithm (e.g., a spanning tree in Ref. [7])

and fed to a state estimator to get an overall estimate of the true state ŝðtÞ of total demand in each

state for each color. This estimate is then broadcast to all clients (e.g., by gossip-like diffusion in

Ref. [7]), along with the demand shaping goal gðtÞ for the next total Enabled demand over all

colors. The controller at each client a sets its control state cðt, aÞ, defined as the set of transition

probabilities pon, i,a and poff, i,a for each color i. Finally, demands move through their states

according to those transition probabilities, subject to exogenous disturbances such as changes in

demand due to customer override, changing environmental conditions, imprecision in measure-

ment, among others.

Figure 2 Markov model-based device state switching [8, 9].
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Note that the aggregation and broadcast algorithms must be chosen carefully in order to

ensure that the communication requirements are lightweight enough to allow control rounds

that last for a few seconds on low-cost hardware. The choice of algorithm depends on the

network structure: for mesh networks, for example, spanning tree aggregation and gossip-

based broadcast are fast and efficient (for details, see [7]).

4.4. ColorPower control algorithm

The ColorPower control algorithm, determines the control vector cðt, aÞ by a stochastic con-

troller formulated to satisfy four constraints:

Goal tracking: The total Enabled demand in sðtÞ should track gðtÞ as closely as possible: i.e.,

the sum of Enabled demand over all colors i should be equal to the goal. This is formalized as

the equation:

gðtÞ ¼
X

i

ðjEFij þ jERijÞ:

Color priority: Devices with lower-numbered colors should be shut off before devices with

higher-numbered colors. This is formalized as:

jEFij þ jERij ¼

Di �Diþ1 if Di ≤ gðtÞ

gðtÞ �Diþ1 if Diþ1 ≤ gðtÞ < Di

0 otherwise,

8

<

:

so that devices are Enabled from the highest color downward, where Di is the demand for

the ith color and above:

Figure 3 Block diagram of the control architecture [8, 9].
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Di ¼
X

j ≥ i

ðjEFjj þ jERjj þ jDFjj þ jDRjjÞ:

Fairness: When the goal leads to some devices with a particular color being Enabled and

other devices with that color being Disabled, each device has the same expected likelihood of

being Disabled. This means that the control state is identical for every client.

Cycling: Devices within a color trade-off which devices are Enabled and which areDisabled such

that no device is unfairly burdened by initial bad luck. This is ensured by asserting the con-

straint:

ðjEFij > 0Þ ∩ ðjDFij > 0Þ ) ðpon, i,a > 0Þ ∩ ðpoff, i,a > 0Þ:

This means that any color with a mixture of Enabled andDisabled Flexible devices will always be

switching the state of some devices. For this last constraint, there is a tradeoff between how

quickly devices cycle and how much flexibility is held in reserve for future goal tracking; we

balance these with a target ratio f of the minimum ratio between pairs of corresponding Flexible

and Refractory states.

Since the controller acts indirectly, by manipulating the pon and poff transition probabilities of

devices, the only resource available for meeting these constraints is the demand in the flexible

states EF andDF for each tier.When it is not possible to satisfy all four constraints simultaneously,

the ColorPower controller prioritizes the constraints in order of their importance. Fairness and

qualitative color guarantees are given highest priority, since these are part of the contract with

customers: fairness by ensuring that the expected enablement fraction of each device is equivalent

(though particular clients may achieve this in different ways, depending on their type and

customer settings). Qualitative priority is handled by rules that prohibit flexibility from being

considered by the controller outside of contractually allowable circumstances. Constraints are

enforced sequentially. First comes goal tracking—the actual shaping of demand to meet power

schedules. Second is the soft color priority, which ensures that in those transient situations when

goal tracking causes some devices to be in the wrong state, it is eventually corrected. Cycling is

last, because it is defined only over long periods of time and thus is the least time critical to satisfy.

A controller respecting the aforementioned constraints is described in Ref. [8].

4.5. Numerical experiment

We have implemented and tested the proposed demand response approach into the ColorPower

software platform [8]. Simulations are executed with the following parameters: 10 trials per

condition for 10,000 controllable devices, each device consumes 1 kW of power (for a total of 10

MWdemand), devices are 20% green (low priority), 50% yellow (medium priority) and 30% red

(high priority), the measurement error is ε = 0.1% (0.001), the rounds are 10 seconds long and all

the Refractory time variables are 40 rounds. Error is measured by taking the ratio of the difference

of a state from optimal versus the total power.

The results of the simulation test are shown in Figure 4. When peak control is desired, the

aggregate demand remains below the quota, while individual loads are subjected stochastically
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to brief curtailments. Post-event rush-in, a potentially severe problem for both traditional

demand response and price signal-based control systems, is also managed gracefully due to

the specific design of the modified Markov model of Figure 2.

