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Abstract

Systemic lupus erythematosus (SLE) is known as a systemic polyethiologic diffuse auto-
immune disease characterized by connective tissue disorganization and the paramount 
damage of skin and visceral capillaries. Usually, SLE symptoms include high fever, 
hair loss, mouth ulcers, chest pain, swollen lymph nodes, painful and swollen joints, 
increased fatigue, and appearance of red rash more often on the face. The exact reason 
of SLE appearance is not really clear. Detection of catalytic Abs (abzymes) was shown to 
be the earliest indicator of different AI disease development. Some abzymes are cytotoxic 
and can play a dangerous negative role in the pathogenesis of AI diseases. SLE is char-
acterized by the appearance of abzymes with several different catalytic functions includ-
ing hydrolysis of peptides and proteins, DNA, RNA, and oligosaccharides. In addition, 
monoclonal SLE abzymes are characterized by extraordinary diversity in the affinity to 
the substrates, physicochemical and catalytic characteristics, optimal conditions of catal-
ysis, cytotoxicity, etc. Production of abzymes in SLE mice is associated with changes in 
the differentiation of hematopoietic stem cells of bone marrow, increase in lymphocyte 
proliferation, and significant suppression of cell apoptosis in different organs. In this 
chapter, abzymes with different catalytic activities in SLE are described.

Keywords: systemic lupus erythematosus, catalytic antibodies, hydrolysis of RNA, 
DNA myelin basic protein, and oligosaccharides, apoptosis, cytotoxicity, diversity of 
monoclonal antibodies

1. Introduction

According to classical conception, antibodies (Abs) are specific proteins produced by the 
immune systems with exclusive function of antigen binding. Antibodies can act similarly to 

specific enzymes, but in contrast to enzymes, they cannot catalyze chemical conversions of 
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their ligands. For most part of antibodies, this observation is correct. At the same time during 

the last 30 years, it was shown that Abs against chemically stable analogues modeling the 

transition states of chemical reaction can catalyze many different reactions [1–8]. Such arti-

ficial catalytic antibodies were called abzymes (derived from antibody enzymes). Abzymes 
(Abzs) can catalyze more than 200 different chemical reactions and are new biological cata-

lysts attracting great interest during recent years and are well described (for review see [1–8] 

and refs therein).

First, natural Abzs were found in patients with bronchial asthma; they hydrolyze vasoactive 

intestinal peptide [9]. Then IgGs hydrolyzing DNA were revealed in the blood of patients 
with systemic lupus erythematosus (SLE) [10]. The third natural Abzs were SLE IgGs with 
RNase activity [11]. To date, many catalytic Abs (IgGs and/or IgAs, IgMs) catalyzing hydroly-

sis of different RNA, DNA, nucleotides, oligopeptides, proteins, lipids, and oligosaccharides 
were revealed in the sera of patients with various autoimmune and viral diseases (for review, 

see Refs. [8, 12–22] and refs therein).

Some idiotypic Abzs against foreign antigens and auto-Abzs to self-antigens having dif-

ferent catalytic activities may be spontaneously induced by primary antigens simulating 

in varying degrees the transition states of chemical reactions [8, 12–22]. At the same time, 

some  antiidiotypic Abs against active centers of many enzymes are also catalytically active 

[8, 12–22, 23–28]. Healthy humans do more often not demonstrate catalytic Abs or their 

activities are extremely low. It was shown that detection of Abzs is the earliest indicator of 
different autoimmune diseases (ADs) development [8, 12–22]. At the outset and early stages 

of ADs analyzed, the repertoire of abzymes is more often relatively narrow, but it is expand-

ing very much with the progress of AI diseases; the generation of diverse Abzs with many 
various activities and functions may be observed [8, 12–22]. Some abzymes are cytotoxic 

and dangerous for people; they can play a very important negative role in the different AD 
pathogenesis [8, 12–22]. However, specific positive roles have been also proposed for sev-

eral abzymes. Increase in Abzs activities is associated with a specific reorganization of the 
immune system including change in differentiation profile and level of proliferation of hema-

topoietic stem cells of bone marrow as well as lymphocyte proliferation in different organs 
of SLE and experimental autoimmune encephalomyelitis (EAE) in mice [29–32]. Different 
mechanisms of abzymes production were revealed in healthy animals after external immuni-

zation and in autoimmune mice during their spontaneous or antigen-induced development 

of autoimmune processes [29–32].

Catalysis of different reactions by abzymes is potentially important for many different fields; 
specific reaction for a synthesis of new drugs, which may be useful for therapy, estimation 
of abzyme’s possible role in innate and adaptive immunity, as well as for understanding of 

destructive responses and self-tolerance in ADs [33–37].

In this chapter, Abzs with various catalytic activities in SLE are described and compared with 
abzymes in case of other autoimmune pathologies. In addition, a possible role of different 
defects of immune systems resulting in changes of differentiation profile of hematopoietic 
stem cells (HSCs) of mice bone marrow as well as an increase in lymphocyte proliferation in 
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thymus, bone marrow, spleen, and a significant suppression in these organs of cell apoptosis 
associated with the abzymes production is discussed.

2. Features of the immune status of patients with systemic lupus 

erythematosus

As mentioned above, SLE is systemic polyethiologic diffuse autoimmune disease, symptoms 
of which for different patients vary significantly and may be from mild to severe. The exact 
reason and mechanisms of SLE development till yet is not clear [38]. Genetic, environmen-

tal, hormonal, and immune factors may play an important role for the development of SLE. 

Many different autoimmune diseases (ADs) including SLE are characterized by spontaneous 
generation of primary antibodies to nucleotides, nucleic acids and their complexes, proteins, 

polypeptides, polysaccharides, etc. [8, 16–22, 36, 38–42]. Anti-DNA auto-Abs without cata-

lytic activities are detectable even in the sera of healthy humans and their relative titres vary 

from individual to individual significantly [43, 44].

SLE is usually considered to be associated with autoimmunization of patients with DNA, 

since sera of such patients usually contain anti-DNA Abs and DNA in increased concen-

trations comparing with that for healthy volunteers [38]. However, comparing to healthy 

donors, anti-DNA antibody concentrations are higher not only in patients with SLE (36% of 

patients) [43, 45], but also in Hashimoto’s thyroiditis (23%) [43], multiple sclerosis (17–18%) 

[43, 46, 47], rheumatoid arthritis (7%), myasthenia gravis (6%), and Sjogren’s syndrome 

(18%) [43]. In addition, from the cloning of the IgG repertoire from directly active plaques 
and periplaque regions of brain and from B-cells of the cerebrospinal fluid of MS patient, 
new keys to the understanding of this pathology were proposed [48]. High affinity anti-
DNA Abs were shown to be the major components of the intrathecal IgG response. In addi-
tion, monoclonal anti-DNA Abs of multiple sclerosis (MS) patients and Abs specific to DNA 
derived from SLE patients interact efficiently with the surface of neuronal cells and oligo-

dendrocytes [48]. Recognition of cell-surface by these Abs was DNA-dependent. The data 

indicate that Abs against DNA may be important for autoimmune and neuropathological 

mechanisms in chronic SLE and MS [48]. Interestingly, SLE and MS patients show some sim-

ilarity in the same medical, biochemical, and immunological indexes including anti-DNA 

and other auto-Abs [13–22].

Anti-DNA and anti-RNA Abs with DNase and RNase activities were for the first time detected 
in sera of SLE patients [10, 11] and then with other ADs [13–22]. The origin of natural Abzs 

is very complex. First, similar to artificial abzymes, they may originate against analogues of 
transition states of chemical reactions or against enzyme substrates acting as haptens [8–22]. 

Many antigens can change their conformation after association with various proteins, and in 
such complexes, their structure could mimic that of a transition state of chemical reaction sub-

strate. For example, DNA is a bad antigen and immunization of animals with pure DNA or 

RNA leads to the production of abzymes with very low DNase and RNase activities [49, 50]. 
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Many anti-DNA auto-Abs in SLE are directed against DNA-histone nucleosomal complexes, 
resulting from internucleosomal cleavage during apoptosis [42]. Apoptotic cells and their dif-

ferent components are the primary antigens as well as immunogens in SLE and are impor-

tant for the recognition, processing, perception, and/or apoptotic autoantigen presentation 
by antigen-presenting cells during development of autoimmune processes [42]. Therefore, 

immunization of mice with complex of DNA and histones or positively charged methylated 

bovine albumin, simulating positively charged histones, results in production of anti-DNA 

Abs and DNase abzymes with high activity [29–31, 49, 50]. It was shown that abzymes with 
different activities may be obtained with a significantly higher incidence in autoimmune 
mouse strains comparing to conventionally used control nonautoimmune mice [51, 52]. 

Immunization of autoimmune-prone MRL-lpr/lpr mice with DNA-protein complexes also 
results in significantly higher production of anti-DNA Abs and abzymes with DNase activity 
comparing with nonautoimmune CBA and BALB/c healthy mice [29–31]. At the same time, 

artificial antiidiotypic abzymes can be induced by immunization of animals with different 
enzymes [23–28]. It was first suggested that natural SLE DNase Abzs may be antiidiotypic 
abzymes to topoisomerase I [53]. Immunization of rabbits with DNase I led to the production 
of Abzs with DNase activity of antiidiotypic nature [54]. Idiotypic Abs first were obtained by 
immunization of animals with DNase I and then they were used to elicit a polyclonal antiidio-

typic Abs hydrolyzing DNA; it indicates for the existence of internal Abs structure mimicking 

active centre of DNase I [54]. We have suggested that polyclonal DNase Abzs in autoimmune 

patients may be a cocktail of abzymes against complexes of proteins with DNA and RNA and 

antiidiotypic abzymes to different DNA-hydrolyzing enzymes. Therefore, we have immu-

nized rabbits with DNase II, DNase I, pancreatic RNase A, DNA, and RNA [49, 50, 55–57]. 

In all cases, abzymes with intrinsic DNase and RNase activities were revealed. IgGs against 
DNase I with DNase activity also have an antiidiotypic nature [55]. Interestingly, 74–85% of 
the total polyclonal IgGs against RNase A possessing RNase and DNase activities belong 
to antiidiotypic Abs, while 15–26% of the Abzs cannot interact with affinity sorbent-bearing 
Abs against RNase A; they bind with DNA- and RNA-Sepharoses and may be antibodies to 

nucleic acids bound to RNase [56]. In addition, only ~10% of the polyclonal total IgGs demon-

strating DNase and RNase activities from sera of rabbits immunized with DNase II have anti-
idiotypic nature, while the remaining 90% of Abzs did not interact with Sepharose-bearing 

Abs against DNase II, they may also be Abs to nucleic acids bound to DNase II [57]. The 

relatively low amount of antiidiotypic abzymes against DNase II hydrolyzing DNA and RNA 
may be a consequence of low immunogenicity of DNase II active site comparing with other 
antigenic determinants of this nuclease. Antibodies against DNA and RNA complexes with 

proteins and other antinuclear components were found in the blood sera of patients with sev-

eral multisystem connective tissue diseases including SLE [58]. Interestingly, abzymes agains 
DNA and RNA bound with proteins are usually significantly more active in the hydrolysis of 
these substrates than antiidiotypic Abzs against enzyme active centres [17–22, 49, 50, 55–57]. 

Thus, RNase A, DNase I, DNase II, and other DNA- and RNA-dependent enzymes can them-

selves be antigens producing not only antiidiotypic abzymes with corresponding active sites, 

but these enzymes can interact with RNA and DNA and induce formation of anti-RNA and 

or anti-DNA abzymes possessing no affinity for these enzymes, but having higher catalytic 
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activities than antiidiotypic Abzs. In addition, various proteins interacting with DNA and 
RNA can differ in their ability to produce antiidiotypic Abzs and the formation of abzymes 
against bound nucleic acids. Overall, it is clear that abzymes of patients with various autoim-

mune diseases can be very different cocktails of idiotypic antibodies directly against DNA, 
RNA, and against complexes of these antigens with different enzymes or proteins as well as 
antiidiotypic Abs against many DNA-dependent enzymes [17–22, 49, 50, 55–57].

3. Catalytic activities of SLE prone mice antibodies

It was shown that DNase Abzs of patients with SLE [59], MS [16], and DNA-hydrolyzing 

Bence-Jones proteins of patients with multiple myeloma [60] are cytotoxic, able to penetrate 

cell nucleus and cause fragmentation of nuclear DNA leading to cell apoptosis. A significant 
decrease in cell apoptosis in the case of ADs may be a very important factor providing the 

increase in the level of specific lymphocytes producing auto-Abs and abzymes, which are 
usually eliminated in different organs of healthy mammals [61, 62]. The cell apoptosis caused 

by Abzs with DNase activity leads to increase in the concentration of histones complexes 

with DNA fragments in the blood of mammals and, consequently, to production of antibod-

ies against DNA and DNA-hydrolyzing abzymes. Thus, the appearance Abzs with DNase 

activity in the blood of mammals may be a very important factor in the strengthening of the 

autoimmune reactions [13–22]. The abzymes with DNase activity should be considered as 

very dangerous since they can stimulate development of autoimmune reactions. The overall 

level of autoimmune reactions may depend on the ratio of cytotoxic (harmful) and beneficial 
to organisms auto-Abs. Therefore, it was very interesting to elucidate what factors underlie 

in the AI processes development and how possible mechanisms of autoimmunity are associ-
ated with the production of abzymes. Some data suggest that various ADs can originate from 

defects in the hematopoietic stem cells (HSCs) [63]. Therefore, it was reasonable to analyze 

what defects or changes may be revealed in the HSCs during spontaneous and DNA-induced 

development of SLE in autoimmune prone MRL-lpr/lpr mice.

It is known that after spontaneous development of SLE, MRL-lpr/lpr mice are characterized 
by visual symptoms of autoimmune pathology (baldness of head and parts of the back, pink 

spots, general health deterioration, etc.). Appearance of pronounced visual symptoms usu-

ally well correlate with high proteinuria (≥3 mg/ml of protein concentration in urine) [64, 65]. 

It was shown previously that sera of spontaneously diseased MRL-lpr/lpr mice contain Abzs 
with high DNase activity correlating with high proteinuria and visual symptoms usually 

at age of 5–12 months [64, 65], which is a typical period of signs of deep SLE pathology of 

MRL-lpr/lpr mice [66]. Obviously, that the state of “health” in the case of autoimmune-prone 

mice should be considered quite conventional, the development autoimmune pathology 
nevertheless is spontaneous, and AI processes leading to deep pathology increase gradually. 
To  distinguish different levels of SLE development, MRL-lpr/lpr mice without typical autoim-

mune symptoms and demonstrating no abzyme activities (similar to nonautoimmune healthy 

control mice) were independently of age tentatively designated as healthy mice, while the 
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 animals having no visual or biochemical SLE symptoms but demonstrating detectable activi-

ties of abzymes were provisionally named as prediseased MRL-lpr/lpr mice. Mice demon-

strating all visual symptoms and biochemical indexes of SLE were designated as diseased 

animals. We have compared healthy (2–3 months of age) and spontaneously diseased MRL-
lpr/lpr mice with all visible symptoms no older than 7 months [29–31]. For a more precise 

characterization of the various states of these mice, we have evaluated a variety of medical, 

biochemical, and immunological characteristics of their status including the relative levels of 

Abs to various autoantigens of abzymes demonstrating different catalytic activities.

The average anti-DNA Abs concentration in the case of (CBAxC57BL)F1 and BALB/c nonau-

toimmune control mice was estimated to be approximately 0.03–0.04 A
450

 units and was com-

parable with that for healthy autoimmune-prone MRL-lpr/lpr mice (0.032 A
450

 units) [29–31]. 

