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Abstract

Recently, visible light communication (VLC) has drawn much attention. In literature, the
noise in VLC is often assumed to be independent of the input signal. This assumption
neglects a fundamental issue of VLC: due to the random nature of photon emission in
the lighting source, the strength of the noise depends on the signal itself. Therefore, the
input-dependent noise in VLC should be considered. Given this, the fundamental anal-
ysis for the VLC with input-dependent noise is presented in this chapter. Based on the
information theory, the theoretical expression of the mutual information is derived.
However, the expression of the mutual information is not in a closed form. Furthermore,
the lower bound of the mutual information is derived in a closed form. Moreover, the
theoretical expression of the bit error rate is also derived. Numerical results verify the
accuracy of the derived theoretical expressions in this chapter.

Keywords: visible light communication, input-dependent noise, mutual information,
bit error rate

1. Introduction

As one of the emerging optical wireless communication techniques, the visible light commu-

nication (VLC) has drawn considerable attention recently from both the academy and industry

[1–3]. Compared to the traditional radio frequency (RF) wireless communication, VLC has

many advantages, such as freedom from hazardous electromagnetic radiation, no licensing

requirements, low-cost frontends, large spectrum bandwidth (as shown in Figure 1), large

channel capacity, and so on. In VLC, both illumination and communication are simultaneously

implemented. Moreover, the transmitted optical signal is non-negative. Therefore, the devel-

oped theory and analysis results in traditional RF wireless communication are not directly

applicable to VLC.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Up to now, the research on VLC can be divided into two categories: the demo system design

and theoretical analysis. As research continues, a variety of demo platforms arise. Table 1

shows the development of the VLC demo systems. As can be seen in Table 1, the transmit rate

of the VLC system increases from several Mbps to several Gbps in the last decade, which

indicates that the VLC has attractive prospects of development. Specifically, the transmit rates

of the early demo systems are low, but the transmit distances are long and the data are

processed in real time. With the development of communication techniques, more and more

Figure 1. The electromagnetic spectrum.

Time (year) Research & Development Group Transmit

rate (bit/s)

Transmit

distance (m)

Data processing

mode

Offline Online

2000 Keio University, Japan 10 M 5 √

2002 Keio University, Japan 87 M 1.65 √

2008 Taiyo Yuden Co., Ltd, Japan 100 M 0.2 √

Jinan University, China 4 M 2.5 √

2009 University of Oxford, UK, et al. 100 M 0.1 √

Heinrich Hertz Institute, Germany 125 M 5 √

2011 Heinrich Hertz Institute, Germany 803 M 0.12 √

2012 Kinki University, Japan 614 M √

National Chiao Tung University, Taiwan 1.1 G 0.23 √

Santa Ana school for Advanced Studies, Italy 3.4 G 0.3 √

2013 University of Strathclyde, UK 1.5 G √

National Chiao Tung University, Taiwan 3.22 G 0.25 √

The University of Edinburgh, UK 10 G √

Southeast University, China 480 M 3 √

2014 Fudan University, China 3.25 G √

2015 Pknuyong National University, Korea 3 G 2.15 √

The PLA Information Engineering University, China 50 G √

Table 1. The development of the VLC demo systems.
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VLC testbeds with high transmit rates are developed successfully, but the real-time processing

becomes very hard. Therefore, more advanced processing techniques are needed for VLC.

In the aspect of theoretical analysis, much work has been done on VLC. In Ref. [4], the channel

capacity for VLC using inverse source coding is investigated. However, the theoretical expres-

sion of the capacity is not presented. Under the non-negative and average optical intensity

constraints, the closed expression of capacity bounds is derived in Ref. [5]. Based on Ref. [5], a

tight upper bound on the capacity is derived in Ref. [6]. By adding a peak optical intensity

constraint, tight capacity bounds are further derived in Ref. [7]. In Ref. [8], the capacity bounds

for multiple-input-multiple-output VLC are derived. In Ref. [9], the capacity and outage

probability for the parallel optical wireless channels are analysed. Furthermore, low signal-to-

