
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 6

Light‐Emitting Diodes: Progress in Plant

Micropropagation

Jericó J. Bello‐Bello, Juan A. Pérez‐Sato,
Carlos A. Cruz‐Cruz and Eduardo Martínez‐Estrada

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67913

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Jericó J. Bello Bello, Juan A. Pérez Sato, 
Carlos A. Cruz Cruz and
Eduardo Martínez Estrada

Additional information is available at the end of the chapter

Abstract

In commercial micropropagation laboratories, the light source is one of the most 
 important factors controlling plant morphogenesis and metabolism of plant cells and 
tissue and organ cultures. Lamp manufacturers have begun to rate lamps specifically 
for plant needs. The traditional light source used for in vitro propagation is fluorescent 
lamps (FLs). However, power consumption in FL use is expensive and produces a wide 
range of wavelengths (350–750 nm) unnecessary for plant development. Light‐emitting 
diodes (LEDs) have recently emerged as an alternative for commercial  micropropagation. 
The flexibility of matching LED wavelengths to plant photoreceptors may  provide 
more optimal production, influencing plant morphology and chlorophyll content. 
Although  previous reports have confirmed physiological effects of LED light quality on 
 morphogenesis and growth of several plantlets in vitro, these study results showed that 
LED light is more suitable for plant morphogenesis and growth than FLs. However, the 
responses vary according to plant species. This chapter describes the applications and 
benefits of LED lamps on chlorophyll in plant micropropagation. Two study cases are 
exposed, Anthurium (Anthurium andreanum) and moth orchids (Phalaenopsisis sp.), both 
species with economic importance as ornamental plants, where LEDs have a positive 
effect on in vitro development and chlorophyll content.

Keywords: in vitro cloning, light quality, tissue culture, chlorophyll

1. Introduction

Micropropagation or in vitro plant cloning is being widely used for large‐scale plant multi‐
plication. This method enables the identical reproduction of the selected parents, following 
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the maintenance of genetic fidelity. In commercial micropropagation laboratories, the light 
source is one of the most important factors controlling plant morphogenesis and growth cells, 

tissue and organ cultures. Lamp manufacturers have begun to rate lamps specifically for 
plant needs. The traditional light source used for in vitro propagation is fluorescent lamps 
(FLs). Nevertheless, the power consumption in FLs is expensive and produces a wide range of 

wavelengths (350–750 nm) unnecessary for plant development. Light‐emitting diodes (LEDs) 
have recently emerged as an alternative for commercial micropropagation. LEDs possess 
advantages such as less heat radiation, a monochromatic spectrum, greater durability, and 
low power consumption. The LED illumination system for in vitro culture provides light in 
the spectral region that is involved in photosynthesis and in the photomorphogenic responses 
in plants.

LED colors or combinations commonly used for in vitro culture are white, red, blue, and 
mixture rates of blue and red. It has been reported that red light is important for shoot and 

stem elongation, phytochrome responses and changes in plant anatomy [1]. In contrast, blue 

light is important in chlorophyll biosynthesis, stomatal opening, chloroplast maturation, and 
photosynthesis [2]. Blue and red combination LEDs have been used for studies in many areas 
of photobiological research such as photosynthesis [3] and chlorophyll synthesis [4].

In addition, several studies have shown positive effects of LED lamps on plant development 
during in vitro culture of different species such as Fragaria × ananassa [5, 6], Musa spp. [7], 

Solanum tuberosum [8], Chrysanthemum [9, 10], Vitis riparia × V. vinifera [11], Brassica napus [12], 

Populus euroamericana [13], and Saccharum spp. [14], among others. However, the response 

in LED systems depends on the wavelength to which the plants are exposed and varies 
 according to the species [15].

This chapter describes the applications and benefits of LED lamps on chlorophyll in plant 
micropropagation. Two study cases are exposed, Anthurium (Anthurium andreanum Lind.) 

and moth orchids (Phalaenopsisis sp.), both species with economic importance as  ornamental 

plants, where LEDs have had a positive effect on in vitro development and chlorophyll 
content.