After spontaneous development of SLE in MRL-lpr/lpr mice (depending of individual mice 
during 4–7 months), it increases to 0.2 A

450
 units, but there were no remarkable change in the 

anti-DNA Abs titers in the case of control nonautoimmune mice during 7–8 months of the 

experiment [29–31]. After MRL-lpr/lpr mice immunization with complex of methylated-BSA 
with DNA (further marked as DNA), the average concentration of anti-DNA Abs increased to 

approximately 0.6 A
450

 units [29–31]. It should be mentioned that IgG antibodies from the sera 
of control 2–7 month-old nonautoimmune CBA and BALB mice and conditionally healthy 
2–3 months old MRL-lpr/lpr mice were shown to be catalytically inactive [29–31]. At the same 

time, during spontaneous development of SLE and especially after MRL-lpr/lpr mice immuni-
zation with DNA the relative catalytic DNase activity was significantly increased. Figure 1(A) 

demonstrates hydrolysis of supercoiled (sc) plasmid DNA by IgGs from various mice after 
2 h of incubation. To quantify the DNase activity, a concentration of each electrophoretically 
and immunologically homogeneous IgG preparation (containing no any canonical enzymes) 
converting scDNA to relaxed DNA during 0.2–4 h of incubation without formation of linear 

or fragmented DNA was used (for example, lanes 1–3, Figure 1A). The relative efficiency of 
DNA hydrolysis was estimated from the relative percentage of DNA in the band of sc and 

relaxed DNA; the relative amount of DNA in these two bands for DNA incubated without 

IgGs or with Abs from healthy mice was taken into account. The measured relative activities 
(RAs) were normalized to standard conditions (0.1 mg/ml Abs, 2 h) and a complete hydrolysis 
of scDNA giving hydrolyzed form was taken for 100% of DNase activity. The RAs of IgGs in 
the hydrolysis of ATP (Figure 1B) and maltoheptaose (MHO; Figure 1C) were also estimated 

using the same approach as in the case of DNase activity.

All data obtained are given in Table 1. One can see, that at 7 months of age before develop-

ment of visible pathology markers (similar to mice of 1–3 months of age before deep MRL-
lpr/lpr mice spontaneous pathology) MRL-lpr/lpr mice demonstrate no proteinuria (urine 
proteins <3.0 mg/ml). In addition, they are characterized by a relatively weak increase in the 
concentrations of Abs to native and denatured DNA. Moreover, the values of these param-

eters for some individual prediseased mice are comparable with the values observed for 

healthy mice. Interestingly, IgGs from sera of healthy MRL-lpr/lpr and control CBA, BALB 
mice possess well-determined amylase activity. This activity increased in the case of predis-

eased MRL-lpr/lpr mice, but the observed difference with healthy animals was not statisti-
cally significant. The changes in this parameter become statistically significant only for mice 
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Figure 1. Determination of relative DNase (A), ATPase (B), and amylase (C) activities of catalytic IgGs (0.1 mg/ml) 
from different mice [29–31]. Analysis of DNA hydrolysis was performed using electrophoresis in 0.8% agarose gels. 

Before electrophoresis supercoiled pBluescript DNA (A) was incubated for 2 h at 30°C with IgGs from 11 different mice 
(lanes 1–11); lane 12, DNA incubated with Abs of healthy mouse; lane 13, DNA incubated alone. Hydrolysis of [γ-32P]ATP 

(B) and maltoheptaose (C) was analyzed respectively by thin-layer chromatography on PEI cellulose and on Kieselgel 
plates. Reaction mixtures containing 0.2 mM ATP were incubated for 2 h at 30°C; lanes 2–6 correspond to IgGs from 
5 different mice; lane 1 to ATP incubated alone. Standard reaction mixtures containing 0.15 mM maltoheptaose were 
incubated at 30°C for 12 h: lanes 2–11 correspond to IgGs from 10 different mice, lane 1, the substrate incubated alone.
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with deep  pathology (Table 1). It is necessary to emphasize that IgGs of healthy MRL-lpr/lpr 
mice do not possess any DNase and ATPase activities and only the increase in these activities 

at a predisease stage should be considered as statistically significant indicator of the outset of 
spontaneous autoimmune disease of mice. After developing of deep SLE pathology, the RAs 

of DNase activity in the case of male and female mice increases 3.3- and 7.3-fold, respectively, 

comparing to prediseased mice, while increase in ATPase activity is significantly greater, 27- 
and 171-fold, respectively (Table 1). Thus, only these activities are the most important indica-

tors of predisease state and deep pathology of MRL-lpr/lpr mice.

4. Possible role of brain stem cells and lymphocytes in development of SLE

4.1. Differentiation of bone marrow stem cells in SLE prone mice

The relationship between the relative activities of abzymes and the formation of follow-

ing hematopoietic progenitors colonies has been analyzed: CFU-GM, granulocytic-macro-

phagic colony-forming unit; CFU-E, erythroid burst-forming unit (late erythroid colonies); 

Group description Number of 

mice

Urine 

protein, mg/

ml**

Abs to 

native DNA, 

A
450*

Abs to 

denatured 

DNA, A
450*

DNase 

activity, %*

ATPase 

activity, %*

Amylase 

activity, %*

Control males and females

(CBA × C57BL)
F1 (3–7 mo.)

8 (4 f + 4 m) 0.12 ± 0.07 0.04 ± 0.01 0.02 ± 0.01 0*** 0*** 1.0 ± 0.5***

BALB/c (3–7 mo.) 8 (4 f + 4 m) 0.1 ± 0.08 0.03 ± 0.01 0.017 ± 0.004 0 0 1.1 ± 0.5

MRL-lpr/lpr males

Healthy (2–3 mo.) 5 0.38 ± 0.02 0.032 ± 0.01 0.09 ± 0.07 0 0 1.9 ± 1.2

Healthy, pre-

diseased (7 mo.)

5 0.8 ± 0.3 0.11 ± 0.02 0.16 ± 0.05 3.0 ± 1.0ξ 0.4 ± 0.25 3.1 ± 1.4

Diseased (7 mo) 8 8.0 ± 3.1 0.18 ± 0 .08 0.23 ± 0.11 22.0 ± 24.0 68.3 ± 9.8 3.7 ± 1.0

Immunized 6 9.5 ± 1.7 0.6 ± 0.17 1.1 ± 0.16 360.0 ± 230.0 1333 ± 530 17.6 ± 7.5

MRL-lpr/lpr females

Healthy (2–3 mo) 5 0.31 ± 0.03 0.08 ± 0.03 0.12 ± 0.06 0 0 1.8 ± 1.1

Healthy, pre-

diseased (7 mo)

5 0.9 ± 0.2 0.20 ± 0.06 0.08 ± 0.04 6.1 ± 2.8 2.4 ± 1.7 3.6 ± 1.4

Diseased (7 mo) 5 5.0 ± 3.8 0.16 ± 0.12 0.21 ± 0.12 20.0 ± 21.0 65.0 ± 93.0 9.2 ± 5.4

*For each mouse, the mean of three repeats is used.
**Proteinuria corresponds to ≥3 mg of total protein/ml of urine.
***100% relative activity corresponds to a complete transition of the substrate to its products after the hydrolysis in the 

presence of 0.1 mg/ml IgGs.
ξStatistically significant changes in parameters are given in bold.

Table 1. Autoimmune characteristics of AI-prone MRL-lpr/lpr and control non-autoimmune mice [31].
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 CFU-GEMM, granulocytic-erythroid-megacaryocytic-macrophagic colony-forming unit; and 
BFU-E, erythroid burst-forming unit (early erythroid colonies) [29–31]. In the bone marrow 
of healthy MRL-lpr/lpr males and females (3 months of age), normal distribution of commit-
ted progenitors was observed, and the blood serum IgGs in these mice as well as control CBA 
mice show no detectable DNase and ATPase activities (Table 2). In MRL-lpr/lpr males and 
females (7 months old) having no proteinuria and SLE clinical manifestations but demonstrat-

ing detectable activities of abzymes, the relative number of BFU-E and CFU-GEMM colonies 
increased ~2- and ~16.4–28.4-fold, respectively. For spontaneously deep diseased males and 
females showing high RAs of DNase and ATPase activities, the profile of HSC differentiation 
was changed significantly comparing with prediseased mice: BFU-E colonies number increased 
approximately two times, while the number of CFU-GEMM and CFU-GM colonies decreased 
by factors of 2.4–3.4 and ~2.6–4.0, respectively. After the development of SLE induced by the 
mice immunization with DNA, the highest rise in anti-DNA Abs, Abz activities, and pro-

teinuria was observed [29–31]. In addition, a very specific differentiation profile of HSC was 
revealed (Table 2). The numbers of CFU-GEMM and BFU-E colonies were 4.3- and 3.6-fold 
lower than for spontaneously diseased mice, while the number of CFU-GM colonies was com-

parable. Interestingly, the profiles of bone marrow HSC differentiation for immunized mice 
and healthy mice were not much different (Table 2). The data of Tables 1 and 2 are summarized 

in Figure 2.

One can see that in the condition of predisease a strong increase in the relative number of 

CFU-GM colonies is observed, and at this time, there is a reliable and statistically significant 
appearance of DNase and ATPase activities of IgG antibodies. At transition from predisease 

Group description Visual symptoms Number 

of mice

Number of colonies*

BFU-E CFU-GM CFU-GEMM

CBA (3–7 mo) No 8 3.0 ± 0.5** 7.3 ± 1.0** 0.25 ± 0.05**

MRL-lpr/lpr males

Healthy (2–3 mo.) No 5 6.5 ± 1.5 7.0 ± 1.0 0.5 ± 0.1

Healthy, pre-diseased 

(7 mo)

No 5 12.7 ± 1.4 30.0 ± 1.3 9.2 ± 1.9

Diseased (7 mo) Yes 5 25.3 ± 9.8 7.4 ± 0.4 3.9 ± 2.0

Immunized (3 mo) yes, weak 5 7.0 ± 2.1 6.0 ± 2.6 0.9 ± 0.7

MRL-lpr/lpr females

Healthy (2–3 mo) No 5 5.5 ± 0.5 11 ± 2.5 0.5 ± 0.2

Healthy, pre-diseased 

(7 mo)

No 5 11.5 ± 2.0 23.0 ± 3.0 8.2 ± 3.0

Diseased (7 mo) Yes 5 22.1 ± 8.0 9.0 ± 3.9 2.4 ± 1.8

*For each mouse, the mean of four repeats is used.
**Mean ± confidence interval.

Table 2. Formation of bone marrow progenitor colonies in from control nonautoimmune and MRL-lpr/lpr mice [31].
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condition to deep SLE pathology, there is additional change in profile differentiation of bone 
marrow HSC; the number of CFU-GM colonies is significantly decreased, but at the same 
time, a significant increase in BFU-E cells is observed. Such change in differentiation profile 
of bone marrow HSC is associated with significant increase in DNase and ATPase activities 
of IgGs. Healthy MRL-lpr/lpr mice 3 months of age treated with DNA show a very strong 
increase in DNase and ATPase activities, but differentiation profile of bone marrow HSC 
is almost same as for healthy male and female MRL-lpr/lpr mice. This could indicate that 
appearance of abzymes in healthy mice after their immunization with DNA is not associated 

with the change of differentiation profile of bone marrow HSC, and there may be some other 
ways of this phenomenon realization. Taking this into account, we analyzed lymphocyte pro-

liferation in different organs of MRL-lpr/lpr mice [29–31].

4.2. Lymphocyte proliferation in SLE prone mice

Spontaneous development of SLE results in remarkable average increase in lymphocyte pro-

liferation in all analyzed organs of males and females comparing with healthy control mice 

(Figure 3) [29–31].

Figure 2. The relative profile of differentiation of bone marrow progenitors. Relative number of total erythroid cells 
(BFU-E+ CFU-E), CFU-GM, and CFU-GEMM colonies in the case of healthy CBA, conditionally healthy MRL-lpr/
lpr mice at 3 months of age, after MRL-lpr/lpr mice development of pre-disease and deep SLE, as well as after mice 
immunization with DNA is shown [29–31]. The numbers above the bars show using a semicolon the relative average 

activity of mice serum IgGs in the hydrolysis of DNA and ATP, respectively.
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Interestingly, the relative level of lymphocyte proliferation in the spleen of healthy con-

trol CBA mice is approximately threefold higher than that for healthy MRL-lpr/lpr mice 
(Figure 3). Transition from healthy to spontaneously prediseased mice leads to the increase in 

lymphocyte proliferation in spleen by ~2.8-fold in parallel with increase of average level of the 
proliferation 1.4- and 1.8-fold in lymph nodes and thymus, respectively [29–31]. While there 

is no remarkable difference in lymphocyte proliferation in bone marrow of healthy CBA, 
healthy and prediseased MRL-lpr/lpr mice, the diseased animals demonstrate increase in this 
parameter by a factor of ~1.5 (Figure 3). The spontaneous pathology of MRL-lpr/lpr mice 
develops slowly and most of the mice are showing signs of the deep disease only from 5 to 9 

months of life. The average values of the lymphocyte proliferation of diseased MRL-lpr/lpr 
mice are significantly increased in all organs compared to healthy mice. Interestingly, immu-

nization of healthy 3 months old MRL-lpr/lpr mice with DNA leads to the increase of lym-

phocyte proliferation in all organs except thymus at 20 days after their treatment (Figure 3). 

Thus, a significant increase in the relative level of lymphocyte proliferation in mice may be 
an important factor causing the development of abzymes with very high activity after their 

immunization with DNA. As mentioned above, mice immunized with DNA do not show 

Figure 3. The relative level of lymphocyte proliferation in different organs of male healthy CBA, conditionally healthy 
MRL-lpr/lpr mice at 3 months of age, after development of pre-disease and deep SLE pathology MRL-lpr/lpr in mice, 
as well as after mice immunization with DNA is shown [29–31]. The designation of the various mouse organs is indicated 

in the figure.
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significant changes in bone marrow HSC differentiation profile. However, DNA-treated mice 
demonstrate high level of bone marrow lymphocyte proliferation (Figure 3). This may be due 

to the fact that DNA has little effect on the profile of stem cells differentiation but effectively 
stimulates increase in the proliferation and changes the profile of mouse bone marrow lym-

phocyte differentiation.

In this regard, data comparing relative Abz activities from serum and cerebrospinal fluid 
(CSF) of the same MS patients with multiple sclerosis should be noted [67–69]. It was shown 
that IgGs from sera and cerebrospinal fluid of MS patients are active in the hydrolysis of 
DNA, MBP, and oligosaccharides. In addition, the specific RAs of these abzymes from the 
CSF of MS patients are dependently on their different activities were approximately 30- to 
60-fold higher comparing to serum Abzs from the same patients [67–69]. It means that during 
spontaneous or induced development of ADs as a result of specific differentiation of lym-

phocytes in cerebrospinal fluid there may be formation of cells producing different catalytic 
antibodies directly in cerebrospinal fluid. Thus, one cannot exclude that the increased level of 
Abz activities in MRL-lpr/lpr mice immunized with DNA may be a consequence of specific 
additional differentiation of naive lymphocytes not only in different organs but also in the 
cerebrospinal fluid. Another important factor reducing the relative number of lymphocytes 
producing abzyme may be cell apoptosis.

4.3. Cell apoptosis in SLE prone mice

It is known that in norm (healthy mammals) harmful cells including lymphocytes are elimi-
nated by apoptosis [61, 62]. The decrease in the lymphocyte apoptosis, producing Abzs 

harmful to mammals, can lead to increase in autoimmune reactions and acceleration of ADs 

development. The relative level of lymphocyte apoptosis in different organs and tissues of 
MRL-lpr/lpr mice was analyzed (Figure 4) [31].

