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Abstract

Heart failure is a complex, true pandemic clinical syndrome and is responsible for 5% of
hospitalizations globally. Severe heart failure can manifest as two lethal clinical entities: (1)
acute cardiac decompensation with cardiogenic shock after large acute myocardial infarc-
tion with mortality rates approaching 50% or after cardiac surgery with mortality rates
higher than 65% and (2) chronic destructive cardiac remodeling or acute decompensative
exacerbations of cardiomyopathies with one-year mortality of approximately 80% (worse
than most types of cancer). Interventional therapies aim first to improve symptoms and
life expectancy in patients with severe heart failure syndrome, second to prevent left
ventricular remodeling, and third to bridge patients to long-term mechanical circulatory
support or transplantation. Several treatment options can be used to stabilize patients. In
particular, new percutaneous mitral valve interventions and short-term circulatory sup-
port devices open up a new temporary treatment area in symptomatic Stage-D heart
failure. The durable or curable surgical destination treatment will be only permanent
ventricular assist devices or heart transplantation. This chapter focuses on the treatment
steps and new approaches in hospitalized Stage-D heart failure patients.

Keywords: heart failure, heart transplantation, ventricular assist device, ECMO, ECLS

At end-stage, any type of cardiomyopathy (CMP) causes a complex clinical heart failure (HF)

syndrome, which results from structural and/or functional impairment of ventricular filling or

ejection. This dire clinical situation can cause an adverse vicious cycle that is ultimately fatal if

not treated by pharmacological or invasive mechanical support or heart transplantation (HTx).

Left ventricular functional abnormalities range from normal-sized left ventricle (LV) with

preserved left ventricular ejection fraction (LVEF) to severe left ventricular dilatation (LVD)

with markedly reduced LVEF. Reduced LVEF is defined as the clinical diagnosis of HF and

LVEF ≤40%, which means a clinic and functional association of systolic and/or diastolic LVD.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Abnormal systolic and/or diastolic functions impair left ventricular contractile and relaxation

functions that result in increasing left ventricular end-diastolic volume (LVEDV) and left

ventricular end-systolic volume (LVESV), as well as left ventricular end-diastolic diameter

(LVEDD) and left ventricular end-systolic diameter (LVESD), with the alteration of the left

ventricular shape from conical form to spherical form. Adverse elevation of preload and

afterload results in increasing left ventricular end-diastolic pressure (LVEDP) and left ventric-

ular end-systolic pressure (LVESP). Inadequate unloading is the primary cause of diastolic

LVD due to left ventricular overloading, and ineffectual ejection is the primary cause of systolic

LVD due to left ventricular overstretching. This LVD induces overpressure behind the LV,

which is initially transient but becomes permanent over time. Increasing left atrial pressure

(LAP) in acute decompensation of LVD results in pulmonary congestion and pulmonary

edema; however, chronic overload causes increasing pulmonary vascular resistance (PVR)

and pulmonary hypertension (PHT). Decompensation of the LV and increased right ventricu-

lar afterload also impairs the right ventricle (RV) over time. Both preload pressures defined as

pulmonary capillary wedge pressure (PCWP) and central venous pressure (CVP) increase

during cardiac failure and cause pulmonary and systemic symptoms. Sympathetic stimulation

causes a rise of systemic vascular resistance (SVR) that worsens cardiac decompensation

due to increased left ventricular afterload. The goals of HF therapy are decreasing both

preloads to prevent tissue-congestion, increasing cardiac output (CO) via lowering both

afterloads, and improving contractility of both ventricles to increase blood oxygenation and

tissue perfusion.

Clinical appearance depends on systolic and/or diastolic ventricular dysfunction, and all

treatment strategies are designed according to the HF-classification from Stage-A to Stage-D

(Table 1). In the twenty-first century, new treatment options have facilitated delay or interrup-

tion of this cardiac deterioration and even enabled functional recovery and structural regener-

ation through corrective anatomic, functional, hemodynamic, and mechanical interventions

and clinical medical improvement (Figure 1) [1]. Therapeutic and curative percutaneous or

surgical treatments should be performed to rescue the damaged heart, and in this way, to

recovery the deterioration of the heart and to prevent the development of HF. So, by definition,

of left ventricular recovery presupposes that the patient can tolerate a moderate myocardial

dysfunction and remain clinically and hemodynamically stable thereafter. Preinvasive therapy

is usually implemented in Stage-C HF and consists of medical treatment, home rest, physical

activity restriction, and closer medical follow-up.

Stage-D, advanced, end-stage, or refractory HF are various terms used to describe very sick

patients (Table 2) [2]. Patients with decompensated Stage-D HF should be hospitalized for

invasive, aggressive, effective, and interventive treatment combinations [3]. There are clinical

clues that may assist clinicians in identifying patients who are progressing toward advanced

HF (Table 3) [4]. Stage-D patients are those with truly refractory HF who might be eligible for

specialized, advanced treatment strategies including mechanical circulatory support (MCS),

procedures to facilitate fluid removal, continuous inotropic infusions, other innovative or

experimental surgical procedures, or for end-of-life care, such as hospice [5]. After patients’

clinical status improves, they will be bridged to destination treatment or HTx. The Interagency

Registry for Mechanically Assisted Circulatory Support (INTERMACS) has developed seven
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profiles that further stratify patients with advanced HF, who will be treated with a destination

therapy (Table 4) [6]. All other causes, which can manifest in severe cardiac decompensation,

should be ruled out during diagnosis.

AHA/ACC Stage-A Stage-B Stage-C Stage-D (end-stage)

NYHA class I II III-A III-B IV

INTERMACS 7 6 5 4 3 2 1

STATUS 2 1-B 1-A

Stage-A: At high risk for developing HF without structural heart disease

Stage-B: Asymptomatic HF with structural heart disease, but without signs or symptoms of HF

Stage-C: Symptomatic HF with structural heart disease with prior or current symptoms of HF

Stage-D: Refractory end-stage HF despite maximal medical therapy, requiring specialized interventions

Class I: No limitation of physical activity. Ordinary physical activity does not cause symptoms of HF.

Class II: Slight limitation of physical activity. Comfortable at rest, but ordinary physical activity (e.g., long-distance

walking, climbing two flights of stairs) results in symptoms of HF.

Class III: Marked limitation of physical activity. Comfortable at rest, but less than ordinary activity (e.g., short-distance

walking, climbing one flights of stairs) causes symptoms of HF.

B: LVEF ≤ 30% and LVEDD ≥ 60 mm and peak oxygen uptake <20 mL/min/kg and stable > 2 months

Class IV: Unable to carry on any physical activity without symptoms of HF, or symptoms of HF at rest.

INTERMACS 1: Cardiogenic shock

INTERMACS 2: High dose intravenous inotropic support with/without t-MCS in instable condition

INTERMACS 3: Low dose inotropic support with stable hemodynamics

INTERMACS 4–6: Stable hemodynamics without intravenous inotropic support

INTERMACS 7: Clinical stable

STATUS 1A: On the intravenous inotropic and mechanical circulatory support for acute hemodynamic decompensation

with/without mechanical ventilation following by continuous monitoring of both ventricular filling

pressures, and recertification every 7th day

(a) Ventricular assist device (left, right, biventricular) <30 days

(b) Total artificial heart

(c) Extracorporeal circulatory support with/without oxygenator

(d) Counterpulsatile balloon pumping (intra-, extra-, para-aortic)

STATUS 1B: On the intravenous inotropic support or ventricular assist device >30 days

STATUS 2: Do not meet above criteria (patients on non-intravenous medical treatment at home)

HF = heart failure; LVEDD = left ventricular end-diastolic diameter; LVEF = left ventricular ejection fraction.

Table 1. Classification and interrelation of HF.
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Invasive treatments against HF depend on the nature and type of cardiac pathology; however,

the systematic approach to their application is well defined (Table 5). The first step is to

stabilize the patient’s hemodynamics using pharmacological hemodynamic support (PHS),

with full intravenous medication including inotropics, vasodilatators, inodilatators, diuretics,

etc. Management of total fluid volume (1.5–2 L/day) and sodium restriction are essential to

reduce congestive symptoms, although it is important to avoid hyponatremia by maintaining

sodium above 132 mEq/L. Full and continuous monitoring of pre- and afterload (central

venous and pulmonary artery catheterization) and CO measurements, echocardiographic

examinations (transthoracic and/or transesophageal), and laboratory findings should be

implemented in the intensive care unit (ICU). The second step is to carry out any percutaneous

interventional support required to eliminate anatomorphologic pathologies (coronary artery

stenosis, fibrotic valvular stenosis, etc.) for the purpose of maintaining the satisfactory filling

pressures, myocardial contractility, and forward ejection in both circulations. The third and

fourth steps apply to patients that are provided with electrical resynchronization and/or

mechanical ventilatory support as needed to relieve the negative effects of electromechanical

Figure 1. Management algorithm for Stage-D heart failure. BTD = bridge to destination; BTT = bridge to transplantation;

CF = cardiac function; MCS = mechanical circulatory support.
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1. Severe symptoms of HF with dyspnea and/or fatigue at rest or with minimal exertion (NYHA class III or IV)

2. Episodes of fluid retention (pulmonary and/or systemic congestion, peripheral edema) and/or reduced cardiac

output at rest (peripheral hypoperfusion)

3. Objective evidence of severe cardiac dysfunction shown by at least one of the following:

a. LVEF < 30%

b. Pseudonormal or restrictive mitral flow pattern

c. Mean PCWP > 16 mmHg and/or RAP >12 mmHg by pulmonary artery catheterization

d. High BNP or NT-proBNP plasma levels in the absence of noncardiac causes

4. Severe impairment of functional capacity shown by one of the following:

a. Inability to exercise

b. 6-minute walk distance ≤ 300 m

c. Peak Vo2 < 12 to 14 mL/kg/min

5. History of ≥ 1 HF hospitalization in past 6 months

6. Presence of all the previous features despite “attempts to optimize” therapy, including diuretics and GDMT, unless

these are poorly tolerated or contraindicated, and CRTwhen indicated

BNP = B-type natriuretic peptide; CRT = cardiac resynchronization therapy; GDMT = guideline-directed medical therapy;

HF = heart failure; LVEF = left ventricular ejection fraction; NT-proBNP = N-terminal pro-B-type natriuretic peptide;

NYHA = New York Heart Association; PCWP = pulmonary capillary wedge pressure; RAP = right atrial pressure.

Table 2. Definition of advanced heart failure.

- Repeated (≥2) hospitalizations or emergency department visits for HF in the past year

- Progressive deterioration in renal function (e.g., rise in BUN and creatinine)

- Weight loss without other cause (e.g., cardiac cachexia)

- Intolerance to ACE inhibitors due to hypotension and/or worsening renal function

- Intolerance to beta blockers due to worsening HF or hypotension

- Frequent systolic blood pressure <90 mmHg

- Persistent dyspnea with dressing or bathing requiring rest

- Inability to walk 1 block on the level ground due to dyspnea or fatigue

- Recent need to escalate diuretics to maintain volume status, often reaching daily furosemide equivalent dose >160 mg/d

and/or use of supplemental metolazone therapy

- Progressive decline in serum sodium, usually to <133 mEq/L

- Frequent ICD shocks

ACE = angiotensin-converting enzyme; BUN = blood urea nitrogen; HF = heart failure; ICD = implantable cardioverter

defibrillator.

Table 3. Clinical events and findings for identifying patients with advanced HF.
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Profile

Profile

description Shorthand Features IABP t-MCS* Hospitalization

Life

expectancy p-MCS** Timing

1 Critical

cardiogenic

shock

Crash and

burn

Life-threatening hypotension and excessive inotropic/

vasopressor support, critical organ hypoperfusion, often

worsening acidosis and lactate levels

Yes Yes Yes (ICU) Hours Emergent

(Rescue)

<7 days

2 Progressive

decline

Sliding fast Dependent on inotropic support with/without continuing

nutritional depletion, worsening renal function, inability to

restore volume balance, or other major status indicator.

Yes Yes Yes (ICU/Ward) Days to

weeks

Urgent

(salvage)

<30

days

3 Stable, but

inotrope-

dependent

Dependent

stability

Stable blood pressure, organ function and nutrition on mild-

moderate doses of continuous intravenous inotropic support

after repeated documentation of failure to wean without

symptomatic hypotension, worsening symptoms, or

progressive organ dysfunction (usually renal).

Yes/

no

Yes/no Yes (Ward) Few weeks Elective

(destination)

<90

days

4 Recurrent

advanced

HF

Frequent

flyer

Resting and/or daily living activities (dressing or bathing)

symptoms of congestion (orthopnea, abdominal discomfort,

nausea, poor appetite, disabling ascites, or severe lower-

extremity edema), on oral therapy at home,

No No No Weeks to

months

Elective

(destination)

>90

days

5 Exertion

intolerant

House-

bound

Comfortable at rest, but unable to engage in any activity,

living predominantly within the house or housebound

No No No Weeks to

months

Yes/no ?

6 Exertion

limited

Walking

wounded

Comfortable at rest without evidence of fluid overload and

able to do some mild activity, daily living are comfortable and

minor activities outside the home, but fatigue results within a

few minutes or with any meaningful physical exertion.

No No No Months Yes/no No

7 NYHA

class III B

Clinically stable with a reasonable level of comfortable

activity, despite a history of previous decompensation that is

not recent, able to walk more than a block.

No No No No No

*t-MCS includes IABP, ECMO, ECCS, and others;
**p-MCS includes LVAD, TAH.

HF = heart failure; ICU = intensive care unit; p-MCS = permanent mechanical circulatory support; t-MCS = temporary mechanical circulatory support; NYHA = New york

Heart Association.