2. Plant micropropagation

Micropropagation is the asexual propagation of plants using the techniques of plant tis‐
sue culture (PTC). Plant tissue culture refers to growing and differentiation of cells, tis‐
sues, and organs isolated from the mother plant, on artificial solid or liquid media under 
aseptic and controlled conditions. The small organs or pieces of tissue plants used in PTC 

are called explants. Plant tissue culture medium provides inorganic nutrients and usually 
a carbohydrate to replace the carbon which the plant normally fixes from the atmosphere 
by photosynthesis. When carbon is supplied with sucrose and kept in low light conditions, 
micropropagated plantlets are not fully dependent on their own photosynthesis.

The PTC techniques provide a new approach to plant propagation, being the best way to 
produce uniform plant germplasm and the regeneration of pathogen‐free plants. To date, 
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commercial plant micropropagation has shown great productive potential; it is being used in 

hundreds of commercial laboratories for the propagation of species of agricultural and for‐
estry importance. Commercial micropropagation of different species of economic importance 
is shown in Figure 1.

The commercial micropropagation process is carried out in the following stages:

Stage 0: Mother plant selection. Donor plants are selected and conditioned to be used to initi‐
ate in vitro cultures.

Stage I: In vitro establishing. The choice of the explant and its disinfection is carried out to 

initiate an aseptic culture.

Stage II: Multiplication. It is at this stage that mass propagation is performed, obtaining a 

large number of new individuals from minimal amounts of tissue.

Stage III: Elongation and rooting. The shoots must form their root system and at the same 
time increase their size to facilitate their manipulation and adaptation to the  acclimatization 

conditions.

Stage IV: Acclimatization. It consists of a slow reduction of the relative humidity and  gradual 
increases in the luminous intensity for a better adaptation to the external environment.

Figure 1. Commercial micropropagation of different species. (a) Stevia rebaudiana, (b) Ananas comosus, (c) Vanilla planifolia 

and (d) Anthurium andreanum.
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Requirements for the completion of each stage of micropropagation vary according to the 
method being utilized; it is not always necessary to follow each of the prescribed steps.

However, there are factors that affect the micropropagation process, including:

Factors that depend on the explant: Size, physiological age of the tissue, and explant position.

Factors that depend on the culture medium: Growth regulators, macro‐ and micronutrients, 
organic nitrogen, and carbon source.

Factors related to the incubation environment: Photoperiod, temperature, humidity, and 
light source.

Factors related to the incubation environment refer to incubators or growth rooms where 

 temperature, humidity, and light can be controlled. In commercial  micropropagation 
 laboratories, the light source is one of the most important factors controlling plant 

 development. Light quality (spectral quality), quantity, (photon flux) and photoperiod have 
a profound influence on the morphogenesis, growth and chlorophyll contents of a plant cell, 
and tissue and organ cultures.

The illumination systems allow wavelengths to be matched to plant photoreceptors to  provide 
more optimal production and to influence plant morphology and metabolic composition [16]. 

Plants use energy between 400 and 700 nm and light in this region is called photosynthetically 
active radiation (PAR).

The growth and development of plants is dependent on light for:

Photosynthesis: The process whereby light energy is converted to chemical energy in the 
biosynthesis of chemicals from carbon dioxide and water.

Photomorphogenesis: The light‐induced development of structure or form.

Phototropism: The growth response of plants which is induced by unilateral light.

In recent years, LEDs have emerged as an alternative for commercial micropropagation. 
LEDs possess various advantages such as less heat radiation, small mass, a  monochromatic 

 spectrum, greater durability, low power consumption, and specific wavelength. The  flexibility 
of matching LED wavelengths to plant photoreceptors may provide more optimal  production, 
influencing plant morphology and metabolism.

