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Abstract

In a natural habitat, microbes respond to alterations in the amounts of nutrients or to 
stresses such as osmotic stress and stresses caused by low or high pH, salt, heat, and 
antibiotics by changing their mode for proliferation or survival. Similarly, Escherichia coli 
cells in a test tube change the growth mode according to environmental conditions when 
they enter a stationary phase. Until a sufficient supply of nutrients, the organism survives 
under such stressful and nutrient-limited conditions by altering gene expression to be 
more protective against such conditions. The definite trigger of the onset of stationary 
phase is still unclear, but several lines of evidence indicate that the regulation mecha-
nism is very complicated and involves several transcriptional factors including alterna-
tive sigma factors, σE and σS. In addition, E. coli cells behave as a community of species 
and give rise to programmed cell death (PCD) for ensuring survival by controlling the 
cell number and supplying nutrients to sibling cells in long-term stationary phase (LTSP). 
The main PCD is probably performed by σE in E. coli. In this chapter, physiological func-
tions of σE and PCD are introduced and reviewed and their possible involvement in sur-
vival mechanisms in stationary phase, especially LTSP, is shown.

Keywords: survival mechanism, envelop stress, σE, programmed cell death, long-term 

stationary phase

1. Introduction

1.1. Brief introduction of σE

Living Escherichia coli cells are constantly suffering from various stresses. The bacterium thus 
possesses mechanisms to sense stresses and deal with them by changing gene expression 
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levels and metabolisms. σE, one of the seven sigma factors existing in E. coli [1], is associated 

with the core RNA polymerase complex and initiates transcription by directly recognizing 

a promoter consisting of specific elements. σE was found for the time as a heat shock sigma 

factor due to reduction in the expression level of heat shock proteins at 50 °C in mutants of 

rpoE, encoding σE [2] and it is thought to be one of heat shock sigmas like σH. σE has been 

recognized as an envelope stress-responsive sigma factor [3] that senses an abnormality of 

the outer membrane integrity. Under the control of this sigma, several important genes are 

governed, for example, σH and genes for protein folding and degradation [4]. In addition, σE 

represses the synthesis of outer membrane proteins (OMPs). We show ingenious mechanisms 

of σE management of its molecule and activity and functions of genes under the control of σE 

in Section 2.

1.2. Brief introduction of PCD

PCD is conserved for all genetically encoded processes that lead to cell suicide. This con-

ceptual word was first proposed in 1964 [5]. PCD that is observed in development, aging, 

and pathology in eukaryotic multicellular organisms is classified into three categories based 
on morphological characteristics such as apoptosis, autophagy, and necrosis. Among these, 

apoptosis, first described in 1972 [6], is the most well-characterized PCD. The morphologi-

cal manifestations associated with apoptosis include chromatin condensation, chromosomal 

DNA fragmentation, membrane blebbing, cell shrinkage, and disassembly of the cell into 

membrane-enclosed vesicles. Apoptosis is highly regulated, and proteases called caspases 

play key roles in the induction of DNA fragmentation in the activation cascade [7]. Autophagy 

is the process by which a vesicle called an autophagosome is constructed for atrophy of the 

nucleus but with no DNA fragmentation [7]. Necrosis is triggered by activation of various 

receptors for loss of cell membrane integrity and uncontrollable release of intracellular con-

tents into the extracellular space [7]. The physiological importance of these PCDs in the devel-

opment of an animal has been well defined. For example, during embryonic development, the 
earliest form of the human hand resembles a paddle due to the elimination of excess cells by 

apoptosis. PCD mechanisms are also responsible for the homeostasis of multicellular organ-

isms by the elimination of damaged cells that may become a source of cancer cells in the body.

It was thought that PCD only exists in eukaryotic cells, but several scientists have consid-

ered the possibility of the existence of bacterial PCD resembling eukaryotic PCD mechanisms. 

Indeed, a growing body of evidence has shown that PCD is indispensable for bacterial devel-

opment and is closely associated with bacterial survival mechanisms [8, 9]. Bacterial communi-

ties utilize PCD for survival of their population when suffering from oxidative stress, nutrient 
deprivation, phage infections, or other problems. The cell survival mechanism is a response 

to stresses outside cells and inside cells, but excessive damage turns on the PCD mechanism 

of some cells to help sibling cells. In the development processes of bacteria, PCD provides 

nutrients to sibling cells, releases components, and promotes special aspects. Indeed, biofilm 
formation, sporulation, and other multiple cell-like developments have been shown to bear 

PCD mechanisms in these processes. In biofilm development, cell death and lysis are required 
for the release of genomic DNA (known as extracellular DNA), which becomes incorporated 

Escherichia coli - Recent Advances on Physiology, Pathogenesis and Biotechnological Applications384



into the biofilm matrix and serves as an adherence molecule [10]. For the development of 
sporulation, sporulating cells produce a killing factor for nonsporulating cells, from which 

released nutrients support sporulation. Moreover, the mother cell in the sporulating popula-

tion undergoes PCD to release the mature spore via its autolysis [11]. As other mechanisms, 

Fratricide behavior during its genetic transformation, autolysis in Myxococcus xanthus devel-

opment, developmental cycle in Streptomyces, and coccoid formation in Helicobacter pylori also 

include PCD in their processes [9].

Many bacterial PCDs are induced through the toxin-antitoxin (TA) system. Five types of TA 
systems have been found and characterized [9, 12]. Type I has an antisense RNA that pairs 

with its corresponding toxin mRNA. The difference in transcription between toxin RNA and 
antitoxin RNA controls the toxin activity. Type II has a protein antitoxin that detoxifies its 
corresponding toxin protein by their protein-protein interaction. This type of TA system is 

most abundant. Type III has an antitoxin RNA that interacts directly with the target toxin 

protein to form an antitoxin RNA-toxin inactive complex. Type IV has a protein antitoxin 

that stabilizes the target of the toxin by direct binding. Type V has an endoribonuclease that 

cleaves the target toxin mRNA. These TA systems play important roles in several cellular 

processes such as plasmid stabilization, formation of persistent cells, peptidoglycan synthe-

sis, resistance to bacteriophages and antibiotics, and inhibition of macromolecule and biofilm 
formation [9, 12]. PCD via a TA system is executed by the role of toxin proteins. mazEF in the 

type II TA system in E. coli has been the most intensively investigated and it has been shown 

to play a key role in the PCD process.

It has been suggested that the bacterial strategy for survival against DNA damage resembles 

the PCD mechanisms in eukaryotes [13]. The PCD mechanisms characterized in both prokary-

otic and eukaryotic cells indicate that DNA damage leads to cell death when the damage is 

irreparable. Bayles reported that the death pathway also leads to apoptosis-like processes or 

autolysis [13]. The similarity of cell death systems in eukaryotes and bacteria suggests that the 

common origin of this system is derived from endosymbiotic bacteria [9]. Therefore, PCD is a 

basic mechanism for organisms in all kingdoms for the maintenance of communities, and this 

system has been acquired at a very early stage of appearance of life on earth. In Section 3, we 
summarize PCDs in E. coli and show σE-dependent cell lysis as one of the PCDs and its physi-

ological roles, which our group has discovered.

1.3. Brief introduction of LTSP

In nutrient-sufficient media in the laboratory, E. coli exhibits a typical growth curve consist-

ing of five phases: lag phase, log phase, stationary phase, death phase, and LTSP (Figure 1) 

[14, 15]. Among these phases, characteristics of first three phases have been described in detail 
elsewhere [15]. It has been thought that cells in the death phase gradually die, and it is known 

that 99.9% of the cells are not viable in that phase. However, Finkel reported that E. coli is 

able to survive for 5 years in LB medium without any additional nutrients if the volume and 

osmolarity of the medium are maintained [14]. The transition of viable (colony-forming) cell 

number from 109 cells/ml at the stationary phase to 106 CFU/ml at the LTSP [14] is accom-

plished by a rapid decrease in an exponential fashion in the death phase. Then the viable cell 
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number is maintained around 106 CFU/ml by unknown mechanisms for a very long period. 
Interestingly, in the LTSP, viable cells show a growth advantage against parent strains [16]. 

The phenotype of these cells is called growth advantage in stationary phase (GASP). In addi-

tion, GASP mutants consecutively occur every 10 days in the same culture [17]. Therefore, 

cells in the LTSP are not static and a dramatic population change occurs for adapting to the 

environmental perturbation of nutrients and conditions for survival.

What factors can lead E. coli cells from the stationary phase to the LTSP? The onset and 

course of the stationary phase have been summarized well in other reviews [15, 18]. Briefly, 
at the beginning of the stationary phase, the abundance of specific sigma factors is known to 
change: σE and σS molecules are increased by fivefold and by threefold to fourfold, respec-

tively [19–21]. The physiological roles of σE and σS suggest that these factors enable cells to 

adapt to environments in the stationary phase by changing expression of 10% of the genes 
of E. coli. However, it has not been clarified how the death phase and LTSP start. Since pro-

tein expression level is kept low for several days in the stationary phase [22], cells may have 

some activity to accomplish preparation for the coming phases. These activities are  probably 

related to PCD mechanisms [14] as described below. Several factors have been considered 

for the transition to the LTSP. One of these factors is reactive oxygen species (ROS). Indeed, 

mutants of genes for NADH dehydrogenase in the respiratory chain, which is a primary 

source of ROS, exhibited no GASP phenotype [23]. In addition, GASP phenotypes are altered 

by vessel volume of cultures, probably affecting dissolved oxygen concentrations in the 
medium [24]. On the other hand, we have revealed that σE-dependent PCD is essential for 

Figure 1. Transition model of viable cells until the LTSP in E. coli. The LTSP is created presumably by the sequential 
alteration of the expression of regulators. The sigma factors σE and σS are important regulators for onset of the stationary 

phase and the consequent death phase. PCD and SOS-induced DNA polymerases, Pol II, Pol IV, and Pol V, are thought 
to be important factors for maintenance of the LTSP. Adapted from Finkel [14].
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the GASP phenotype [25], indicating the responsibility of PCDs for the LTSP transition. We 

describe the possible survival mechanism of E. coli in the LTSP and the importance of σE-

dependent PCD in Section 4.

2. Functions of σE

2.1. Mechanisms of membrane stress responses for σE activation

Bacteria have mechanisms for rapid responses to environmental stresses, especially on the 

envelope because cell structure is maintained by integrity of the membrane. There have been 

many studies on membrane stress responses. In Gram-negative bacteria, such responses are 

known as envelope stress responses (ESRs). There are five known ESRs, Cpx, σE, Bae, Rcs, 

and Psp ESRs, that are induced by a variety of envelope stresses and alter the expression of 

adaptive functions to modify the envelope, rid cells of a toxic entity, and/or repair substan-

tial damage [3]. Of these ESRs, σE ESR, a subset first found in E. coli, is known to respond to 

stresses such as stresses from heat and alkali due to damage of the outer membrane [26]. The 

σE ESR detects perturbations in biogenesis of the outer membrane or lipopolysaccharide (LPS) 

due to protein-folding problems in the periplasmic space and outer membrane (Figure 2). 

The key protein in this response is a transmembrane protein of RseA as an anti-σE protein 

capturing σE to inactivate it under nonstress conditions. Under stress conditions, σE activation 

is accomplished by the stepped degradation of RseA via three proteases, DegS, RseP (YaeL), 

and ClpXP. Senescing of the integrity of OMPs, which causes the activation of DegS by bind-

ing with unfolded OMPs, is the first key mechanism of σE activation [26]. In addition, DegS 

cleavage of RseA is physiologically inhibited by RseB binding to a conserved region near 

the C-terminus of the poorly structured RseA domain [27]. Therefore, RseB can negatively 

regulate the RseA degradation [27, 28]. RseB senses LPS integrity for binding with released 

LPS, and LPS displaces RseA from RseB due to antagonization of binding [29]. The subse-

quent intramembrane proteolysis of RseA by RseP is not performed when RseB is bound to 
RseA due to blockage through the side filtering function of the two PDZ domains of RseP 
[30]. Under stress conditions, the exposed periplasmic domain of RseA is cleaved by DegS 

between V148 and S149 [26]. Consequently, specific recognition of cleaved RseA is performed 
by the PDZ tandem domains of RseP [30], and specific cleavage of the transmembrane region 
of RseA1–148 is also executed at A108 and C109 [31]. Finally, the cleaved cytoplasmic region of 
RseA1–108 is recognized by SspB, and RseA1–108/σE complex is delivered to cytoplasmic AAA+ 

proteinases such as ClpXP [32, 33]. Destruction of the RseA fragment allows σE liberation and 

activation to cause the transcription of stress-responsive genes under the control of σE [28, 34].

These dual molecular signals (unfolded OMPs and LPS) are key factors for the σE ESR to 

sense outer membrane stresses [29]. For cell formation, OMPs and LPS are transported from 
the cytoplasm to the outer membrane in E. coli. The transport of OMPs as a beta-barrel struc-

ture is performed by the Sec-SurA-BAM system [35]. DegS is activated by binding of a pep-

tide bearing a YxF motif at the C-terminus of an OMP, which is exposed by envelope stress, 
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releasing from SurA or misfolding in BAM [28]. LPS is also transported by the aid of Ltp 

proteins, and LptA is a key component of the transenvelope complex to shuttle LPS to the 
outer membrane [36]. LptA less efficiently binds to LPS against RseB at 45°C [29], suggest-

ing that LPS is easily caught by RseB under heat shock conditions. In addition, RseB can 

sense many mislocalized LPS species [29]. Therefore, both DegS activation and RseB detach-

ment are essential for the initiation of RseA proteolysis for σE liberation. However, σE activity 

increases when either OMP or LPS mutations have accumulated [26, 29, 37], suggesting that 

a crosstalk between OMP and LPS biogeneses might be an additional regulation that can 

induce σE activation [28, 29].