Table 4. INTERMACS profiles.
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(I) Pharmacological hemodynamic support (PHS)

(II) Percutaneous interventional support (PIS)

1. Coronary revascularization

a. Angioplasty

b. Coronary artery bypass grafting on the beating heart (CABG-BH)

i. Off-pump

ii. On-pump

2. Mitral valve repair

a. Percutaneous

b. Surgical neo-chordae

(III) Electrical resynchronizational support (ERS)

(IV) Mechanical ventilatory support (MVS)

(V) Mechanical counterpulsatile hemodynamic support (MCHS)

1. Intraaortic counterpulsatile support (IACP)

a. Intraaortic balloon pump (IABP)

2. Extraaortic counterpulsatile support (EACP)

a. Extra-aortic balloon pump (EABP)

3. Paraaortic counterpulsatile circulation (PACP)

a. Paraaortic circulatory device (PACD)

b. Pressure-unload left ventricular assist device (PULVAD)

c. Kantrowitz CardioVAD (KCV)

d. Symphony

(VI) Mechanical circulatile support (MCS)

1. Temporary mechanical cardiopulmonary support (t-MCPS)

a. Cardiopulmonary bypass (CPB)

b. Extracorporeal cardiopulmonary support (ECCPS) or Extracorporeal life support (ECLS)

2. Temporary mechanical circulatory support (t-MCS)

a. Extracorporeal circulatory support (ECCS)

b. Intracorporeal circulatory support (ICCS)

3. Permanent mechanical circulatory support (p-MCS)

a. Ventricular assist device (VAD)

b. Total artificial heart (TAH)

(VII) Heart transplantation

1. Isolated

Invasive Treatment in Advanced (Stage-D) Heart Failure
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dyssynchrony and poor systemic oxygenation. The fifth step entails provision of hemodynamic

supports using temporary mechanical circulatory support (t-MCS) devices such as counter-

pulsatile circulatory support (CPCS), extracorporeal cardiopulmonary support (ECCPS), or

extracorporeal circulatory support (ECCS) to maintain adequate CO for sufficient body perfu-

sion without any congestive sign of the left and/or right HF. The sixth step consists a long-term

circulatory support to obtain adequate left with or without right heart circulation for bridging

to a destination therapy. The left ventricular assist device (LVAD) and total artificial heart

(TAH) are permanent mechanical circulatory support (p-MCS) devices, and for the time being

represent the last and best chance to bridge patients to transplantation or destination therapy.

The last step is HTx with or without lung(s), which is considered the gold standard for the

treatment of refractory Stage-D HF.

1. Pharmacological hemodynamic support (PHS)

Decompensation of Stage-D HF should be treated in hospital immediately, medically, aggres-

sively, intravenously, and with a multidisciplinary approach. Nowadays, we have a lot of phar-

macological treatment weapons with contractor, vasodilator, vasopressor, and inactivator effects

[7]. Diuretics for congestion, antiarrhythmics for dysrhythmia, anticoagulations for thrombosis,

and digoxin for right heart failure are integral parts of medical treatment (Figure 2). With the

advent of neurohormonal blockade, tremendous progress has been made in the medical treat-

ment of the advanced HF. Treatment of comorbid conditions such as diabetes and iron deficiency

can aid clinical recovery.

Inotropic or inodilator therapy is the initial pharmacological strategy to improve myocardial

contractility, increase heart rate, reduce afterload through peripheral vasodilatation, and aug-

ment CO. Dobutamine and dopamine (inotropic), and milrinone (inodilator) are the three most

commonly used intravenous agents.

Dobutamine (2–20 μg/kg/min) is the most used sympathomimetic agent, and its inotropic

and chronotropic effects derive from direct stimulation of β1 adrenergic receptors, which are

2. Heart and lung transplantation

(VIII) Left ventricular structural restoration

1. Aneurysmectomy

2. Cardiomyoplasty

3. Reshaping

a. Intracardiac

b. Extracardiac

i. CorCap Cardiac Support Device

ii. Paracor HeartNet Device

Table 5. Invasive treatment sequences of the severe end stage heart failure.
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mostly downregulated in end-stage HF patients. The main effect is inotropic, and it may

increase coronary blood flow, but myocardial oxygen consumption can increase if dobutamine

induces tachycardia. Tachycardia depends more on dobutamine-related cardiac output than on

infusion level.

Dopamine stimulates different receptors depending on dose level: in low (diuretic) doses (0.5–3

μg/kg/min) dopaminergic receptors in the renal, mesenteric, and coronary arterial beds are

stimulated; in moderate (inotropic) doses (3–10 μg/kg/min), nonselective adrenergic receptors

are activated; in high (vasoconstrictive) doses (>10 μg/kg/min), especially α-adrenergic recep-

tors are induced.

Milrinone (0.25–0.75 μg/kg/min) acts by a nonadrenergic mechanism, increasing c-AMP via

phosphodiesterase III inhibition. It is preferred mostly in patients with increased PVR and/or

SVR due to better vascular vasodilation than dobutamine. It is crucial to be aware of the risk of

systemic hypotension, for which concomitant vasopressors should be added. Milrinone

increases CO without increasing overall myocardial oxygen consumption, but does improve

myocardial diastolic relaxation (lusitropic effect).

Figure 2. Current therapies for end-stage heart failure. *An ARB is recommended when an ACEI is not tolerated. **An

ARNIs is recommended when both RAAS inhibitors are ineffective. ACEI = angiotensin converting-enzyme inhibitor;

ARB = angiotensin receptor blocker; ARNI = angiotensin receptor neprilysin inhibitor; CRT = cardiac resynchronization

therapy; ICD = implantable cardioverter defibrillator; H-ISDN = hydralazine-isosorbide dinitrate; HTx = heart transplan-

tation; MCS = mechanical circulatory support; MRA= mineralocorticoid antagonist; omega3 = omega-3 polyunsaturated

fatty acids; Q10 = coenzyme Q10.
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Vasopressor therapy is necessary to increase SVR, blood pressures, and mean arterial pressure,

when the low cardiac output syndrome (LCOS) is serious with fairly lower systemic blood

pressure. Adrenalin (2–10 μg/min or 0.01–0.4 μg/kg/min) is used primarily to maintain cardiac

contractility and CO by counteracting bradycardia and hypocontractility. Noradrenalin (2–16 μg/

min or 0.01–0.3 μg/kg/min) is used primarily to maintain mean systemic arterial pressure by

controlling hypotension, severe vasodilatation, or vasoplegia syndrome. It is also an integral part

of inodilator treatment modality to prevent systemic vasodilatation.

Vasodilator therapy is needed in most HF patients to decrease SVR and also PVR. Nitroglycerin

(10–500 μg/min) and nitroprusside (10–500 μg/min) are the most commonly-used agents in

cardiac surgery, but prostaglandins and nitric oxide (NO) more specifically decrease PVR and

right ventricular afterload in patients with end-stage HF due to the improvement of the right

ventricular dysfunction (RVD) and CO. Long-term therapy with sildenafil has demonstrated

better hemodynamics in lowering PVR. In addition, endothelin receptor antagonists, such as

bosentan, can also be used although they are not currently included in treatment guidelines.

Diuretics restrict the reabsorption of sodium in the renal tubes, increase urinary sodium

excretion, and decrease congestive symptoms in HF patients. Loop diuretics (furosemide,

bumetanide, torsemide) are preferred pharmacological agents in hospitalized patients and

used intravenously. The first goal is to resolve fluid retention and congestive signs (edema,

hepatomegaly, pulmonary edema, etc.), and then to prevent the recurrence of volume

overload. The most common side effects of excessive diuretic usage include fluid depletion,

hypokalemia, hypomagnesaemia, and azotemia. Furosemide is the most common used loop

diuretic, the dose and frequency should be increased until the adequate diuresis and weight

loss is maintained. Low-dose dopamine (2 μg/kg/min) infusion can improve diuresis and

better preserve renal function. If the diuretic strategy is unsatisfactory or ineffective due to

renal failure, ultrafiltration to remove water and small- to medium-weight solutes may be

considered as a primary volume-removal therapy. After acute decompensation caused by

volume overload resolves, oral diuretic therapy is started with furosemide and/or thiazides

and spironolactone combination. Daily recording of body weight is the best parameter to

follow diuretic treatment’s effectiveness and to adjust dosage.

Renin-angiotensin-aldosterone system (RAAS) is at the core of the pathophysiology of HF,

and its modulation is central to altering the disease process in HF with reduced LVEF. Block-

ade of RAAS can be provided by an angiotensin-converting enzyme inhibitor (ACEI), angio-

tensin-receptor blocker (ARB), or mineralocorticoid receptor antagonist (MRA). This inhibition

can reduce blood pressure in hypertensive patients, prevent target organ damage in diabetes,

and improve outcomes in HF patients [8]. This hormone system regulates protective acute

stress response through inflammatory and proliferative mechanisms; however, chronic stimu-

lation has detrimental effects including vasoconstriction, sodium and water retention, vascular

smooth muscle proliferation, endothelial dysfunction, inflammation, fibrosis, and thrombosis

[9]. The RAAS cascade begins with renin secretion by renal juxtaglomerular cells, continues

with the conversion of hepatic angiotensinogen to the inactive angiotensin I, and finishes with

conversion of angiotensin I to angiotensin II by angiotensin-converting enzyme (ACE). Angio-

tensin II is the strongest mediator to promote all effects above mentioned, and it stimulates the
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secretion of aldosterone from adrenal cortex and arginine vasopressin from posterior pituitary.

Blockade of the RAAS with ACEIs has been a cornerstone of HF therapy for over 20 years, so

that ACEIs decrease the formation of angiotensin II and inhibit the breakdown of bradykinin

with the formation of NO and other vasodilators. Additionally, further blockade of RAAS with

aldosterone antagonists and ARBs has increased the efficiency, so that ARBs bind competi-

tively to and dissociate slowly from angiotensin type-1 receptors and blockade aldosterone

secretion. MRAs cover mineralocorticoid receptors for competitive inhibition. The direct renin

inhibitor (DRI) agents blockade the RAAS at the most proximal step via the inhibition of

angiotensinogen conversion.

Natriuretic peptide system (NPS) counter regulates the detrimental effects of the up-

regulation of RAAS, inhibits secretion of arginine vasopressin, modulates the autonomic

nervous system, and antagonizes their vasopressor effects in HF [10]. There are three pep-

tides: atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and endothelial cell

natriuretic peptide (CNP). Both ANP and BNP have similar structural, hypotensive, natri-

uretic, and diuretic properties. Distension of the atria and ventricles due to cardiac injury

and/or overload, ventricular dysfunction, and HF stimulates the expression of ANP from

atria and BNP from brain and ventricles with several effects: (1) activation of membrane-

bound natriuretic peptide receptors-A leading to vasorelaxation, natriuresis, and diuresis; (2)

inhibition of RAAS due to blocked of renin secretion and associated aldosterone production;

(3) reduction in adverse cardiovascular changes via remodeling, apoptosis, ventricular

hypertrophy, and fibrosis; and (4) enhanced myocardial relaxation. On the other hand, CNP

extracted from endothelial cells and brain acts only as a vasodilator without potent diuretic

and natriuretic effects. Measurements of peptides ANP, BNP, and its inactive precursor

N-terminal fragment of pro-B-type natriuretic peptide (NT-proBNP) are useful in prognosis

assessment and antifailure therapy monitoring, but CNP is not measurable due to low

concentrations in circulating blood. Natriuretic peptides are removed from circulation

through two mechanisms: clearing by natriuretic peptide clearance receptor (NPRC and

NPRC3) or inactivating by a degrading enzyme. The endothelial enzyme neprilysin hydro-

lyzes ANP rapidly and also degrades a large number of other vasodilators and vasoconstric-

tors although BNP is relatively resistant to its digestion. Inhibition of neprilysin (NEPi) with

sacubitril (1) increases concentrations of circulating vasodilators (ANP, adrenomedullin, and

bradykinin), but also circulating vasopressors (angiotensin II, endothelin I); (2) augments

plasma ANP and BNP levels leading to enhanced natriuretic-diuretic-vasodilator effects,

lower preloads, and inhibition of fibrosis; (3) inhibits renin secretion and angiotensin I to II

conversion, but that is not a complete inhibition effect on the RAAS. However, blocking

neprilysin alone does not effect a complete inhibition of RAAS, which is stimulated by the

activated sympathetic nervous system (SNS) leading to increasing renin secretion and ACE

activation of angiotensin I to II. These opposing effects neutralize each other and therefore

NPS inhibitors alone exert little effect on hemodynamics. This problem is solved by dual

blockade of RAAS by ARB and NPS by NEPi. The combined molecule of sacubitril (NEPi)

and valsartan (ARB) is a first drug (LCZ696) in class angiotensin receptor neprilysin inhibitor

(ARNi), and represents a new treatment modality by blocking the angiotensin type-1 recep-

tor and inhibiting the natriuretic peptide system concurrently [11]. Valsartan does not inhibit
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the breakdown of bradykinin, with decreasing angioedema risk; however, inhibition of

angiotensin II action prevents vasopressor effects. This combination favors NPS activation

and RAAS blockade, as well as residual angiotensin II effects from the SNS [12].

Digoxin is the oldest cardiac drug still in contemporary use, and can be useful in patients

with persistent severe end-stage HF (LVEF <25%, cardiothoracic ratio >55%, New York

Heart Association (NYHA) class III or IV) undergoing guideline-directed medical therapy,

and especially symptomatic patients being treated with neurohormonal antagonists [13].

Digoxin has been used as the first line of pharmacological treatment for HF until the

understanding of HF pathophysiology changed in recent decades, which leads to the shift

from inotropic support to neurohormonal modulation [14]. The effect is regardless of the

rhythm, etiology of HF, or concomitant therapy. Digoxin binds for the sarcolemmal Na+-K+-

ATPase pump to blocking and impeding Na+ extrusion outside, accumulated intracellular

Na+ decreases the transmembrane sodium gradient, and as a consequence suppresses the

activity of the Na+-Ca++-exchanger, raising the intracellular Ca++ concentration and effecting

more forceful contraction. Digoxin is the only inotrope known to improve LVEF and CO and

also to reduce PCWP without tachycardia and/or hypotension. The beneficial effect of the

drug occurs even at low maintenance dosage (serum digoxin concentration 0.5–0.9 ng/mL;

0.125 mg/day) with positive inotropic but negative chronotropic (4–7 beats/min in sinus

rhythm) properties. The hemodynamic effects of digoxin are not attenuated by chronic

administration, because Na+-K+-ATPase is not upregulated. In noncardiac tissue, digoxin

acts as a neurohormonal modulator by increasing parasympathetic tone and dampening

activation of the SNS (sympatholytic) and RAAS.

2. Percutaneous interventional support (PIS)

Cardiac decompensation is usually a consequence of myocardial ischemia and/or mechanical

complications, or chronic remodeling. Acute HF develops after ischemic damage or acute

hemodynamic compromise of chronic HF with well-known structural pathologies during

medical follow-up. These patients may not improve with medical therapy; however, correction

of underlying pathologies such as coronary artery disease, valvular stenosis, or regurgitation

can result in significant improvement in functional status. Before mechanical circulatory treat-

ments, all applicable interventional therapies must be evaluated and performed confidentially.

First of all, percutaneous revascularization is the initial step in managing inadequate oxygen

delivery due to stenotic or occluded coronary arteries, and that must be followed by percuta-

neous palliative mitral valve repair if it is necessary. Significant mitral regurgitation (MR)

resulting in inadequate forward ejection of the LV can cause intractable left heart failure

(LHF), even if total stroke volume seems enough to produce adequate CO. The goal of

palliative percutaneous interventions for these pathologies is to maintain and sustain adequate

left ventricular filling and forward ejection. If these treatment strategies are successful, patients

have the chance to get better and postpone mechanical hemodynamic and/or circulatory

support; however, inoperable or untouchable patients should be considered for destination

therapy.
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2.1. Coronary revascularization

Ischemic myocardium or acute coronary syndrome decreases significantly ventricular contractile

function due to oxygen supply/demand imbalance. Hibernating, stunning, or infarction reduces

LVEF, causes left ventricular remodeling, and exacerbates mitral valve dysfunction. Coronary

angiography shows stenotic or occluded coronary territory, but stress echocardiography, nuclear

imaging, and magnetic resonance imaging examinations show whether there are viable tissues

and/or valvular dysfunction requiring corrective interventions, as well as for surgical treatment

despite higher procedural risks. Coronary revascularization can salvage and improve the myo-

cardium histologically and functionally, but these strategies usually fail to improve myocardial

recovery due to nonviable myocardium.

2.1.1. Angioplasty

Any severe atherosclerotic plaque, plaque rupture, or thrombotic occlusion reduces oxygen

delivery to the myocardium, which results acute LHF. Persistent angina is also a common

symptom (approximately 30%) in patients with ischemic CMP despite medical therapy, which

increases major cardiac events by one third [15]. Percutaneous coronary intervention via

balloon angioplasty associated with or without stent implantation is the first-stage therapy

for coronary artery disease causing severe cardiac decompensation due to massive ischemia in

high-risk patients with well-known compensated HF associated with or without mechanical

complications of myocardial infarction, particularly MR. Coronary revascularization could aid

in recovery of myocardial dysfunction if the affected myocardium consists of viable tissue, and

MR may also be improved. Myocardial reserve after angioplasty also results in contractile

improvement and favorable left ventricular remodeling in patients with LVD, and it also

decreases HF symptoms (angina, functional class, BNP levels) [16, 17]. Partially or fully viabil-

ity or transmural scar within the infarct should be identified by any test (scintigraphy, mag-

netic resonance, etc.) in this group of patients, because improvement in oxygen supply will

abate ischemia burden [18, 19]. Transmural distribution of the postinfarction scar, which spreads

from the subendocardium to the subepicardium without intermittent viability, does not provide

any benefit by angioplasty. Although surgical coronary revascularization is superior to medical

therapy in patients with HF [20], there is no real superiority of surgery over angioplasty [21].

Contrarily, the positive benefit of percutaneous revascularization of the viable region is a signif-

icant improvement in the LVEF and LVESV in the LHF patients. New designed clinical trials will

give more detailed results regarding angioplasty performed in HF [22]. Unstable or hemody-

namically instable patients with significant HF symptoms must be undertaken in catheter labo-

ratory with a t-MCS to prevent sudden decompensation or cardiac arrest. The most preferable

device to maintain adequate CO during percutaneous procedures is intraaortic balloon pump

(IABP), which can be supported or replaced by a percutaneous temporary device (Impella,

TandemHeart, etc.).

2.1.2. Coronary artery bypass grafting

Patients with severe HF and coronary artery disease suitable for coronary artery bypass

grafting (CABG) are at higher risk for surgical morbidity and mortality. Paradoxically, those
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patients who derive the greatest clinical benefit from CABG and are also at the greatest

operative risk, which leads clinicians to hesitate to refer these patients for CABG [23]. Despite

the fact that bypass surgery can create potential risks for HF patients, significantly viable tissue

should be revascularized by on- or off-pump CABG [24]. Minimal invasive CABG procedures

are an option, but dilated left ventricular cavity with or without right ventricular enlargement

complicates off-pump CABG due to hemodynamic instability during the elevation of the heart

for circumflex or right coronary artery anastomoses [25]. Single vessel bypass to the dominant

left anterior descending territory can be useful in symptomatic multivessel disease patients,

and this approach can cause a limited improvement in the LVEF and clinical status [26]. But, in

the case of unsuitable pathology and anatomic structure of the coronary artery territory, viable

tissue should be identified before surgery. Single coronary artery revascularization could be

performed percutaneously or off-pump surgically [27]. On-pump CABG could be more harm-

ful due to aortic cross clamping, but enrichment of cardioplegia with different agents may be

protective [28].

2.2. Mitral valve repair

Functional MR due to LVD and remodeling is a common complication in dilated or ischemic

CMPs, and severe symptomatic MR requires an invasive corrective intervention to prevent

poor prognosis and to improve clinical status. However, the effectiveness of repair of MR in

these situations is often compromised because it does not reverse the underlying cause of the

CMP. While surgical mitral valve repair is the conventional treatment for MR, it is controver-

sial in end-stage HF patients due to high surgical risk and lack of randomized trials about

survival benefit. Because severe functional MR clearly increases the mortality as an indepen-

dent predictor but mitral valve repair does not improve mid- and long-term survival in

patients with end-stage HF, most major guidelines recommend against isolated mitral valve

surgery in these patients, although surgery is generally recommended if aortic valve or coro-

nary artery bypass graft surgery is also being performed [29]. Ideal candidates should have

less fibrotic spherical ventricle with more contractile reserve, patients with irreversible pulmo-

nary hypertension and severe right ventricle dysfunction would be unlikely to benefit from

intervention [30]. Transcatheter mitral valve repair or implantation alternatives are currently

preferred in high-risk patients not eligible for surgery [31]. Percutaneous mitral valve implan-

tation seems to be the best solution to eliminate MR in end-stage HF patients with significant

MR caused by severe annular enlargement [32].

2.2.1. Percutaneous mitral valve repair

Newly developed percutaneous mitral valve repair techniques can be useful in patients, who

cannot be referred for surgical therapy (Table 6) [33]. In contrast to the positive effect of

percutaneous mitral valve repair techniques in patients with severe MR-associated nonfailed

hearts, mitral valve repairing is offered without targeting of full coaptation of mitral valve in

end-stage HF patients. It is usually anatomically impossible to fully repair the mitral valve

completely due to severe annular enlargement and/or thethering of the leaflets caused by left
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ventricular enlargement, as well as it can be very devastating for failed hearts. Therefore,

percutaneous mitral valve repair techniques are palliative, but also preparative interventions

to improve patients’ clinical status and hemodynamics before destination therapies like LVAD

or HTx.

Percutaneous mitral valve repair

Leaflet

Edge-to-edge (leaflet plication) MitraClip

MitraFlex

Space occupier (leaflet coaptation) Percu-Pro

Leaflet ablation Thermocool

Annulus

Indirect approaches

Coronary sinus annuloplasty Carillon

Monarc

Viacor

Asymmetrical approach St Jude annulus reshaping device

NIH-cerclage technology

Direct approaches

Percutaneous mechanical cinching Mitralign suture-based plication

Accucinch GDS millipede ring system

Percutaneous energy-mediated cinching QuantumCor

ReCor

Hybrid Mitral solution

MiCardia

Chordal implants

Transapical artificial chord NeoChord

MitraFlex

Transapical-Transseptal Babic

Left ventricle

LV remodelling Mardil-BASE

iCoapsys

Percutaneous mitral valve implantation

Right mini-thoracotomy Endovalve-Herrmann prosthesis

Transapical Lutter prosthesis

Transseptal CardiaQ prosthesis

Table 6. Percutaneous mitral interventions.
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TheMitraClip is a a novel technology for percutaneous treatment of MR, although its utility in

patients with end-stage HF is somewhat limited [34]. This leaflet plication technology is based

on the surgical Alfieri technique, which brings the anterior and posterior leaflets together with

a suture, creating a “double orifice” mitral valve. The device is inserted by way of the femoral

vein and utilizes a 24F guidewire to gain transseptal access to the left atrium (LA). It is

essential to place the V-shaped clip at the main MR site between the anterior and posterior

leaflet with the guidance of transesophageal echocardiography. The first clip may not solve the

problem, but decreases degree of regurgitation from massive to severe or moderate-severe,

and additional clip(s) could be applied to significantly reduce degree of regurgitation to

moderate or lower. At least 50% reduction in the MR performed by mitral clips could be

accepted as a successful procedure, while more than 75% without mitral stenosis could cause

effective correction. This new device has shown benefit in outcomes for patients without HF,

but it is unable to improve the clinical course in end-stage HF patients due to an immediate

deterioration of left ventricular function, further aggravation of afterload mismatch, and pro-

gressive LHF [35]. MitraClip is a good alternative to surgery in functional MR refractory to

medical and/or resynchronization therapy in patients with adequate anatomy, but not in

patients who are considered inoperable due to high surgical risks [36]. It can be considered an

important clinical option in the multidisciplinary treatment of HF, but postprocedural MR

increases midterm cardiac mortality [37]. To increase utilization of the MitraClip treatment,

this new approach must be used in selective cases or as an earlier step before the destination

therapy. The first 30 days have an acceptable course, but after that the frequency of adverse

events increases, especially early recurrence/persistence of MR [38].

The Carillon is a percutaneous coronary sinus-based mitral annuloplasty device designed to

treat functional MR in end-stage HF patients [39]. This device consists of self-expandable nitinol

distal and proximal anchors connected by a nitinol bridge, which are placed in the great cardiac

vein and proximal coronary sinus located behind the posterior mitral annulus. Tension applied

on the system results in cinching of the posterior periannular tissue, and displacement of the

posterior mitral leaflet toward the anterior leaflet to reduce anterior-posterior (septal-lateral)

dimension improves their coaptation and reduces functional MR [40]. Residual MR is not

frequently observed in patients without HF, and it can decrease significantly in the first 3 months

[41]. However, LVD associated with significant mitral annular enlargement results in significant

MR, but also, mitral valve thethering complicates MR. This pathologic course could not be

reversed completely by percutaneous mitral annuloplasty devices. This technique reduces func-

tional MR significantly, increases functional capacity and quality of life, as well as induces

improvement of left ventricular remodeling [42]. The major limitations to use this kind of devices

are the significant distance between coronary sinus and mitral annulus, closed anatomic neigh-

borhood of coronary arteries, and annular calcifications.

2.2.2. Surgical mitral valve repair

Surgical mitral valve correction is seldom preferred because of the high risks associated

with the operation. On-pump surgery is usually not recommended, and severe MR with

clinical deterioration can be the first indication for LVAD implantation. Transapical
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correction using NeoChord has been popularized in degenerative MR, and the new

devices facilitate transapical implantation of neo-chordae on the beating heart without

cardiopulmonary bypass (CPB) [43]. This approach is useful in isolated mitral valve

leaflet(s) prolapse with lower operative risk [44]. However, no high-quality studies have

investigated the possibility of implantation in severe HF situations with LVD and mitral

leaflet thethering. This approach could be preferred in severe MR caused by chordal

rupture without adding of ring annuloplasty. However, patients with a LVD and a

significant MR have significant mitral annular dilatation without mitral valve prolapses,

and in such cases MR can be corrected only via a prosthetic ring percutaneously. Other-

wise, severe HF associated with significant MR is one of the best candidates for LVAD

destination therapy.

3. Electrical resynchronizational support (ERS)

Electromechanical dyssynchrony is common in end-stage HF patients and can be found at

different levels within the heart. Electrical dyssynchrony is evidenced by QRS prolongation

(≥120 ms) and has a prevalence of 15–30% in HF population. Electrical dyssynchrony, and

the subsequent abnormal mechanical activation, results in cellular, structural, hemody-

namic, and ultimately clinical adverse effects [45]. Left bundle branch block results in a

shorter diastolic time interval and longer isovolumetric contraction and relaxation times,

which impair pump function because of abnormal electrical and mechanical properties, as

well as functional MR. These effects can be ameliorated by resynchronizing the failing heart

by means of pacing in the right atrium (RA) and both ventricles (biventricular pacing).

Cardiac resynchronization therapy restores the appropriate timing of the cardiac contraction

pattern and thereby not only reduces cellular, hemodynamic, and structural maladaptations

to dyssynchrony, but also ultimately improves functional status, reduces hospitalization,

and improves survival.

4. Mechanical ventilatory support (MVS)

Even when cardiac dysfunction is the only reason for HF syndrome, increased PVR raises

respiratory effort and increased SVR reduces systemic output, decreasing pre- and afterload

and increasing oxygenation, which results hemodynamic stability. The most common support-

ive approach in end-stage HF patients with respiratory failure is mechanical ventilation under

general anesthesia. Intubation is usually the first step to maintain hemodynamic stability

through decreased respiratory effort and adrenergic stimulation. Increasing oxygenation and

use of vasodilator inhalation decrease adverse responses and PVR, which is the main treat-

ment strategy for the right ventricular failure (RVF). Supportive mechanical hemodynamic

approaches prevent unnecessary and prolonged mechanical ventilation, which can be a signif-

icant risk factor for ventilator-dependent infections. Elective intubation is also required for

percutaneous mitral valve repair.
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5. Mechanical counterpulsatile hemodynamic support (MCHS)

In severe cases of decompensated HF, pharmacological hemodynamic support cannot usually

achieve complete hemodynamic stability and maintain adequate blood supply to end-organs

and tissues in the decompensated HF. End-stage HF patients with severe ventricular decom-

pensation are frequently referred to ICUs for hemodynamic support. After full monitoring and

assessment of hemodynamic parameters, the required appropriate medications are used to

solve symptoms and signs of LCOS; however, full medication can heal patients for once, but

then healing degrades and pharmacologic bridge to transplantation cannot stabilize patients,

and hence mechanical counterpulsatile hemodynamic support (MCHS) becomes necessary.

5.1. Intraaortic counterpulsatile support (IACPS)

Counterpulsatile devices for MHS improve patient status by same physiologic effects, but with

different mechanisms (Table 7) [46]. The principle of counterpulsation is to produce diastolic

augmentation. Prediastolic inflation coincided with T-P interval on electrocardiogram pro-

vides increase in peak diastolic aortic pressure (aortic uploading) to enhance coronary perfu-

sion during ventricular relaxation and filling. Presystolic deflation coincided with QRS-T

interval on electrocardiogram, which is always triggered by R wave, assures decreasing in

end-diastolic aortic pressure (aortic unloading) to facilitate intraaortic impedance reduction

during ventricular contraction and ejection. These devices are usually used for short-term

supportive therapy in early postoperative period to wean patients from CPB. There are several

positive effects of counterpulsation on systemic hemodynamics and left ventricular mechanoe-

nergetics, but the main goal is to increase CO without bypassing the heart or the related

ventricle [47]. Second application area in end-stage HF patients is to stabilize hemodynamics

and to gain time for keeping patients alive or bridging to a more durable therapy. The first step

Intraaortic Paraaortic

Insertion Percutaneously Surgically

Incision Sliding technique or local incision Intraoperatively or left thoracotomy

Placement way Peripheral Semicentral

Placement area Suprarenal thoracoabdominal aorta Thoracal descending aorta

Capacity 30–50 mL 20–100 (or more) mL

Working principle Volumetric Circulatory

Working space Intraluminal Extraluminal

Working risk Systolic occlusive Nonocclusive

Inflation/deflation Diastole/systole Diastole + systole

Coronary perfusion Optimum/steal Optimum

Stroke work Decreasing (+) Decreasing (+++)

Cardiac output Increasing Increasing

Table 7. Comparison of counterpulsatil devices.
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is to stabilize the end-stage HF patients using IABP for up to 2 weeks and if the patients are

hemodynamically stabilized (no need for inotropes, no peripheral organ malfunction, CVP ≤

10 mmHg, mean arterial pressure ≥ 65 mmHg) but could not wean from IABP, then they can be

transitioned to a more effective counterpulsatile or t-MCS devices as a bridge to recovery or to

end-stage therapy (p-MCS device or HTx).

Intraaortic balloon pump (IABP) is the most preferred, well-tolerated, and most cost-efficient

method among mechanical supportive approaches with significant hemodynamic improve-

ments in patients with unstable hemodynamic status (Table 8) [48]. But the frequency of IABP

(I) Therapeutic

A. Preoperatively

1. Unstable myocardial ischemia

a. acute coronary syndrome

b. intractable coronary ischemia

c. severe left main disease

d. malign ventricular arrhythmia

2. Cardiogenic shock

a. myocardial infarction

b. mechanical complications of AMI (MR, VSD, LVR)

c. myocarditis

d. sepsis

3. Cardiomyopaties

4. Procedural support during coronary angiography

5. Stabilization for surgery

a. cardiac surgical patients (LCOS, VSD, severe MR)

b. noncardiac surgical patients

B. Intraoperatively

1. Off-pump CABG

2. On-pump CABG on the beating heart

3. LVAD implantation

C. Postoperatively

1. Failure to separate from CPB

2. LCOS

(II) Bridging

A. Heart transplantation

B. Left ventricular assist device
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usage in the end-stage HF patients has broadened in last decade due to the increase in the usage

of t-MCS devices to bridge to HTx or LVAD implantation. The main indications for IABP are to

increase myocardial perfusion in critical uncontrolled coronary artery stenosis preoperatively

and to improve CO in severe LHF postoperatively [49]. The purpose of this indication is to

decrease afterload and consequently to facilitate unloading of the LV, especially LHF compli-

cated with significant MR. Intraaortic balloon pumping relies on the principle of diastolic

counterpulsation, which causes a reduction in left ventricular afterload and an increase in aortic

diastolic and consequently coronary artery perfusion pressures. Because the descending aorta

has a particular diameter the balloon catheter should have a limited volume, which are two types

for adults: 40 mL (26 cm length and 1.5 cm diameter) and 50 mL (27 cm length and 1.8 cm

diameter). Even the hemodynamic effect of this capacity affects the myocardial oxygen supply/

demand ratio favorably due to the decreasing peak systolic wall stress and contractile work of

the LV, the net effect will be an increase in forward LVEF, CI, and CO (Table 9). However, when

IABP support has only limited positive impact on cardiac hemodynamics, it cannot maintain

adequate cardiac output in patients with decompensated severe left HF or reduce clinical symp-

toms and hemodynamic signs. In such cases, this hemodynamic supportive strategy must be

complemented by more advanced MCS devices [50].

Therapeutic usage of IABP is well known and accepted treatment strategy to reverse or

prevent moderate LCOS owing to hibernating or stunned myocardium after acute coronary

syndrome, during percutaneous cardiac interventions, along malign ventricular arrhythmias,

and after mechanical complications of myocardial infarction [51]. High-risk patients undergo-

ing cardiac operations may be also protected against adverse outcomes [52, 53]. Pharmacolog-

ical and mechanical hemodynamic supports remedies pre- and afterload deterioration through

improved CO, coronary perfusion, and improved end-organ perfusion. The latter effect is the

main curative treatment strategy to terminate and reverse organ dysfunctions, which increase

pre- and postoperative mortality and morbidity. The significant life-saving benefit of IABP

support on the early mortality is well known; however, the benefit on either 30-day or 1-year

all-cause mortality is dubious in end-stage HF patients due to insufficiency to achieve and

sustain adequate CO. Therefore, a more effective MCS device should be utilized if IABP could

not achieve adequate CO in a couple of days (<7 days) or immediately when any decompen-

sation develops on the IABP treatment.

Prophylactic long-term usage of counterpulsation to optimize cardiac output and RV function as

a bridge to HTx or long-term LVAD implantation is a growing area of application (Table 10) [54].

C. Total artificial heart

(III) Diagnostic

A. Reversibility of pulmonary (PAH, PVR)

AMI = acute myocardial infarction; CABG = coronary artery bypass grafting; CPB = cardiopulmonary bypass; IABP =

intraaorrtic balloon pump; LCOS = low cardiac output syndrome; LVAD = left ventricular assist device; LVR = left

ventricular rupture; MR = mitral regurgitation; PAH = pulmonary arterial hypertension; PVR = pulmonary vascular

resistance; VSD = ventricular septal defect.

Table 8. Indications for IABP.
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Predestinative usage of IABP improves and stabilizes clinical status of potential recipients

suffering from multi-organ hypoperfusion and ischemia, which are significant predictors for

adverse outcome after HF surgery, to obtain good postoperative results [55]. Prophylactic

IABP implementation decreases left ventricular preload and therefore RV upload, which could

Decrease

Systolic blood pressure up to 10%

Presystolic aortic pressure (afterload) up to 30%

LV systolic pressure (wall tension) up to 20%

Isometric phase of LV contraction

LV energy utilization (myocardial oxygen consumption; TTI)

LVEDV + LVEDP (preload)

PCWP

Increase

Diastolic blood pressure

LV mechanical performance

EF up to 5%

CI up to 20%

CO up to 30% (0.5-1 L/min)

LV energy obtainment (myocardial oxygen supply; DPTI)

Endocardial Viability Ratio improvement DPTI/TTI > 1

(<0.7 indicates severe myocardial ischemia)

LV contractility and active relaxation

Coronary blood flow

Cerebral, renal, mesenteric, and pulmonary blood flow

Mean arterial pressure (in shock)

CI = cardiac index; CO = cardiac output; DPTI = diastolic pressure time index; EF = ejection fraction; LV = left ventricular;

LVEDP = left ventricular end-diastolic pressure; LVEDV = left ventricular end-diastolic volume; PCWP = pulmonary

capillary wedge pressure; SV = stroke volume; TTI = tension time index.

Table 9. Effects of counterpulsation on hemodynamics mechanoenergetics.

Outcome Recovery Destination

Bridge to recovery (BTR) Biventricular or left ventricular Discharge

Bridge to candidacy (BTC) Bi- or univentricular Additional mechanical interventions

Bridge to destination (BTD) Right ventricular LVAD

Bridge to transplantation (BTT) None Heart � lung transplantation

IABP = intraaortic balloon pump; LVAD = left ventricular assist device.

Table 10. Potential outcomes of long-term IABP support in chronic heart failure.
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terminate hepatic congestion and dysfunction. On the other hand, IABP support improves

renal and gastrointestinal blood supply with significant recovery of dysfunctional organs [56].

This strategy can reduce HF symptoms, signs, and laboratory findings (serum total bilirubin

and creatinine, plasma BNP levels), especially in the first 48 hours significantly. The most

important point is the optimal timing of IABP insertion, which must be earlier as possible,

before end-organ dysfunction exceeds the threshold of reversibility, and prophylactic usage

must be continued for a minimum of 2 weeks to get effective results. However, long-term IABP

support can cause several major complications including acute limb ischemia, severe bleeding,

embolic events, infection, and sepsis. When IABP support could not sustain and/or maintain

stable hemodynamics, it should be enhanced by implementing more durable devices.

Diagnostic usage is a controversial strategy that could present a significant, favorable alteration in

pulmonary arterial pressure and PVR. This improvement could facilitate decisions regarding

LVAD implantation or HTx in end-stage HF patients with moderate PVR (6-8 Woods). These

patients are not considered to be ideal candidates for HTx according to the guidelines, but they

must be investigated whether they could be eligible for initial or postimplant (after LVAD) HTx,

or just for destination therapy. More effective left ventricular unloading via IABP also decreases

LVEDV, which is the main stimulator for reducing pulmonary venous and consequently pulmo-

nary arterial pressure, and effects a significant reduction in PCWP and CVP initially, as well as in

creatinine and total bilirubin concentrations. Two-week application is necessary to see reversibility

of PVR, because the positive effect of IABP could be negatively balanced or withdraw after the

first week. In this case, PVR will not improve after heart transplant, and mid-term outpatient

pharmacologic (sildenafil) and/or mechanical (LVAD) PVR-lowering therapy will be the preferred

strategy, with follow-up re-catheterization after 3–6 months to evaluate PVR. Adequate reduction

in PVR (<6 Woods) makes these patients potential candidates for HTx. If reduced PVR is

sustained, patients will be included in urgent waiting list for HTx (Status 1B) without any

additional criteria.

Support with IABP is started after standard maximal pharmacological thresholds (adrenalin or

noradrenalin >0.15 μg/kg/min) fail to restore hemodynamic stability. The balloon catheter is

usually passed percutaneously into the descending thoracic aorta through the femoral artery,

but alternative routes, such as the axillary, the subclavian, or the brachial arteries, can be

preferred if the femoral artery is not suitable for usage, as well as the ascending aorta could be

preferred surgically [57]. Support with IABP is not a complication-free procedure and the most

common complications are peripheral arterial injuries (rupture, perforation, bleeding, dissection,

embolism, etc.), which is best avoided by sliding technique under ultrasonographic visulation, or

complications of distal tissue malperfusion (extremities’ ischemia), which is best prevented by

the sheatless application of balloon catheters [58].

As the patient’s cardiac performance improves, the IABP support must be removed step by

step. First of all, all inotropic medication should be lowered (dobutamine or dopamine dose ≤5

μg/kg/min) parallel to hemodynamic stability, cardiac output, and mixt venous oxygen satu-

ration changes. The next step to reduce balloon augmentation by one of two different methods:

decreasing counterpulsation intervals or slow, step-wise deflation. Because a stagnation of the

balloon catheter within the blood stream can cause microclots on its surface, decreasing of
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augmentation levels seems more complication-free. Deflating the balloon catheter simulta-

neously decreases MCHS; a 50% reduction over 12 to 24 hours is a good indicator of successful

weaning, terminating with the removal of the catheter.

5.2. Extraaortic counterpulsatile support (EACPS)

Extraaortic balloon pump (EABP), C-Pulse, is a new, counterpulsatile, nonblood-contacting

device that involves placement of an inflatable cuff with a polyurethane balloon and polyester

wrap around the ascending aorta for the management of end-stage HF patients, who remain

symptomatic despite IABP therapy with optimum PHS [59]. C-Pulse is designed to provide

permanent, long-term, continuous partial MCHS for end-stage HF patients [60]. The cuff inflates

inwardly causing thumb-print deflection of the outer curvature of the ascending aorta, which

creates a pressure across the aortic wall ranging from 6 to 25 mmHg. Approximately 20–30mL of

ascending aortic blood volume can be displaced per beat, depending on the cuff size and aortic

diameter. The implantation is achieved via midline sternotomy, without cardiopulmonary

bypass. There is no any deterioration in the aortic valve and aortic regurgitation, no intimal

disruption and only minor thickening of the adventitia on microscopy [61].

5.3. Paraaortic counterpulsatile circulation support (PACPCS)

Paraaortic blood pump (PABP) or paraaortic circulatory device (PACD) has been produced to enhance

the hemodynamic effect and also to expand the indications of counterpulsation [62]. The first use

in humans was disappointing, with large volume (100 mL) and on the ascending aorta implanta-

tion. Decreasing the device volume [63] and redesigning it so as to avoid the ascending aorta [64]

were successful in decreasing initial systolic hypotensive symptoms and improving hemody-

namic success, and for this reason it has been suggested that PABP may be more capable of

efficiently supporting end-stage HF patients than IACPS or EACPS approaches. The IACPS

systems should have limited dimensions and that is why IABP with limited capacity is preferred

mostly in patients with moderate cardiac failure. However, IABP is unsatisfactory in patients with

severe LVD, in whom systolic aortic pressure is lower than 70 mmHg. On the other hand, EACPS

systems require a disease-free ascending aorta with appropriate length and therefore EABP can be

used only in IABP-contraindicated patients with moderate cardiac failure because of nonblood

contacting extravascular working principle. However, it needs a midline sternotomy incision and

limited capacity related to the size of the ascending aorta could reduce device efficiency. If it is

predicted that IABP or EABP may not provide enough stroke volume, blood pressure, and

effective support in patients with moderate or more advanced LCOS (CMPs, myocarditis, etc.),

PABP may provide better support. Additionally, PABP support must be preferred longer than a

couple weeks in patients with severe LVF because it provides higher stroke volume, fewer vas-

cular complications (ischemia, amputation, etc.), allows mobilization, and may be a better bridge

to LVAD implantation or HTx [65]. There are several devices to provide PACP, but their usage is

limited in special patient population or animal studies [66]. Partial unloading of the failed LVmay

interrupt the progressive hemodynamic deterioration of HF and improve quality of life in patients

with earlier stages of HF. This partial support provided by PACDs may reduce native ventricular

workload, augment myocardial blood flow, support positive myocardial remodeling, and prevent

RVF [67, 68]. They do not require CBP support during implantation, and a major branch artery is

Invasive Treatment in Advanced (Stage-D) Heart Failure
http://dx.doi.org/10.5772/67455

427



usually the preferred site for in- and outflow graft anastomosis. These devices preserve heart

integrity, unload the LV, decrease its energy consumption, enhance native left ventricular func-

tional performance, and retain pulsatility of flow. Recovery occurs usually within the first 3–6

months on mechanical assistance (bridge to recovery). The other philosophy about PACDs is to

maintain arterial wall physiology with natural counterpulsatile flow.

6. Mechanical circulatory support (MCS)

End-stage HF is usually treated, healed, and stabilized by pharmacologic and/or mechanical

hemodynamic support, but advanced HF is characterized by increasing frequency of intervals

of decompensation, rehospitalization, and reintervention. If the MHS is insufficient for the

recovery of LCOS, MCS is required to maintain CO (Table 11). Temporary MCS devices

increase arterial blood circulation with or without extracorporeal oxygenation to provide an

adequate CO, which acts as a parallel or serial artificial circulation to the physiologic circula-

tion pattern. Permanent mechanical pumps provide a parallel artificial circulation of failed

ventricles or entirely assume the pump function of the resected heart. Short-term devices are

extracorporeal or paracorporeal pumps located outside the body, whereas durable devices are

intracorporeal pumps implanted inside the body. The definitions of circulatory supports are

dependent on cardiac chambers and oxygenation (Table 12).

Counterpulsation Short-term VAD Long-term VAD

LVEF <40% <30% <25%

LVD No Yes/no Yes

Systolic ABP <90 mmHg <80 mmHg <80 mmHg

Mean ABP <60 mmHg <50 mmHg <50 mmHg

CVP ≥15 mmHg ≥18 mmHg ≥20 mmHg

Mean PCWP ≥15 mmHg ≥18 mmHg ≥20 mmHg

CI ≤2.2 L/min/m2
≤2 L/min/m2

≤1.8 L/min/m2

SVR >2100 Dynes/cm/sec

Inotropic agents with high doses ≤2 ≥2 >2

IABP No Yes Yes

Urine output <0.5 mL/kg/h <0.5 mL/kg/h <20 mL/h

Metabolic asidosis Yes/no Yes/no Yes

HRF No Yes/no Yes/no

Application stage First Second Second or last

ABP = arterial blood pressure; CI = cardiac index; CVP = central venous pressure; HRF = hepatorenal failure; IABP =

intraaortic balloon pump; LVD = left ventricular dilatation; LVEF = left ventricular ejection fraction; MCS = mechanical

circulatory support; PCWP = pulmonary capillary wedge pressure; SVR = systemic vascular resistance; VAD = ventricular

assist device.

Table 11. Hemodynamic indication criteria for MCS in patients suffered heart failure.
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After full implementation of pharmacological and MHS therapies, most acute failed hearts

after cardiogenic shock, interventional coronary revascularization, or surgical or percutaneous

cardiac procedures can recover from LCOS within hours (peroperatively) or days (postopera-

tively). When this primary treatment strategy does not work or fails during a situation of

intractable decompensated HF, MCS devices are the only life-saving instruments. These

devices can be also used as a bridge to keep patients alive if weaning from CPB is not possible

or when intractable LCOS does not recover. Consecutive or combined usage of these devices

with or without extracorporeal oxygenation could be also an effective, maybe, an essential

preference to get a successful outcome [69].

The working mechanism of MCS devices in HF syndrome is very simple: sucking circulatory

blood under negative pressure and ejecting it into the systemic or pulmonary arterial circulation.

The inflow cannula (temporary) or inlet tube (permanent) is inserted in the relevant ventricle and

the outflow cannula (temporary) or outlet graft (permanent) is connected to the ventricle-associ-

ated main artery. These devices have two different action principles: pulsatile or continuous flow.

Devices working by pulsatile flow have a blood-compatibility chamber and a moveable dia-

phragm separating the chamber into the blood and air spaces. The blood space is connected to

the aorta or main pulmonary artery through a graft forced with a prosthetic valve. The air space

is connected to a compressor-console providing power for counterpulsation through inflation

and deflation. Devices working by nonpulsative flow have a blood-compatibility compartment

and a frictionless turnable rotor directing input flow to the related circulation.

Pulsatility is the indispensable principle of the native, physiological, durable, regulated, and

protective circulation in human. Pulsatile flow has several benefits for maintaining natural life

(Table 13). The superiority of pulsatility over continuous flow has not yet been definitively

Ventricular contribution: to decrease ventricular unloading and work index

• Ventricular assist: ventricular outloading through the left ventricular cavity directly (after mitral valve)

• Ventricular support: ventricular unloading through the left atrium (before mitral valve)

Cardiac relinquishment: to circulate out-of-heart uni- or biventricularly

• LV-bypass: no-loading of the left ventricular

• RV-bypass: no-loading of the right ventricle

• BV-bypass: no-loading of both ventricles

With external oxygenator: to oxygenate blood in the external circulatory circuit

• va-ECCPS: veno-arterial circulatory assistance with external oxygenation

• va-a-ECCPS: venoatrial-arterial circulatory assistance with external oxygenation

• aa-ECCPS: atrio-arterial circulatory assistance with external oxygenation

• vp-ECCPS: veno-pulmonary circulatory assistance with external oxygenation

BV = biventricular; ECCPS = extracorporeal cardiopulmonary support; LV = left ventricular; MCS = mechanical circulatory

support; RV = right ventricular.

Table 12. Definitions of MCS in heart failure.
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demonstrated, but several studies have addressed adverse nonphysiological transformation in

the vascular bed, inequable neuroendocrine responses, and device-related complications from

mechanical continuous circulation. More complicated extracorporeal devices are required to

produce pulsatile flow, while pulsatile intracorporeal devices require more space than centrif-

ugal pumps if used for uni- or biventricular support; however, only total artificial hearts

produce the true pulsatile flow as prosthetic HTx.

There are twomain types of extracorporeal pumpswith different workingmechanisms (Table 14).

Pulsatile pumps are often used in biventricular failure and in pediatric patients [70]. Nonpulsatile

pumps are mostly preferred for CPB andMCS. Roller pumps, which generate forward blood flow

by roller compression, rate of rotation, and the length of the compression raceway, are useful for

(I) Pulsatile flow pumps

1. Abiomed

2. Thoratec paracorporeal ventricular assist device

3. Excor

(II) Nonpulsatile flow pumps

1. Roller pumps

2. Centrifugal pumps

a. Medtronic Bio-Medicus

b. Maque Rotaflow

c. Levitronix CentriMag

d. TandemHeart

3. Axial pumps

a. Impella

MCS = mechanical circulatory support.

Table 14. Devices for temporary MCS.

Transmission of energy to the microcirculation

Reduction critical capillary closing pressure

Augmentation of lymphatic flow

Improvement of tissue perfusion

Amelioration of cellular metabolism

Alleviation of vasoconstrictive reflexes

Diminution of acidosis

Regulation of neuroendocrine responses

Table 13. Physiologic effects of pulsatile flow.
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CPB during open heart surgery, but not for circulatory support due to hemolysis and tubing wear.

Extracorporeal continuous flow pumps are useful for CBP as well as extended t-MCS with fewer

adverse effects than roller pumps. Intracorporeal devices are designed with a smaller structure

using two separate pumpmechanisms: axial flow pumps have a pump rotor parallel to the blood

path, and centrifugal pumps have an impeller rotor perpendicular to the blood path. The rotor is

magnetically levitated, and rotation is achieved without friction or wear, thus minimizing blood

trauma, mechanical failure, and heat generation. These devices work by an external motor-driven

system, direct-drive system, or self-bearing system. In direct-drive system, the impeller becomes

the motor rotor supported by a separate levitation system. In self-bearing system, both the drive

and the levitation coils share the same stator core [71].

Because the duration of their usage could be limited, the decision for the destination goal should

take into hemodynamic, hematologic, and neurologic courses. Even though the gold standard

therapy for end-stage HF is HTx, this is possible in only a small number of patients due to

limited organ availability. These devices are generally used to maintain adequate organ perfu-

sion for several days, but more time could be required before a final decision is made (Table 15).

Bridging to curative treatments should be life-saving and any device could be effective, but do

not hesitate to change the treatment stages and devices.

Designed to assist the native heart, MCS devices are differentiated by the implant duration

[short-term (<10 days), mid-term (10–90 days), long-term (>90 days)], indication [temporary

(bridge therapy) versus permanent (destination therapy)], type (cardiopulmonary versus

circulatory), approach (percutaneous versus surgical), location (extracorporeal versus

intracorporeal), flow characteristic [pulsatile versus continuous), pump mechanism (volume

displacement, axial, centrifugal), and the ventricle(s) supported (left, right, biventricular) [72].

6.1. Temporary mechanical cardiorespiratory support (t-MCRS)

Acute decompensation of cardiac functions requires emergent circulatory support when phar-

macological treatment and/or counterpulsatile support are ineffective or when weaning from

CPB fails (Table 16). There are several options for t-MCS, which can be applied percutaneously

or centrally, but right ventricular and respiratory functions are decision-making factors [73].

Sufficient oxygenation by the lungs suspends usage of external oxygenator, but associated RVF

necessitates its usage. Temporary cardiorespiratory support (t-MCRS) devices are designed to

rapidly reestablish adequate organ perfusion and oxygenation. Biventricular t-MCRS is the

most common approach to maintain adequate CO and oxygenation in the presence of severe

RVF; however, univentricular t-MCRS can be the preferred approach in the absence of signifi-

cant RVF. An ideal device should support adequate flow, maximal hemodynamics, sufficient

oxygenation, and avoid need for anticoagulation with its serious related serious complications

(Table 17). After echocardiography fails to reveal a surgically correctable cause, a temporary

mechanical device is considered for MCS according to several hemodynamic data (Table 11).

Daily follow-up with transthoracic and/or transesophageal echocardiography is mandatory to

evaluate biventricular function, regional wall motion abnormalities, valvular mechanics, septal

malformations, and extracardiac compression, as well as native heart recovery. On the other

hand, the stabilized patient should also undergo daily evaluation for end-organ functions,

hematologic and infectious conditions, and neurologic status.
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Bridge to recovery (BTR): Salvage therapy. Clinical situation consists of either acute developed cardiogenic shock or

acutely decompensated Stage-D HF. Acute huge myocardial infarction with or without mechanical complications, acute

myocarditis, and postcardiotomy syndrome after cardiac surgery cause acutely developed myocardial dysfunction,

which can be refractory to optimal treatment via PHS and counterpulsatile MHS despite viable myocardium. Any reason

can worsen and decrease stable Stage-D HF into unstable condition with severe LCOS. The myocardium could be

recovered by MCS devices via unloading the left ventricular in a couple of hours or days (<4–7 days), and after that

patients should be put into advanced bridging therapies. Daily echocardiographic examinations are guiding and

following practices to investigate the reverse remodelling of the failed myocardium. During this period, the main goal is

to keep patients alive.

Bridge to decision (BTD): Rescue therapy. Acutely cardiac failure subsequent to myocardial infarction or cardiac

operations, or acutely decompensation of Stage-D HF requires optimal treatment via MHS and/or MCS devices (1) to keep

patients alive, and then (2) to maintain vital functions due to mechanical supported cardiac output, and finally (3) to gain

time for decision to the most appropriate curative or egress treatment solution for related patients. Clinicians have a

couple of days (<14 days), but not more than one week, to evaluate each patient separately with his/her own cardiac

pathology and to decide the next step(s). During this period, the main goal is to let the heart in rest and no-load, and also

to keep extracardiac organs in normal functions.

Bridge to wean (BTW): Separation therapy. Improvement in cardiac functions and healing of acute decompensation of

acute or chronic HF improves patient’s status and makes it possible to disconnect mechanical devices. After the

hemodynamics recover completely in several days or weeks (<30 days), weaning protocol is started via reducing all

pharmacological agents to their minimum dosages, improving respiratory functions, and decreasing mechanical support

levels. Patients should be followed with daily echocardiography and pulmonary arterial catheterization (wedge pressure,

mixt venous oxygen saturation). During this period, the main goal is to keep patients noncardiacly complication-free.

Bridge to curative surgical and/or percutaneous interventions (BTI): Supportive therapy. Associated curable cardiac

pathologies (CAD, MR, postinfarct VSD, etc.) could be treated to improve cardiac functions and to prevent new

decompensations. The hemodynamically stable condition gained by MCS devices enables clinicians (1) to revascularize

ischemic myocardium, (2) to repair these structural mechanical complications, (3) to rescue the acute failed heart, (4) to

recovery myocardial dysfunction, and (5) to bridge to weaning or advanced treatments. During this period, the main goal

is to keep extracardiac organs in normal functions, and also to provide hemodynamic with or without respiratorial

support during procedures.

Bridge to bridge (BTB): Exchange therapy. Short-term mechanical supportive devices cannot provide adequate flow and

facilitate further improvement in the clinical status of patients, as the result patients cannot be weaned from MCS. The

preferred MCS type should be switched more a failed-oriented type of MCS or more durable approach. Weaning from

right ventricular and/or pulmonary support make it possible to disconnected venous cannulas or oxygenator from the

circuit (bridge from va-a-ECCPS to aa-ECCS).

Bridge to candidacy (BTC): Preparatory therapy. Switching from t-MCS to p-MCS due to the necessity of the long-term

follow for successful recovery is necessity for the decision (1) to wean from the device, (2) to use the device as the

destination therapy, or (3) to take the patients into the transplantation list. The reversibility of the elevated PVR or the

prolonged healing of damaged myocardium requires a prolonged treatment-period (>30 days), usually a couple of

months, but not more than six months. Long-term predicted recovery should be verified by invasive tests a significant

reduction in PVR. During this period, the main goal is to keep patients in their daily lives.

Bridge to destination (BTD): Continuity therapy. Long-term mechanical support is a durable treatment alternative to HTx

in with Stage-D HF patients, who are not eligible for transplantation due to extracardiac diseases, irreversible elevated

PVR, advanced age, or donor inability. Left ventricular assist devices may prolong and improve the quality of life.

Bridge to transplantation (BTT): Curative therapy. Irreversible myocardial function is the main indication for HTx in the

decompensated or device-dependent Stage-D HF. Progressive lengthening of waiting times on transplantation lists can be

an indication for LVAD implantation, but this reason is most pertinent to bridge to destination therapy. On the other hand,

there is no widely accepted guideline to show the indication and timing for a mechanical supportive device placement as

a bridge treatment. The true indications for this therapy are (1) patients with implanted p-MCS devices with/without

complications, (2) unrecoverable patients supported with t-MCS devices, and (3) borderline patients on the bridge to

candidacy protocol.

Table 15. Bridging from live-saving t-MCS to advanced therapy modalities.
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6.1.1. Cardiopulmonary bypass (CPB)

The first used life-supportive approach is CBP with a roller or centrifugal pump for circulatory

assistance and an oxygenator for respiratory reinforcement during open heart surgery. This

shortest extracorporeal circulation has several parts resulting in hemolysis, especially the

cardiotomy suction and venous reservoir. Failing to wean from bypass after cardiac procedures

enforces to prolong circulatory support via CPB. Because this approach is not suitable for short-

term or longer circulatory support, CPB has been used only for ultrashort-term (<1 day) circula-

tory assistance. Themain differences of CBP circuit are the drainage of venous blood, typically by

gravity, into venous reservoir of the heart-lung machine, and aspiration of blood from the

surgical field into the reservoir. Both of these can cause also inflammatory and humoral

responses, thrombosis and bleeding problems. The rest of the supportive mechanism is similar

with the other t-MCPS devices: to pump venous blood through an oxygenator for gas exchange,

and therefrom into the arterial circulation. This basic extracorporeal perfusion system can be

used for partial or total circulatory and respiratory support, or partial support of the LV. Modern

membrane oxygenators add up to 470 mL of O2 and remove up to 350 mL of CO2 per minute at

Decrease preload

Decrease pulmonary capillary wedge pressure

Not increase afterload

Augment cardiac output

Increase coronary perfusion

Improve peripheral tissue perfusion

Provide adequate oxygen delivery

Table 17. The primary hemodynamic goals of t-MCS.

Acute myocarditis

Acute huge myocardial infarction with/without mechanical complications

Cardiogenic shock

Cardiopulmonary arrest

Postcardiotomy syndrome

Acutely decompensation of Stage-D heart failure

Intractable decompensation of end-stage cardiomyopathies

Intractable ventricular tachycardia in end-stage cardiomyopathies

Bridge to destination therapy or heart transplantation

Postimplant right ventricular failure

Table 16. Indications of t-MCS for heart failure.
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1–7 L of flow with resistances of 12–15 mmHg per liter blood flow. Preferable pumps are

centrifugal ones consisting of a vaned impeller or nested smooth plastic cones, which propel

blood by centrifugal force when they rotate rapidly. Centrifugal pumps produce forward pres-

sure of up to 900 mmHg, but only half as much of negative pressure, and therefore, less

cavitation and fewer gaseous microemboli. Flow rate should be set to maintain mean arterial

pressure at ≥70 mmHg at 35 to 37�C, with a hematocrit of 30%. This flow rate provides and

maintains adequate body perfusion, with higher mixed venous oxygen saturation>60%.

It is meaningful to use CBP as a mechanical support only in the theater for ultrashort-term

(several hours) assistance, but advanced technology provides more appropriate devices for

short- and long-term MCPS. There are several side effects of CBP that preclude its usage as a

short- and long-term cardiopulmonary support. The main problem is left ventricular disten-

tion and lack of unloading during CPB support, which will be prevented by insertion of a vent

catheter into the LA or LV. The second limitation is the necessity of full dose heparinization to

gain an activated clotting time greater than 400 seconds during extracorporeal circulation to

prevent thrombo-embolic events, which usually causes bleeding problems. The third possible

hazard is massive air embolism due to the integrity of the extracorporeal circuit. The fourth

side effect is generalized inflammatory reactions, which result in a number of undesired

pathophysiologic cascades. The fifth negative damage is possible lung injury, which is inevita-

ble during CPB support due to increased pulmonary capillary permeability, interstitial lung

water, and adverse inflammatory responses.

6.1.2. Extracorporeal life or cardiopulmonary support (ECLS or ECCPS)

The casually accepted term for these support strategies is ECMO, but the true definition must be

extracorporeal cardiopulmonary support (ECCPS) while using for treatment in decompensated

Stage-D HF or extracorporeal life support (ECLS) while using for similar support in acute

cardiogenic shock. Although the unsuitability of CBP for short- or long-term ECLS has been

established, its principles have been applied to never small, durable, practical, integrated, and

mobile devices that are practical for providing ECLS in all appropriate circumstances. The

principal aim of ECLS is to provide acute temporary ECCPS globally as a bridge to more durable

therapy in patients with cardiorespiratory failure refracted to maximal conventional therapy

[74]. For extracorporeal membrane oxygenation (ECMO), an oxygenator is inserted in the extra-

corporeal circuit for gas exchange before returning patient's venous blood to the patient’s arterial

circulation, which is driven by a centrifugal pump. They are suitable for t-MCS, but single or

multiple replacement of the failed oxygenator with a new one can allow prolongation of ECCPS

to more than 1 month if myocardial recovery is the desired and expected goal. If pulmonary

functions are well or pulmonary recovery occurs during ECCPS, the external oxygenator is not

necessary and it must be disconnected from the circuit to provide acute or prolonged temporary

extracorporeal circulatory support (ECCS) for the LHF or RHF. Double established ECCSs could

be used separately for biventricular HF patients with unimpaired respiratory functions.

The devices designed for short-term ECCPS have a number of advantages in comparison with

CPB (lower dose of heparin, a continuous circuit, etc.). A hollow-fiber membrane oxygenator
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with an integrated heat-exchange system operated by a centrifugal pump provides circulatory,

respiratory, and thermatory supports. These pumps are totally nonocclusive and afterload-

dependent, and when myocardial recovery occurs, physiological circulation overtakes artificial

circulation, manifesting as reduced device flow. These pumps do not create excessive output

pressure (so as not to rupture the circuit) or significant negative input pressure (so as to avoid

cavitation and microembolus). Using this system, ECCPS flow is maintained between 4 and 6

L/min by providing a pump speed of between 3000 and 3500 rpm, with higher pump speed

risking mechanical trauma to blood cells. The heat exchanger provides normothermia during

ECCPS, which is mandatory for physiologic body functions. A biocompatible heparin-coated

bypass circuit provides an antithrombotic surface to reduce or eliminate the necessary dose of

heparin and inflammatory responses. Because roller pumps cause hemolysis beyond 4 and 5

hours of usage, continuous flow pumps are preferred for ECCPS.

The real problem with ECCPS in end-stage HF patients is how to protect and unload one or

both ventricles. Conventional ECLS bypasses both ventricles through the venous drainage and

arterial inflow, and physiologically, that will unload the RV without unloading the LV due to

the increased afterload. In the borderline depressed LV or during the recovering process of

LVF, both a remarkable drop in preload and a certain rise in afterload reduce left ventricular

wall stress, produce smaller LVEDV, augment coronary perfusion, and ultimately improve left

ventricular contractility. However, if the heart is dilated and/or contracting poorly, a markedly

increased afterload handicaps any offset in both LVEDV and LVESV by blocking the opening

of the aortic valve. Theoretically, left ventricular wall stress and myocardial oxygen consump-

tion remain increased and inhibit the recovery of the failed LV. The first goal should therefore

be to unload the LV using IABP and/or left atrial venting. The second target is to deliver the

highly oxygenated blood directly to the coronary and cerebral circulations. Adding an IABP

device to support left ventricular systolic function (by reducing afterload) and coronary perfu-

sion (by increasing aortic diastolic pressure) is an integral part of ECLS therapy. Although

ECLS balances hemodynamics, the insertion of IABP aggrandizes coronary and cerebral per-

fusion effects and also maintains aortic valve opening more effectively.

Establishment of ECCPS could be central or peripheral: central approach is superior due to

better left ventricular unloading and the avoidance of peripheral vascular complications;

however, peripheral cannulation permits later decannulation without reopening the chest.

Both approaches are effective for managing cardiorespiratory failure with uni- or biventricular

dysfunction associated with respiratory dysfunction (Table 18).

Central ECCPS is established through cardiac cannulation and is usually preferred for the

failure of weaning from the bypass in the theater or postcardiotomy syndrome that develops

in the ICU. The preference of central cannulation is based on several physiological hemody-

namic requirements that allow shorter myocardial recovery for the acutely decompensated

heart: effective biventricular unloading, highly adequate blood flow, sufficient tissue oxygena-

tion, and easy transition from the cardiopulmonary support to left ventricular circulatory

support. This approach is superior to peripheral ECCPS due to better coronary, cerebral, and

upper extremities perfusion and easy insertion of left atrial vent. Central ECCPS is established

via central cannulations used during cardiac surgery for postcardiotomy syndrome, or via full
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or limited sternotomy incision (reverse-T upper hemisternotomy). Both cannulas are taken out

from the mediastinum below the xiphoid or through the jugulum. A new design of a

biventricular assistance circuit including an oxygenator-bypass line (Kırali circuit) assists and

provides the improvement of life-saving HF therapy from the sophisticated immovable t-

MCPS circuit to the simplest mobile t-MCS circuit (va-a-ECCPS).

Peripheral ECCPS is established through peripheric cannulation and usually preferred as a

rescue approach in nonsurgical patients suffered from acute cardiogenic shock or

decompensated HF. Any perfusion strategy creating a right to left shunt requires an oxy-

genator in the circuit. Peripheral ECCPS is generated through the femoral artery (peripheral

or upstream) or the axillary artery (periphero-central or downstream). Femoral access is

more commonly used in patients requiring urgent ECLS due to rapidity of insertion and

avoidance of sternotomy. The most important drawback is the left ventricular afterload

mismatch and inadequate left ventricular decompression, which will cause pulmonary

edema in patients with very low native CO and severe MR. To assist left ventricular

unloading, IABP is used concomitantly to reduce afterload and facilitate aortic valve open-

ing. Failure of aortic valve opening may provoke catastrophic results such as intracardiac

thrombosis with or without clot embolism, worsening of LVF, coronary malperfusion, and

pulmonary edema. Several percutaneous alternative approaches can be used to unload the

LV during peripheral ECCPS: transaortic left ventricular unloading, transseptal left atrial

ECLS- strategy Bypass Type Establishment between Approach

A. ECCPS (with ECMO)

va – ECCPS bv-bypass veno-aortic

veno-arterial

RA – Ao

femoral and/or jugular vein –

femoral or subclavian artery

Median sternotomy

Peripheral percutaneous

va-a-ECCPS bv-bypass biatria-aortic

venoatrio-aortic

venoatrio-arterial

(RA + LA) – Ao

(femoral vein + LA) – Ao

(femoral vein + LA) – femoral or

subclavian artery

Median sternotomy

Median sternotomy

Peripheral percutaneous

aa – ECCPS lv-bypass atrio-aortic

atrio-arterial

LA – Ao

LA – femoral/subclavian artery

Median sternotomy

Peripheral percutaneous

vp – ECCPS rv-bypass atrio-pulmonaric

venopulmonaic

RA – PA

femoral and/or jugular vein – PA

Median sternotomy

Peripheral percutaneous

B. ECCS (without ECMO)

lv – ECCS lv-bypass atrio- or ventriculo-aortic

atrio- or ventriculo-arterial

LA – or LV – Ao

LA – or LV – femoral or subclavian

artery

Median sternotomy

Mini-thoracotomy

rv– ECCS rv-bypass atrio-pulmonaric

veno-pulmonaric

RA – PA

femoral and/or jugular vein – PA

Median sternotomy

Mini-thoracotomy

bv– ECCS bv-bypass separately lv- and rv-ECCS

ECCPS = extracorporeal cardiopulmonary support; ECCS = extracorporeal circulatory support; ECLS = extracorporeal life

support; ECMO = extracorporeal membranous oxygenation; bv = biventricular; lv = left ventricular; rv = right ventricular;

Ao = aorta; LA = left atrium; LV = left ventricle; PA = pulmonary artery; RA = right atrium.

Table 18. Temporary ECLS strategies for end-stage HF patients.
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decompression, atrial septostomy, and transapical left ventricular drainage. On the other

hand, coronary and upper body hypoxia can occur if myocardial recovery occurs and lung

function remains poor, or as mostly seen, if pump flow is reduced. Peripheral cannulation

depends on the arterial structure and size, the presence of any occlusive pathology, and

deficiencies in distal perfusion. A distal perfusion cannula is inserted in the selected artery

distal to the inflow cannula and connected to the inflow cannula to perfuse distally to

prevent extremities from ischemic complications. The same problem may develop in

venous system, and a small cannula inserted into distal vein is connected into the outflow

cannula to facilitate distal drainage.

Extracorporeal cardiopulmonary support is achieved using an ECMO system as described

above. They can be designed according to uni- or biventricular support, and also the system

must be prepared for weaning from biventricular and respiratory support step by step

(Figure 3).

Figure 3. ECLS alternatives in Stage-D heart failure treatment. (A) va-ECLS (venoarterial ECMO). (B) va-a-ECLS

(venoatrio-arterial ECMO). (C) aa-ECLS (atrio-arterial ECMO). (D) vv-ECLS (veno-venous ECMO). Ao = aorta; FV =

femoral vein; LA= left atrium; RA = right atrium.
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The ECCPS system can be created with several ways for different indications (Table 18).

va-ECCPS (va-ECMO) (biventricular bypass circuit) is the conventional ECMO system with

biventricular bypass circuit by which a centrifugal pump drives blood from the patient’s venous

circulation through an externalized membrane oxygenator for gas exchange before returning the

blood to the patient’s arterial circulation. This approach is usually implemented percutaneously

at the bedside in all emergent situations, in order to rescue patients suffering from fatal cardiac

failure; however, a final decision about the most beneficial durable strategy should be made

within a couple days (<7 days). If weaning does not seem possible, it is more appropriate to

convert patients to a longer sustainable ECCPS circuit or to switch to an ECCS design.

va-a-ECCPS (va-a-ECMO) (biventricular unloading circuit; Kırali circuit) is a new format of a

biventricular assistance circuit including biatrial drainage cannulas and an oxygenator-bypass

line (Kırali circuit) assists and provides the improvement of life-saving HF therapy from the

sophisticated immovable t-MCPS circuit to the simplest mobile t-MCS circuit (Figure 4); par-

ticularly it is meaningful in patients with expected RV and respiratory recovery in a couple of

weeks (<1 month). This biventricular unloading circuit includes a centrifugal pump that drives

blood from the patient’s both atria through an externalized membrane oxygenator for gas

exchange before returning to the patient’s arterial circulation. This circuit has two venous

cannulas: the first venous cannula (a multistage venous ECMO 28F cannula) is inserted percu-

taneously into the femoral vein or directly into the RA for venous drainage, and the second

venous cannula (a malleable one-stage venous cannula ranged between 22F and 28F) is placed

into the LA at first for left heart venting (drainage), and then for left heart bypassing

(unloading). An arterial cannula (an arterial ECMO cannula ranged between 15F and 19F) is

inserted into the distal ascending aorta or aortic arch, and the distal end of the cannula is

placed distal to cerebral branches. Both left heart cannulas with or without the RA cannula are

taken out below the sternal incision and the sternum is closed to prevent bleeding and to allow

mobilization. Each outflow line has its own tap that allows blood sampling to follow blood gas

and pulmonary recovery, and can be controlled by partial or total clamping to manage ade-

quate blood drainage from each atrium according to the related ventricular dysfunction/

recovery cascade. Peripheral venous cannulation is preferred for periods of brief support (<1

week) because decannulation of the percutaneously inserted femoral venous cannula is simple.

If RV recovery is expected to take more than a week, then right atrial venous cannulation

should be performed centrally or a small drainage cannula is inserted distal to the outflow

cannula at the femoral vein to prevent peripheral venous complications. Daily echocardio-

graphic examination introduces RV recovery, and frequently follow-up blood samples from the

left atrial inflow line propound the pulmonary recovery. Weaning from the external oxygena-

tor should be completed in ≥4 days, and the external oxygenator should remain in the circuit

for the purpose of emergent actuation in case of unexpected respiratory failure during this

weaning period.

Weaning from va-a-ECCPS protocol in end-stage HF patients is simpler than others and does

not require reopening of the sternum or establish a new circuit and disconnection steps should

be made long enough to observe any pulmonary complications or recurrence of respiratory

failure (Table 19). Decannulation of peripheric venous cannula is very simple when RV
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recovery is completed, and at this first stage, the circuit is converted to left heart bypass system

supported with external oxygenator after removing right ventricular support (aa-ECCPS).

After pulmonary recovery, the oxygenator could be removed from the circuit. First, the

Figure 4. Venoatrial-arterial ECLS support (Kırali Circuit for biventricular unloading). (A) The circuit is constituted

between both atria and the arterial circulation for right heart, pulmonary, and left heart bypass. Left ventricular unloading

is necessary for left heart bypass, right ventricular unloading is necessary for right heart bypass and as well as pulmonary

bypass. Blood samples from bg1 (pulmonary gas exchanges) and bg2 (mixt venous) show oxygen saturations in patients,

and bg3 (preoxygenator) and bg4 (postoxygenator) gas exchanges; whereas arterial blood sample shows true body

oxygenation. (B) After right heart recovery, right heart bypass line is removed from the circuit to get pulmonary and left

heart bypass. (C) After pulmonary recovery, oxygenator bypass circuit is actuated to decrease oxygenator support. (D)

After pulmonary recovery, oxygenator is removed from the circuit to get isolated left heart bypass. Ao = aorta; bg = blood

gas sample; FV = femoral vein; LA= left atrium; RA = right atrium.
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oxygenator bypass line is taken over pump flow step by step, and the full declamping of this

line allows approximately three times more blood flow than those passing through the oxy-

genator due to resistance of membrane. This strategy reduces oxygenator support and enables

native lungs to oxygenate most part of the pump blood flow. Finally, oxygenator is switched

off and disconnected, and at this stage, the circuit is converted to left heart bypass system

without oxygenator (aa-ECCS). The last stage and the simplest LV-ECCS system allows

patients to be discharged from the ICU and mobilized at the ward, and provides hemodynam-

ically stable bridging to destination therapies (LVAD or HTx).

This stage of cardiopulmonary circuit used for ECCPS provides several benefits (Table 20).

This new strategy is independent of recovery durations, and unless any fatal complication

occurs, the supportive therapy can be extended for weeks until a destination treatment could

be performed, because it is easier to exchange failed oxygenator and/or pump head with a

new one in this strategy, converting from “ECCPS to ECCS” or reverse, and from “va-a to

aa” or reverse. The presence of the functionally significant MR facilitates left ventricular

unloading through the left atrial cannula, but it can increase pulmonary congestion if the

pump flow is not increased to sustain and maintain PCWP < 18 mmHg and CVP < 12 mmHg.

In this circumstance, wean protocol from LV-ECCS should be started after mitral valve

recovery or any percutaneous or transapical mitral valve repair intervention. The presence

of the competent mitral valve, which does not facilitate left ventricular unloading due to

blocking regurgitant flow, and the increased afterload, which does not enable left ventricular

ejection, impair LV recovery. The best solution is provided by arterial pulsation augmenting

LV unload via aortic valve opening during all left heart bypass steps.

aa-ECCPS (aa-ECMO) (left ventricular bypass circuit) is a univentricular ECMO system in which

the left heart bypass circuit uses a centrifugal pump to drive blood from the LA through an

external membrane oxygenator for gas exchange before returning to the patient’s arterial

circulation. This approach is preferred in patients with LVF and respiratorial insufficiency

without RVF, who could not be managed with full mechanical ventilation, or can be a part of

va-a-ECCPS.

First step To convert va-a-ECCPS to aa-ECCPS after sufficiently recovery of the RV.

Second

step

To reduce the oxygen delivery by respirator (res-FiO2) till 35–40%, while the oxygen delivery by external

oxygenator (oxy-FiO2) is stabilized at 40%.

Third step To open the oxygenator bypass line and to direct the left atrial blood flow through both oxygenator inflow

lines nonocclusively with a flow ratio 3:1 (bypass line/on line) depending on membrane resistance, after

blood samples from the left atrial cannula show effective native pulmonary oxygenation (left atrial oxygen

saturation >95%) at least one day.

Fourth

step

To reduce oxy-FiO2 until the air ratio (21%) or disconnect the external oxygenator from oxygen gas supply,

after patient’s oxygenation does not collapse at least one day.

Fifth step To begin weaning from mechanical ventilation and to extubate the patient, after arterial oxygen saturation is

maintained at a level higher than 95% with res-FiO2 40% at least one day.

Sixth step To disconnect the external oxygenator from the circuit and to switch aa-ECCPS to aa-ECCS, after arterial

oxygenation does not retrogress after extubation at least one day.

Table 19. Disconnection steps from the external oxygenator.
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vp-ECCPS (vp-ECMO) (right ventricular bypass circuit) is a univentricular ECMO system in which

the right heart bypass circuit uses a centrifugal pump to drive blood from the patient’s vena cava

or the RA through an external membrane oxygenator for gas exchange before returning to the

patient’s pulmonary circulation. This approach is preferred in patients with RVF and respiratorial

insufficiencywithout LVF, who could not bemanagedwith full mechanical ventilation. Themore

preferred indication can be postimplant RVF accompanied by respiratory failure.

6.2. Temporary mechanical circulatory support (t-MCS)

Most patients requiring MCS are candidates for t-MCRS, but there are some conditions that do

not require ECMO support. Patients whose pulmonary function is sufficient with spontaneous

or mechanical ventilation may be able to avoid or wean from oxygenator use during MCS for

decompensated HF. Patients with isolated univentricular failure can mostly be treated with

counterpulsatile devices, but if hemodynamic parameters do not improve more aggressively

t-MCS should be performed using an ECCS system to assist the failed ventricle. Another

alternative is intracorporeal circulation support (ICCS), which can be preferred in cases of

cardiogenic shock or left ventricular unloading during va-ECCPS.

Stage Bridging Established Converting to Benefits

Initial Bridge to recovery t-MCS

MRS

va-a-ECCPS

MRS

Effectively providing of biventricular support and gas

exchange through a single pump configuration;

Decompression of the left heart, reducing the LV wall

stress, better coronary and body perfusion, minimizing

oxygen consumption

First Bridge to RV

recovery

va-a-

ECCPS

MRS

aa-ECCPS

MRS

Decreasing PAP, PCWP, RV afterload;

Improvement of the RV;

Disconnection of RV support

Second Bridge to pulmonary

recovery

aa-ECCPS

MRS

aa-ECCS

MRS

Decreasing LAP, pulmonary unloading;

Improvement of gas exchange and adequate oxygenation;

Facilitating of pulmonary recovery;

disconnection oxygenator

Third Bridge to decision aa-ECCS

MRS

aa-ECCS

spontaneous

ventilation

Significantly decreasing of LVEDV and LVEDP;

extubation

Fourth Bridge to bridge aa-ECCS aa-ECCS Possibility of weaning, listing for HTX, or candidate for

durable therapy;

Mobilization in ICU

Fifth Bridge to candidacy aa-ECCS wean or p-MCS Mobilization at ward

Sixth Bridge to destination

therapy

aa-ECCS LVAD or HTx Destination treatment

aa = atrio-aortic; ECCPS = extracorporeal cardiorespiratory support; ECCS = extracorporeal circulatory support; HTx =

heart transplantation; ICU = intensive care unit; LAP = left atrial pressure; LV = left ventricular; LVAD = left ventricular

assist device; LVEDP = left ventricular end-diastolic pressure; LVEDV = left ventricular end-diastolic volume; p-MCS=

permanent mechanical circulatory support; t-MCS = temporary mechanical circulatory support; MRS = mechanical respi-

ratory support; PAP = pulmonary arterial pressure; PCWP = pulmonary capillary wedge pressure; RV = right ventricular;

va-a = venoatrio-aortic.

Table 20. Bridging effects of va-a-ECCPS in Stage-D HF patients.
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6.2.1. Extracorporeal circulation support (ECCS)

Isolated left or right heart ECCS is provided by a centrifugal pump; however, an external

oxygenator may be implanted in the circuit if any acute respiratory decompensation develops

(switch from ECCS to ECCPS). The ECCS is mostly preferred in decompensated CMPs with

LVF or refracted LVD to keep patients alive until destination treatments. Another indication

for weaning patients from ECCPS-based t-MCPS to ECCS-based t-MCS, by removing the

oxygenator from the circuit in patients suffering from acute severe postcardiotomy syndrome.

In both situations, moribund patients should be treated and followed very carefully, and HTx

should not be considered unless the patients show significant recovery from multisystem

organ failure. The ECCS system can be used many weeks to improve clinical status of patients.

Limited recovery with appropriate t-MCS could encourage surgeons to implant more perma-

nent LVADs to eliminate external lines and pumps, but t-MCS is also an acceptable treatment

modality to maximize patient survival, for mobilize patients, to provide better rehabilitation,

and to prepare them for transplantation. Temporary ECCS can be created surgically central for

LV support or percutaneously peripheral for RV support (Table 18).

aa-ECCS or left-to-left ECCS (left heart bypass system) between the LA and aorta (or arterial

circulation) is the preferable approach to sustain the end-stage HF patients with irreversible

LVF, but preserved right ventricular and pulmonary function. Any of the several types of

centrifugal pumps is chosen for long-term left ventricular ECCS (for several weeks), because

all of them have similar technologic principles. The inflow cannula is connected to the pump,

and the outflow cannula is inserted into the arterial circulation. The inflow cannula is usually

inserted in the LA. Left atrial insertion of a malleable venous cannula ranging from 22 to 28F is

performed through the left atrial wall just at the interatrial groove, not on the right pulmonary

veins like as in left atrial vent insertion, because the drainage cannula is big enough to injury

the walls of the pulmonary vein. Similar to standard mitral valve surgery, a limited

Sondergaard’s plane is dissected approximately 2 cm from the junction of both right pulmo-

nary veins at the left atrial wall. Then, two pledgeted sutures are used to fix the cannula and

prevent bleeding. After the removal of the cannula, the dissected tissues support the sutures

like a pillow to block bleeding. Left ventricular cannulation is not commonly chosen when the

LV is not dilated in postcardiotomy syndrome, or when the left ventricular apex is to be left

untouched for permanent LVAD implantation. Two pure-string sutures are placed on the apex,

and after the apex is incised. Tubbs dilatators are used to enlarge the vent hole for the venous

cannula, and finally the cannula is secured with purse-string sutures. The outflow cannula is

inserted into the distal ascending aorta or aortic arch, and a longer ECMO arterial cannula

ranging from 15 to 19F is placed. The distal edge of the cannula locates distal to the cerebral

arteries in order to avoid cerebral embolic complications. This system is preload-dependent,

with an ideal PCWPmaintained between 18 and 20 mmHg and CVP between 8 and 12 mmHg,

and they should be monitored. Lower dose heparin infusion is necessary (ACT < 200 seconds)

to prevent any thromboembolic complication. Absolute contraindications are aortic insuffi-

ciency that is any more than mild in degree, or intracardiac septal defects.

vp-ECCS or right-to-right ECCS (right heart bypass system) between the RA (or vena cava through

the femoral vein) and pulmonary artery is rarely a preferred approach for isolated RVF
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because the normally functioning LV can take on most of the right ventricular work. The main

indication of right heart bypass systems is acute postimplant RVF after LVAD implantation.

Permanent LVADs are increasingly used worldwide, and the most commonly observed cardiac

complication is RVF after implantation [75]. Therefore, special attention should be devoted to

the evaluation of the right ventricular function when patients are assessed for LVAD implan-

tation. The outflow cannula is inserted either into the RA or in the femoral vein, and the inflow

cannula is placed into the pulmonary artery, either directly or through a tubular graft extending

outward from the second intercostal space.

TandemHeart is approved for ultrashort-term MCS and as a life-saving approach (as aa-ECCS)

in the catheterization lab. Percutaneous t-MCS (TandemHeart) could be a more practical

alternative due to not reopening the patient’s chest. This system could be also used for vp-

ECCS, and as well as for ECCPSs. The device consists of a small hydrodynamic centrifugal

pump. It is a very versatile system providing easy deployment and discontinuation. For aa-

ECCS, the left atrial cannulation is performed through a femoral vein and delivered across the

atrial septum, and positioning is facilitated and confirmed by fluoroscopy or TEE guidance.

Outflow is directed into the common femoral or axillary artery. Excellent left atrial decompres-

sion is obtained as long as the inflow cannula is approximately positioned. The standard

percutaneous transseptal approach includes 21F inflow cannula and 17F arterial outflow

cannula. However, larger cannulas could be used during surgically implantation and the size

of the inflow cannula regulates pump flow between 4 and 8 L/min. Anticoagulation with low

dose heparin to keep ACT below 200 s is sufficient while patients are on support. The atrial

septum should be repaired when an LVAD is implanted. The most undesirable aspect of this

device is that it requires complete immobilization of the patient.

6.2.2. Intracorporeal circulation support (ICCS)

Percutaneous t-MCSs are developed to unload the LV for better recovery and to maintain

adequate CO in nonsurgical patients suffering from acute decompensated HF (acute cardio-

genic shock), especially at bedside in the ICU or immediately in the catheterization laboratory

[76]. A second application is short-term support of circulation during high-risk percutaneous

or surgical cardiac interventions (coronary revascularization, mitral valve repair, etc.) in very

sick patients without HF [77, 78]. The third indication could be transaortic left heart unloading

in patients suffering from postcardiotomy syndrome treated with peripheral va-ECMO. The

fourth clinical usage area is acute decompensation of end-stage HF to improve end-organ

functions and to bridge to advanced HF treatments [79].