In control CBA and healthy MRL-lpr/lpr mice, the cell apoptosis level in different organs 
on average was comparable (Figure 4). The prediseased mice demonstrated relatively low 

decrease in lymphocyte apoptosis in bone marrow, but its remarkable increase in spleen. 

Transition from predisease state to deep SLE led to a significant decrease in the cell apopto-

sis level in all organs comparing with healthy and prediseased mice and maximal decrease 

was observed for bone marrow lymphocytes (Figure 4). However, the statistically significant 
two- to threefold maximal decrease in the apoptosis level was observed for bone marrow, 

thymus lymph nodes, and spleen of the mice immunized with DNA, which correlates with a 

very strong increase in the specific Abz activities of treated mice comparing to the spontane-

ously diseased animals (Figure 4). Therefore, it should be assumed that in the case of mice 

predisposed to ADs, introduction of foreign antigen can inhibit the elimination of harmful 

lymphocytes including ones producing dangerous abzymes by apoptosis and stimulate the 

proliferation of such cells. Overall, immunization of healthy MRL-lpr/lpr mice with DNA 
leads to the production of abzymes with very high activities, but it is not associated with 

noticeable change in profile of HSC differentiation but mainly caused by increase in lympho-

cyte proliferation and specific suppression of lymphocyte apoptosis in different organs [35]. 

In this regard, it should be mentioned that these regularities may to some extent be  common in 
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the development of various autoimmune diseases. For example, using experimental C57BL/6 
autoimmune encephalomyelitis (EAE) mice (a model mimicking human MS), it was recently 
shown that spontaneous EAE development leads to the production of Abs to myelin basic 

protein (MBP) and DNA and to Abzs efficiently hydrolyzing these substrates, which associ-
ated with significant changes of the differentiation profile and level of lymphocytes prolifera-

tion of mice bone marrow HSC [32]. Immunization of these mice with MOG35 results in a 
very strong acceleration in the development of EAE and a very strong increase of the relative 

activities of abzymes hydrolyzing MOG, MBP, and DNA. The relative percent contents of 
total erythroid cells, CFU-GEMM and CFU-GM colonies at 3 months of age in healthy, nonau-

toimmune CBA, conditionally healthy, MRL-lpr/lpr and EAE C57BL/6 mice before and after 
development of these autoimmune pathologies were compared (Figure 5).

One can see that the relative content (percent of total number of different cells) of various 
bone marrow colonies after spontaneous achievement of deep pathologies by MRL-lpr/lpr 
and EAE mice is nearly the same. In addition, the level of lymphocyte proliferation as well 

Figure 4. The relative level of lymphocyte apoptosis in different organs of male healthy CBA, conditionally healthy 
MRL-lpr/lpr mice at 3 months of age, after MRL-lpr/lpr mice development of pre-disease, and deep SLE pathology, as 
well as after mice immunization with DNA [29–31]. The designation of the various organs is indicated in the figure.
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as cell apoptosis in different organs including bone marrow of healthy MRL-lpr/lpr and EAE 
mice, at stages of their prediseases and deep pathologies were also comparable [32]. In addi-
tion, it was shown that abzymes hydrolyzing MBP are formed in the early stages of human 
MS, unlike in later stages of SLE, while the reverse situation was observed for abzymes with 
DNase activity [70–87]. One gets the impression that SLE and MS differ greatly in their initial 
stages but become to some extent more similar at the later stages of these diseases. The blood 

of patients with SLE and MS after a long illness contains Abs to a variety of autoantigens 
and abzymes hydrolyzing nucleotides, oligosaccharides, lipids, DNA, RNA, MBP, and many 
other proteins [13–21, 70–93].

Clinically definite MS diagnosis is more often based on tomographic detection of brain-spe-

cific plaques appearing on late stages of this disease. But, similar brain plaques were also 
detected on the late stages of SLE [38, 41]. MS is a central nervous system disease resulting in 
the manifestation of different psychiatric and nervous disturbances. Neuropsychiatric distur-

bances occur also in about 50% of patients with SLE and carries a poor prognosis (reviewed 

in [41]). SLE affects mainly on the central nervous system and it supposedly more than any 
other inflammatory systemic disease causes various psychiatric disorders [41]. Peripheral ner-

vous system involvement seems to be much less. Neural cell injury and rheological distur-

bances mediated by auto-Abs may be due to two of the main possible mechanism of tissue 

damage [41]. Interplay between these processes is determined by genetic factors, and may be 
modulated by hormones, complicated by a many of secondary factors, may explain the wide 

Figure 5. The relative content (%) of total erythroid cells (BFU-E+ CFU-E), CFU-GM, and CFU-GEMM colonies in the 
case of healthy CBA, conditionally healthy MRL-lpr/lpr and C57BL/6 mice at 3 months of age, and after development of, 
respectively, EAE and SLE is shown [32]. For C57BL/6 mice, the relative contents of progenitor colonies after spontaneous 
and MOG-stimulated development of EAE are given.
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spectrum of features revealed in SLE [41]. Thus, not only specific changes in the profile of 
differentiation of bone marrow stem cells, increased levels of lymphocyte proliferation and 
suppression of apoptosis of harmful cells in different organs leading to the production of dan-

gerous abzymes with various activities, but also some other indicators of different psychiatric 
and nervous disturbances in varying degrees, are common for some patients with SLE and MS.

5. Application of rigid criteria for analysis of antibodies catalytic activities

The sera of healthy humans and mammals contain usually autoantibodies to many different 
antigens, including RNA, DNA, proteins, and other antigens [13–22, 43, 44]. Natural abzymes 

from the sera of patients with different AI diseases are products of different immuno-compe-

tent cells and usually polyclonal in origin ([13–22] and refs cited here). Purification of natural 
abzymes containing no canonical enzymes is a very important task in their study; peculiarities 

of such antibodies isolation were discussed in detail in reviews [13, 19]. Electrophoretically and 

immunologically homogeneous IgG fractions with or without different catalytic activities from 
the sera of healthy donors and autoimmune patients described in this chapter were first puri-
fied using Protein G-Sepharose, while IgAs and IgMs by affinity chromatography on Protein 
A-Sepharose under conditions removing nonspecifically bound proteins. Then IgAs were sepa-

rated from IgMs and IgGs from possible admixtures of canonical enzymes by FPLC gel filtra-

tion in acidic conditions (pH 2.6) destroying immuno-complexes [29–32, 49, 50, 55–57, 64–103]. 

Overall, ~900 kDa IgMs, 170 kDa IgAs, and 150 kDa IgGs did not contain possible contaminating 
proteins detected by acrylamide gel silver staining under reducing and nonreducing conditions.

The application of rigid criteria allowed the authors of the first article describing natural 
abzymes hydrolyzing vasoactive intestinal peptide to obtain irrefutable evidence that this 

activity is an intrinsic property of IgGs from sera of patients with asthma [9]. Later several 

additional rigid criteria were proposed (reviewed in Refs. [13, 19]). We applied a set of these 

strict criteria [9, 13–22] for the analysis of DNase and RNase [11, 31, 64, 65, 70–75], MBP-
hydrolyzing [76–79], ATPase [30], and amylase [29, 88–91] activities as intrinsic properties of 

IgG and/or IgM and IgA antibodies from sera of SLE patients and mice. Several more impor-

tant of them may be summarized as follows: (1) all Abs were electrophoretically homoge-

neous; (2) FPLC gel filtration of these Abs under conditions destroying strong noncovalent 
complexes (acidic buffer, pH 2.6) did not abolish these activities, and activities peaks exactly 
coincided with peaks of intact Abs; (3) immobilized mouse IgGs against the light chains of 
human Abs absorbed completely these activities; these activity’s peaks coincided with the 

peaks of Abs eluted using acidic buffer; and (4) F(ab) and F(ab)2 fragments of Abs showed 
to some extent comparable levels of the activities comparing with intact Abzs. To exclude 

possible artifacts causing by hypothetical traces of canonical enzymes, Abs from sera of SLE 

patients were subjected to SDS-PAGE in a gel copolymerized with polymeric DNA or RNA 
and their nuclease activities were detected in situ by gel incubating in the standard reaction 

buffer. Staining of the gels after the electrophoresis with ethidium bromide (after refolding of 
Abs) showed sharp dark bands against a fluorescent background of nucleic acids. After incuba-

tion with DTT only light chains of SLE Abs demonstrated nuclease activities. After SDS-PAGE 
amylase, ATPase and MBP-hydrolyzing activities of SLE Abs were analyzed using extracts of 

Catalytic Antibodies in Norm and Systemic Lupus Erythematosus
http://dx.doi.org/10.5772/67790

55



2- to 3-mm  fragments of a longitudinal gel slice. Since SDS destroys all noncovalent protein 

complexes, the revealing of the analyzed activities in the gel zones of only intact IgGs and their 
separated light chains together with the absence of any other bands of the activities or proteins 

gave direct evidence that Abs from sera of SLE patients possess analyzed enzymatic activi-

ties. The fulfilment of these criteria was observed for SLE IgG, IgA, and IgM abzymes with 
all activities mentioned above. Some typical examples of rigid criteria application in the case 

of DNase, RNase, and MBP-hydrolyzing activities of SLE IgGs are given in Figures 6 and 7.

Figure 6. Analysis of the implementation of strict criteria of intrinsic enzymatic activities of IgGs from sera of SLE 
patients and mice. SDS-PAGE analysis of homogeneity of IgGmix (mixture of equal amounts of Abs from sera of 10 
SLE patients) before (lane 2) and after (lane 3) Abs boiling with DTT; lane 1 shows positions of protein markers (A) [71]. 

FPLC gel filtration of IgGmix (mixture of 15 preparations) corresponding to diseased MRL-lpr/lpr mice on a Superdex 
200 column in the acidic buffer (pH 2.6) destroying different immunocomplexes after IgGs incubation in the same buffer 
(B) [31]. In situ gel assay of DNase (C and D) and RNase (E and F) activities of IgGmix (10 preparations) corresponding 
to SLE patients using respectively gels containing polymeric DNA and RNA [71]. DNase and RNase activities were 

revealed by ethidium bromide staining as dark bands on the fluorescent background; lanes 1 (C and E) correspond to 
IgGs before, while lines 1 (D and F) after Abs mild treatment with DTT, lane 2 (E) to F(ab) fragments of IgG (negatives 
are given). Lanes 2 (C and D), 3 (E) and 2 (F) intact IgGs or their separated L and H chains, while lane 4 (E) corresponds 
to F(ab) fragments, positions of which were revealed by treatment of the gels with Coomassie R250. Lanes C (C and E) 

correspond to proteins with known molecular masses [71].
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Figure 7. Application of the strict criteria to show that MBP-hydrolyzing activity is intrinsic property of IgGs from sera 
of SLE patients [76, 77]. Affinity chromatography of the IgGmix (Abs of 10 patients) using Sepharose bearing mouse 
Abs against human IgGs (A) and FPLC gel filtration IgGmix on column with Superdex 200 in acidic buffer (pH 2.6) 
after incubation of Abs in the same buffer (B): (—), absorbance at 280 nm (A280); (□), relative activity (RA) of IgGmix 
in the hydrolysis of human MBP (A and B). A complete hydrolysis of MBP (0.5 mg/ml) for 24 h at 37°C was taken 
for 100%. Analysis of MBP hydrolysis by IgGmix and its separated L and H chains after SDS-PAGE (C and E). After 
SDS-PAGE of IgGmix using nonreducing (C) and reducing (E) conditions, the gel was incubated under conditions for 
renaturation of Abs. The relative MBP-hydrolyzing activity (RA, %) was estimated using the extracts of 2- to 3-mm many 
gel fragments (C and E) of first longitudinal slices. The RA of IgGmix corresponding to a complete hydrolysis of MBP 
(0.5 mg/ml) after 24 h of standard mixture (30 µl) incubation with 20 µl of extracts was taken as 100%. The second control 
longitudinal slices corresponding to the same gels were treated with Coomassie R250 (lanes 1; D and F). Lane 2 (D and 

F) demonstrates position of protein molecular mass markers.
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Similar rigid criteria were used by us for evidence of the catalytic activity belonging to the 

antibodies, hydrolyzing nucleotides, DNA, RNA, various peptides, proteins, oligosaccha-

rides from blood with different autoimmune diseases, and animals immunized with different 
antigens [11, 13–22, 32, 49–57, 64–65, 67–103].

6. SLE patient’s abzymes with DNase and RNase activities

6.1. Polyclonal DNase and RNase abzymes

Healthy humans do not demonstrate antibodies with detectable DNase and RNase activities, 

their levels are more often on the borderline of sensitivity of the detection methods [13–22]. 

The RAs of DNase and RNase abzymes from the sera of patients with SLE vary markedly 

from patient to patient [13–22].

We analyzed the possible heterogeneity of catalytic properties of polyclonal DNase and 

RNase IgGs from SLE patients and observed an extreme heterogeneity in kinetic and ther-

modynamic parameters, relative specific activities and substrate specificities, which are 
different very much from patient to patient. Chromatography on DNA-cellulose showed 
that only 10–30% of the total electrophoretically homogeneous IgGs and IgMs dependently 
on patient may be bound to the affinity sorbent. Interestingly, when Abs were eluted from 
DNA-cellulose by a NaCl gradient (0–3 M) and then acidic buffer (pH 2.6) the Abs and 
their DNase and RNase activities were distributed all over the chromatography profile 
(for example, Figure 8A) [70, 71]. The same situation was observed for Abs with nuclease 

activities from sera of MS patients [8, 80–82], and rabbits immunized with DNA, RNA, 

DNase I, DNase II, and pancreatic RNase [49, 50, 55–57]. The affinity of Abs fractions for 
these substrates was increased gradually with the increase in eluting salts concentrations. 

When IgGs eluted from DNA-cellulose were fractionated on Sepharose bearing immo-

bilized monoclonal mouse Abs against anti-kappa or anti-lambda human IgGs, 60–70% 
of IgGs were adsorbed by Abs against lambda- and 30–40% by Abs against kappa-Abs 
(Figure 8B) [70, 71].

The fractions corresponding IgGs with kappa-light chain were about 30- to 50-fold more 
active in hydrolysis of both RNA and DNA than lambda-IgGs. SLE IgGs and IgAs with 
DNase activity [70, 71] similarly to Abs with nuclease activity from sera of patients (and 

mice) with other autoimmune diseases [80–82, 95, 99–103] efficiently hydrolyzed all sin-

gle- and double-stranded DNA of different sequences and length. The substrate specific-

ity of SLE IgGs with RNase activity, however, was unique within certain limits for Abs 
from every individual SLE patient [11]. In contrast to human RNases, SLE IgGs effectively 
hydrolyze the most resistant poly(A) substrate for all known human RNases [104–109]. SLE 

IgGs demonstrated a very slow hydrolysis of poly(C) [11], which is the best substrate for all 

mammalian RNases [104–106]. Therefore, for more detail analysis of IgGs of SLE patients 
ribo(pA)

13
 was used. Figure 8(C) demonstrates pH dependence of [5′-32P](pA)

13
 hydrolysis 

by three of six SLE IgGs analyzed and by two human blood RNases. All six dependences 
showed individual features of pH dependencies. In contrast to all SLE abzymes, RNases 
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have only one pH optimum (6.8–7.5) for hydrolysis of poly(A) [104–106] (Figure 8D). 