This kind of proteolytic signal transduction and regulator-activating mechanism provides dis-

tinctive features for σE regulon as a transient expression. In the σE ESR, the initial signal-sensing 

cleavage of RseA is a rate-limiting step but the degradation of cytoplasmically fragmented 

RseA by AAA+ proteinase is relatively fast. Whereas, RseA is in excess over σE under normal 

conditions and the expression level of rseA is higher than that of rpoE [38]. Consequently, acti-
vated σE is rapidly deactivated, resulting in a short-period response to envelope stresses [33].

2.2. σE regulon genes

Activated σE forms a holo-RNA polymerase with the core RNA polymerase complex to initi-

ate transcription by recognizing consensus sequences located upstream from coding genes 

Figure 2. Schematic diagram of the σE signaling pathway and the σE regulon cascade. RseA is a key protein for σE 

activation. RseA, which is an antisigma factor, captures σE and neutralizes its activity. Two types of signaling molecules, 

OMPs and LPSs, are key activators of the proteinase DegS because the binding of the C-terminus of an OMP is 

required for DegS activation and the binding of LPS to RseB is required for deblocking of the RseA cleavage by DegS. 
Consequently, RseA is sequentially digested by RseP, and the RseA-N terminus is degraded by AAA+ proteinase, by 
which σE is released and activated to form a holo-RNA polymerase complex. Expressed σE-regulon members consist of 

LPS- and OMP-related proteins. sRNAs play key roles in the prevention of overproduction of LPSs and OMPs and in 

elimination of OMPs in σE-dependent cell lysis. Adapted from Lima et al. [29].
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called promoters. Several experiments have been carried out in E. coli to find consensus 
sequences of promoters and σE-regulating genes, σE regulon genes. Attempts were made to 
identify consensus sequences for σE by several procedures, and genomic information and 

a search algorithm predicted a conserved −35 motif (GGAACTTTT) and a conserved −10 
motif (T/CGGTCAAAA) [39–41]. σE regulon members in E. coli have been found by pro-

teomics [4, 39], genetic strategies, [39, 40] and microarray analysis [4, 41]. Results of those 

studies showed that σE-holo RNA polymerase transcribes two kinds of RNAs, mRNAs for 

several genes and antisense sRNAs that repress the expression of several genes. Analysis of 

σE regulon genes showed that the regulon consists of 19 transcription units and 23 proteins. 
At least 60% of the regulon members are responsible for the synthesis and assembly of LPS 
and OMPs or regulatory proteins for these two key elements of the outer membrane [41]. 

The majority of σE regulon genes in E. coli are genes encoding periplasmic folding factors, 

periplasmic proteases, OMP assembly proteins, LPS translocation and assembly proteins, 

proteins for synthesis of phospholipids and lipid A, and a heat shock sigma factor coded 

by rpoH [39, 42]. One of most important operons under the control of σE is the rpoE-rseABC 

operon coding σE itself, RseA as an anti-σE, RseB repressor, and a soxR-influencing protein, 
respectively [43]. This operon is induced by two σE promoters, one upstream of rpoE and the 

other upstream of rseA. Therefore, σE activation causes a negative feedback loop by double 

transcriptions from the two promoters for rapid repression of σE activity. On the other hand, 

it has been revealed that small RNAs (sRNAs) are controlled by σE and work as repressors 

for gene expression. There are two distinct σE-inducible sRNAs, MicA and RybB, that bind 

to Hfq, an RNA chaperone protein required for the function and/or stabilization of sRNAs, 
and target mRNAs from 31 genes for major porins, metabolism, ribosome biosynthesis, 

toxin-antitoxin, and transcriptional factor PhoP [44]. In addition, MicL (SlrA) targets only 

one mRNA, which encodes the outer membrane lipoprotein Lpp, the most abundant protein 

of the cell [45]. Taken together, MicA, RybB and MicL allow σE to prevent the synthesis of 

abundant outer membrane proteins in response to stresses.

3. σE-dependent PCD

3.1. PCD in E. coli

PCD in E. coli is also closely associated with the strategy for sensing damage in DNA and the 

envelope structure. Three PCD mechanisms, a TA system, apoptosis-like death (ALD) and σE-

dependent cell lysis, have been found in E. coli (Figure 3). Of these, the most intensively inves-

tigated PCD is mazEF, a TA system in which mazF encodes a stable toxin, sequence-specific 
endoribonuclease, and mazE encodes a labile MazF-antitoxin that is degraded in vivo by ATP-

dependent ClpPA serine protease [46–48]. Toxicity of MazF is attributable to its endoribonu-

clease activity, specific for the trinucleotide sequence of ACA in mRNA, including the 3′-end 
fragment of 16S rRNA, to block protein synthesis and to synthesize specific proteins [49]. 

