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Abstract

The pharmaceutically important anticancer drugs etoposide and teniposide are derived from 
podophyllotoxin, a natural product isolated from roots of Podophyllum hexandrum growing 
in the wild. The overexploitation of this endangered plant has led to the search for alterna-
tive sources. Metabolic engineering aimed at constructing the pathway in another host cell 
is very appealing, but for that approach, an in-depth knowledge of the pathway toward 
podophyllotoxin is necessary. In this chapter, we give an overview of the lignan pathway 
leading to podophyllotoxin. Subsequently, we will discuss the engineering possibilities to 
produce podophyllotoxin in a heterologous host. This will require detailed knowledge on 
the cellular localization of the enzymes of the lignan biosynthesis pathway. Due to the high 
number of enzymes involved and the scarce information on compartmentalization, the 
heterologous production of podophyllotoxin still remains a tremendous challenge. At the 
moment, research is focusing on the last step(s) in the conversion of deoxypodophyllotoxin 
to (epi)podophyllotoxin and 4′-demethyldesoxypodophyllotoxin by plant cytochromes.

Keywords: etoposide, podophyllotoxin, Podophyllum hexandrum, Anthriscus sylvestris, 
metabolic engineering

1. Introduction

The high demand of podophyllotoxin derivatives for chemotherapy gives a severe pres-

sure on the natural sources, such as Podophyllum hexandrum and Podophyllum peltatum [1]. 

The highest concentration of podophyllotoxin is found in P. hexandrum roots, with reported 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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yields up to 6.6% dry weight (d.w.) [2]. The excessive harvesting has resulted in inclusion of 

P. hexandrum in the Convention on International Trade in Endangered Species (CITES) [3]. 

Chemical synthesis of podophyllotoxin is difficult due to the presence of four contiguous chi-
ral centers and the presence of a base sensitive trans-lactone moiety [4]. The shortest synthesis 

described contains five steps from the commercially available 6-bromopiperonal into (epi)

podophyllotoxin [5]. As an alternative, cell suspension cultures have been explored, but these 

produce only low amounts (max. 0.65% d.w.) of podophyllotoxin [6, 7]. As neither chemical 

synthesis nor in vitro production of podophyllotoxin is economically competitive with the 

extraction of podophyllotoxin from P. hexandrum roots, other alternatives are being searched 

for. Metabolic engineering aimed at constructing the pathway in a heterologous host is very 

appealing, but for that approach, an in-depth knowledge of the biosynthetic pathway toward 

podophyllotoxin is necessary.

2. Lignans and their biological activities

In 1936, Haworth was the first to describe a group of phenylpropanoid dimers (C
6
C

3
) linked 

by the central carbon (C8) as lignans [8]. The Haworth’s definition of lignan has been adopted 
by the IUPAC nomenclature recommendations in 2000 [9]. According to this nomenclature, 

lignans can be divided into eight subgroups based on the oxygen incorporation into the skel-

eton and the cyclization pattern [10]. In the lignan pathway toward podophyllotoxin, six 

subgroups of lignans can be defined in the order of occurrence: furofuran, furan, dibenzyl-
butane, dibenzylbutyrolactol, dibenzylbutyrolactone, and aryltetralin (Figure 1). The other 

two subgroups are arylnaphthalene and dibenzocyclooctadiene. Dibenzylbutanes are only 

linked by the 8,8′ bond. An additional oxygen bridge is found in furofurans, furans, dibenz-

ylbutyrolactols, and dibenzylbutyrolactones. A second carbon-carbon link is found in arylt-

etralins, arylnaphthalenes, and dibenzocyclooctadienes [10, 11]. The majority of the lignans 

has oxygen at the C9 (C9′) carbon; however, some lignans in the dibenzylbutanes, furans, 
and dibenzocyclooctadiene subgroups are missing this oxygen [10]. Humans metabolize the 

furofurans pinoresinol and sesamin, the furan lariciresinol, the dibenzylbutane secoisolarici-

resinol, and the dibenzylbutyrolactone matairesinol. These lignans are phytoestrogens, which 

can be converted into enterolactone or enterodiol by intestinal bacteria [12, 13]. