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Abstract

The synthesis and measurements of nanomaterials have yielded significant advances in
the past decades. In the area of thermal conduction, the nanomaterials exhibit anoma-
lous behavior such as size-dependent thermal conductivity, thermal rectification, and
ultra-high thermoelectric properties. The theoretical understanding and modeling on
these behaviors are much desired. In this chapter, we study the thermal conduction in
nanomaterials through the thermomass theory, which models the heat transfer from a
fluid mechanics viewpoint. The control equations of the equivalent mass of the thermal
energy are formulated following the continuum mechanics principles, which give the
general heat conduction law. It incorporates nonlinear effects such as spatial acceleration
and boundary resistance, which can overcome the drawbacks of the traditional Fourier’s
law in nanoscale systems. By the thermomass theory, we successfully model the size-
dependent effective thermal conductivity in nanosystems. Furthermore, the thermal
rectification as well as the thermoelectric enhancement in nanosystems is also discussed
with the present framework.

Keywords: thermomass theory, nanomaterial, thermal conductivity, thermal rectifica-
tion, thermoelectric

1. Introduction

The Fourier law proposed in 1822 [1] is the fundamental of thermal conduction. It indicates that

the heat flux passing through a material is proportional to the local gradient of temperature

q ¼ �κ∇T (1)

where q is the heat flux, ∇T is the local temperature gradient, and κ is the thermal conductivity,

which represents the material capability of transferring heat. In a long term, the Fourier law

can accurately model the heat conduction. In the middle of twentieth century, theoretical
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physicists started to question the Fourier law because of its contradiction to the second law of

thermodynamics [2]. After that, the heat waves were observed in low-temperature experi-

ments [3] and aroused people’s interest as well as controversy. In 1980s, the short pulse laser

experiment stimulated a lot of research and led to several relaxational [4], hyperbolic [5], or

lagging types [6] of models, which can be regarded as the generalization of Fourier law. The

above research focused on the distortion of ordinary heat transfer in short time scales. On the

other hand, the shrink of space scales caused another type of distortion and began to be

realized in the early 1990s, when sign of failure of Fourier law was perceived in thin dielectric

films [7]. The phenomena of anomalous heat transfer in small scale materials can be funda-

mentally understood through the kinetic theory of phonons, that is, the thermal conductivity

of dielectric materials can be formulated as [8, 9]

κ ¼
1

3
Cvλ (2)

where C is the specific heat per unit volume, v is the average group velocity of phonon, and λ

is the phonon mean free path (MFP). When the material size is much larger than MFP, the MFP

can be regarded as a constant and is dominated by the intrinsic phonon-phonon scattering and

phonon-defect scattering rates. Therefore, the thermal conductivity is independent on the

system size. In contrast, when the material size reduces to comparable value with the MFP,

the phonon-boundary scattering becomes considerable. In this condition, the smaller system

size induces higher boundary scattering rates and consequently shorter effective phonon MFP.

By using Eq. (2) one figures out the reduction of thermal conductivity of nanomaterials.

The reduced thermal conductivity of nanofilms is a disadvantage for the heat dissipation in IC

chips or semiconductor lasers. Nevertheless, it is an advantage for the thermoelectric devices.

Experiments showed that the silicon nanowires have very high figure of merit (ZT) [10, 11]. The

nanocomposites also demonstrate considerable ZT benefiting from the nano-sized superlattice or

grains significantly scatter the phonons and reduce the effective thermal conductivity [12, 13].

Therefore, a lot of effort has been made to fabricate materials with ultra-low thermal conductiv-

ity through nanotechnology with the target at high ZT for the applications in advanced heating

and cooling, waste heat recovery [14], as well as solar thermoelectric generators [15].

Due to the fast growth of energy-related nanomaterial synthesis and its transition from labo-

ratory to industrial applications, modeling the thermal conducting behavior in nanosystems is

in urgent need. Ideally, it should rise from a perspective of characterizing the fundamental

physics and approach to simply structured theory which can be conveniently used by engi-

neers. Nevertheless, this goal has not been satisfactorily achieved and current research is

paving toward it. The gray model proposed by Majumdar is a pioneer work in this path. It

predicts the effective thermal conductivity as [7]

κeff

κ0
¼

1

1þ β λ
L

¼
1

1þ βKn
(3)

where κeff is the effective thermal conductivity, κ0 is the thermal conductivity of the bulk

material, L is the characteristic size of system, and β is a dimensionless parameter. Except that
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the temperature is much lower than the Debye temperature, the phonon scattering at most

engineering surfaces can be regarded as diffusive. In this case, it was derived that for the in-

plane heat conductivity of nanofilms, β = 3/8. For the cross-plane heat conductivity of nanofilms,

β = 4/3. For the longitudinal heat conductivity of nanowires, β can be selected as 4/3 [16]. Kn is

the Knudsen number, which is the ratio of MFP over L. Kn is actually a concept in gas dynamics,

and it is well known that rarefaction effects should be considered in high Kn situations [17].