Specifically expressed proteins are classified into “survival proteins” and “death proteins” 
including SlyD, YfiD, YgcR, and ClpX [50]. Death proteins induce the DNA fragmentation 

and membrane depolarization [48]. In addition, mazEF-mediated PCD is regulated by a 
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quorum-sensing factor as a linear pentapeptide Asn-Asn-Trp-Asn-Asn (NNWNN), called an 
extracellular death factor (EDF) [51]. The EDF directly binds to MazF dimers to release MazF 
from the MazF–MazE complex, leading to cell death [52]. Moreover, mazEF-mediated PCD is 

activated under various stressful conditions including extreme amino acid starvation, inhibi-

tion of transcription and/or translation by antibiotics including rifampicin, chlorampheni-

col, and spectinomycin, an inhibitor protein of translation, DNA damage caused by thymine 

starvation as well as by mitomycin C, nalidixic acid and UV irradiation, and oxidative stress 

[47]. Notably, 28 other putative TA systems including DinJ-DafQ, DinP-YafN, RelB-RelE, and 

ChpS-ChpB have been identified in the E. coli K12 genome [12].

An SOS response-mediated PCD pathway was recently identified in E. coli is called apoptosis-

like death (ALD) pathway [48]. The ALD pathway is activated by an extreme SOS response 

under severe DNA damage conditions [53] and follows apoptosis-like characteristics includ-

ing rRNA degradation by the endoribonuclease YbeY [54], upregulation of a unique set of 
extensive damage-induced genes, decrease in respiration activity, and formation of high lev-

els of OH⁻, resulting in cell death [53]. Analysis of the relationship between mazEF-EDF and 
ALD revealed that the ALD pathway is inhibited by the mazEF-EDF–mediated PCD pathway 
[48].

In addition to DNA damage, envelope damage has been shown to be a trigger of PCD in E. 

coli. Envelope damage is caused by various factors including antibiotics, toxic metabolites, 

bacteriocins, osmotic, pH, and salt. In Gram-negative bacteria, the damage is sensed and 

transduced via ESRs. The ESRs alter the expression of specific genes related to functions 
that modify the envelope, rid cells of the toxic entity and/or repair the envelope damage 

[3]. σE-dependent PCD, which is one of envelope damage related PCDs, was first reported 

Figure 3. Activation pathways of PCD in E. coli. Several stresses affect cellular components including envelopes, DNA, 
and proteins, and these damaged materials become a signal for each stress response directly or indirectly. If the damage 

is excessive, PCD is triggered by several mechanisms. In E. coli, three mechanisms for PCD including TA systems, SOS-

response–dependent cell lysis and σE-dependent cell lysis have been reported. SOS mainly responds to DNA damage 

and σE mainly responds to envelope damage. These three responses can directly induce PCD, but they are weakly 

connected to each other [46, 48].
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in 2000 [19]. This PCD occurs as an autolysis mechanism, which is a growth phase-specific 
cell lysis [19], and removes only viable but nonculturable (VBNC) cells [19]. The molecular 

mechanism of the PCD is described below in detail. Interestingly, rpoE coding σE is an essen-

tial gene [55] because the absence of σE causes a cell death-signaling pathway including hicB 

(ydcQ) that encodes for an antitoxin of the HicA toxin proteinase [56, 57].

3.2. Mechanism of σE-dependent PCD

At the early stationary phase, E. coli cells undergo a decrease in viable cell number and almost all 

of the cells become VBNC cells [16, 58]. Elevation of the activate intracellular σE level, due to dis-

ruption of rseA for anti-σE or rpoE-increased expression, causes cell lysis at the beginning of the 

stationary phase, and this lysis occurs in wild-type cells at a low level [19, 59]. This mechanism 

may contribute to the removal of VBNC cells that have accumulated at a specific phase prob-

ably due to the accumulation of intracellular oxidative stress, and it is called σE-dependent PCD. 

Murata et al. showed that σE-dependent PCD is mediated by MicA, RybB, and PpiD [59]. MicA 

and RybB are transencoded sRNAs, and their expression is positively regulated by σE [60–62]. 

When misfolded OMPs or periplasmic proteins have accumulated, the expression of their sRNAs 

is induced by active σE, and MicA and RybB cause reduction in the levels of mRNAs of ompA and 

both ompC and ompW, respectively, via interaction between the sRNAs and the corresponding 

mRNA by assisting Hfq as an RNA chaperon and degradation of the mRNAs by ribonucleases 
[63]. Some OMPs are known to be physiologically and structurally crucial for cell activity [64]. 