noise ratio (SNR) capacity for the parallel optical wireless channels is obtained in Ref. [10]. It

should be noted that the noises in Refs. [4–10] are all assumed to be independent with the

input signal. This assumption is reasonable if the ambient light is strong or if the receiver

suffers from intensive thermal noise. However, in practical VLC systems, typical illumination

scenarios offer very high SNR [11, 12]. For high power, this assumption neglects a fundamental

issue of VLC: due to the random nature of photon emission in the light emitting diode (LED),

the strength of noise depends on the signal itself [13]. Up to now, the performance of the VLC

with input-dependent noise has not been discussed completely.

In this chapter, we consider a VLC system with input-dependent Gaussian noise and investi-

gate the fundamental performance of the VLC system. The main contributions of this chapter

are given as follows:

1. A channel model with input-dependent Gaussian noise for the VLC is considered. In

existing literature, the noise is generally assumed to be independent of the signal. How-

ever, this assumption is not applicable to the VLC system in some cases. In this chapter, a

more general channel model is established which is corrupted by an additive Gaussian

noise, however, with noise variance depending on the signal itself.

2. The mutual information of the VLC system is analysed. Based on the channel model, the

exact expression of the mutual information is derived. However, the exact expression of

the mutual information is not in a closed form. After that, a closed-form expression of the

lower bound on the mutual information is derived.

3. The bit error rate (BER) of the VLC system is obtained. By employing the on-off keying

(OOK), the theoretical expression of the BER for the VLC system is derived. Moreover,

some asymptotic behaviour for the BER is also presented.

4. To show the accuracy of the derived theoretical expressions, the theoretical results are

thoroughly confirmed by Monte-Carlo simulations.

The remainder of this chapter is organized as follows. The system model is described in

Section 2. Section 3 presents the exact expression and the lower bound of the mutual informa-

tion. In Section 4, the theoretical expression of the BER is derived. Numerical results are given

in Section 5 before conclusions are drawn in Section 6.
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2. System model

Consider a point-to-point VLC system, as shown in Figure 2. At the transmitter, an LED is

employed as the lighting source, which performs the electrical-to-optical conversion. Then, the

optical signal is propagated through the VLC channel. At the receiver, a PIN photodiode (PD)

is used to perform the optical-to-electrical conversion. To amplify the derived electrical signal,

a high impedance amplifier is employed. In this chapter, the main noise sources include

thermal noise, shot noise and amplifier noise. The thermal noise and the amplifier noise are

independent of the signal, and each of the two noise sources can be well modelled by Gaussian

distribution [14]. Although its distribution can also be assumed to be Gaussian, the strength of

the shot noise depends on the signal itself. Mathematically, the received electrical signal Y at

the receiver can be written as [13]

Y ¼ rGXþ
ffiffiffiffiffiffiffiffiffi

rGX
p

Z1 þ Z0 ð1Þ

where r denotes the optoelectronic conversion factor of the PD. Z0∼Nð0, σ2Þ denotes the input-
independent Gaussian noise. Z1∼Nð0, ς2σ2Þ denotes the input-dependent Gaussian noise,

where ς2 ≥ 0 denotes the ratio of the input-dependent noise variance to the input-independent

noise variance. Z0 and Z1 are independent with each other.

In Eq. (1), G denotes the channel gain between the LED and the PD, which can be expressed

as [15]

G ¼ ðmþ 1ÞA
2πd2

cos mðϕÞTðψÞgðψÞ cos ðψÞ ð2Þ

where m denotes the order of the Lambertian emission, A is the physical area of the PD and d,ϕ

andψ are the distance, the angle of irradiance and the angle of incidence from the LED to the PD,

respectively. TðψÞ is the gain of an optical filter and gðψÞ is the gain of an optical concentrator.