Eq. (3) was derived from an analogy between photons and phonons as wave packets of energy.

Therefore, radiative transfer was assumed for phonons. It is easily found that Eq. (3) retreats to

the Fourier lawwhen the system size is much larger thanMFP, that is, at the bulk limit. When the

system size is comparable with the MFP, Eq. (3) delineates the size dependency of thermal

conductivity. However, along with the progress in measuring the thermal conductivity of thin

silicon films [18–21], the accuracy of Eq. (3) was questioned. It was claimed that the MFP of

monocrystalline silicon should be around 300 nm to match the experiment results [19], while the

value based on Eq. (2) is around 42 nm. Chen et al. [22–24] proposed that the phonon MFPs of

single-crystal Si at room temperature should be 210–260 nm considering that the phonons of

different frequencies contribute differently to the heat conduction. This amendment partly

resolves the inaccuracy of gray model. However, it still exhibits considerable deviations to

predict the experiment value of nanowires [25]. McGaughey et al. [16] developed a model which

accounts the full dispersion relation and the directional dependent scattering chances with

surfaces. This model matches well with experiments for nanofilms, while still overestimating

the experiments for nanowires.

The phonon hydrodynamics [26–31] is another pathway to model the nanoscale heat con-

duction. It originates from the solving of linearized Boltzmann equation. An additional term

representing the second order spatial derivative of heat flux, ∇
2q, is involved in the

governing equation of heat conduction. Since the heat flux is similar to a fluid flow flux,

∇
2q is in analogy with the viscous dissipation term in Navier-Stokes equation for fluid

mechanics. Therefore, the heat flux could be nonuniform in the heat transfer cross-section

due to the drag from the boundary, forming a Poiseuille flow of heat. This behavior induces

the terminology of “phonon hydrodynamics.” The analysis based on phonon hydrodynam-

ics indicated the effective thermal conductivity of nanosystems should be inversely propor-

tional to the square of Kn due to the nonuniform distribution of heat flux profile. However,

the experiments indicated that the effective thermal conductivity is approximately linear to

the characteristic size rather than the square of size. It is thereby further elucidated that the

boundary velocity slip would happen in case of large Kn [29, 31]. By introducing the slip

boundary condition into the governing equation, the linear size-dependent effective thermal

conductivity can be achieved. The drawbacks of present phonon hydrodynamics analysis

are: 1. The arbitrary in choosing the style and parameters of slip boundary condition. 2. The

deviation from the physical picture of original derivation of Boltzmann equation, where it

was the normal (N) scattering processes that induced the second order spatial derivative of

heat flux. The present phonon hydrodynamic models just simply use the MFP of resistive (R)

scattering processes as the parameter of ∇2q.

Upon the abovementioned progresses and their defects, the development of bettermodels charac-

terizing heat conducting in nanomaterials should base on capturing the essential feature of its
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physics. In recent years, the thermomass theory has been developed in our group,which proposes

a mechanical analysis framework for heat transfer [32–35]. The generalized heat conduction

governing equations are established based on such analysis. In the following sections, we will

present the application of thermomass theory in nanomaterial heat conduction. The size depen-

dency of thermal conductivity, thermal rectification, and thermoelectric effects will be addressed.

2. Thermomass theory

In history, the nature of heat was regarded as either a fluid, that is, caloric theory. The caloric

theory regards heat as a weightless, self-repulsive fluid. In the eighteenth and the first half of

nineteenth centuries, the caloric theory was the mainstream theory. It was extinct after the mid-

nineteenth century and replaced by the dynamic theory that the nature of heat is the random

motion of particles in a body. In twentieth century, Einstein’s relativity theory introduced the

well-knownmass-energy equivalence relation, E =mc2, where c is the speed of light. According

to this theory, the thermal energy should correspond to a certain amount of mass. To illustrate

his theory, Einstein elucidated “a piece of iron weighs more when red hot than when cool”