OmpA as a structure protein is involved in the maintenance of cell shape and the passage of 

hydrophilic compounds through the outer membrane [65]. OmpC is the major porin protein that 

functions as a cation-selective porin [66]. However, no physiological function of OmpW has yet 

been determined [67]. These OMPs are greatly decreased in σE-activated cells [4, 19], and micA- or 

rybB-disrupted mutants and micA- or rybB-overexpressed cells repress and induce σE-dependent 

PCD, respectively [59]. Therefore, σE-dependent PCD is caused by the reduction of OMPs via 

posttranscriptional regulation including MicA and RybB. Recently, MicL has been found as the 
third σE-dependent sRNA that targets an mRNA for lipoprotein Lpp [45]. Since Lpp is the most 

abundant protein in the outer membrane [64], MicL may also be involved in σE-dependent PCD.

The level of PpiD is greatly reduced in σE-activated cells, though its regulation mechanism is 

unknown [68]. PpiD is a peptidyl-prolyl cis-trans isomerase as a periplasmic folding catalyst 

that catalyzes the rapid interconversion between the cis and trans forms of the peptide bond 

Xaa-Pro [69]. PpiD recognizes the early OMP folding intermediates and suppresses OMP bio-

genesis defects. Indeed, overexpression of PpiD represses σE-dependent cell lysis probably 

due to the acceleration of OMP folding [68]. Thus, the reduction of PpiD ensures the elimina-

tion of OMPs after the degradation of OMP mRNAs by sRNAs.

As shown in the model in Figure 4, when cells are exposed to some stresses as signals, mainly 

oxidative stress [19, 70], unfolded proteins accumulate in the outer membrane or periplasmic 

space, in turn causing the elevation of active σE in the cytoplasm. Active σE induces the expres-

sion of sRNAs, leading to the reduction of OMPs including Lpp. Furthermore, the reduction 
of PpiD via active σE enhances the disintegration of OMPs, resulting in collapse of the integ-

rity of the outer membrane and finally lysis of cells.
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3.3. Function of σE-dependent PCD

Cell lysis in E. coli occurs under a general cultivation condition and remarkably increases 

after the early stationary phase. Most of the lysis seems to be σE-dependent because enhanced 

expression of rseA for anti-σE diminished the lysis [68]. The lysis level was significantly 
reduced when plasmid clones of sodA and katE for superoxide dismutase and catalase, respec-

tively, were introduced [70]. Consistent with the level of lysis, the amounts of ROS are small 

in the exponential phase and large with a peak at the early stationary phase. The introduction 

of antioxidative stress genes eliminated about 80% of ROS. These findings suggest that oxida-

tive stress is a trigger for the lysis [70]. The lysis is greatly enhanced in a katE-disrupted back-

ground, indicating that intracellular oxidative stress is involved in the lysis. Considering the 

signal transduction cascade to provide active σE [28], it is assumed that intracellular oxidative 

stress causes damage of OMPs by a modification such as carbonylation [71].

The trigger for σE-dependent cell lysis seems to be not only oxidative stress but also other 

stresses. The proposed signal transduction cascade for active σE [28] indicates the possibil-

ity that extracellular stress evokes σE-dependent cell lysis. Indeed, a disrupted mutation of 

rpoS for σS enhanced σE-dependent cell lysis at the early stationary phase [72]. Consistent 

with this, extracellular stress like toxic materials increases in a medium at the early stationary 

phase [14, 18]. Since σS functions as a general stress-response sigma factor to protect cells from 

various stresses [73], rpoS mutation results in the elevation of extracellular stress. It is known 

that σE becomes active through the σE activation cascade, which is initiated by conformation 

change of OMPs caused by a high temperature or ethanol as an extracellular stress [26, 29, 61]. 

Therefore, accumulation of extracellular and/or intracellular stresses beyond the elimination 

capacity by the stress response mechanism may cause conformation change of outer mem-

brane proteins, which activates σE, resulting in σE-dependent cell lysis.

Figure 4. A model of σE-dependent PCD. When cells are exposed to stresses such as oxidative stress, σE is activated in 

response to damaged OMPs and increases and decreases the amounts of sRNAs (MicA and RybB) and PpiD as a folding 

catalyst protein, respectively. The expression of ppiD is greatly reduced under the condition of accumulation of active 

σE. The relationship between σE and ppiD, however, has not been clarified yet. MicA and RybB repress the expression of 
mRNAs of ompA and both ompC and ompW, respectively. The biosynthesis and repair of damaged OMPs are repressed 

by reduction in the PpiD level. As a result, the integrity of the outer membrane collapses and cell lysis progresses and 

finally causes cell death. MicL sRNA, which represses the expression of lpp mRNA, may also participate in σE-dependent 

PCD. Adapted from Murata et al. [59].
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As shown in Figure 4, active σE determines the direction to either the repair or cell lysis 

pathway, presumably reflecting the level of damage of OMPs. If only a few OMPs are dam-

aged, the number of active σE molecules may be not enough to express sRNAs such as micA 

and rybB, which may be insufficient to cause cell lysis but can express genes for the repair 
pathway. On the other hand, damage of OMPs over a certain threshold evokes the cascade of 

σE-dependent cell lysis. The coincidence of the fact that OMPs are monitoring proteins for cell 

damage and/or σE-dependent cell lysis and the fact that σE-dependent cell lysis is induced by 

reduction in the amount of OMPs is highly notable. OMP-damaged cells may be much more 

sensitive than undamaged cells to σE-dependent cell lysis.