Polyclonal SLE abzymes more often shows high activity at pH from 6.0 to 9.5. For example, 

preparation Abz-1 demonstrates maximal activity at pH 8.8; Abz-2 shows three marked pH 

optima at pH 8.5, 7.7, and 7.2, while Abz-5 hydrolyzes RNA with comparable efficiency 
at pH values from 6.0 up to 9.5 (Figure 8C). Abz-3 and Abz-4 also demonstrated several 

pronounced optima at pH 6.0–9.5 similar with that for Abz-2, while Abz-6 showed no opti-

mum, like Abz-5.

Interestingly, even at fixed pH 7.5 initial rates corresponding to increase in oligonucleotide 
concentrations were consistent with Michaelis-Menten kinetics only for all human RNases 

Figure 8. Separation of SLE IgMs having affinity to DNA by affinity chromatography on DNA-cellulose (A) [70]: (—) 
absorption at 280 nm, (•) and (x) RA of Abs in hydrolysis of respectively [5’-32P](pA)

13
 and [5′-32P]d(pA)

13
, 1–5 µl of each 

fraction was added to 100 µl of reaction mixture and maximal RNase and DNase activity was taken for 100%. Separation 
of anti-DNA IgGs containing light chains of kappa and lambda type by affinity chromatography on Sepharoses bearing 
immobilized Abs against human kappa- and lambda-IgGs [71]: (—) absorption at 280 nm (B). pH dependencies of 
the relative RNase activity of three SLE IgGs (C) and human serum RNases (RNase 3 (•) and RNase 4 (•)) (D) in the 
hydrolysis of [5’-32P](pA)

13
 [71].
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and Abz-1, for which was only one interception of curves in coordinates of Cornish-Bowden 
(Figure 9A) [71]. Three IgGs (Abz-2–Abz-4) demonstrated several apparent values of both K

m
 

and V
max

 (for example, Figure 9B). The apparent K
m

 and k
cat

 values for Abz-5 and Abz-6 having 

comparable activity at pH from 6.0 to 9.0 demonstrated fan-like Cornish-Bowden dependen-

cies showing smooth changes of the apparent K
m

 and V
max

 values with increase in substrate 

concentration, and there were no evident intersection points (Figure 9C). It means that Abz-5 
contains a lot of monoclonal abzymes with comparable and different K

m
 and V

max
 values in 

their wide range. The data obtained are summarized in Table 3 [71]. Similar pronounced het-

erogeneity was observed for SLE polyclonal DNase and RNase IgGs and IgAs [70, 71].

It should be mentioned that the same preparations of polyclonal Abzs hydrolyzed RNA 
approximately 10- to 300-fold faster than DNA [70, 71]. In addition, several monoclonal 
IgGs against B-DNA of different sequences (from SLE mice) efficiently hydrolyze single- 
and double-stranded RNA and DNA in a sequence-independent manner, the RNase activ-

ity was by a factor of 30–100 higher than of DNA [107]. Our findings indicate that a variety 
of anti-DNA and anti-RNA abzymes are able to hydrolyze both DNA and RNA [13–22]. In 
this respect, it should be mentioned that after immunization of rabbits with DNA, RNA, 

DNase I, DNase II, and pancreatic RNase I, antinuclease IgGs with different affinity to DNA 
were separated for several fractions by chromatography on DNA-cellulose [49, 50, 55–57]. 

IgGs of all fractions demonstrated DNase and RNase activity and RNase activity was 10- to 
50-fold higher than DNase one. Only one small fraction in the case of abzymes obtained 

after immunization of rabbits with RNA demonstrated only DNase activity and was not 

able to hydrolyze RNA [50]. The data obtained testify in favor of the formation of abzymes 

with chimeric structure of the active centers, which are mostly able to hydrolyze both DNA 

and RNA.

Canonical RNases are usually specific for sequences (for example, RNase T1 is specific for 
guanosines, while RNase A for Py-A sequences) or for structural features (nuclease S1, for 
example, hydrolyzes only single-stranded domains of RNA). Abzymes of SLE and other auto-

immune patients demonstrate novel RNase activities. Some of them may be stimulated by 

Mg2+; they are not sequence-specific but sensitive to subtle and/or drastic folding changes 
of structurally well-characterized tRNA [72–75]. Two tRNALys [72, 74], one corresponding to 

human mitochondria, while the second tRNALys is a mutant revealed in patients with myo-

clonic epilepsy, in which A nucleotide at position 50 is changed for G nucleotide. Different 
canonical RNases including RNase A showed no difference in cleavage patterns of these 
tRNALys [72]. However, in the presence of Mg2+ RNase SLE abzymes produced new cleav-

age sites; the mutant tRNALys showed a significantly different sensitivity for abzymes in the 
substrate mutated region, and the hydrolysis was detected at new positions, showing local 

structural or conformational changes of tRNALys.

Most of Mg2+-dependent abzymes display usually no sequence specificity; they are more 
sensitive to structural features of different tRNAs specific for Gln, Phe, Asp, and Lys [72–75]. 

Abzymes of some AI patients demonstrate RNase A-type as a major specificity showing 
minor differences (preference for CpA and UpA sequences). However, some abzymes 
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Figure 9. Initial rates of [5′-32P](pA)
13

 hydrolysis as a function of oligonucleotide concentration for three SLE IgGs [71]. 

The K
m

 and V
max

 values were determined using the Cornish-Bowden coordinates (A–C). The common intersection points 
give K

m
 and V

max
 values characterizing different abzymes; the absence of intersection points indicates that many different 

monoclonal abzymes with similar and different kinetic parameters catalyze the oligonucleotide hydrolysis.
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 contain a major subfraction demonstrating T1-type of RNase specificity. The Mg2+-

stimulated RNase IgGs had more often a cobra venom RNase V1-like specificity in cleav-

age of tRNAPhe with a unique Mg2+-dependent specificity toward double-stranded regions 
[72, 74]. In spite of some similarities, SLE abzymes show specificities quite different from 
that of RNase V1, but this specificity remarkably differs from patient to patient. Overall, 
monoclonal SLE abzymes entering to total pool of Abzs can discriminate between subtle 

or large structural changes and nucleotide sequences. Interesting that IgGs from patients 
with different AI and viral diseases can demonstrate different patterns of various tRNAs 
cleavage [72–75].

Abzs from the sera of patients with MS [80–82], viral hepatitis [100], HIV-infected patients 
[95], with tick-borne encephalitis [101], Hashimoto’s thyroiditis [102], and schizophrenia 

[103] also demonstrated DNase activity. All these diseases are characterized by different 
levels of the relative activity of abzymes, and DNase activity increases approximately in 

the following order: diabetes ≤ viral hepatitis ≈ tick borne encephalitis < polyarthritis ≤ 
Hashimoto’s thyroiditis ≤ schizophrenia < AIDS ≤ MS < SLE [13–22, 80–82, 95, 101–103]. 

Overall, DNase and RNase polyclonal Abzs from sera of patient with SLE, MS, and other 
AI and several viral diseases may be characterized by a relatively small or extremely large 
content of polyclonal nuclease abzymes containing different relative amounts of kappa- 
and lambda-Abzs, demonstrating from one to several pH optima, having a different net 

Substrate Preparation K
m

α (M) k
cat

 (min−1)

Antibodies

d(pA)
13

Abz-1 7 × 10−8 2.0 × 10−2

(pA)
13

4 × 10−8 1.4

d(pA)
13

d(pA)
13

Abz-2 4.7 × 10−8 to 3.0 × 10−7 2.0 × 10−3 to 7.1 × 10−2

(pA)
13

5.1 × 10−8 to 4.4 × 10−7 0.12–0.84

p(U)
10

9.0 x 10−8 – 4.1 x 10−7 3.2 x 10−3 – 1.3 x 10−2

(pA)
13

Abz-3–Abz-4 1 × 10−8 to 2 × 1 0−6 1.0 × 10−2 to 2.5

RNases

p(A)
13

RNase A 3.4 x 10−6 2.2 x 10−2

p(A)
13

RNase 3 4.9 × 10−6 1.7 × 10−2

p(U)
10

2.1 × 10−6 37

p(A)
13

RNase 4 7.2 × 10−6 5.2 × 10−2

p(U)
10

5.6 × 10−6 26

αThe errors of the values determination were within ± 10–30%.

Table 3. Kinetic parameters for hydrolysis of different oligonucleotides by catalytic SLE-IgGs, human serum RNases and 
pancreatic ribonuclease A [71].
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charge, may be dependent or not on different metal ions, and demonstrate different sub-

strate specificities.

6.2. Monoclonal nuclease SLE abzymes

The active centres of DNase, RNase, protease, and oligosaccharide-hydrolyzing abzymes 

from SLE, MS, and patients with other diseases are usually located on the light chains of these 
Abs [13–22]. The heavy chain is mainly responsible for specific antigen recognition and sig-

nificantly increased antigen affinity for antibodies. The isolated light chains of IgGs cleavage 
vasoactive intestinal peptide with the activity 32-fold higher than Fab fragments [9]. Isolated 
by SDS-PAGE light chains of different abzymes were more active than the intact ones [13–22]. 

But, only multiple myeloma Bence-Jones proteins should be considered as natural human 
monoclonal abzymes [60].

A phagemid library of immunoglobulin kappa light chains derived from lymphocytes of 

peripheral blood of three SLE patients (106 variants) was cloned in pCANTAB5His6 vector. 
For amplification of the phage library Escherichia coli TG1 presenting monoclonal light chains 
(MLChs) on the surface of phage particles was used [111, 112]. Phage particles containing a 

pool of various MLChs having different affinity for DNA were separated by chromatography 
on DNA-cellulose (Figure 10A).

Figure 10. Affinity chromatography of phage particles on DNA-cellulose: (—) and (− − −), A280 values correspond 
respectively to the material of phage particles containing or not cDNA of kappa light chains [111]. The bars show the 

RAs of 16 fractions of 11 peaks eluted with various concentrations of NaCl and acidic buffer (pH 2.6). The titres of the 
particles of different peaks are given in the parenthesis.
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Figure 11. Dependences of the RAs of DNase activity for several MLChs upon the concentration of KCl and NaCl at 
2 mM concentrations of MgCl

2
 and MnCl

2
 (A–F) [111]. The RAs in the absence of KCl and NaCl were taken for 100%. 

Numbers of MLChs (15 nM) and the used MnCl
2
 or MgCl

2
 are given on panels A–F.
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The phage particles were distributed between 16 fractions of 11 peaks and all fractions corre-

sponding to new small pools of anti-DNA MLChs demonstrated DNase activity (Figure 10). 

Thus, all small pools of MLChs of 16 fractions with different affinity of phage particles for 
DNA contained not only light chains without, but also with DNase activity. For preparation 

of individual colonies, E. coli HB2151 and phage particles eluted from DNA-cellulose with 
0.5 M NaCl (peak 7) demonstrating high DNase activity were used. For study of DNase activ-

ity, 45 of 451 individual colonies from two Petri dishes were chosen in a random way; 15 of 45 

single colonies (~33%) were capable to hydrolyze DNA.

MLChs of 15 single colonies were used for purification of individual MLChs using chromatog-

raphy on Ni2+-charged HiTrap chelating Sepharose and by following FPLC gel filtration [111]. 

The preparations of ~28-kDa MLChs were electrophoretically homogeneous, showed posi-
tive answer with mouse IgGs against human Abs light chains at Western blotting and posi-
tive ELISA answer using plates containing immobilized DNA; in situ analysis demonstrated 

DNase activity in the gel zone corresponding only to MLCh [111].

The dependences of DNase RAs for various MLCh preparations on the concentration of dif-
ferent metal ions were analyzed. It was shown that MgCl

2
 and MnCl

2
 are good activators 

of all 15 MLChs. Since K+ and Na+ ions can influence on the spatial structures of different 
enzymes, antibodies, and nucleic acids, we have analyzed dependencies of the RAs upon 

concentration of these ions at fixed concentrations of MgCl
2
 and MnCl

2
 (2 mM). All MLChs 

demonstrated very specific dependencies and optimal concentrations of NaCl and KCl (for 
example, Figure 11). Optimal concentrations of NaCl and KCl for 15 MLChs are given in 
Table 4. It was interesting to see whether optimal concentrations of MgCl

2
 and MnCl

2
 can 

depend on NaCl and KCl concentrations. Figure 12 shows that for all MLChs in the presence 
of KCl and NaCl in different concentrations the dependencies reach plateau at 1.5–2.0 mM 
concentration of MgCl

2
 and MnCl

2
. Several MLChs demonstrated shape-bell dependencies; 

but the inhibition was usually observed at Mn2+ and Mg2+ concentrations higher than 2–4 mM 
(Figure 12) [111].

Various canonical DNases demonstrate usually different pH optima, but all of them have 
only one pH optimum [108, 109]. In contrast to known canonical DNases, polyclonal DNase 
Abzs from the sera of patients with SLE and other diseases can contain from one to many 

monoclonal abzymes demonstrating from 1 to 2–8 well pronounced pH optima in range 

from 5 to 10 [13–22, 72, 73, 82–84, 110]. pH optima of 15 MLChs in the presence of 2 mM 
MgCl

2
 as well as for DNase II and DNase I were analyzed and several typical dependencies 

are given in Figure 13. DNase I has only one optimum at pH 7.0–7.2, while DNase II dem-

onstrates one optimum at pH 4.9–5.0 (Figure 13A). Optimal pH for all 15 MLChs is given in 
Table 5 [111].

Eight of 15 MLChs demonstrated only one pH optimum, while seven preparations shows 
two different pH optima (Figure 13). It was shown that Mn2+, Co2+, Ni2+, and Ca2+ ions 

activate DNase I in significantly smaller degree than Mg2+ ions [108, 109]. The RAs of 15 

MLChs in the presence of 6 various metal ions (2 mM) using optimal NaCl and KCl con-

centrations and optimal pH were estimated (Table 6). The maximal activity for various 
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MLChs was observed in the presence of different MeCl
2
 salts, but in average the activity 

decreased in the following order: MnCl
2
 > CoCl

2
 > MgCl

2
 > NiCl

2
 ≈ CaCl

2
 (Table 6). For 

all 15 MLChs, apparent k
cat

 values were estimated (Table 6) [111]. Overall, all 15 MLChs 
showed enzymatic properties very different from canonical DNases and each MLCh prep-

aration demonstrated a very specific ratio in the RAs in the presence of different metal ions 
used (Table 6).

Number of MLCh 

preparation

MnCl
2

MgCl
2

[KCl], mM [NaCl], mM [KCl], mM [NaCl], mM

1 0–0.5; > 0.5 inhib.a 0–0.5; > 0.5 inhib. 30.0; > plateaub 100.0; >120.0 inhib.a

2 100; >120 inhib. 100; > 120 inhib. 75.0; >100 inhib. 15.0; >100.0 inhib.

3 5.0; > 10 inhib. 5.0; > 10.0 inhib. 0.0; > 0.0 inhib. 0.0; > 0.0 inhib.

4 2.5; > 4.0 inhib. 7.5; > 10.0 inhib. 5.0 > 10.0 inhib. 8.5; > 15.0 inhib.

5 5.0; > 10 inhib. 5.0; > 10.0 inhib. 0.0 > 0.0 inhib. 0.0; > 0.0 inhib.

6 1–2 and 75; >75 inhib.c 1–2 and 150 1.5–30 plateau; >40.0 

inhib.

1–3 and 50.0; >100.0 

inhib.

7 0.5; >1.0 inhib. 2.5; >3.0 inhib. 3.0; >4.0 inhib. 8.0; >10.0 inhib.

8 0–10 inhib.; 75; >80 

inhib.

5–150 plateau 5.0 and 75.0; >80.0 

inhib.