[36], which means the adding of the thermal energy into material, that is, raise its temperature

and at the same time increase the mass. The mass increase induced by heat was defined as

“thermomass,” which is very small in ordinary conditions. For example, the thermomass of Si

at room temperature is 10�12 of the total mass. Such small amount of mass is negligible when

dealing with the dynamic problem, like movement and balance of the body. However, the heat

conduction is the movement of thermomass itself relative to molecular or the lattice. It is

driven by the pressure gradient induced by the concentration difference of thermomass among

the materials. The forces and inertia of thermomass are comparable and lead to the limited

acceleration and drift velocity of it. The advantage to bring in the concept of thermomass is

that the analysis of heat conduction can follow a mechanical framework. The corresponding

forces, velocities, accelerations, and momentums can be properly defined.

Consider the dielectric solids, the phonons are the main heat carriers. In this case, the internal

energy per unit volume, e, is the summation of all phonon energies [9]

e ¼ CT ¼ 2πð Þ�3
X

n

ð

ħω
nf n k; x; tð Þ½ �d3k

¼
X

n

ð

k

ħω
nf n k; x; tð Þ

(4)

where ħ is the reduced Planck constant (Dirac constant), ω is the phonon frequency, k is the

wave vector, and n denotes the index of phonon branches. f is the phonon distribution func-

tion. In equilibrium state, f obeys the Bose-Einstein distribution

f 0 ¼ exp ħω=kBTð Þ � 1
� ��1

(5)

where kB is the Boltzmann constant. The density of the thermomass, that is, the equivalent

mass of the phonon gas, is obtained by using the Einstein’s mass-energy equivalence relation
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ρTM ¼
CT

c2
(6)

It should be reminded that the frequently used expression for thermal conductivity of phonon

systems, Eq. (2), is from the analogy between gas and heat carriers. The scattering of phonons

induces resistance on heat transport. Generally, the scattering accounted for thermal resistance is

the R processes, including the Umklapp scattering, defect scattering, and boundary scattering.

These scattering events eliminate the quasi-momentum of phonons. The MFP defined in Eq. (2)

refers to the traveled distance of a phonon between succeeding R scatterings. However, in ideal

gas systems, the collision among gas molecules does not perish the momentums. Therefore, the

R processes of phonons are more resemble to the collision of gas molecules to residential barriers.

It is the case when a gas flows through a porous medium. The collision frequency between gas

molecules and material skeleton determines the resistance experienced by the gas flow. In the

porous flow, the Darcy’s law describes the effective flow velocity is proportional to the pressure

gradient

u∝� ∇p (7)

The pressure gradient can be regarded as the driving force of flow. From a viewpoint of force

balance, the driving force is actually balanced by the friction force. Thereby Eq. (7) essentially

depicts that the friction force is proportional to the flowvelocity. It is a general case in laminar flow.

In analogy to the gas flow in porous medium, the velocity of thermomass is defined as

uTM ¼
q

CT
(8)

The mass and momentum balance equations of thermomass can be derived as [32–34]

∂ρTM

∂t
þ ∇ � ρTMuTM

� �

¼ 0 (9)

ρTM

∂uTM
∂t

þ ρTMuTM � ∇
� �

uTM þ ∇pTM ¼ f TM (10)

where pTM is the phonon gas pressure, and fTM is the friction force impeding the phonon gas.

Eq. (9) gives the energy conservation equation by applying Eqs. (6) and (8). Eq. (10) character-

izes the heat transport, which is the motion of thermomass through the materials. To obtain the

explicit heat transport governing equation, the pressure and friction terms need to be deter-

mined. If the phonons are viewed as moving particles with finite mass, the pressure of them

can be derived by accounting the momentum change when these particles hit and rebound

from a unit area of the container surface, in analogy to the kinetic theory of gas. In a result, the

pressure of phonon gas can be expressed as

pTM ¼
1

3

v
2
g

c2
CT ¼

1

3
v
2
gρTM (11)

where vg is the group velocity of phonons. For bulk material, the friction experienced by

thermomass can be extracted from Eq. (7). When discussing the nanosystems, the boundary
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effect needs to be considered. The Darcy’s law for porous flow was extended to Darcy-Brinkman

relation when the boundary effect is nonnegligible [37, 38]

�∇p ¼
μ

K
u� μ∇

2u (12)

where μ is the viscosity,K is thepermeabilitywith aunit ofm2. Eq. (12) indicates that theboundary

slip velocity attenuates from the boundary with a characteristic length of K1/2 to the uniform

velocity in the porous medium. The introducing of a second-order spatial derivative term also

makes Eq. (12) the same order as the governing equations for free flow. In the steady flow, the

driving force is balancedwith the friction force. Following the formofEq. (12),when the boundary

effect is considered, the friction of thermomass can be formulated as

f TM ¼ �χρTMuTM þ μTM∇
2uTM (13)

where χ is the friction factor. The permeability of the thermomass in heat conducting medium is

KTM ¼
μTM

χρTM

(14)

In large systems, the boundary effect is negligible. Then, Eq. (13) reduces to the Darcy’s law

with the first term much more important than the second term on the right hand side.