Note that the channel gain in Eq. (2) is a constant, where the positions of the LED and the PD

are given. Moreover, r in Eq. (1) is a constant for a fixed PD. Without loss of generality, the

values of both G and r are set to be one. Therefore, Eq. (1) can be simplified as [16]

Figure 2. The point-to-point VLC system.
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Y ¼ Xþ
ffiffiffiffi

X
p

Z1 þ Z0
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

≜Z

: ð3Þ

In VLC, information is transmitted by modulating the instantaneous optical intensity [17], and

thus, X should be non-negative, that is,

X ≥ 0: ð4Þ

Due to the eye and skin safety regulations, thepeakoptical intensityof theLED is limited [17], that is,

X ≤A ð5Þ

where A is the peak optical intensity of the LED.

Considering the illumination requirement in VLC, the average optical intensity cannot be

changed but can be adjusted according to the users’ requirement (dimming target) [18]. There-

fore, the average optical intensity constraint is given by

EðXÞ ¼ ξP ð6Þ

where Eð�Þ denotes the expectation operator and ξ∈ ð0, 1� denotes the dimming target. P ≤A is

the normal optical intensity of the LED.

3. Mutual information analysis

Mutual information is an important performance indicator for wireless communication sys-

tems. In this section, the exact expression of the mutual information and the closed-

form expression of the lower bound on the mutual information for the VLC will be derived,

respectively.

3.1. Exact expression of mutual information

Assume that N-ary intensity modulation is employed. Let X∈ {x1, x2,⋯, xN} be the optical

intensity symbol drawn from the equiprobable modulation constellation, that is,

PrðX ¼ xiÞ ¼
1

N
: ð7Þ

According to Eq. (3), the conditional probability density function (PDF) of Y when given

X ¼ xi can be written as [19]

f YjXðyjxiÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1þ xiς2Þ
p

σ
exp � ðy� xiÞ2

2ð1þ xiς2Þσ2

 !

: ð8Þ
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Furthermore, the PDF of Y can be expressed as

f YðyÞ ¼
XN

i¼1

PrðX ¼ xiÞf YjXðyjxiÞ

¼
1

N

XN

i¼1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1þ xiς2Þ
p

σ

exp �
ðy� xiÞ

2

2ð1þ xiς2Þσ2

 !

:

ð9Þ

The mutual information between X and Y is given by

IðX;YÞ ¼ HðXÞ �HðXjYÞ

¼
XN

i¼1

1

N
log2N �

XN

i¼1

ð
∞

�∞

1

N
f YjXðyjxiÞlog2

f YðyÞ

PrðX ¼ xiÞf YjXðyjxiÞ

 !

dy

¼ log2N �
1

N

XN

i¼1

ð
∞

�∞

exp �
ðy� xiÞ

2

2ð1þ xiς2Þσ2

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1þ xiς2Þ
p

σ

log2

XN

t¼1

exp �
ðy� xtÞ

2

2ð1þ xtς2Þσ2

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1þ xtς2Þ
p

σ

exp �
ðy� xiÞ

2

2ð1þ xiς2Þσ2

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1þ xiς2Þ
p

σ

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

dy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≜ I1

ð10Þ

where Hð�Þ denotes the entropy.

From Eq. (3), we have Z ¼ Y � X. Therefore, let z ¼ y� xi, and thus, I1 in Eq. (10) can be

further written as

I1 ¼

ð
∞

�∞

exp �
z2

2ð1þ xiς2Þσ2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1þ xiς2Þ
p

σ

log2

XN

t¼1

exp �
ðzþ xi � xtÞ

2

2ð1þ xtς2Þσ2

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1þ xtς2Þ
p

σ

exp �
z2

2ð1þ xiς2Þσ2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1þ xiς2Þ
p

σ

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

dy

¼ EZ log2

XN

t¼1

exp �
ðzþ xi � xtÞ

2

2ð1þ xtς2Þσ2

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1þ xtς2Þ
p

σ

exp �
z2

2ð1þ xiς2Þσ2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1þ xiς2Þ
p

σ

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

8

>>>>>>>>>><

>>>>>>>>>>:

9

>>>>>>>>>>=

>>>>>>>>>>;