3. Spectral quality of LEDs

The traditional light source used for in vitro propagation is fluorescent lamps (FLs). However, 
power consumption in FL use is expensive and produces a wide range of wavelengths 

 (350–750 nm) unnecessary for plant development, whereas monochromatic light‐emitting 
diodes (LEDs) emit light at specific wavelengths. In this sense, LEDs can be fine‐tuned to only 
produce the spectrums that plants need for morphogenic responses [17]. The response to LED 

light in micropropagation systems depends on light irradiance, photoperiod, and wavelength. 
The wavelength to which in vitro plants are exposed varies according to the species. Recent 
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studies compare the effect of FLs (545–610 nm) vs white LEDs (460 and 560 nm), red LEDs 
(660 nm), blue LEDs (460 nm), and the combination of blue and red LED (460 and 660 nm) 
treatments. LEDs affect in vitro rooting, number and length of new shoots, chlorophyll and 
carotenoid pigments, and other characteristics in plants. The spectral irradiance of LEDs is 

shown in Figure 2.

4. LEDs affect chlorophyll content

Several studies have shown important effects of LEDs on photosynthetic pigments  during 
micropropagation of different species. Studies show that blue LEDs are a good light source 
for chlorophyll induction and that red LEDs decrease chlorophyll content. Dewir et al. [15] 

found that blue LEDs showed greater growth, vigor, and chlorophyll content in Euphorbia 

milli. Jao et al. [18] reported that blue LEDs promote growth and increase chlorophyll  content 
in Zantedeschia jucunda. The same effect was observed by Li et al. [19, 20] during in vitro culture 

of Gossypium hirsutum and Brassica campestris, respectively. Kim et al. [9] and Moon et al. [21] 

emphasized the role of blue light on chlorophyll formation and chloroplast  development in 
their work with Chrysanthemum and Tripterospermum japonicum, respectively. Monochromatic 
red LEDs with narrow peak emissions may cause an imbalance in the  distribution of light 
energy between photosystems I and II, and thus be responsible for a reduction in net 
 photosynthesis [3]. According to Li et al. [19], it has been observed that plantlets with lower 

chlorophyll content utilize the chlorophyll more efficiently than plantlets with higher chloro‐
phyll content under red LEDs.

According to Soebo et al. [22], the possibility exists that red light may inhibit the  translocation 
of photosynthetic products thereby increasing the accumulation of starch. Goins et al. [23] 

Figure 2. Spectral curves distribution in relative response of the LEDs and fluorescent lamps.
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observed higher photosynthetic rates and an increase in stomatal conductance in wheat 
leaves under mixed red and blue LEDs. Plant growth and development by increasing 
net  photosynthetic rate was also observed in Chrysanthemum under mixed red/blue LED 

 treatments and has been attributed to the similarities of the spectral energy distribution of 
red/blue to chlorophyll absorption [9].

The importance of blue light in stomatal opening has already been studied. It has been 
 proposed that blue light received by phototropins activates a signaling cascade, resulting in 
fast stomata opening under a red light background [19]. The effect of light quality on stomatal 
characteristics has not yet been clearly determined, and differential stomatal behavior could 
be related to photosynthetic activity and plant growth.

According to Topchiy et al. [24], light quality also plays an important role in photosynthesis, 
influencing the way in which light is absorbed by chlorophyll. According to George [25], the 

level of chlorophyll so far obtained in tissue cultures is well below that found in mesophyll 
cells of whole plants of the same species, and the rate of chlorophyll formation on exposure of 
cultured cells to the light is extremely slow compared to the response of etiolated organized 
tissues. The greening of cultures also tends to be unpredictable, and even within individual 

cells, a range in the degree of chloroplast development is often found. In the carbon  dioxide 

concentrations found in culture vessels, green callus tissue is normally photomixotrophic 
and growth is still partly dependent on the incorporation of sucrose into the medium [25]. 