When the spatial gradient and changing rate of physical quantities are not significant, the first

and second terms in Eq. (10) can be neglected. In this case, Eq. (10) exhibits the balance between

driving force and friction force. The heat conduction is steady in such a nonequilibrium system.

Combining Eqs. (13) and (10) leads to

χq ¼ �∇
1

3
v
2
gCT

� �

(15)

For the simplest case, vg and C are assumed to be temperature independent. Then, Eq. (15)

actually gives the Fourier law with

χ ¼ v
2
gC=3κ (16)

When the boundary effect is considerable, the second term in Eq. (13) needs to be accounted. In

this case, the combination of Eqs. (13) and (10) gives

�κ∇T ¼ q� l2B∇
2q (17)

where lB equaling to the square root of KTM is a characteristic length.

Eq. (17) is a generalization of Fourier law when boundary effect needs to be considered. It

predicts the reduction of effective thermal conductivity in nanosystems by the additional resis-

tance term.When the system size is bigger, the spatial gradient of q is smaller. Thus, κeff increases

with the system size growing larger. Nevertheless, to quantitatively predict the size dependency
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of κeff and compare it with experiments, the exact value of lB needs to be determined for certain

material. The thermal conductivity is a macroscopic physical quantity, which is usually obtained

by experiments. Similarly, with plenty of experimental data, the value of thermomass permeabil-

ity and lB could be evaluated. However, nowadays the experiments in nanosystems are still

expensive and have large uncertainty. Therefore, in the following, a bottom-up strategy, namely,

raising from microscopic phonon properties, is used to extract the value of lB.

3. Phonon Boltzmann derivation

For dielectric solids, the Boltzmann equation describes the evolution of phonon density of state

as in Ref. [26, 27]

Df k; x; tð Þ ¼ Cf k; x; tð Þ (18)

where D is the drift operator and C is the collision operator. Eq. (18) indicates that the phonon

gas can freely drift without the disturbance of collision. The drift operator is

Df k; x; tð Þ ¼
∂

∂t
þ v

n
k � ∇

� �

f n (19)

where vk is the phonon velocity in one Cartesian direction. The collision, such as the phonon-

phonon scattering, reshapes the phonon distribution function. In phonon theory, the collisions

can be sorted to R and N processes. The R processes break the phonon quasi-momentum, while

the N processes conserve it. In this sense, the collision operator can be simply formulated as

Cf k; x; tð Þ ¼
f n0 � f n

τR
þ
f nD � f n

τN
(20)

where τR and τN are the characteristic relaxation time between succeeding R and N events. f0 is

the equilibrium distribution given by Eq. (5), fD is the displaced distribution

fD ¼
1

exp ħω� ħk � uDð Þ=kBT½ � � 1
(21)

where uD is the drift velocity of phonon gas. Eq. (20) illustrates that the R processes tend to

bring f back to f0, while N processes tend to bring f to fD.

If f can be approximated with fD, a solution of Eq. (20) can be obtained with a second-order

Taylor expansion of fD around f0 and then integrating [33]

∂qi
∂t

þ
15

16
∇j

qiqj

e
þ
1

3
v
2
gC∇iT ¼ �

qi
τR

(22)

If the friction force in Eq. (10) only has the first term, which is linear to the thermomass velocity,

Eq. (22) is identical to Eq. (10) except the coefficient 15/16 in ahead of the second term on the
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left hand side. This difference is caused by the Doppler Effect during the drift motion of

phonon gas. From this perspective, the phonon gas is slightly different from the real gas. The

phonon energy varies due to the dispersion, causing the “eclipse” of the convection term. In a

nondispersive medium, the frequency is independent of k. Then, Eq. (22) is consistent with