Impella is an axial-flow pump with three flow options (models 2.5 with flow 2.5 L/min, 5 with

flow 5 L/min, CP with flow range between 3 and 4 L/min) and is suggested for t-MCS lasting

up to five days [80]. This device is inserted percutaneously into the LV through the aortic

valve. Models 2.5 and CP are implemented using 12F or 14F sheaths, respectively; however,

model 5 requires surgical cut-down for a 21F catheter. The tip of the device is a pigtail that

provides stabilization for the device in the LV. The pigtail connects by a cannula to a pump

with a motor housing, intake (below the aortic valve) and output (above the aortic valve) areas,

and a pump pressure monitor. The Impella device pumps blood directly from the LV into the
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proximal aorta, thereby unloading the LV, increasing cardiac output, and improving mean

arterial pressure, while reducing LVEDP, myocardial workload, and oxygen consumption [81].

The device is dependent on the left ventricular preload, and hence on satisfactory right

ventricular function and adequate CVP (8–12 mmHg).

6.3. Permanent mechanical circulatory support (p-MCS)

Use of long-term MCS devices has grown more rapidly than expected in recent years due to

disproportionately low number of donor hearts. Advanced technological improvements in per-

manent MCS, especially LVADs, increase patients’ survival and quality of life. Whereas t-MCS

devices are implanted as a short-term rescue treatment to keep patients alive as a bridge to more

durable long-term MCS devices, p-MCS devices are implanted as a long-term survival and/or

bridging treatment to HTx. In the last years, p-MCS has been accepted as a destination therapy

for Stage-D HF, and several types of permanent supportive devices could be used for uni- or

biventricular assistance. The indication interval has changed in the recent years and will change

even more in the future, so that patients in better condition will be referred to LVAD therapy

earlier for the purpose of achieving better outcomes. Patients with relative contraindication such

as higher PVR, obesity, or tobacco usage may be switched to eligible transplantation candidates

over time. Compared with pulsatile flow devices, continuous flow technology has led to notable

improvements in survival and reduction of adverse events, as well as in renal and hepatic

function as a result of hemodynamic support.

6.3.1. Ventricular assist device (VAD)

The best technological developments happened in HF therapies, especially surgically. The

benefits of different surgical treatment options are depend on underlying causes, and coronary

revascularization, valve interventions, or defect repairs can achieve the recovery in early-stage

HF. The variety and efficiency of options for surgical intervention decreases with advanced

stages, and new surgical strategies must be used to keep patients alive and to provide them

with better quality of life. The last step of Stage-D HF surgery is HTx. On the other hand,

LVAD implantation has been accepted as a new therapy option for Stage-D HF as destination

therapy for older or those who are not otherwise suitable for HTx. Usage of LVAD is promis-

ing, will continue to grow, and has become a standard therapy for advanced HF as a bridge to

recovery, as a destination therapy, and as a bridge to HTx [82].

A shift from the concept of TAH as heart replacement, toward the development of single-

chamber pumps provided the impetus for development of p-MCS devices. In the past

decade, ventricular assist device (VAD) systems showed a substantial progress in miniatur-

ization, durability, reliability, and noise emission (Table 21) [83]. These devices ensure an

adequate and regulable additional blood flow in parallel with the particular ventricle. They

can be used either as an isolated LVAD or right ventricular assist device (RVAD) or

biventricular VAD. First generation VADs were either pneumatically or electrically driven

membrane pumps, generating hydrodynamically pulsatile flow with artificial heart valves

as the inlet and outlet. Second generation VADs with reduced size consists of a rotary pump
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(impeller) with axial-flow design electromagnetically generating continuous flow without

prosthetic valves, air vents, and compliance chambers. Third generation VADs eliminate

bearings by using either hydrodynamic or electromagnetic suspension of an impeller. They

employ a radial pump with both suspension mechanisms for contact-free rotation of an

impeller that centrifugally generates continuous flow to reduce mechanical wear and

trauma to blood cells.

Successful long-term outcomes after LVAD implantation are highly dependent on the timing of

surgery (Table 4) and HF criteria (Table 11). If the LVAD is implanted too late, the outcome

may worsen due to end-organ damage caused by prolonged HF (e.g. from poor nutritional

status, low serum albumin, impaired liver- and renal function, markers of RHF). Long-term

survival is best for patients with INTERMACS level 3 to 5, and worse for patients with

INTERMACS level 1. With third generation LVADs (HeartWare or HeartMate III), early and

mid-term survival has improved (>85% for 6 months and 1 year) with lower complication rates.

Device type Name Assist Mechanism

1st generation extracorporeal

pulsalite devices

Thoratec PVAD BV Pneumatic pump

Excore (Berlin Heart) BV Pneumatic pump

1st generation intracorporeal

pulsatile devices

Thoratec IVAD BV Implantable version of Thoratec pVAD

HeartMate IP, HM VE, XVE LV Pneumatic, electric vented pump

Novacor LV Pulsatile

2nd generation continuous axial

flow devices

EvaHeart LVAS LV thromboresistant coating

Micromed DeBakey VAD LV Axial flow pump

Jarvik 2000 Flowmarker LV Axial flow, intracardiac located small pump

HeartMate II LV Axial flow pump

3rd generation continuous

centrifugal pumps

Arrow CorAide LV

ReliantHeart HeartAssist 5 LV Axial, child version is FDA approved.

Incore (Berlin Heart) LV Magnetically suspended axial flow

Ventr-assist (Ventracor) LV Hydrodynamically suspended rotor

Duraheart LV Magnetically suspended centrifugal pump

HeartWare HVAD BV Miniature hydromagnetically suspended

rotor

HeartMate III LV Magnetically suspended centrifugal pump

HeartWare MVAD BV development-stage miniature device

Total artificial heart Abiocor - Pulsatile, motor driven hydraulic system

CardioWest (Syncardia) BV Pulsatile, pneumatic pump, mechanical

valves

Carmat BV Pulsatile, pneumatic pump, biological valves

Table 21. The characteristics of long-term devices.
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Five-year survival is approximately 60%with HeartWare device [84]. Absolute contraindications

for LVAD implantation are obstructive or restrictive CMPs, irreversible lung or liver damage,

active infection, aortic regurgitation, and severe RVF. Relative contraindications are increased

risk of bleeding, cerebral ischemia, irreversible kidney damage, and prior implantation of

mechanical aortic valve prosthesis [85].

6.3.2. Total artificial heart (TAH)

Total replacement of the biventricular-failed heart with a total prosthetic heart is unlikely to see

widespread usage due to the extraordinarily aggressive nature of the surgery. Several compli-

cating factors can constrain the implantation of these devices: patient characteristics, device

size, implantation timing and location, and the need for extensive surgery. Implantation of

LVAD alone could aid these patients because of its ability to partially right ventricular func-

tions, and this advantage makes the LVAD approach generally preferred over TAH in patients

with biventricular failure. The usage of TAH devices is restricted to the patient's in whom

LVAD is not feasible due to infiltrative or restrictive CMPs, cardiac malignancies, nonsurgical

postinfarction ventricular septal defect, intractable ventricular arrhythmias, and cardiac graft

failure [86]. The device has two artificial ventricles lined with polyurethane, and ejects blood

via a four-layer, moving diaphragm driven pneumatically or hydraulically [87]. The ventricle

cuffs are sutured to patient’s atria and outflow grafts to the aorta and pulmonary artery. The

device has four mechanical or biological valves maintaining unidirectional flow. The implanted

device is powered by a loud and very heavy external compressor. Thrombosis, thromboem-

bolic events, postoperative bleeding, or infections are significant and relatively frequent com-

plications. The other dissuasive structure can be double drivelines tunneled under the skin, but

the drive unit can be set inside the patients’ body. Both artificial ventricles alternately eject

blood to balance left and right heart CO. There are certain sizing criteria for TAH implantation:

chest antero-posterior distance >10 cm, body surface area >1.7 m2, cardiothoracic ratio >0.5,

and LVEDD >66 mm.

7. Cardiac transplantation

Heart transplantation is the only curable and durable treatment option for HF, especially

with new immunosuppression therapies, improved clinical management, and pharmaceuti-

cal development for refractory or end-stage HF. The most common indication is dilated CMP

(50%), and the second is ischemic CMP (35%), but retransplantation ratio has not changed

(3%) in the last decade. Once patients are approved for HTx, they are listed according to the

medical urgency status and severity of the illness (Table 22). Worldwide, a steady decline in

heart transplantation has been observed over the last 15 years due to a one-third decrease in

the availability of donor organs, while the numbers of patients awaiting heart transplant has

doubled. About 15–20% of patients listed for transplantation die before a suitable organ

becomes available and more than 30% of patients awaiting HTx require an appropriate

MCS to bridge to transplant. The median waiting time for HTx in several countries is
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approximately 6 to 9 months and depends on several factors, including listed status, body

weight, blood group, and differences between recipient and donor. Potential transplant

recipients can have decompensated HF requiring high-dose pharmacological treatment

and/or MCS, symptomatic Stage-D HF under optimal medical therapy, asymptomatic

advanced HF with a peak VO2 of less than 15 mL/kg/min, or recurrent arrhythmias despite

interventions. Maximal VO2 is the most noninvasively valuable test for better evaluation of

potential recipients, and a peak VO2 of less than 12 mL/kg/min indicates a poor prognosis.

The most variable relative contraindication among centers is the age limit; however, trans-

plant guidelines extend the eligibility to 70 years of age, leading individual centers to deter-

mine their own age cut-off. Malignancy, impaired lung and renal functions can increase

morbidity and impair prognosis. Patients with presenting fixed PAH are associated with

high early mortality, and should be considered for combined heart-lung transplantation.

Nevertheless, it has been shown that a continuous flow LVAD may help to reduce PVR, so

that the patient becomes eligible for subsequent cardiac transplantation. The number of HTx

recipients on MCS has doubled and reached 45% of total HTx candidates in the last decade

(>50% in 2014): LVAD 85.2%, RVAD 7.2%, TAH 3.1%, and ECMO 2.9% [88]. Patients

implanted with a LVAD on status 1A because of device complications or a 30-day elective

grace period or on Status 1B will be priority to receive the organ unless they are deemed

nontransplantation candidate (Status 7). It has been reported that approximately more than

50% patients were in Status 1A, and one-half patients had LVAD with in Status 1A (70%) or

1B (30%) at the time of HTx; whereas one-third of the patients in Status 1A had LVAD, of

which 50% had device complications, and one-fifth patients in Status 1B had LVAD [89].

Code status Description

1A - Patients in the intensive care unit with inotropic support + mechanical support (ECMO, ECCS) �

respiratorial support + a pulmonary artery catheter for hemodynamic monitoring

- LVAD patients with

- life-threatening ventricular arrhythmia

- right ventricular failure

- device malfunction/mechanical failure, thromboembolism, infection

- RVAD

- LVAD < 30 days

- TAH

1B Patients who are on inotropic support but not meeting 1A criteria

Patients have a ventricular assist device longer than 30 days

2 Patients who are waiting at home on medical therapy

7 Patients who are on hold because of an intervening medical illness, making them inappropriate candidates

for transplantation

Table 22. Transplantation urgency code status.
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Early (<30 days) mortality ranges from 5% to 10% usually due to primary graft failure

(35.3%), multiple organ failure (21.6%), and infection (14.3%); and 1-, 2-, 3-, 4-, 5-, 10-, and

15-year cumulative survival rates are 82, 78, 75, 72.5, 69.5, 52, and 34.4%, respectively [88].

A decline in 1-year overall survival after HTx from 85 to 76% in the EuroTransplant region

has been observed, presumably because of increasing donor age and recipient comorbidity

[90]. Early mortality and long-term survival rates in recipients assisted by ECMO are

worse than those assisted by LVAD: early mortality is 35 versus 5%, and 1-, 2-, 3-, 4-,

and 5-year survival rates are 60 versus 89%, 54 versus 86%, 51.5 versus 82%, 51.5 versus

81%, and 51.5 versus 76%, respectively [88]. The one-year survival after HTx is similar in

patients with LVAD (89%), but complicated postimplant recipients have worse, 3-year

survival than noncomplicated postimplant recipients (78 versus 85%) [89]. Long-term

survival is dependent on several factors, but the availability of the donor hearts from

younger male donors with shortest ischemic times is identified as the most significant

factor improving long-term survival [91]. The median survival is at least 13.5 years for

patients who survive the first year. Survival is lower in patients with valvular cardiomy-

opathy, congenital heart disease, or following retransplantation, and for those requiring

pretransplant MCS. Additionally, patients who are sicker prior to transplant have worse

survival outcomes [92]. Cardiac allograft vasculopathy is among the primary causes of

death after the first year of HTx, and it is the most important limiting factor in long-term

survival, along with neoplasms, with an incidence of 8% in the first year, 30% in 5 years,

and 50% in 10 years [93].

Heart transplantation surgery is not a complex procedure, and surgical implantation tech-

niques are the easiest part of HTx. The main problem with HTx is cold ischemic time to

donor heart transportation, which should be <4 hours without continuous coronary perfu-

sion or >4 hours with coronary perfusion via special equipment. The ideal cold ischemic

time is shorter than 2 hours. Second problem is immunosuppression to prevent organ

rejection, which is the main risk factor for graft failure preoperatively and early postopera-

tively (<1 year), and thereafter cardiac allograft vasculopathy is the major problem after the

first posttransplant year. Third problem is increased PVR and it should be managed aggres-

sively, because the unprepared donor RV may be unable to overcome this increased

afterload. The standard technique is orthotopic HTx. The great arteries are transected at the

sinotubular junctions, whereas the LA is insiced along the atrioventricular groove, leaving

left atrial cuff for anastomosis. For biatrial technique, the RA is prepared with the same

manner; however, for bicaval technique, both vena cavae are transected at their right atrial

junctions. Bicaval anastomosis is a more common approach for implantation of the donor

heart rather than biatrial technique [94]. The advantages of bicaval technique are reducing

the right atrial size, preserving atrial conduction pathways, decreasing the risk of tricuspid

regurgitation, and avoiding permanent pacemaker need [95]. Annuloaortic ectasia with the

ascending aorta aneurysm could be managed by the replacement of the recipient ascending

aorta during HTx [96].
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