¼ EZ log2
XN

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xiς2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xtς2
p exp

z2

2ð1þ xiς2Þσ2
�

ðzþ xi � xtÞ
2

2ð1þ xtς2Þσ2

 !" #( )

ð11Þ
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Therefore, Eq. (10) can be further written as

IðX;YÞ ¼ log2N �
1

N

XN

i¼1

EZ log2 1þ
XN

t¼1
t 6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xiς2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xtς2
p exp

z2

2ð1þ xiς2Þσ2
�

ðzþ xi � xtÞ
2

2ð1þ xtς2Þσ2

 !
2

6
4

3

7
5

8

><

>:

9

>=

>;

ð12Þ

Remark 1: Let the average SNR be γ ¼ ξP=½ð1þ ξPς2Þσ2�. Because ξ, P and ς are non-negative

and finite numbers, γ ! ∞ (or 0) is equivalent to σ2 ! 0 (or ∞). Apparently, IðX;YÞ in Eq. (12)

is a monotonic increasing function with respect to γ. Therefore, we have

lim
γ!∞

IðX;YÞ ¼ log2N ð13Þ

which indicates that the maximum value of IðX;YÞ is log2N.

Moreover, we have

lim
γ!0

IðX;YÞ ¼ log2N �
1

N

XN

i¼1

log2 1þ
XN

t¼1
t 6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xiς2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xtς2
p

0

B
@

1

C
A ð14Þ

Remark 2: When ς ¼ 0, Eq. (3) reduces to Y ¼ Xþ Z0. Therefore, the mutual information can

be simplified as

IðX;YÞjς¼0 ¼ log2N �
1

N

XN

i¼1

EZ log2 1þ
XN

t¼1
t 6¼i

exp
z2 � ðzþ xi � xtÞ

2

2σ2

 !
2

6
4

3

7
5

8

><

>:

9

>=

>;

ð15Þ

3.2. Lower bound on mutual information

It should be noted that it is very hard to derive a closed-form expression of Eq. (12). In this

subsection, a lower bound on the mutual information will be derived.

To facilitate the description, Eq. (12) can be further expressed as

IðX;YÞ ¼ log2N �
1

N

XN

i¼1

EZ log2 exp
z2

2ð1þ xiς2Þσ2

� �� �� 	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I2

�
1

N

XN

i¼1

EZ log2
XN

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xiς2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xtς2
p exp �

ðzþ xi � xtÞ
2

2ð1þ xtς2Þσ2

 !" #( )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I3

ð16Þ
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For I2 in Eq. (16), we have

I2 ¼
log2ðeÞ

2ð1þ xiς
2Þσ2

ðþ∞

�∞

z2
exp �

z2

2ð1þ xiς
2Þσ2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1þ xiς
2Þσ2

p dz

¼
log2ðeÞ

2ð1þ xiς
2Þσ2

ð1þ xiς
2Þσ2

¼
1

2
log2ðeÞ:

ð17Þ

Using the Jensen’s inequality for concave function, an upper bound of I3 in Eq. (16) can be

written as

I3 ¼ EZ log2

X

N

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xiς
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xtς
2

p exp �
ðzþ xi � xtÞ

2

2ð1þ xtς
2Þσ2

 !" #( )

≤ log2
X

N

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xiς
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xtς
2

p EZ exp �
ðzþ xi � xtÞ

2

2ð1þ xtς
2Þσ2

 !" #( )

¼ log2

X

N

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xiς
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xtς
2

p

ðþ∞

�∞

exp �
ðzþ xi � xtÞ

2 þ z2

2ð1þ xtς
2Þσ2

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1þ xtς
2Þσ2

p dz

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

¼ log2
X

N

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xiς
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ xtς
2Þ

p exp �
ðxi � xtÞ

2

4ð1þ xtς
2Þσ2

 ! !

:

ð18Þ

Substituting Eqs. (17) and (18) into Eq. (16), a lower bound of IðX;YÞ can be derived as

ILowðX;YÞ ¼ log2N �
1

2
log2ðeÞ þ

1

2

�
1

N

X

N

i¼1

log2 1þ
X

N

t¼1
t 6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xiς
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xtς
2

p exp �
ðxi � xtÞ

2

4ð1þ xtς
2Þσ2

 !