Eq. (10). Nevertheless, the second-order spatial derivative term, like in Eq. (17), is dismissed. In

nanosystems, the boundary condition should be considered in solving Eq. (18). For example, if

the boundary is completely diffusive, the drift velocity in Eq. (21) is dragged to zero. In this

case, the phonon distribution function is assumed to have the following form.

f ¼ fD þ vgτN∇fD (23)

It indicates that with the diffusive boundary, the N processes induce a deviation from fD, with

the relaxation length λN = vgτN, i.e., the MFP of N processes. The additional term in Eq. (23)

gives a second-order spatial derivative term. By the integration of Eq. (18), one gets

∂qi
∂t

þ
15

16
∇j

qiqj

e
þ
1

3
v
2
gC∇iT ¼ �

qi
τR

þ

τNv
2
g

5
∇

2qi (24)

Keep in mind that the thermal conductivity in bulk limit is expressed by Eq. (2), in steady state,

one-dimensional heat conduction case, Eq. (24) can be simplified to

�κ∇T ¼ q�
λRλN

5
∇

2q (25)

Eq. (25) can be regarded as the first order Chapman-Enskog expansion [17] of the phonon

distribution function. In fluid mechanics, the viscous term in Navier-Stokes equation can be

derived from the first order Chapman-Enskog expansion of the state distribution function of

fluid molecular. Without the Chapman-Enskog expansion, the solution of Boltzmann equation

gives the Euler equation, which is the dynamic equation without the viscous dissipation. This

case happens when the interested region is far away from the boundary, or the boundary layer

thickness is negligible compared with the flow region, like the large Reynolds number flow

around the aircrafts. The difference between the thermomass flow and ordinary gas flow is that

the R processes causes residential friction forces to the flow, which makes the transfer diffusive.

In low temperature crystals, or low dimensional materials, such as graphene, the R processes can

be rare. Then the heat conduction will exhibit obvious hydrodynamic behaviors. Therefore,

based on the phonon Boltzmann derivation, the value of lB in Eq. (17) can be determined as

lB
2 = λRλN/5.

4. Phonon gas flow in Si nanosystems

Based on Eq. (25) we can calculate the effective thermal conductivity of nanosystems. The

silicon nanofilms and nanowires are investigated here because the experimental results are

available for comparison. The geometries of nanofilms and nanowires are shown in Figure 1.

The direction of heat conduction is in-plane for nanofilms and longitudinal for nanowires.
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Assume the boundary is completely diffusive, i.e., the phonon gas drift velocity is zero on the

boundary. The solution of Eq. (25) for a nanofilm is [39]

q yð Þ ¼ �κ0∇T 1�
cosh y=lBð Þ

cosh l=2lBð Þ

� 	

(26)

κ
nf
eff ¼

ð

l

qdy

�∇Tl
¼ κ0 1� 2Br � tanh 1=2Brð Þ½ � (27)

where l is the thickness of film and Br = lB/l is the Brinkman number. The solution for nanowire is

q yð Þ ¼ �κ0∇T 1�
J0 iy=lBð Þ

J0 il=2lBð Þ

� 	

(28)

κ
nw
eff ¼ κ0 1� 4Brð Þ �

J1 i=2Brð Þ

iJ0 i=2Brð Þ

� 	

¼ κ0 1�

X

∞

t¼0

4Brð Þ�2t

t! tþ 1ð Þ!

X

∞

t¼0

4Brð Þ�2t

t!t!

2

6

6

6

6

4

3

7

7

7

7

5

(29)

where l is the diameter (thickness) of the wire and J is the cylindrical Bessel function

Jn xð Þ ¼
x

2


 �nX∞

t¼0

�1ð Þt x=2ð Þ2t

t! tþ nð Þ!
(30)

Eqs. (26) and (28) show the heat flux is nonuniform at the cross-section. If the system size is

much larger than lB, q(y) tends to be constant. Then, the effective thermal conductivity renders

the bulk limit, κ0. If the system size is comparable with lB, q(y) is significantly affected by the

boundary. Thereby, κeff is strongly reduced.