Taken together, these results indicate that the ColorPower approach, when coupled with an

appropriate controller, should have the technological capability to flexibly and resiliently

shape demand in most practical deployment scenarios.

5. Conclusions

We present two applications of distributed computing in power systems. On the one hand, we

optimize high-voltage power system operations using a distributed asynchronous algorithm

capable of solving stochastic unit commitment in comparable run times to those of a determin-

istic unit commitment model with reserve requirements, and within operationally acceptable

time frames. On the other hand, we control demand response at the distribution level using

stochastic distributed control, thereby enabling large-scale demand shaping during real-time

operations of power systems. Together, both applications of distributed computing demon-

strate the potential for efficiently managing flexible resources in smart grids and for systemat-

ically coping with the uncertainty and variability introduced by renewable energy.
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Figure 4 Simulation results with 10,000 independently fluctuating power loads. Demand is shown as a stacked graph,

with enabled demand at the bottom in dark tones, disabled demand at the top in light tones, and Refractory demand cross

hatched. The goal is the dashed line, which coincides with the total enabled demand for the experiment. The plot

illustrates a peak shaving case where a power quota, the demand response target that may be provided from an

externally-generated demand forecast, is used as a guide for the demand to follow.
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Nomenclature

Deterministic and stochastic unit commitment

Sets

T60 Hourly periods, T60 :¼ f1,…, jT60jg

T15 15-min periods, T15 :¼ f1,…, jT15jg

S Scenarios, S :¼ fs1,…, sMg

A Reserve areas

N Buses

L Lines

G Thermal generators

N(a) Buses in area a

L(n, m) Lines between buses n and m, directed from n to m

G(n) Thermal generators at bus or bus set n

GSLOW Slow generators, GSLOW⊆G

Parameters

τ(t) Corresponding hour of quarter t

πs Probability of scenario s

Dn, t Demand at bus n in period t

ξn, t , ξn, s, t Forecast renewable supply, bus n, scenario s, quarter t

R
2
a ,R

3
a

Secondary and tertiary reserve requirements in area a

ΔT2,ΔT3 Delivery time of secondary and tertiary reserves, 0 < ΔT2 < ΔT3 ≤ 15

F�l Flow bounds, line l

Bl Susceptance, line l

nðlÞ, mðlÞ Departing and arrival buses, line l

P�
g

Minimum stable level and maximum run capacity, generator g

R�
g

Maximum 15-min ramp down/up, generator g

TLg Maximum state transition level, generator g

UTg, DTg Minimum up/down times, generator g

Kg Hourly no-load cost, generator g

Sg Startup cost, generator g

CgðpÞ Quarterly production cost function, generator g (convex, piece-wise linear)

Variables

pg, t , pg, s, t Production, generator g, scenario t, quarter t

f l, t, f l, s, t Flow through line l, scenario s, quarter t

θn, t,θn, s, t Voltage angle, bus n, scenario s, quarter t

r2g, r
3
g

Capacity and ramp up rate reservation for secondary and tertiary reserve provision, generator g, quarter t
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Asynchronous distributed algorithm for stochastic unit commitment

Sets

Q
D Dual queue (ordered set) of scenarios

Q
P Primal queue of pairs: ‹candidate solution, scenario›

Parameters

DP, PP Number of dual and primal processors

αk Stepsize, asynchronous subgradient method

βs Stepsize scaling factor, scenario s

Variables

LB, UB Lower and upper bound on objective of stochastic unit commitment

UBl
s

Upper bound of primal candidate l on scenario s

Distributed control for demand response

Parameters

TDF, i Fixed rounds of disabled refractory time for tier i

TDV, i Maximum random rounds disabled refractory time for tier i

TEF, i Fixed rounds of enabled refractory time for tier i

TEV, i Maximum random rounds enabled refractory time for tier i

f Target minimum ratio of flexible to refractory demand

α Proportion of goal discrepancy corrected each round

Variables

sðt, aÞ State of demand for agent a at time t

sðtÞ State of total power demand (watts) at time t

ŝðtÞ Estimate of s(t)

jXi,aj Power demand (watts) in state X for color i at agent a

jXij Total power demand (watts) in state X for color i

jX̂ ij Estimate of jXij

gðtÞ Goal total enabled demand for time t

cðt, aÞ Control state for agent a at time t

poff, i,a Probability of a flexible color i device disabling at agent a

pon, i,a Probability of a flexible color i device enable at agent a

Di Demand for ith color and above

ug,τ, ug, s,τ commitment, generator g, scenario s, hour τ

vg,τ, vg, s,τ startup, generator g, scenario s, hour τ

wg,τ, zg,τ Nonanticipative commitment and startup, generator g, hour τ

μg, s,τ,νg, s,τ Dual multipliers of nonanticipativity constraints, generator g, scenario s, hour τ
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