0

B

@

1

C

A
:

ð19Þ

Remark 3: Obviously, ILowðX;YÞ in Eq. (19) is a monotonic increasing function with respect

to γ. Therefore, we have

lim
γ!∞

ILowðX;YÞ ¼ log2N �
1

2
log2ðeÞ þ

1

2
ð20Þ

which indicates that the maximum value of ILowðX;YÞ is log2N � log2ðeÞ=2� 1=2.

Moreover, we have

lim
γ!0

ILowðX;YÞ ¼ log2N �
1

2
log2ðeÞ þ

1

2
�

1

N

X

N

i¼1

log2 1þ
X

N

t¼1
t 6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xiς
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xtς
2

p

0

B

@

1

C

A
ð21Þ
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Remark 4: According to Eqs. (13) and (20), we have

lim
γ!∞

IðX;YÞ � lim
γ!∞

ILowðX;YÞ ¼
1

2
½log2ðeÞ � 1�: ð22Þ

Similarly, from Eqs. (14) and (21), we have

lim
γ!0

IðX;YÞ � lim
γ!0

ILowðX;YÞ ¼
1

2
½log2ðeÞ � 1�: ð23Þ

From Eqs. (22) and (23), it can be concluded that a constant performance gap ½log2ðeÞ � 1�=2
exists between IðX;YÞ and ILowðX;YÞ at low and high SNR regions.

Remark 5: When ς ¼ 0, ILowðX;YÞ can be simplified as

ILowðX;YÞjς¼0 ¼ log2N � 1

2
log2ðeÞ þ

1

2

� 1

N

X

N

i¼1

log2 1þ
X

N

t¼1
t6¼i

exp �ðxi � xtÞ2
4σ2

 !

0

B

@

1

C

A
:

ð24Þ

4. BER analysis

In this section, the BER of the VLC with input-dependent noise is analysed. To facilitate the

analysis, OOK is employed as the modulation scheme. Suppose that the transmitted optical

signal is drawn equiprobably from the OOK constellation and 2ξP ≤A always holds, we have

X∈ {0, 2ξP}: ð25Þ

Therefore, the BER for the VLC with OOK can be written as

BER ¼ PrðoffÞPrðonjoffÞ þ PrðonÞPrðoffjonÞ ð26Þ

where PrðonÞ and PrðoffÞ are the probabilities of sending “on” and “off” bits, respectively. Because

the transmitted signal is taken as symbols drawn equiprobably, thus PrðonÞ ¼ PrðoffÞ ¼ 0:5.

PrðonjoffÞ and PrðoffjonÞ are the conditional bit error probabilities when the transmitted bit is

“off” and “on,” respectively.

According to Eq. (8), PrðoffjonÞ can be written as

PrðoffjonÞ ¼ Prðy < ξPjonÞ

¼
ðξP

�∞

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1þ 2ξPς2Þ
p

σ
e
� ðy�2ξPÞ2

2ð1þ2ξPς2Þσ2dy

¼ Q ξP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ξPς2
p

σ

� �

ð27Þ

where QðxÞ is the Gaussian Q-function.
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Moreover, PrðoffjonÞ can be similarly written as

PrðoffjonÞ ¼ Prðy > ξPjoffÞ
¼

ð

∞

ξP

1
ffiffiffiffiffiffi

2π
p

σ
e�

y2

2σ2dy

¼ Q ξP

σ

� �

:

ð28Þ

Therefore, the BER can be finally written as

BER ¼ 1

2
Q

ξP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ξPς2
p

σ

� �

þQ ξP

σ

� �� �

: ð29Þ

Remark 6: Let the average SNR be γ ¼ ξP=½ð1þ ξPς2Þσ2�. Because ξ, P and ς are non-negative

and finite numbers, γ ! ∞ (or 0) is equivalent to σ2 ! 0 (or ∞). Apparently, BER in Eq. (29) is a

monotonic decreasing function with respect to γ. Therefore, we have

lim
γ!∞

BER ¼ 0 ð30Þ

lim
γ!0

BER ¼ 1

2
ð31Þ

This indicates that the minimum BER and the maximum BER are 0 and 0.5, respectively.

Remark 7: When ς ¼ 0, BER can be simplified as

BERjς¼0 ¼ Q
ξP

σ

� �

: ð32Þ

5. Numerical results

In this section, some classical numerical results will be presented. The derived theoretical

expressions of the mutual information, the lower bound of mutual information and the BER

will be verified.

5.1. Results of mutual information

Figure 3 shows the mutual information (i.e., IðX;YÞ in Eq. (12)) and its lower bound (i.e.,

ILowðX;YÞ in Eq. (19)) versus SNR with different modulation orders N. In the simulation,

without loss of generality, ξ, P and ς are set to be one. In Figure 3, it can be seen that IðX;YÞ
and ILowðX;YÞ are monotonic increasing functions with respect to SNR. Moreover, with the

increase ofN, IðX;YÞ and ILowðX;YÞ also increase. It can also be found that the maximum value

of IðX;YÞ is log2N, and the maximum value of ILowðX;YÞ is log2N � log2ðeÞ=2� 1=2, which

coincides with Remark 1. Furthermore, the gap between IðX;YÞ and ILowðX;YÞ is ðlog2e� 1Þ=2
bits at low and high SNR regions, which coincides with Remark 4.

Figure 4 shows themutual information (i.e., IðX;YÞ in Eq. (12)) and its lower bound (i.e., ILowðX;YÞ
in Eq. (19)) versus dimming targets ξwith different ς. In the simulation,P is set to be one, γ ¼ 20dB

andN ¼ 4.As canbe seen,whenς ¼ 1 andς ¼ 10, IðX;YÞ and ILowðX;YÞ increasewith the increase

of ξ, while IðX;YÞ and ILowðX;YÞ donot changewith the increase of ξwhen ς ¼ 0.Moreover, it can

be seen that IðX;YÞ and ILowðX;YÞ are both themonotonic increasing functionswith respect to ς.
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Figure 3. Mutual information and its lower bound versus SNR with different N.

Figure 4. Mutual information and its lower bound versus dimming target ξ with different ς.
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5.2. Results of BER

Figure 5 shows BER versus ςwith different dimming targets ξ. In the simulation, both P and σ

are set to be one. It can be seen that the best BER performance is achieved when ς ¼ 0, which

Figure 5. BER versus ς with different ξ.

Figure 6. BER versus SNR with different ς.
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indicates that the performance for the system with only input-independent noise outperforms

that with input-dependent noise. Moreover, with the increase of ς, the BER performance

degrades. Furthermore, it can be observed that with the increase of ξ, the value of the BER

reduces, which indicates that the system performance improves. In addition, it can be found

that the theoretical results show close agreement with the Monte-Carlo simulation results,

which verifies the correctness of the derived theoretical expression of the BER.

Figure 6 shows the BER versus the SNR with different ς. It can be observed that the value of

the BER decreases with the increase of the SNR. This is because large SNRwill generate a small

BER, and thus it will result in good performance. Moreover, at low SNR region, the curve with

ς ¼ 10 achieves the best BER performance. At high SNR region, the curve with ς ¼ 0 achieves

the best BER performance. Once again, the gap between the theoretical results and the simula-

tion results is so small enough to be ignored, which verifies the accuracy of the derived

theoretical expression of the BER.

6. Conclusions

This chapter investigates the performance of the VLC with input-dependent noise. The theo-

retical expression of the mutual information is derived, which is not in a closed form. More-

over, the closed-form expression of the lower bound on the mutual information is obtained.

Furthermore, by employing the OOK, the theoretical expression of the BER for the VLC is

derived. Numerical results show that the derived theoretical expressions in this chapter are

quite accurate to evaluate the system performance without time-intensive simulations.
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