1.5; 2.0–75 inhib.; 100; 

>plateauc

9 20–25; >30 inhib. 2.0; >3.0 inhib. 10.0; >12.0 inhib. 5.0 and 75.0; >80.0 

inhib.

10 2.5; plateaub 10.0; >15.0 inhib. 2.5; >5.0 inhib. 5.0; >7.0 inhib.

11 1–10 plateau; >10 inhib. 0.5–2.0 plateau; >2.0 

inhib.

0–10.0 plateau; >10.0 

inhib.

2–50 plateau; >60.0 

inhib.

12 0.0; >0.0 inhib. 2.0 and 5–10; >10.0 

inhib.

1–5; >10.0 inhib. 1–2 and 5–10; >10.0 

inhib.

13 0.0; >0.0 inhib. 0.0 and 10.0; >10.0 

inhib.

0.1–0.3; >0.7 inhib. 0–0.1; >0.1 inhib.

14 100–150 plateau 100–150 plateau 75.0; >100 inhib. 150.0

15 1.5; >2 inhib. 50.0; >50.0 inhib. 0.0 and 50.0; >50.0 

inhib.

0–10 and 50.0; >50.0 

inhib.

aFor each value, a mean of two measurements is reported, optimal concentrations are given in bold; the mark (>value 

inhib.) means that the dependence demonstrates bell-shaped character and that at higher concentrations of the salt the 

inhibition of the reaction is observed.
bThe mark (30 (or any other value in bold); >plateau) means that optimal concentration corresponds to 30 mM and there 
is no remarkable inhibition up to maximal concentration (100–150 mM) of NaCl or KCl used.
cThe mark (1.5; 2.0–75 inhib.; 100; >plateau (or other similar values)) means that there are two optimal concentrations 

at 1.5 and 100 mM salt and a significant decrease in the activity of analyzed MLCh at concentrations in the region 
2.0–75 mM.

Table 4. The optimal concentrations of KCl and NaCl in the case of individual recombinant MLChs in the presence of 
2 mM MgCl

2
 or 2 mM MnCl

2
 [111].
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Our previous findings demonstrated that polyclonal abzymes from sera of patients with 
SLE, MS, and other autoimmune and/or viral diseases can contain many monoclonal 
DNase and RNase abzymes showing very different enzymatic properties [13–22]. At the 

same time, estimation of possible number of monoclonal abzymes in their total pools was 

very difficult, since they can have comparable or different affinity for DNA, significantly 
different optimal pHs, various k

cat
 values, and different dependencies on various Me2+ and 

Me+ ions.

In our study DNase activity only for 45 of 451 single colonies corresponding to only one 
(eluted with 0.5 M NaCl) of 16 fractions with different affinity for DNA-cellulose was 
analyzed, while MLChs of all these fractions effectively hydrolyze DNA [111]. Fifteen of 

45 individual MLChs (~33%) were active in the hydrolysis of DNA. Taking into account the 
fact that only 45 of 451 colonies were analyzed, it should be assumed that even this fraction 

Figure 12. Dependences of the RAs of DNase activity for several MLChs (20 nM) on the concentrations of MnCl
2
 and 

MgCl
2
 at different fixed KCl and NaCl concentrations (A–D) [111]. Numbers of MLChs and concentrations of KCl and 

NaCl used are given on panels A–D. A complete hydrolysis of plasmid DNA was taken for 100%.
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contains much greater number of monoclonal abzymes with DNase activity. In this regard 
it should be mentioned the data of other article [112]. After separation of phage particles 

on DNA-cellulose, the fraction eluted by an acidic buffer (pH 2.6) was used for obtaining 
of MLChs (~28 kDa) with DNase activity. In this case, 33 of 687 individual colonies were 
chosen randomly for study of MLChs. Nineteen of 33 clones (58%) demonstrated DNase 
activity [112]. Detection of DNase activity in situ after SDS-PAGE of purified MLChs 
using gel containing DNA showed that they are not contaminated by canonical DNases. 

MLChs demonstrated from one to two pH optima. MLChs were inactive after the dialysis 

Figure 13. Dependences of the RAs of DNA-hydrolyzing activity of human DNase I and DNase II (A) and of nine MLChs 
(B–D) on pH of reaction mixtures [111]. The RAs for DNase II were estimated in the absence, while for DNase I, in the 
presence of MgCl

2
 (10 mM). The RAs of nine MLChs were estimated using optimal MeCl

2
 (2 mM), optimal concentration 

of KCl or NaCl (see Table 6). Reaction mixtures were incubated at 30°C for 0.4–5.0 h and then the data obtained were 
normalized to standard conditions; complete hydrolysis of scDNA for 30 min in the presence of various MLChs (10 nM) 
was taken as 100%.
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against EDTA but were activated by different metal ions; the ratio of RA in the presence of 
Mg2+, Mn2+, Ni2+, Ca2+, Zn2+, and Co2+ was individual for each MLCh preparation. Na+ and 

K+ suppressed DNA-hydrolyzing activity of these MLChs at different concentrations [112]. 

Hydrolysis of DNA by all MLChs was consistent with Michaelis-Menten kinetics. These 
recombinant MLChs demonstrated high affinity for DNA (K

m
 = 3–9 nM) and high k

cat
 val-

ues (3.4–6.9 min−1) [112]. Even if we assume that each of the above-mentioned 16 fractions 

can contain only about 20 MLChs with DNase activity, their total number may be close to 
300, but it is obvious that this number is much larger and can be close from one to several 

thousands.

DNase or number of MLCh 

preparation

Optimal pH

pH
1

pH
2

DNase I 7.0–7.2 No second optimum

DNAse II 4.9–5.0 No second optimum

1 5.7–5.9 7.9–8.1b

2 6.0–6.2 8.2–8.3

3 6.9–7.0 8.2–8.5

4 7.5–7.6 No second optimum

5 6.9–7.0 8.2–8.5

6 7.8–8.0 No second optimum

7 6.2–6.4 No second optimum

8 8.5–8.6 No second optimum

9 7.8–8.0 8.9–9.1

10 6.1–6.3 8.5–8.7

11 4.8–5.0 8.6–8.7

12 7.7–7.9 No second optimum

13 8.5–8.7 No second optimum

14 7.9–8.1 No second optimum

15 5.4–5.6 No second optimum

aFor each value, a mean of two measurements is reported.
bFor various MLChs one or two optimal pHs were revealed.

Table 5. The optimal pH values for DNase II, DNase I, and 15 different recombinant and individual MLChsa [111].
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7. Abzymes with protease activity

7.1. Polyclonal abzymes hydrolyzing myelin basic protein

The increased level of antibodies to myelin basic protein and abzymes hydrolyzing MBP was 
revealed for the first time in the blood of patients with multiple sclerosis [83–87]. It was shown 
that Abs of healthy donors cannot hydrolyze MBP [13–22, 83–87]. The most widely accepted 

theory of multiple sclerosis pathogenesis assigns the major role in the destruction of myelin 

Number 

of MLChs

Mg2+ Mn2+ Zn2+ Ni2+ Co2+ Cu2+ Ca2+ pHc [NaCl] or 

[KCl], mMd

App. k
cat

, 

min−1b

1 92.7 100a 6.5 10.7 20.6 0.0 4.0 5.8e 100.0 Na+ 0.6 ± 0.04

60.7 100.0 7.5 11.5 18.5 0.0 5.4 8.0ξ 100.0 Na+

2 69.6 100.0 55.4 83.8 73.0 0.0 10.1 6.1 80.0 Na+ 0.1 ± 0.01

100.0 92.3 18.5 95.6 63.7 3.0 26.0 8.2 80.0 Na+

3 78.3 98.5 42.7 56.2 0.3 9.0 100.0 6.9 5.0 K+

1.3 100.0 3.6 11.9 99.0 0.0 0.0 8.4 5.0 K+ 0.33 ± 0.03

4 51.0 100.0 80.0 56.0 24.0 5.0 26.0 7.5 7.5 Na+ 0.5 ± 0.04

5 78.3 98.5 42.7 56.2 0.0 9.0 100 6.9 5.0 K+ 0.3± 0.03

1.3 100.0 3.6 11.9 99.0 0.0 0.0 8.4 5.0 K+ 0.34 ± 0.03

6 1.3 100.0 3.6 11.9 99.0 0.0 0.0 7.9 1.0 K+ 0.02 ± 0.003

7 75 70 80 85 100.0 5 21 6.3 2.5 Na+ 0.3 ± 0.04

8 58.5 100.0 18.3 19.7 0.0 0.0 16.2 8.5 5.0 Na+ 0.06 ± 0.07

9 100.0 85.2 15.9 0.0 85.4 0.0 75 7.8 1.5 Na+ 0.7 ± 0.08

10 25 20 15 100.0 17 2 39 8.6 10.0 Na+ 0.2 ± 0.02

11 80 85 43 24 100.0 0.0 8 8.6 5.0 K+ 0.7 ± 0.06

12 55.0 88.5 16.5 56.3 100.0 1.2 56.2 7.8 5.0 K+ 0.12 ± 0.01

13 34.5 25.0 16.9 83.3 100.0 4.8 41.9 8.6 0.1 K+ 0.13 ± 0.01

14 80.9 75.2 19.7 100.0 59.5 6.3 37.3 8.0 5.0 Na+ 0.11 ± 0.01

15 100.0 49.2 55.7 33.5 85.8 45.0 70.0 5.5 1.5 Na+ 0.12 ± 0.01

aThe maximal RAs in the presence of one of seven metal ions used was taken as 100% and given in bold; the error of the 

values determination (two independent experiments) did not exceed 7–10%.
bThe apparent k

cat
 values using optimal conditions were calculated as k

cat
 = V

max
 (nM/min)/[MLCh] (nM).

cOptimal pHs were used for every of MLCh preparation.
dOptimal concentrations of KCl and NaCl in the case of different MLChs were used.
eThe RAs for several MLChs were found in the case of two different pH optima.

Table 6. The RAs of different recombinant MLChs in the presence of various metal ions (2 mM) at optimal pHs and 
concentration of KCl and NaCl [111].
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including MBP to the inflammation related to autoimmune reactions [43, 113–115]. Increased 
levels of Abs and oligoclonal IgGs in the cerebrospinal fluid together with clonal B cell accu-

mulation in the CSF and lesions of MS patients are among the main evidences of MS [115].

ELISA was used for comparison of the relative levels of Abs against MBP in the sera of 
12 healthy donors and 14 patients with SLE [77]. For healthy donors the concentrations of 

auto-Abs were not zero and varied from 0.02 to 0.16 A
450

 units; in average 0.09 ± 0.04 A
450

 

units; similar value (0.09 ± 0.04 A
450

 units) was previously revealed for other 10 healthy volun-

teers [83]. Relative concentrations of anti-MBP Abs of SLE patients were changed from 0.27 to 
0.54 A

450
 units, in average 0.38 ± 0.08 A

450
 units [77]. Using the same test system, it was previ-

ously revealed that the indexes of anti-MBP Abs for 25 MS patients are changed from 0.67 to 
0.98 A

450
 units, in average 0.8 ± 0.1 A

450
 units [83, 84]. Thus, all SLE patients demonstrated in 

average ~4.2-fold higher level of anti-MBP Abs then healthy donors, but by a factor of ~2.1 
lower level than MS patients.

Electrophoretically and immunologically homogeneous polyclonal IgGs were purified from 
the sera of SLE patients by sequential chromatography of serum proteins on Protein-G 
Sepharose using conditions removing nonspecifically bound proteins, followed by FPLC gel 
filtration in condition destroying immune complexes [77, 78] similarly to obtaining of MS 
IgGs [84–87]. It was shown that 150 kDa SLE IgGs are electrophoretically homogeneous and 
in contrast to Abs from healthy donors are active in the hydrolysis of MBP [55, 77]. To prove 

that MBP-hydrolyzing activity of SLE IgGs is their intrinsic property, we have checked the 
fulfilment of several known strict criteria described above including analysis of Ab protease 
activity after SDS-PAGE (Figure 7) [77]. In addition, it was shown that in contrast to canonical 
proteases, the SLE polyclonal IgGs separated using MBP-Sepharose specifically hydrolyzed 
only MBP (Figure 14A) but not many other tested control proteins (Figure 14B) [77].

Figure 14. The hydrolysis of MBP (0.7 mg/ml) by 3 µg/ml IgGmix (mixture of IgGs of 12 SLE patients) separated by 
chromatography on MBP-Sepharose after incubation for 1 (lane 2), 2 (lane 3), 3 (lane 4), 14 (lane 5), 16 (lane 6), 18 (lane 7), 
and 24 h (lane 8) (A) [77]. Lanes 1 and 9 correspond respectively to MBP incubated during 24 h alone or in the presence 
of 0.2 mg/ml IgGmix from 12 healthy volunteers. SDS-PAGE analysis of the hydrolysis of different control proteins by 
the same IgGmix (B). Proteins were incubated for 24 h with 30 µg/ml IgGmix (odd numbers) or without antibodies (even 
numbers): BSA (lanes 1 and 2), human serum albumin (lanes 3 and 4), casein from human milk (lanes 5 and 6), lysozyme 
from hen eggs (lanes 7 and 8), bovine aldolase (lanes 9 and 10), and lactoferrin from human milk (lanes 11 and 12). Lane 

C corresponds to standard protein markers. SLE IgGs specifically hydrolyze only MBP (A), but not other proteins (B).
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Protease IgGs from the sera of ~95–100% of patients with different autoimmune pathologies 
[9, 66, 116], human milk Abs hydrolyzing casein [96, 117], Abs from AIDS patients hydrolyz-

ing HSA, casein, and HIV reverse transcriptase [95] are serine-like proteases, whose activity 

is strongly decreased after their preincubation with serine protease-specific inhibitors PMSF. 
In addition, a high metal-dependent MBP-hydrolyzing activity for MS IgGs [86] and casein-

hydrolyzing of human milk sIgAs [96] were recently revealed. It was shown that antiintegrase 
IgGs and IgMs of HIV-infected patients can contain abzymes hydrolyzing viral integrase of 
four types, resembling serine, thiol, metal-dependent, and acidic proteases, the ratio of which 

may be individual for every AIDS patient [97, 98].

It was shown that preincubation of individual polyclonal SLE IgGs with specific inhibitor 
of thiol proteases iodoacetamide and of acidic proteases pepstatin A [77, 78] similarly to MS 
IgAs, IgGs, and IgMs [84–87] leads to a small effect (5–15%) on MBP hydrolysis by SLE IgGs. 
PMSF specifically inhibiting serine proteases and inhibitor of metalloproteases EDTA remark-

ably or significantly suppressed proteolytic activity of SLE IgGs (Figure 15A).

The inhibition of Abz activity by EDTA is significantly greater than by PMSF. Overall, all 
individual SLE abzymes possess specific ratio of RAs in the presence of PMSF and EDTA 
(Figure 15A). Interestingly, polyclonal SLE abzymes was more sensitive to EDTA than MS 
Abs [77]. Catalytic heterogeneity of polyclonal abzymes with several different activities 
from patients with various autoimmune diseases and animals was shown in many papers 

[65, 80–82, 92]. The above data also demonstrate extreme heterogeneity of SLE abzymes 

hydrolyzing MBP. In addition, polyclonal MBP-hydrolyzing abzymes of every patient are 
characterized with specific dependence of RAs upon pH; the pH profile of each IgG is unique 
(Figure 15B and D). The effect of several different metal ions on the MBP-hydrolyzing activi-
ties of dialyzed against EDTA individual 12 SLE polyclonal IgGs was analyzed (Figure 16A 

and B; B is a continuation of A).

All 12 IgGs demonstrated the individual ratios of RAs in the presence of eight various metal 
ions. To analyze the “average” effect of different metal ions on SLE and MS IgGs, we have 
used SLE IgGmix and MS IgGmix before (Figure 16C) and after (Figure 16D) their dialysis 

against EDTA. Ca2+ was shown to the best activator of SLE IgGmix the effect of different met-
als decrease in the following order: Ca2+ > Co2+ ≥ Ni2+≥ Mg2+ ≥ Mn2+ ≥ Cu2+. Fe2+ did not activate 

SLE IgGmix, while Zn2+ inhibits its activity. MS IgGmix demonstrated a different order of the 
metal-dependent activity: Mg2+ > Mn2+ ≥ Cu2+ ≥ Ni2+ ≥ Co2+ ≥ Ca2+, while Fe2+ and Zn2+ slightly 

inhibit MBP hydrolysis (Figure 16C and D).

In addition, the mixture of electrophoretically homogeneous IgGmix was separated to frac-

tions of IgG1–IgG4 subclasses and to fractions of IgGs containing lambda- and kappa-type of 
light [76]. The immunological purity of IgGs of all types was revealed by ELISA; the prepa-

rations of IgG1, IgG2, IgG3, and IgG4 did not contain IgGs of other subclasses. The lambda 
- and kappa-IgGs and IgG1–IgG4 were active in the hydrolysis of MBP and their RAs and k

cat
 

values are given in Table 7. Kappa-IgGs demonstrated 1.2-fold lower apparent k
cat

 (2.4 × 10–2 

min–1) than lambda-IgGs (2.8 × 10–2 min–1). The apparent k
cat

 values of different subclasses IgG 
abzymes in the hydrolysis of MBP increased in the following order (min−1): IgG4 (1.7) < IgG2 
(2.7) < IgG3 (2.9) < IgG1 (3.0) (Table 7). The relative content of kappa-IgGs and lambda-IgGs 
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as well as IgG1–IgG4 in nonfractionated IgGmix was estimated (Table 7). Taking this content 

into account, the relative contribution of kappa-IgGs and lambda-IgGs into the total MBP-
hydrolyzing activity of IgGmix was estimated as 48.4 ± 4.0% and 55.5 ± 4.3%, respectively 
(Table 7). The relative contribution of SLE IgGs of different subclasses to the total proteolytic 
activity of IgGmix was estimated in a similar way: IgG1 (73.0 ± 3.4%) > IgG2 (19.1 ± 1.8%) > 
IgG3 (6.7 ± 0.3%) > IgG4 (1.2 ± 0.2%). These data provided the first evidence that SLE IgGs of 
all types possess MBP-hydrolyzing activity, but they differ in the relative contribution into the 
total activity of proteolytic activity of polyclonal abzymes [76]. Kappa-IgGs and  lambda-IgGs 

Figure 15. The relative proteolytic activities of 12 different individual SLE IgGs in the hydrolysis of MBP (0.5 mg/ml) 
before (gray columns), after their preincubation with PMSF (white columns) or 35 mM EDTA (black columns) (A) [77]. 

The pH dependences of the RAs of MBP-hydrolyzing activity of 11 individual SLE IgGs (B and C). The complete 
hydrolysis of MBP (0.5 mg/ml) was taken for 100%.
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Figure 16. The RAs of 12 SLE IgGs dialyzed against EDTA in the hydrolysis of MBP [77]; 12 columns of different color 
of the first set (A) correspond to 12 individual Abs in the absence of external metal ions, while 8 other columns sets to 
the same 12 IgGs in the presence of 8 different metal ions marked on panels A and B. An average error did not exceed 
10% (A and B). The RAs of SLE IgGmix (gray columns) and MS IgGmix (white columns) before (C) and after (D) these 
Abs dialysis against EDTA in the cleavage of MBP in the presence of different metal ions (2 mM). A complete hydrolysis 
of MBP (0.5 mg/ml) for 1 h in the presence of 0.01 mg/ml Abs was taken for 100%. Various metal ions are shown in 
panels A–D.
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hydrolyzed MBP within a wide range of pH values (5.3–9.5) and showed comparable pH 
dependencies, while the pH profiles for IgG1–IgG4 were unique (Figure 17).

These results clearly demonstrate that IgGs of all four subclasses are very heterogeneous and 
can consist of different sets of catalytic subfractions of polyclonal IgG having quite distinct 
pH dependencies. Figure 17 shows the relative influence of PMSF and EDTA on the MBP-
hydrolyzing activity of different IgGs. The nonfractionated IgGs and lambda-IgGs demon-

strated lower inhibition by PMSF than that for EDTA (Figure 17). The inhibition of serine-like 

and metal-dependent activities of kappa-IgGs were comparable. PMSF suppressed MBP-
hydrolyzing activity of IgG3, IgG2, and IgG1 by 13–17%, while the decrease of this activity 
by EDTA was significantly greater, 30–45%. There was no noticeable PMSF effect on the IgG4 
activity, while EDTA decreased its activity by ~65% (Figure 17). Thus, IgG1–IgG4, kappa-
IgGs, and lambda-IgGs are characterized by specific ratios of metal-dependent and serine-like 
proteolytic activities.

The cleavage site specificity of different IgG preparations in the case of four oligopeptides 
corresponding to four antigenic determinants of MBP was analyzed [76]. Overall, kappa-IgGs 
and lambda-IgGs, as well as IgG1–IgG4 demonstrated either different patterns of four oligo-

peptides cleavage, or at least stimulate the accumulation of the same products of the hydro-

lysis with different efficiency.

The dialysis of IgGs caused a more pronounced decrease in the activity of kappa-IgGs than 
of lambda-IgGs [76]. Addition to the reaction mixtures of Ca2+ + Mg2+ or Ca2+ + Co2+ led to 

IgG Content, % RAs (mg MBP/1 h) / 

mg of IgGs**

Apparent k
cat

, ×102 

(min−1)§

Contribution to the 

total activity, %#

IgG, nonfractionated 100 1.95 ± 0.05 2.6 ± 0.07 100

IgGs containing lambda- and kappa-types of light chains

kappa-IgG 44.6 ± 4.0 2.1 ± 0.16* 2.8 ± 0.21 48.4 ± 4.0

lambda-IgG 55.4 ± 5.0 1.8 ± 0.15 2.4 ± 0.20 55.5 ± 4.3

IgGs of different subclasses

IgG1 70.8 ± 2.0 2.3 ± 0.11 3.0 ± 0.14 73.0 ± 3.4

IgG2 20.6 ± 3.0 2.0 ± 0.2 2.7 ± 0.25 19.1 ± 1.8

IgG3 6.7 ± 1.5 2.2 ± 0.08 2.9 ± 0.10 6.7 ± 0.3

IgG4 1.9 ± 1.0 1.3 ± 0.07 1.7 ± 0.09 1.2 ± 0.2

*For each fraction, a mean of two repeats is used.
**Relative activities at fixed 0.75 mg/ml concentration of MBP were estimated.
§Apparent k

cat
 values were calculated as k

cat
 = V (M/min)/[IgG] (M).

#Contribution of different IgGs to the total activity of nonfractionated Abs was calculated taking into account the relative 
content of these IgGs within polyclonal IgG

mix
 and their RAs in the hydrolysis of MBP.

Table 7. Relative specific MBP-hydrolyzing activities (RAs) of IgGs of different types and their relative contributions to 
the total activity of polyclonal IgG

mix
 [76].
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 approximately comparable increase in the RAs of dialyzed lambda-IgG (1.6- to 1.7-fold), 
kappa-IgG (2.0- to 2.3-fold), and nonfractionated IgGs (1.7- to 1.8-fold). Ca2++Co2+ together 

cannot activate IgG1, while in the presence of Ca2+ + Mg2+ its activity increased by a factor of 

1.6. Ca2+ + Co2+ increased the activity of IgG2 (~2.9-fold), IgG3 (~6.4-fold), and IgG4 (~6.0-fold). 
A significant increases in the RAs were revealed for Ca2+ + Mg2+ in the case of IgG3 (~3.5-fold), 
IgG4 (~4.4-fold), and IgG2 (~5.7-fold). While the Ca2+ + Mg2+ combination was the best for the 

activation of IgG2 and IgG1, IgG4, and IgG3 showed the highest activity in the presence of 
Ca2+ + Co2+. The ratios of RAs of all IgG preparations before and after their dialysis against 
EDTA, as well as in the presence of different metal ions, were individual for every prepara-

tion analyzed. These data indicate for an extreme Me2+-dependence diversity of different sub-

classes SLE IgGs hydrolyzing MBP.

The extraordinary diversity of polyclonal abzymes with DNase, RNase, and proteolytic activ-

ities was shown not only in the case of SLE, but also other diseases [13–22]. Very unexpected 
enzyme properties have been discovered in the case of monoclonal abzymes of patients 

with SLE.

Figure 17. The pH dependence of RAs of MBP-hydrolyzing SLE kappa-and lambda-IgGs (A), as well IgG1, IgG2, 
IgG3, and IgG4 (B) [76]. Hydrolysis of MBP incubated without IgGs was used as control (“Con,” A). The RAs of MBP-
hydrolyzing activity of SLE IgG1, IgG2, IgG3, IgG4, and total IgGmix (t-IgG) (C). The RAs were determined before (black 
columns) and after IgGs preincubation with PMSF (gray columns) and EDTA (white columns). The RAs of all IgGs in the 
absence of the inhibitors were taken as 100%.
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7.2. Monoclonal SLE abzymes hydrolyzing myelin basic protein

For analysis of MBP-hydrolyzing activity of Abs, we have used the same phagemid library 
of kappa light chains [118–120] as for analysis of MLChs with DNase activity [111, 112]. The 

phage particles containing MLChs with different for MBP were separated by affinity chroma-

tography on MBP-Sepharose (Figure 18A).

The pool of phage particles was distributed between 10 peaks eluted from the sorbent and 

all MLChs of fractions of 10 new small pools efficiently hydrolyzed MBP and four oligo-

peptides (OPs) corresponding to four immunodominant MBP sequences containing cleavage 
sites (Figure 18B). However, there were no any detectable particles peaks having considerable 

affinity for MBP after similar chromatography of phage particles with pCANTAB plasmid 
containing no cDNA of light chains (Figure 18A). Thus, the MLChs pools of all 10 phage par-

ticles fractions having different affinity to MBP contain both inactive and catalytically active 
light chains hydrolyzing MBP. Similar distribution all over the chromatography profiles was 

Figure 18. Affinity chromatography on MBP-Sepharose of phage particles: (− −) and (—) absorbance at 280 nm of 
particles corresponding plasmid respectively without and with kappa light chains cDNA (A) [118]. Relative titres of 

phage particle and NaCl concentrations corresponding to various peaks are shown on panel A. The bars (B) indicate the 
RAs of 10 phage particles small pools of peaks 1–10 eluted from the MBP-Sepharose with different NaCl concentrations 
and acidic buffer (pH 2.6) (A); the reaction mixtures containing MBP (0.7 mg/ml) were incubated at 30°C for 12 h or 
different 1 mM OPs: OP17, OP19, OP21, and OP25 (see panel C) were incubated with 109 plaque-forming units/ml phage 
particles for 6 h and a complete hydrolysis of the substrates was taken as 100%. Complete MBP protein sequence and 
positions of four OPs sequences containing the protein cleavage sites (C).
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observed for polyclonal IgGs from SLE and MS patients in the case of their chromatography 
on MBP-Sepharose [76, 77, 86, 87].

Phage particles eluted from MBP-Sepharose with 0.5 M NaCl (peak 7, Figure 18A) were used 

for preparation of individual colonies. Overall, 72 of 440 individual colonies choosing in a 

random way were used for study of MBP-hydrolyzing activity. MLChs of 22 of 72 single colo-

nies (~30%) possess MBP-hydrolyzing activity. All 22 recombinant catalytically active MLChs 
containing a sequence of 6 histidine residues interacting with Ni2+ ions and 5 MLChs with-

out activity were purified by chromatography on charged with Ni2+ ions HiTrap  chelating 

Sepharose and by following FPLC gel filtration. Then a mixture of equal amounts of 22 cata-

lytically active monoclonal MLChs (act-MLChmix) and second mixture of five preparations 
without activity (inact-MLChmix) were prepared. The electrophoretical homogeneity of ~26- 
to 27-kDa inact-MLChmix and act-MLChmix was shown by SDS-PAGE with silver staining 
(Figure 19A, lane 1).

MLChmix was subjected to SDS-PAGE; its proteolytic activity was revealed after extraction of 
proteins from the separated gel slices only in the band corresponding to the MLCh (Figure 19A 

and B). Act-MLChmix demonstrated activity in the hydrolysis of MBP (Figure 19C, lane 4), 

while inact-MLChmix had no activity (Figure 19C, lane 2). Moreover, in contrast to canoni-
cal proteases cleaving all proteins, act-MLChmix hydrolyzes only MBP (Figure 19C, lane 4) 

but no other control proteins (Figure 19C, lanes 5–8). All 22 act-MLChs and 5 inact-MLChs 
showed positive answer with mouse Abs (conjugated with horseradish peroxidase) against 

light chains of human Abs at Western blotting and positive ELISA response using plates with 
immobilized MBP.

The RAs in the hydrolysis of four different OPs were analyzed by TLC. Figure 19(D) and (E) 

demonstrates several typical examples of the OP19 and OP21 hydrolysis by different MLChs 
[118]. Initially, we have assumed that every of 22 MLChs corresponds to IgGs to one of four 
known specific MBP immunodominant sequences and that each MLCh can bind and hydro-

lyze only one of four OPs. At the same time, unexpected results were obtained. The RAs for 22 

MLCh are summarized in Figure 19(F). All 22 MLChs hydrolyzed only three or four OPs and 
with significantly different efficiency in the case of every OP. Hydrolysis of OP17 MBP was 
very weak (~1–1.5%) except seven MLChs: 15 ≥ 10 ≥ 12 ≥ 1 ≥ 16 ≥ 20 ≥ 8 (1.6–7.1%) (Figure 19F). 

All MLChs except MLCh-22 hydrolyzed efficiently OP21 and several other OPs, while six 
other MLChs (8, 9, 10, 12, 13, and 14) demonstrated high activity only in the cleavage of OP21. 
Several MLChs (1–7, and 11) efficiently hydrolyzed OP19 and OP21, while MLCh-18 and 20 
cleaved OP21 and OP25. Four recombinant MLChs (15, 17, 19, and 21) cleaved three OPs with 
relatively high efficiency, while MLCh-16 hydrolyzed all four OPs (Figure 19E). The ratios 

of the RAs in the hydrolysis of four OPs were specific for every MLCh (Figure 19E). OP21 

and OP19 were shown to be the best substrates for most MLChs, while 15–22 MLChs better 
hydrolyzed OP25.

In contrast to MS IgGs [76, 77, 84–87], SLE polyclonal abzymes with MBP-hydrolyzing activ-

ity are less sensitive to PMSF than to EDTA. The effect of PMSF and EDTA on the RAs of 22 
different MLChs was analyzed [118]. Figure 20(A) shows that the 12 MLChs (1, 2, 3, 5, 7, 8, 12, 
13, 15, 16, 17, and 19) are metal-dependent proteases; they cannot not remarkably decrease 
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Figure 19. SDS-PAGE analysis of proteolytic activity (A) and homogeneity of act-MLChmix (7 µg) (B, lane 1) using a 
5–16% gradient gel with following silver staining; the arrows indicate the positions of protein markers (B, lane 2) [118]. 

After electrophoresis the gel was incubated using special conditions for renaturation of act-MLChmix. The RAs in the 
hydrolysis of MBP (%) was determined using the extracts of 2- to 3-mm 22 gel fragments (A). The complete hydrolysis of 
MBP (0.7 mg/ml) after 24 h of mixture (20 µl) incubation with 15 µl of extracts was taken for 100%. SDS-PAGE analysis 
of MBP hydrolysis by 30 µg/ml inact-MLChmix (lane 2) and by act-MLChmix (lane 4) for 4 h; MBP incubated alone 
(lanes 1 and 3). The absence of detectable hydrolysis of control 0.7 mg/ml proteins by act-MLChmix is shown: human 
serum albumin (lane 6), human milk lactoferrin (lane 8); lanes 5 and 7 correspond to the proteins incubated alone. Lane 

C corresponds to standard protein markers. TLC analysis of OP19 (D) and OP21 (E) hydrolysis by different MLChs. The 
1 mM OPs were incubated at 30°C for 24 h without MLChs (lanes C) or in the presence of 50 µg/ml of various MLChs 
(MLChs numbers are given on top of the panels) demonstrating relative activities in the hydrolysis of OP19 and OP21. 
Panel F shows the RAs of 22 various MLChs in the hydrolysis of OP25, OP21, OP19, and OP17.
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their proteolytic activity after incubation with PMSF, while EDTA significantly suppresses 
their MBP-hydrolyzing activity.

Four MLChs (4, 6, 9, and 11) demonstrate serine-like proteolytic activity; PMSF suppressed 
their activity, but there was no noticeable effect of EDTA (Figure 20B). PMSF suppressed 
protease activity of three MLChs (20, 21, and 22) by ~40%, and their inhibition by EDTA 
was to some extent comparable, 40–60% (Figure 20B). Thus, three MLChs (20–22) are char-

acterized to some extent comparable ratios of metal-dependent and serine-like protease 

activities. A very intriguing situation was observed for three MLChs (18, 14, and 10); EDTA 
and PMSF do not remarkably decreased their proteolytic activity (Figure 20B). No signifi-

cant suppression (5–15%) of MS and SLE polyclonal MBP-hydrolyzing abzymes by specific 

Figure 20. The RAs of 22 MLChs in hydrolysis of MBP after Abzs preincubation with specific inhibitors of proteases 
of different type. MLChs (0.1 mg/ml) were preincubated without of other components (black bars), with 50 mM EDTA 
(gray bars) or with 1 mM PMSF (white bars); then aliquots of these mixtures were added to standard reaction mixtures 
(A and B) [118]. Several examples (C) of the RAs of MLChs having metal-dependent activity (1, 5, 12, 15, and 21) and 
serine-protease-like activity (4 and 11), demonstrating no iodoacetamide-dependent activity; three MLChs (10, 14, 
and 18) showing negative response to EDTA and PMSF. MLCh-22 demonstrating positive effects of EDTA and PMSF, 
but significantly decreasing its activity after preincubation with iodoacetamide. White and gray bars show, respectively, 
the activity before (control) and after MLChs treatment with iodoacetamide (panel C). The RAs of all 22 MLChs before 
their treatment with different inhibitors were taken as 100%.

Lupus80



inhibitors of thiol proteases was revealed previously [76, 77, 84–87]. However, iodoacet-

amide inhibited integrase hydrolyzing activities of all polyclonal IgG and IgM prepara-

tions from HIV/AIDS patients by 12–99% [97, 98]. Proteolytic activities of three MLChs (18, 
14, and 10) not inhibited by EDTA and PMSF were significantly suppressed by iodoacet-
amide, while there was no effect on the most of MLChs with metal-dependent and serine-
like activities (for example, Figure 20C). Thus, these three MLChs (18, 14, and 10) are thiol 
proteases. Interestingly, but iodoacetamide significantly suppressed the activities of MLChs 
17 and 12 (Figure 20C), which were also significantly inhibited by EDTA (Figure 20A). 

One can  suppose that MLChs 17 and 12 may be MLChs, the active sites of which contain 
amino acid residues corresponding to metal-dependent and thiol proteases. A very surpris-

ing data were obtained for MLCh-22; its activity was significantly suppressed not only by 
EDTA and PMSF (Figure 20B), by also iodoacetamide (Figure 20C). The relative number 

of MLChs, which activity depend on iodoacetamide is only approximately 27% of all 22 
MLChs, while at the same time, several of them possess metal-dependent and serine-like 
activities. Therefore, the relative contribution of thiol-like protease activity to a total MBP-
hydrolyzing activity of polyclonal SLE and MS abzymes may be significantly lower than of 
Abzs with metal-dependent and serine-like proteolytic activities and, therefore, depending 

on the patient a relative contribution of thiol-like protease to the total activity may be about 

5–15%, as found previously for polyclonal Abzs [76, 77, 84–87]. The effects of various metal 
ions on the protease activities of 22 MLChs were compared (Figure 21A and B; B is a con-

tinuation of A).

Seven different metal ions did not effect on the activity of MLChs with serine-like (9, 6, and 
4) and thiol-dependent (18, 14, and 10) activities. Five MLChs (19, 17, 13, 8, and 2) were only 
slightly activated by several Me2+ ions, while Ca2+ was the best activator. Two MLCh prepara-

tions (5 and 3) were Co2+ dependent, but preparation 15 was better stimulated by Ni2+, MLCh-
16 and MLCh-20 were respectively Mn2+- and Zn2+-dependent (Figure 21). MLChs 22 and 12 
were activated by two different metal ions, Zn2+ and Ca2+. Two MLChs were activated by three 
different Me2 ions: MLCh-7 (Ca2+ > Zn2+ > Co2+) and MLCh-1 (Ca2+ > Ni2+ > Mg2+). In addition, 
MLCh-21 was activated by four (Cu2+ > Ca2+ > Co2+ > Zn2+) metal ions. These data show the 

extreme Me2+-dependence diversity of IgGs from SLE patients and their light chains in the 
hydrolysis of MBP [118].

All 22 MLCh preparations hydrolyzed efficiently MBP within a wide range of pHs (5.0–10), 
but in contrast to polyclonal SLE IgGs, they show mainly only one pH optimum [118]. Only 

the pH profile for preparation 4 demonstrates optimal pH at 5.7–5.9 and pronounced shoul-
der at pHs 6.5–7.5 (Figure 21C). The apparent k

cat
 values under optimal conditions for every 

MLCh were estimated. The data on several characteristics of 22 various MLCh preparations 
are summarized in Table 8 [118]. One can see that all MLChs demonstrate very different 
physicochemical and enzymatic properties.

On the next step we analyzed in more detail three additional MLChs (numbers 23–25) cor-

responding to peak 7 eluted from MBP-Sepharose with 0.5 M NaCl (Figure 18A) [119, 120]. 

These three MLChs were purified and characterized in detail exactly similar to above 
described 22 preparations [118]. The DNA sequence of NGTA1-Me-pro demonstrated high 
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identity to germline VL genes of IgLV8-61*02, IgLV8-61*01, and IgLV8-61*03IGKV1 (90% of 
identity) [120]. DNA sequence of NGTA2-Me-pro-Tr indicated high identity with germline 
VL gene IGKJ1*01 (100%), IGKJ4*01 (95.7%), IGKJ4*02 (91.2%), IGKV1-5*03 (87.9%), IGKV1-
5*01 (86.2% of identity), and IGKV1-5*02 (85.6%) [119]. DNA sequence of NGTA3-pro-DNase 
has similarity with germline DNA sequence of light chains of several IgGs: IGKJ1*01 (100% 
of identity), IGKJ4*01 (95.7%), IGKJ4*02 (91.2%); IGKV1-5*03 (79.8% of identity), IGKV1-5*02 
(78.4%), and IGKV1-5*01 (78.4%) [Timofeeva, Nevinsky, personal communication]. Thus, all 
three MLChs were shown to be typical light chain of Abs [119, 120, personal communication].

NGTA1-Me-pro was shown to be a specific metalloprotease; only EDTA efficiently inhibits its 
activity, while specific inhibitors of thiol-, serine-, and acidic-like proteases did not suppress 
its MBP-hydrolyzing activity (Figure 22A) [120].

Figure 21. Effect of various metal ions on the RAs of 22 MLChs in the hydrolysis of MBP (A and B) [118]. Black first bars 
correspond to the RAs in the presence of EDTA, while white bars to MLChs without external metal ions. The MLChs 
numbers of and type of Me2+ ions, as well as best activators of various MLChs are shown on panels A and B. Typical 
examples of the dependences of four MLChs in MBP hydrolysis on pH of reaction mixtures are given (C).
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Seven various metal ions increase NGTA1-Me-pro activity in the following order: Ca2+ > Mg2+ 

> Ni2+ ≥ Zn2+ ≥ Co2+ ≥ Mn2+ > Cu2+ (Figure 22B). NGTA1-Me-pro demonstrated two different 
very well expressed pH optima at pH 6.0 and 8.5 (Figure 22C). Figure 22(D) indicates that at 

pH 6.0 MLCh has optimum at ~6 mM, when at pH 8.5 at 1 mM CaCl
2
. The apparent values 

of K
m

 and k
cat

 for MBP in the presence of optimal CaCl
2
 concentration at pH 6.0 (20 ± 2 µM; 

MLCh number Optimal pHa Optimal Me2+ cofactor Apparent k
cat

, min−1a

1 8.0–8.2 Ca2+(Ni2+,Mg2+)c 0.14 ± 0.01b

2 7.6–7.8 Ca2+ 0.12 ± 0.01

3 7.6–7.8 Co2+ 0.09 ± 0.007

4 5.7–5.9 Me2+-independent 0.12 ± 0.008

5 7.5–7.7 Co2+ 0.24 ± 0.02

6 7.0–7.2 Me2+-independent 0.01 ± 0.001

7 7.2–7.4 Ca2+(Zn2+,Co2+) 0.07 ± 0.004

8 7.4–7.6 Ca2+ 0.17 ± 0.003

9 7.2–7.4 Me2+-independent 0.03 ± 0.001

10 8.1–8.3 Me2+-independent 0.05 ± 0.002

11 7.7–7.8 Me2+-independent 0.09 ± 0.006

12 7.8–8.0 Zn2+(Ca2+) 0.19 ± 0.001

13 6.1–6.3 Ca2+ 0.16 ± 0.001

14 7.0–7.2 Me2+-independent 0.06 ± 0.0003

15 7.0–7.2 Ni2+ 0.17 ± 0.007

16 6.9–7.1 Mn2+ 0.12 ± 0.001

17 8.2–8.4 Ca2+ 0.17 ± 0.001

18 6.2–6.4 Me2+-independent 0.05 ± 0.0007

19 6.7–6.9 Ca2+ 0.1 ± 0.01

20 8.2–8.4 Zn2+ 0.09 ± 0.006

21 6.9–7.1 Cu (Ca2+, Co2+, Zn2+) 0.18 ± 0.007

22 7.8–8.0 Zn2+(Ca2+) 0.11 ± 0.006

aFor each value, a mean ± S.E. of two/three measurements is reported.
bOptimal pH of reaction mixtures and optimal metal cofactor (given in bold) were used for every of MLCh preparations; 
the apparent k

cat
 values under optimal conditions were calculated as k

cat
 = V

max
 (M/min)/[MLCh] (M). MLChs were used 

in different concentrations (0.05–0.5 M) depending of their relative activity.
cThe best metal activator is given in bold, while alternative cofactors demonstrating relatively high activation are given 

in parenthesis.

Table 8. The optimal pH values, optimal metal cofactors, and apparent k
cat

 values for 22 recombinant individual MLChs 
in the hydrolysis of MBP [118].
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0.22 ± 0.02 min−1; 6.0 mM CaCl
2
) and pH 8.5 (40 ± 3 µM; 0.07 ± 0.005 min−1; 0.7 mM CaCl

2
) were 

different. All data obtained unequivocally testified that NGTA1-Me-pro has two independent 
metal-dependent active centers [120].

MLCh NGTA2-Me-pro-Tr demonstrated two different activities: trypsin-like and metallopro-

tease. Figure 23(A) shows that NGTA2-Me-pro-Tr is not sensitive to pepstatin and iodoacet-
amide [119]. Preincubation of this MLCh with specific inhibitor of serine-like proteases results 
in a decrease of its activity for 42 ± 4%.

Figure 22. The RAs of NGTA1-Me-pro in the hydrolysis of MBP before and after its preincubation with specific 
inhibitors of various type proteases [120]. MLCh (0.1 mg/ml) was preincubated without other components (control), 
or the presence of EDTA, PMSF, pepstatin, and iodoacetamide; 1.0 µl of the mixtures were added to 29 µl of MBP-
containing standard reaction mixtures (A). The RA before NGTA1-Me-pro preincubation with various inhibitors was 
taken as 100%. Effects of different Me2+ ions (2 mM) and EDTA on the RAs of MLCh are shown (B). Dependence of the 
RA upon pH of reaction mixture is shown (C). Dependence of NGTA1-Me-pro activity on CaCl2 concentration at pHs 
6.0 and 8.5 (D).
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Intact polyclonal Abs interact with various metal ions and they do not lose completely intrin-

sically bound ions during the standard purification procedures [121]. Addition of EDTA to 

NGTA2-Me-pro-Tr containing only intrinsically bound Me2+-ions results in a decrease in its 

activity for 58 ± 5% (Figure 23A) [119]. Average serine-like activity of NGTA2-Me-pro-Tr con-

taining only intrinsically bound Me2+ ions was ~1.4-fold lower than its Me2+-dependent pro-

tease activity. Seven various external metal ions activate this MLCh in the following order: 
Ca2+ ≥ Mn2+ ≥ Mg2+ > Co2+> Ni2+ ≥ Cu2+ ≥ Zn2+ (Figure 23B). After NGTA2-Me-pro-Tr treatment 
with PMSF, its metalloprotease activity demonstrated pH optimum at 6.5–6.6 (Figure 23C). 

After dialysis of this MLCh against EDTA or in the presence of EDTA, serine-like protease 
activity showed pH optimum at 7.4–7.5. Figure 23(D) demonstrates that the increase in PMSF 
concentration results in a complete suppression of the activity at pH 7.5 in the presence of 

50 mM EDTA, conditions corresponding to serine-like activity. NGTA2-Me-pro-Tr containing 

Figure 23. The RAs of the activity of NGTA2-Me-pro-Tr in the hydrolysis of MBP after its preincubation with specific 
inhibitors of different type proteases (A) [119]. MLCh (0.3 mg/ml) was preincubated alone (control), or the presence 
of iodoacetamide, PMSF, pepstatin, or EDTA; 1.0 µl of these mixture was added to 29 µl of MBP-containing standard 
reaction mixtures (A). The relative activity of NGTA2-Me-pro-Tr after preincubation with without different inhibitors 
(control) was taken for 100%. Effects of 10 mM EDTA and various Me2+ ions (2 mM) on the RAs of MLCh are shown 
(B). Dependences of the relative proteolytic activity of NGTA2-Me-pro-Tr before and after its treatment with PMSF and 
EDTA upon pH of reaction mixtures are shown (C). Dependence of the MBP-hydrolyzing activity on concentration of 
CaCl2 at pHs 6.0 and 8.5 (D).
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no intrinsic metal ions demonstrated in the absence of external metal ions at pH 7.5 K
m

 and k
cat

 

(9.0 ± 1.0 µM, 8 ± 0.6 min−1) different as in the presence of CaCl
2
 at pH 6.5 (24.0 ± 2.0 µM, 15.2 

± 1.1 min−1) [119]. Thus, NGTA2-Me-pro-Tr is the first example of recombinant MLCh having 
two combined serine-like and metalloprotease activities.

It should be emphasized that all recombinant MLChs were obtained using affinity chromatog-

raphy of phage particles on MBP-Sepharose and all electrophoretically homogeneous prepa-

rations of MLChs have affinity for MBP-Sepharose; similar to phage particles homogeneous 
MLChs were eluded from the sorbet by 0.5 M NaCl. Taking this into account, a very unex-

pected result was obtained from the analysis of enzymatic activities of NGTA3-pro-DNase 
[Timofeeva and Nevinsky, personal communication].

The homogeneity of ~26–27-kDa NGTA3-pro-DNase was confirmed using SDS-PAGE with fol-
lowing silver staining (Figure 24B, lane 1). NGTA3-pro-DNase demonstrated positive answer 
with horseradish peroxidase conjugated with mouse IgGs against human Abs light chains at 
Western blotting and positive ELISA answer using plates with immobilized MBP and DNA.

After SDS-PAGE, MBP-hydrolyzing activity was revealed only in the band corresponding to the 
light chains in the presence of CaCl

2
 (o) and in the absence of external metal ions (□); the positions of 

proteolytic (o, □) and DNase (x) activities of MLCh are coincided (Figure 24A). NGTA3-pro-DNase 
hydrolyzed specifically only MBP and not hydrolyzed foreign control proteins (Figure 24C).

Only one (NGTA3-pro-DNase) of 25 recombinant MLChs analyzed by us efficiently hydro-

lyzed not only MBP, but also DNA (for example, Figure 24D). DNase activity of NGTA3-
pro-DNase was determined in situ after separation of proteins using SDS-PAGE gels 
copolymerized with calf thymus DNA (Figure 24E). Ethidium bromide staining of the gels 

after the electrophoresis of the NGTA3-pro-DNase revealed sharp dark bands against a fluo-

rescent background of DNA in the gel zone corresponding only to the MLCh and there were 
no other peaks of proteins or DNase activity (Figure 24E).

NGTA3-pro-DNase containing intrinsic metal ions was not sensitive to treatment with iodo-

acetamide and pepstatin, while its preincubation with PMSF led to decrease in the activity for 
67 ± 5% (Figure 25A).

The dialysis of NGTA3-pro-DNase containing only intrinsically bound Me2+ ions against EDTA 

or addition of EDTA to reaction mixture led to a decrease in its activity for 33 ± 3% (Figure 25A). 

And average Me2+-dependent protease activity of MLCh containing only intrinsically bound 
Me2+ ions was approximately 2.0-fold lower (Figure 25A), but after addition of external Ca2+ 

ions became to be 2.2-fold higher than its serine-like activity (Figure 25B). Seven various exter-

nal metal ions activate NGTA3-pro-DNase in the following order: Ca2+ ≥ Ni2+ > Co2+ ~ Mn2+ ≥ 
Cu2+ ~ Zn2+ ≥ Mg2+ (Figure 25B). An optimal concentration of CaCl

2
, which is the best activa-

tor of this MLCh, was 3 mM. NGTA3-pro-DNase demonstrates two different optimal pHs 
(Figure 25C). After treatment of MLCh with PMSF, its metalloprotease activity was maximal at 
pH 8.6, while in the presence of EDTA, serine-like protease activity demonstrated pH optimum 

at 7.0 (Figure 25B). NGTA3-pro-DNase treated with PMSF in the presence of 3 mM CaCl
2
 (pH 

7.0) demonstrated K
m

 for intact MBP (15 ± 1.1 µM) and k
cat

 value 0.4 ± 0.03 min−1, while in the 

presence of EDTA at pH 8.6, K
m

 and k
cat

 values were different (45 ± 1.1 µM and 0.2 ± 0.04 min−1).
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Figure 24. SDS-PAGE analysis of MBP- and DNA-hydrolyzing activities (A) and homogeneity of NGTA3-pro-DNase 
(7 µg) using a reducing 5–16% gradient gel followed by silver staining (B, lane 1); the arrows (B, lane 2) indicate the 
positions of protein markers. After SDS-PAGE the gel was incubated using conditions for renaturation of NGTA3-
pro-DNase. The relative MBP- and DNA-hydrolyzing activity (%) was revealed using the extracts of 2- to 3-mm gel 
fragments (A). The activity of NGTA3-pro-DNase corresponding to a complete hydrolysis of 0.5 mg/ml MBP (or 18 
nM scDNA) after 24 h of incubation of 25 µl reaction mixture containing 10 µl of the gel extracts was taken for 100%. 
SDS-PAGE analysis of hydrolysis of MBP by inact-MLChmix (lane 1) or NGTA3-pro-DNase (lanes 2 and 3, different 
time of incubation) (C). Hydrolysis of control proteins (0.5 mg/ml) by inact-MLChmix and NGTA3-pro-DNase was 
analyzed: human albumin (lanes 4 and 5) and lactoferrin from human milk (lanes 6 and 7) (C). The mixtures were 
incubated for 6 h with inact-MLChmix (lanes 4 and 6), or NGTA3-pro-DNase (lanes 5 and 7). All lanes C correspond 
to different proteins incubated alone without MLChs, while lane C1- to standard protein markers. DNase activity of 
NGTA3-pro-DNase and two control MLCh1 and MLCh2 (10 nM) was analyzed in the presence of 5 mM MgCl2 (D); 
lane C corresponds to scDNA incubated alone. In situ assay of DNase activity of the NGTA3-pro-DNase (8 µg) after 
treatment with DTT (lane A) (E). DNase activity was revealed by ethidium bromide staining as a dark band on the 

fluorescent background. A part of the gel was stained with Coomassie R250 to show the position of the SLE IgGs before 
(lane 1) and after incubation with DTT (lane 2), as well as NGTA3-pro-DNase (lane 3) (E). MLCh was analyzed by 
Western blotting to a nitrocellulose membrane using mouse IgGs against light chains of human Abs conjugated with 
horsedish peroxidase (lane WB) (E).
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It is known that Mg2+ (10 mM) is optimal cofactor of DNase I, while other Me2+ ions very 

weakly activate DNase I [109, 110]. Optimal concentration for Mn2+, Mg2+, and Ni2+ in acti-

vation NGTA3-pro-DNase was ~4–5 mM, for Ca2+ and Zn2+ 2 mM, while Co2+ and Cu2+ 

activate MLCh up to 10 mM concentration. DNase activity increased in the presence of 
metal ions in the following order: Mn2+ ≈ Co2+ ≥ Mg2+ > Cu2+ ≈ Ni2+ ≥ Ca2+ > Zn2+), which is 

completely different in comparing with that for DNases I and other recombinant MLChs 
analyzed.

DNase activity for NGTA3-pro-DNase in the presence of Mg2+ or Mn2+ at fixed concentration 
(5 mM) was increased at optimal concentrations of NaCl or KCl (30–40 mM) for only 27–28%. 

Figure 25. The RAs of MBP-hydrolyzing activity of NGTA3-pro-DNase after its preincubation with specific inhibitors 
of different types proteases (A). MLCh (0.1 mg/ml) was preincubated alone (control), in the presence of iodoacetamide, 
PMSF, pepstatin, or EDTA, and then 1.5 µl added to 29 µl of standard reaction mixture (A). The RA of NGTA1-Me-pro 
before its preincubation with various inhibitors was taken as 100%. Effect of EDTA and different metal ions (2 mM) on 
the RA of MLCh is shown (B). Dependence of RA of MBP-hydrolyzing activity of NGTA1-Me-pro on pH of reaction 
mixture before and after its treatment with EDTA and PMSF is given (C).
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In optimal conditions, NGTA3-pro-DNase demonstrated well expressed optima at pH 6.5–6.6. 
The K

m
 (2 ± 0.2 nM) and k

cat
 (1.1 ± 0.1) × 10–3 min−1 values for scDNA were estimated. The affin-

ity of NGTA3-pro-DNase for supercoiled DNA is about 3.5 orders of magnitude higher than 
affinity of scDNA for DNase I (K

m
 = 46–58 µM [122].

8. Conclusion

In several articles, it was demonstrated that polyclonal RNA-, DNA-, MBP- integrase-, and 
oligosaccharide-hydrolyzing antibodies of different classes and subclasses from patients with 
SLE, MS, AIDS, and other diseases are very catalytically heterogeneous. These abzymes can 
contain lambda- and kappa- types of light chains, may be of different subclasses (IgG1–IgG4), 
can demonstrate different affinity for specific sorbents and free antigens-substrates, very dif-
ferent pH optima, and may be independent or dependent on metal ions. Different abzymes 
can catalyze the hydrolysis of MBP, HIV integrase, and other proteins as serine-, thiol-, and 
acidic-like or metalloproteases. Various IgGs of four subclasses (IgG1–IgG4) and/or IgAs and 
IgMs from the sera of patients with autoimmune and viral diseases are catalytically active 
in the hydrolysis of RNA, DNA, oligosaccharides, and various proteins with their different 
contribution to the total activity of the Abs in the hydrolysis of these substrates in the case of 

every individual patient.

At the same time, the analysis of polyclonal antibodies does not allow to obtain detail char-

acteristics of monoclonal abzymes entering to small pools of polyclonal antibodies separated 

by affinity chromatography on sorbents with different immobilized antigens-substrates. As it 
was shown on the example of polyclonal IgGs with DNase and MBP-hydrolyzing activities 
from sera of SLE and MS patients, elution of Abs by a NaCl concentration gradient leads 
to their distribution all over the chromatography profiles. In this case, each eluted Ab frac-

tion contains abzymes with comparable affinity for immobilized ligand, but demonstrating a 
significant diversity of various enzymatic properties described above. These data are strong 
evidence of exceptional diversity abzymes in the blood of some patients with SLE, MS, and 
other diseases. In this regard, it should be mentioned that theoretically immune system of 
human can produce up to 106 different Abs against one antigen. It is evident that all theoreti-
cally possible variants of antibodies are in reality not realized and much less than one million. 

However, in the case of some patients, a possible number of abzymes can be very large. In 
our studies, we used a cDNA library only kappa light chains of Abs from three patients with 

SLE [111, 112, 118–120]. We have analyzed only 45 of 451 single of colonies corresponding one 

peak eluted from DNA-cellulose with 0.5 M NaCl and 33 of 687 colonies of peak eluded with 
acidic buffer. In the first case 15 of 45 (~33%) [111] and in the second 19 of 33 MLChs (58%) 
demonstrated DNase activity [112]. For analysis of MBP-hydrolyzing activity, we have used 
72 of 440 individual colonies corresponding to phage particles eluted from MBP-Sepharose 
with 0.5 M NaCl; 25 of 72 MLChs (~35%) effectively hydrolyzed MBP [118–120]. Since we 

analyzed abzymes corresponding only one or two of ≥10 phage particles, it is obvious that the 
number of MLChs with DNase and MBP-hydrolyzing activity with very different enzymatic 
properties may be at least ≥ 500–1000.
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The question is why many abzyme with nuclease and protease activities exist in SLE and 
other AI patients. First, immunization of autoimmune mice leads to a dramatically higher 
incidence of Abzs with a higher activity comparing to conventionally used normal mouse 

strains [51, 52]. The immune response to RNA and DNA and their complexes with his-

tones and other proteins only partially depends on the length and sequence of nucleic acid 
[123, 124]. In addition, antiidiotypic Abs against the active centres of different DNA- and 
RNA-dependent enzymes can also possess catalytic activity. We have shown that polyclonal 

nuclease abzymes of autoimmune patients are usually different cocktails of Abzs against 
DNA and RNA and their complexes with proteins as well as antiidiotypic Abzs to active 

centers of various DNA- and RNA-hydrolyzing enzymes [13–22].

It is possible to explain to some extent in a similar way the exceptional diversity of abzymes 
hydrolyzing MBP and other proteins. At the same time, possible ways of production of mono-

clonal abzymes having two or even three different catalytic centers have a special interest. 
It should be noted that the known antigenic determinants of different proteins are usually 
relatively long and the active centers of some abzymes with two activities can correspond at 

once to variable parts of the antibodies to different contiguous parts of these determinants. 
One cannot exclude that metal-dependent active centers may be against specific part of pro-

tein antigenic determinants bound with one or several metal ions.

The second question is why NGTA3-pro-DNase against MBP can hydrolyze DNA. It is 
believed that MBP and anti-MBP Abs cannot interact with DNA or RNA. However, it was 
recently shown that anti-MBP IgGs can efficiently interact with nucleic acids [125]. Using 

quenching of MBP tryptophan fluorescence emission, we have shown that MBP bind oli-
gonucleotides showing two K

d
 values: 65 ± 5 and 250 ± 20 µM [Timofeeva and Nevinsky, 

personal communication]. Therefore, it is possible to suggest that 24 of 25 MLChs interacting 
only with MBP correspond to Abzs directly against this protein, while NGTA3-pro-DNase 
may be against the complex of MBP with DNA. In the latter case, it is impossible to exclude 
possibility of a formation of the chimeric MLChs possessing affinity for MBP and for DNA 
and also hydrolyzing these absolutely different substrates.

As mentioned above, DNA-hydrolyzing Bence-Jones proteins [60] and DNase abzymes of 

patients with SLE [59] and MS [16] are dangerous since they are cytotoxic, can penetrate 

to cell nuclear, and hydrolyze nuclear DNA resulting in cell apoptosis. Abzymes against 

vasoactive peptide are harmful since they decrease in the concentration of the peptide and 

have an important negative role in pathogenesis of patients with asthma [126]. RAs of DNase 

abzymes of patients with Hashimoto thyroiditis well correlate with different immunological 
and biochemical indices of this disease including a concentration of thyroid hormones, while 

decrease in their activity is related to decrease in thyroid gland damage and improvement 

of the clinical status [105]. Protease IgGs of patients with sepsis participate in the control of 
disseminated microvascular thrombosis and play important role in recovery from the disease 

[127]. Thus, various abzymes can play both a negative and positive role in the pathogenesis 

of SLE and other autoimmune or viral diseases. Meanwhile, it should be mentioned that in 
the later stages of SLE, MS, and other diseases, the blood of these patients contains abzymes 
not only with DNase and MBP-hydrolyzing activities, but also hydrolyzing other proteins, 
oligosaccharides, and lipids [13–22].
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As it was shown in the example of Hashimoto thyroiditis production of harmful abzymes 

can be suppressed by using therapy with suppressing immune system drug plaquenil 
[102]. In MS and SLE, anti-MBP abzymes with proteolytic activity can attack MBP of the 
myelin-proteolipid sheath of axons. The established MS drug Copaxone was shown to be 
a specific inhibitor of abzymes with MBP-hydrolyzing activity [128]. One cannot exclude 

that the same drugs can be used for the treatment of SLE and other autoimmune dis-

eases, which characterized by high level of abzymes with nuclease and MBP-hydrolyzing 
activities.

The presence of anti-DNA Abs is known as the main important diagnostic index for SLE. 

High-affinity anti-DNA Abs was recently shown to be major component of the intrathecal 
IgG in cerebrospinal fluid and brain of MS patients [48]. Moreover, DNase abzymes from SLE 
and MS patients are cytotoxic and induce cell death by apoptosis [16, 59]. The sera of patients 

with SLE and MS patients contain different free light chains [61, 62]. Therefore, we propose 

that exceptional diverse of intact antibodies and their free light chains hydrolyzing DNA, 

MBP, nucleotides, and polysaccharides may cooperatively all together promote important 
neuropathologic pathogenic mechanisms in SLE and MS.

Our data on the study of abzymes production in SLE patients associated with the change in 

profile differentiation of brain stem cells seem to be very important for understanding pos-

sible mechanisms of various autoimmune diseases development.
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