The analytical derivation of Eqs. (26)–(30) is based on the assumption that the lB is con-

stant. However, in nanosystems, the phonon would scatter with boundary, which shortens

the MFPs. For the pure diffusive boundary, the scattering on boundary will terminate the

MFPs. It can be seen as the additional collision event into the ordinary scatterings. If

the boundary is located at r away from the originating point, the effective MFP of phonons

can be expressed as

Figure 1. Heat conduction in nanosystems. (a) In-plane nanofilm; (b) nanowire.
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λeff

λ0
¼ 1� exp �

r

λ0

� �

(31)

In this way, the effective MFPs in nanosystems can be obtained by integrating over the sphere

angle. For nanofilms, the local value of MFPs is [40]

λeff yð Þ

λ0
¼ 1þ

1

2
α� 1ð Þe�α þ β� 1

� �

e�β � α2Ei αð Þ � β2Ei β
� �� �

(32)

where α = (l/2�y)/λ0, β = (l/2+y)/λ0, and Ei xð Þ ¼
Ð

∞

1 t�1e�txdt. For nanowires, we have

λeff yð Þ

λ0
¼

1

π

ðπ

0

ðπ
2

0

1� exp �
y cosθþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2=4� y2 sin 2θ

q

λ0 sinϕ

0

@

1

A

2

4

3

5 sinϕdϕdθ (33)

Therefore, the MFPs are significantly shortened in nanosystems. It reveals that the boundary

has dual effects on heat conduction in nanosystems. First, the second spatial derivative of heat

flux, which represents the viscous effect of phonon gas, imposes additional resistance on heat

transfer due to the nonslip boundary condition. Second, the collision on boundary changes the

effective MFPs. This effect is similar to the rarefaction of gas flow in high Kn case. By account-

ing both the dual effects, the thermal conduction in nanosystems is described as

�
λR,eff rð Þ

λR,0
κ0∇T ¼ q rð Þ �

λR,eff rð ÞλN,eff rð Þ

5
∇

2q rð Þ (34)

It is worth noting that in fluid mechanics, the rarefaction is not necessarily happened at the

same time of viscous effect based on the Darcy-Brinkman relation. Consider the water flow

in porous material. The permeability of porous flow is determined by the size of pores,

which typically is in the order of micrometers. The MFP among water molecule is typically

subnanometer. Therefore, the square root of permeability differs much from the MFP.

The effects of Darcy-Brinkman boundary layer and rarefaction can be unconjugated. On

the other hand, if the fluid is replaced by gas, the MFP of fluid could be comparable to the

square root of permeability. In this case, the Darcy-Brinkman boundary layer and the rare-

faction should be considered simultaneously. For the phonon gas flow, the relative magni-

tude of λR, λN, and l decides the conjugation of boundary layer and rarefaction. λR

represents the “size of pores” while λN represents the viscosity of phonon gas. The bulk

limit is achieved when l >> λR and l >> λN. If λR >> l >> λN, the first term on the right

hand side of Eq. (34) is less important than the second term. The flow mimics a dense fluid

passing through a sparse medium. The boundary transmits momentum efficiently across the

flow region. The phonon hydrodynamics can be observed. If λN >> l >> λR, the flow

mimics a dilute fluid passing through a dense medium. The velocity profile will be close to

linear. In this case, only the rarefaction effect needs to be considered. If λN >> l and λR >> l,

both the rarefaction and boundary drag affect the resistance on flow and need to be modeled

simultaneously.
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The numerical solution of Eq. (34) gives the effective thermal conductivity for Si nanofilms and

nanowires at room temperature, as shown in Figure 2. The physical properties are adopted as κ0
= 148W/(m K) (standard experiment value for monocrystalline Si), λR,0 = 42 nm (according to the

direct calculation based on Eq. (2)), λN,0 = 360 nm. The predictions based on the gray model [7],

McGaughey model [16], and Ma model [31] are also presented in Figure 2. It shows the gray

model and McGaughey model overestimate the thermal conductivities. Ma model gives close

results to experiments. However, Ma model assumes a MFP of 210 nm, which is lack of physical

support. It also shows an unreasonable drop at D = 1000–2000 nm for nanowires. According to

Figure 2, our model achieves the best agreement with current available experiment and numer-

ical results.

5. Thermal rectification in nanosystems

Thermal rectification refers that the heat conduction in one direction of the device leads to

higher heat flux than following the opposite direction, even though the same temperature

difference is applied. It currently raises much interest since the first experimental report by

carbon nanotubes [43]. The thermal rectification effect is anticipated to realize thermal diode

[44], thermal logic gate [45], or thermal transistors [46, 47]. Though much effort has been paid

for searching useful mechanisms and realizing considerable rectification ratio, the ambitious

goal that controlling heat as electricity is still far away [48].