However, green photoautotrophic callus cultures have been obtained from several different 
kinds of plants.

5. Study cases

Anthurium (A. andreanum Lind.) and moth orchids (Phalaenopsisis sp.) are tropical species 

with worldwide economic importance as ornamental plants and cut flowers. These species 
are commonly propagated by suckers; however, this propagation method is relatively slow 
and can cause disease transmission. Micropropagation has emerged as an alternative for fast 

mass production of A. andreanum and Phalaenopsisis plants of high phytosanitary quality.

For A. andreanum, nodal segments were excised from in vitro‐derived adventitious shoots 
and were used as explants. For in vitro culture of Phalaenopsisis, protocorms were used as 

explants. The explants were placed in a 500 ml jar containing 40 ml of MS [26] medium with‐
out growth regulators. The pH of the culture medium was adjusted to 5.8 with 0.1 N sodium 
hydroxide, 0.25% (w/v) Phytagel was added as a gelling agent and then it was autoclaved 
for 15 min at 120°C and 117.7 kPa. The nodal segments were exposed to white LEDs (460 and 
560 nm), red LEDs (660 nm), blue LEDs (460 nm), the combination of blue and red LEDs 
(460 and 660 nm, respectively), and FLs (545–610 nm) as a control. The LED system (model: 
5050–1M‐RGB, 3M, MN, USA) consisted of strips remotely controlled with a 12 V DC power 
adapter (model: SDK‐0605, 3M, MN, USA). The explants were incubated at 24 ± 2°C and for 
16 h light  photoperiod. In all treatments, the photosynthetic photon flux density (PPFD) 
was maintained to 25 μmol m−2 s−1. PPFD was measured using a FieldScout Quantum Light 

Meter®.
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After 60 days of in vitro culture, shoot length (cm), number of leaves, rooted shoots, and 
 chlorophyll a, chlorophyll b, and total chlorophyll contents were evaluated. Chlorophyll 
 content was determined according to the method of Harborne [27]. For experimental design 

and data analysis, a completely randomized experimental design was used for all  experiments. 
For each treatment, ten culture vessels, containing three explants each, were used. An analysis 
of variance (ANOVA) and Tukey's comparison of means test (p ≤ 0.05) were performed for 
each species using SPSS statistical software (version 22 for Windows).

For A. andreanum, treatments with white LEDs, blue LEDs, and the combination of blue and 

red LEDs showed the greatest plantlet length and number of leaves. The FL and red LED 

treatments showed similar responses in promoting the formation of plantlets and their leaves. 

All shoots were rooted and the highest root number was induced in cultures incubated in 

FLs and blue LEDs with 6.6 and 6.0 roots, respectively. The lowest root number (1.5) was 
recorded in cultures incubated in red LEDs (Table 1). Chlorophyll a, b, and total chlorophyll 
content was significantly higher in the blue LED treatment (0.692 mg g−1 fresh weight), while 

the lowest total chlorophyll content was found in the red LED and FL treatments with 0.327 
and 0.375 mg g−1 fresh weight, respectively (Figure 3a).

In Phalaenopsisis, treatments with FLs, white LED and the combination of blue and red LEDs 

showed the greatest plantlet length and number of leaves (Table 1) The white, red and blue 

LEDs showed similar responses in promoting the formation of plantlets and their leaves. 

All protocorms were rooted and had the same root number. Chlorophyll a content was 
 significantly higher in the blue LED treatment (0.2813 mg g−1 fresh weight), while chlorophyll 
b content was higher in blue and the combination of blue and red LED treatments, with 0.1368 

and 0.1468 mg g−1 fresh weight, respectively. Total chlorophyll (0.421875 mg g−1 fresh weight) 