σE-dependent cell lysis seems to eliminate some of the VBNC cells that have been damaged by 

some kinds of stress. The amount of cell lysis increases in parallel with increase in VBNC cells 

in the stationary phase, and most of the lysis was suppressed by enhanced expression of rseA 

[68]. An rseA-disrupted mutant that constitutively expresses active σE shows a phenotype that 

is characterized by decrease in cell density without a significant influence on colony-forming 
unit (CFU) but with protein accumulation in the medium [19]. This phenotype suggests that 

VBNC cells or some of the VBNC cells are subjected to σE-dependent cell lysis. This limited 

cell lysis might reflect the existence of a mechanism to distinguish damaged and undamaged 
cells. It is hypothesized that VBNC cells to be lysed have damaged OMPs to some extent and 

thus are susceptible to σE-dependent cell lysis. Notably, sRNAs such as MicA and RybB play 

crucial roles in σE-dependent cell lysis in the LTSP because mutation rate drastically increases 

in micA- and rybB-disrupted mutants [25].

Taken together, the findings have shown that E. coli has developed an ingenious mechanism 

for elimination of damaged cells in order to suppress the accumulation of mutated cells, and 

this mechanism might contribute to the preservation of the species. Since oxidative stress 

causes damage to DNA molecules in addition to other macromolecules including RNA, pro-

tein and phospholipid, it is assumed that the degree of damage of OMPs is consistent with 

that of DNA and that an abnormality of OMPs is a signal for removal of cells that have dam-

aged DNA molecules from the cell population.

4. Contribution of PCD for LTSP

4.1. Survival mechanisms in LTSP

In the LTSP, E. coli cells can survive for several years [14, 17]. For survival, the cells induce 
specific sets of genes that support maintenance of their viability and protection against envi-
ronmental stresses such as an oxidative stress [74]. However, there are potentials for genetic 

alteration in most cells in the LTSP. It was reported that 10-day-old cells, GASP mutants, 

were able to compete against 1-day-old cells when they were mixed together [14, 16, 17, 75]. 

It has been proposed that population exchange continuously occurs in the LTSP (Figure 1). 

Interestingly, the GASP phenotype is mediated by stable genomic mutations that provide 

benefits to cells for survival. The first mutant exhibiting a GASP phenotype was obtained 
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from cells cultured for 10 days in LB medium, and its mutation, which was identified in 
rpoS coding σS, causes reduction of σS activity [16]. In addition, such σS activity-attenuated 
GASP mutants frequently appeared in nonbuffered media and basic media, but not so many 
appeared in acid and neutral media [76]. The relationship between the attenuation of σS activ-

ity and the GASP phenotype has not been clarified yet. The effect of the attenuation might be 
due to the misregulation of members of σS regulon. σS competes with other sigma factors to 

bind to the core RNA polymerase complex, and the attenuation of σS activity may change the 

balance in the competition among sigma factors [16].

Using the rpoS mutant as a starting strain, subsequent mutants with GASP phenotypes have 
been isolated. The additional mutations to the rpoS mutation have been mapped to lrp, cod-

ing the leucine-responsive regulator protein as a global regulator [77], or to the ybeJ–gltJKL 

cluster, encoding a high-affinity aspartate, and glutamate transporter [78]. A mutation in the 

DNA-binding domain of lrp has been shown to cause a GASP phenotype by increase in amino 

acid catabolism during carbon starvation, and mutants having mutation of ybeJ–gltJKL also 

show GASP phenotypes by increase in amino acid utilization [77]. Therefore, although these 

mutations are involved in different metabolic processes, it is likely that the enhancement of 
catabolic activity of amino acids for carbon and energy sources is responsible for these GASP 

phenotypes. Similarly, sgaA, sgaB, and sgaC mutants have been isolated as GASP mutants but 

have not been characterized yet [77]. Notably, non-rpoS mutation-related GASP mutants have 

also been reported [79].

The mechanism of GASP acquisition has been investigated and two interesting aspects have 
been shown. One is the reproducibility of GASP mutants and the other is a relatively high 

mutation rate in the LTSP. Since the speed of cell proliferation is very low in the LTSP, ben-

eficial mutations for the GASP phenotype can appear only under high mutation conditions. 
It is thus assumed that there are some molecular mechanisms to generate genetic diversity in 

the LTSP.