The mechanism of thermal rectification has been widely studied. It is found that various

effects can induce rectification, such as the different temperature dependences of the thermal

conductivity at the different parts of the device [49], the asymmetric transmission rates of
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Figure 2. Effective in-plane thermal conductivities of single crystal Si nanosystems at room temperature. Bottom solid

line: present model (Eq. (34)); top solid line: gray model [7]; solid and circle: McGaughey model [16]; dash line: Ma model

[31]. (a) Nanofilm. Symbols E1–E4 are experimental results from Refs. [18–21]. (b) Nanowire. Square is experimental

results from Ref. [25]. Triangle is numerical results from Refs. [41, 42].
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phonons across the interfaces [50], and the temperature dependence of electromagnetic

resonances [51]. Here, another rectification mechanism is proposed through the thermomass

theory, following an analogy to fluid mechanics. In Navier-Stokes equations, the convective

acceleration term indicates when the fluid experiences speed up or slow down. Therefore, if

the cross-section area of a flow channel is changing (e.g. the trapezoidal channel), the flow

rate under the same pressure difference is different in the convergent direction or in the

divergent direction. In the convergent direction, the channel serves as a nozzle, which

accelerates the fluid and converts part of its potential energy to the kinetic energy. In the

divergent direction, the channel serves as a diffuser, which decelerates the fluid and converts

part of its kinetic energy to the potential energy. The acceleration of fluid increases the

velocity head and consumes the dynamic head of flow. Therefore, the total fluid flux in the

convergent direction will be less than that in the divergent direction. In terms of thermal

conduction, it means that with the same temperature difference between the heat source and

sink, the total heat flux in the wide-to-narrow direction is smaller than that in the narrow-to-

wide direction, which is the thermal rectification. Nevertheless, it should be stressed that for

a flow channel with large angle of divergence, the flow separation could happen when the

fluid velocity is high. In case of flow separation, the effective resistance of the diffuser will be

much increased. It may cause the total heat flux in the wide-to-narrow direction larger than

that in the narrow-to-wide direction, that is, the reverse of rectification.

In steady state, the generalized conduction law, Eq. (10), can be reformulated as

�τR∇j

qiqj

e
� κ∇T ¼ qi � l2B∇

2q (35)

The difference between Eqs. (35) and (25) is the additional convective term, �τR∇jqiqj/e. The

first term on the left hand side mimics to the spatial inertia term in fluid mechanics. It

induces rectification effect. Consider a trapezoidal material with heat conducting through

the symmetry axis, as shown in Figure 3. The thickness of the material is H; the widths at the

narrow and the wide ends are LW and LN, respectively, and the separation between these

ends is L. If L is much larger than LN and LW, the heat conduction can be assumed as quasi-

one-dimensional. The mainstream of heat flux is in the x direction, qx >> qy. The total heat

flux (Q) at each cross-section perpendicular to x direction is constant. Due to the boundary

friction, the Laplacian of qx in the y direction is much larger than in the x direction. Then, the

x component of Eq. (35) is

�κ

∂T

∂x
¼ qx 1þ τR

∂

∂x

qx
CT

� �

� l2B
∂
2

∂y2
qx ¼ qx 1þ CRð Þ � l2B

∂
2

∂y2
qx (36)

where CR consists of two terms

CR ¼
τR

CT

∂qx
∂x

�
τRqx
CT2

∂T

∂x
(37)
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The sign of the first term of CR will be positive for the heat conduction in a convergent channel,

which means the acceleration of heat flux creates additional effective resistance, and reduces

the total heat flux. Oppositely, heat conduction in a divergent channel will increase the total

heat flux. The second term of CR will not change sign with the direction of heat transport. It

characterizes the acceleration due to density variation since thermomass is compressible. It is

insignificant except for the case of ultra-high heat flux [52].

To enhance the thermal rectification, the directional sensitive part in Eq. (36) should be ampli-

fied over the directional non-sensitive part. If the diffusive boundary condition is replaced

with slip boundary condition, or the system size is large compared with the boundary layer,

the Laplacian term of heat flux can be neglected. In room temperature, the second term of CR is

usually much less than the first term. In this case, Eq. (36) can be simplified to

�κ

∂T

∂x
¼ qx 1þ

τR

CT

∂qx
∂x

� �

(38)

Consider a silicon ribbon with the average temperature 300 K. Assume that H = 1000 nm,

L = 300 nm, LN = 300 nm, Lw varies from 300 to 2000 nm. The relaxation time τR is set as

1.5e�10s based on experimental results [53]. The temperatures on both ends are 330 and

270 K, respectively. By numerically solving Eq. (38), we can get the rectification ratio

(defined as the thermal conductance in narrow-to-wide direction over that in the opposite

direction), as shown in Figure 4. It shows that the rectification ratio grows with Lw, from

zero to a considerable value of 32.3%. This value is large enough to construct thermal diode

or thermal logic gate.