Treatment Shoot length (cm) No. of leaves Rooting (%) No. of roots

Anthurium andreanum

Fluorescent lamps 3.1 ± 0.1 b 4.9 ± 0.5 b 100.0 ± 0.0 a 6.6 ± 0.3 a

White LEDs 4.3 ± 0.2 a 5.7 ± 0.4 ab 100.0 ± 0.0 a 4.3 ± 0.6 b

Red LEDs 2.9 ± 0.2 b 5.0 ± 0.3 b 100.0 ± 0.0 a 5.0 ± 0.2 c

Blue LEDs 4.4 ± 0.4 a 6.8 ± 0.5 a 100.0 ± 0.0 a 6.0 ± 0.4 ab

Blue + red LEDs 4.0 ± 0.3 a 5.5 ± 0.3 ab 100.0 ± 0.0 a 2.5 ± 0.4 c

Phalaenopsis sp.

Fluorescent lamps 17.0 ± 0.9 a 2.7 ± 0.2 a 100.0 ± 0.0 a 1.7 ± 0.2 a

White LEDs 14.5 ± 0.8 ab 2.3 ± 0.2 ab 100.0 ± 0.0 a 1.3 ± 0.2 a

Red LEDs 11.6 ± 0.7 b 1.7 ± 0.2 b 100.0 ± 0.0 a 1.5 ± 0.2 a

Blue LEDs 12.0 ± 0.4 b 1.7 ± 0.2 b 100.0 ± 0.0 a 1.3 ± 0.2 a

Blue + red LEDs 17.3 ± 0.6 a 2.7 ± 0.2 a 100.0 ± 0.0 a 1.7 ± 0.2 a

Table 1. Effect of LEDs on in vitro growth and rooting of Anthurium andreanum cv. Rosa and Phalaenopsis sp after 60 days 
of culture.
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was higher in blue LED. The lowest total chlorophyll content was found in FL treatments and 
white LEDs with 0.1810 and 0.2500 mg g−1 fresh weight, respectively (Figure 3b).

Our results indicate that FLs can be replaced by LEDs. The same effect was observed by 
Kurilčik et al. [10] and Lin et al. [28] during in vitro development of Chrysanthemum plantlets 

and Dendrobium officinale protocorms, respectively. In Phalaenopsis, LEDs had no effect on the 
number of roots, while in A. andreanum the highest number of roots was obtained in FLs and 

Figure 3. Effect of light quality on chlorophyll content in Anthurium andreanum (a) and Phalaenopsisis sp. (b) after 60 days 
of culture in vitro. Different letters denote statistically significant differences according to Tukey's multiple range test at 
p ≤ 0.05. Bars represent mean ± SE.
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blue LEDs. Similar results were reported by Cybularz‐Urban et al. [29] and Waman et al. [7] 

in Cattleya and Musa spp., respectively.

According to Topchiy et al. [24], light quality also plays an important role in photosynthesis, 
influencing the way in which light is absorbed by chlorophyll. The present results demon‐
strated that the chlorophyll a, chlorophyll b, and total chlorophyll content appeared greater 
in plantlets growing under treatments containing blue light. Similar results were reported 

by Dewir et al. [15] where blue LEDs showed greater growth, vigor, and chlorophyll content 
in E. milli. Jao et al. [18] reported that blue LEDs promote growth and increase chlorophyll 
content in Zantedeschia jucunda. Our results are consistent with these studies in that the blue 

LEDs have an important role in the synthesis of photosynthetic pigments. This suggests that 
LEDs can also be used for improving the quality of ex vitro plantlets of A. andreanum and 

Phalaenopsisis sp.

In conclusion, the use of light‐emitting diodes (LEDs) as a radiation source for plants has 
attracted considerable interest for commercial micropropagation. The flexibility of match‐
ing LED wavelengths to plant photoreceptors may provide more optimal production, 
 influencing plant morphology, and chlorophyll content. Although previous reports have 
confirmed  physiological and morphological effects of LED light quality on metabolism and 
 development of several plantlets in vitro, in our experience, LED light is more suitable for plant 

 morphogenesis and growth than FLs. However, the responses vary according to plant species.
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