Involvement of the methyl-directed mismatch repair (MMR) system and SOS-induced DNA 

polymerases has been considered for GASP mutations (Figure 1). It is known that when E. 

coli enters the stationary phase, the expression of MMR is reduced [80]. On the other hand, 

SOS DNA polymerases (Pols II, IV, and V) contribute to the generation of GASP mutations. 

These polymerases work during DNA replication when DNA polymerase III encounters a 

lesion and cannot proceed further in DNA synthesis. SOS polymerases are error-prone DNA 

polymerases and are thus responsible for the generation of adaptive mutations. Pol V Mut is 

a stand-alone DNA polymerase that is able to perform translesion synthesis, and polymeriza-

tion of the polymerase is regulated by its intrinsic ATP hydrolase activity [81]. The occurrence 

of the GASP phenotype is highly related to the presence of SOS polymerases. Indeed, when 

grown in competition with the wild-type strain, mutants lacking one or more of the SOS 

polymerases suffer from a severe reduction in fitness to the LTSP. These mutants also fail to 
express the GASP phenotype as do wild-type strains, instead expressing two additional new 

types of GASP phenotype [82]. In addition, Pol IV and Pol V confer greater relative fitness 
than does Pol II during the LTSP, but Pol II can express the GASP phenotype faster than can 

Pol IV or Pol V [83]. Moreover, genes for the SOS polymerases and other SOS genes, especially 
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genes for Pol IV and Pol V, are induced during the stationary phase [83]. These facts suggest 

that there are some mechanisms for the expression of these alternative polymerases and that 

the mechanisms contribute to the relative high mutation rate in the LTSP.

4.2. Importance of σE-dependent PCD for survival in the LTSP

E. coli can maintain living cells to some extent for several years (LTSP) in the same medium 

without supplementation of any nutrients during the cultivation. On the basis of results of 

recent studies and the discovery of mutants that had gained growth advantages in the begin-

ning of the LTSP [16], it has been proposed that the LTSP consists of a number of distinct 

populations that continuously appear one after another as shown in Figure 1 [14]. One of the 

big questions is how nutrients are supplied to support the formation of each new population 
in such a closed environment. One possible answer is a simple mechanism by which nutri-

ents are supplied from existing cells. Nagamitsu et al. suggested that σE-dependent PCD is 

involved in the mechanism [25].

σE-dependent PCD lyses damaged cells but not undamaged cells or cells with little damage 
and thus has no influence on viable and culturable (VAC) cells [19]. This PCD is responsible 

for major cell lysis under general cultivation conditions and is enhanced in the stationary 

phase due to accumulation of stresses including oxidative stress as described above, and 

forms ghost cells that discharge cytosolic contents to the outside [59]. This lysis thus appears 

to be different from explosive cell lysis for the biogenesis of membrane vesicles [84]. As in 

the stationary phase, it is assumed that cells in the LTSP are exposed to metabolically accu-

mulated stresses including oxidative stress, which trigger σE-dependent PCD. Therefore, 

σE-dependent PCD may provide nutrients that are indispensable for the formation and main-

tenance of new populations in the LTSP.

As mentioned in the previous section, disrupted mutations of micA and rybB, which are essen-

tial factors for σE-dependent PCD, caused serious problems such that they were unable to 

keep VAC cells at the very early period in the LTSP. These mutations give rise to a sudden 

increase in the mutation rate just before the disappearance of VAC cells [25]. σE-dependent 

PCD thus seems to play an important role in the elimination of DNA-damaged cells in the 

LTSP in addition to the provision of nutrients. Its role appears to resemble that of PCD, so-

called apoptosis in multicellular organisms, by which abnormal cells or DNA-damaged cells 

are removed.

Although we still have no evidence that dynamic cell population changes continuously 

occur in the LTSP, results of studies [14, 16, 17] and results of preliminary experiments in 

its early phase suggest that cells acquiring mutations for GASP become dominant to form a 
new population and that new GASP mutations constantly appear and displace the preexisting 

population. σE-dependent PCD may contribute to the alteration of populations by the lysis 

of preexisting populations and the provision of nutrients during the LTSP. For the emer-

gence of GASP mutations, a large number of mutations should be present in addition to 

them under such nutrient-limited conditions. A hypermutable state might exist in the LTSP 

as mentioned above [14]. In order for hypermutation and σE-dependent PCD to take place, 
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active metabolisms should be maintained in fractions of the cell population. These active 

metabolisms are thought to lead to the selection of a dominant mutant and generate genetic 

diversity.

Further analysis of the LTSP in vitro seems to be important for understanding the life cycles of 

bacterial flora or biofilms and for elucidating the mechanisms of bacterial evolution. In addi-
tion, fundamental mechanisms for LTSP formation might be targets for drug design.
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ROS reactive oxygen species

sRNAs small RNAs
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