Figure 3. Trapezoidal nanoribbon for demonstrating thermal rectification.
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6. Thermoelectricity of nanosystems

The ZT for nanomaterials could be much enhanced [10–13]. The mechanism of such enhance-

ment can be that the nanostructures reduce the thermal conductivity by strong phonon-

boundary scattering while maintaining the electrical conductivity. Although a lot of work has

been done in searching high ZT materials through nanotechnology, the thermodynamic anal-

ysis and the role of nonlocal and nonlinear transports, which are highly possible to happen in

nanosystems, are not fully discussed [54, 55]. In recent years, the nonlocal effects raised by the

MFP reduction due to geometry constraint [56], the electron and phonon temperature [57], and

the breakdown of Onsager reciprocal relation (ORR) [58, 59] in nanosystems have been inves-

tigated from the framework of extended irreversible thermodynamics (EIT). These works

showed that the nonlinear and nonlocal effects influence the efficiency of devices. The break-

down of ORR not only possesses theoretical importance but also shed light on approaches to

further increase efficiency.

Here, we analyze the thermoelectric effect from the thermomass theory perspective. There

could be various effects when the individual motion of phonon gas and electron gas is

separately considered. The most apparent one is the energy exchange between phonons and

electrons [60]. In a one-dimensional thermoelectric medium, the conservation of energy gives

∇q� IE ¼ 0 (39)

where I is the electrical current and E is the electrical field. IE equals the adding or subtracting

rate of thermal energy. Dividing Eq. (39) by c2 illustrates that the electrical current performs as
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Figure 4. Thermal rectification ratio depending on Lw of the trapezoidal silicon ribbon.
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the mass source or sink of thermomass. The nonconservation of mass brings additional term in

Eq. (10). In steady state, we obtain the governing equation of thermomass momentum as

ρTMuTM � ∇
� �

uTM þ uTM∇ � ρTMuTM
� �

þ ∇pTM ¼ f TM (40)

The second term on the left hand side is nonzero because of the energy conversion. It increases

the spatial inertia of thermomass. For simplicity, we do not consider the Brinkman extension of

the friction force and assume the material cross-section is constant, and then Eq. (40) turns to

�κ
∂T

∂x
¼ qx 1þ CRð Þ (41)

where

CR ¼
2τR
CT

IE�
τRqx
CT2

∂T

∂x
(42)

Compared with Eq. (37), the first term of CR has a coefficient 2 because of the energy exchange

between phonons and electrons. The electrical current couples with the heat flux and induces

additional spatial acceleration force on the thermomass flow. This inertia increase is insignifi-

cant in ordinary conditions due to the small value of τR. It could be considerable in case of

strong power thermoelectric convertor with large electrical current and intense electrical field.

Neglecting the second term of CR, it can be derived that the effective thermal conductivity and

Seebeck coefficient change to

κ
0 ¼ 1þ CRð Þ�1

κ (43)

S0 ¼ 1þ CRð Þ�1S (44)

Since ZT is S2σ/κT, the effective ZT is (1 + CR)
�1 of the original one without considering the

inertia effect of thermomass. Therefore, when IE > 0, the electrical energy converts to thermal

energy. It is typically the case of thermoelectric cooler. The heat flux is additionally impeded.

The ZT is decreased. When IE < 0, the temperature gradient drives electric current. It is

typically a thermoelectric generator. The heat flux is further pumped, and the effective ZT is

enhanced. The inertia effect could be beneficial for a higher ZT of the device in this case.

7. Conclusion

In this chapter, we present a mechanical analysis on the thermal conduction in nanosystems

with the thermomass theory. Firstly, the boundary resistance in nanosystems on heat flow is

modeled with the Darcy-Brinkman analogy. The permeability of thermomass in materials is

derived based on the phonon Boltzmann equation. The size-dependent effective thermal

conductivity of Si nanosystems thereby is accurately predicted with the present model.

Then, the spatial inertia effect of thermomass is shown to induce the thermal rectification in
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asymmetry nanosystems. The predicted rectification ratio can be as high as 32.3% in a

trapezoidal Si nanoribbon. Finally, the energy conversion in thermoelectric devices can be

coupled with the spatial inertia of thermomass flow. The ZT tends to be increased in case of a

thermoelectric generator.
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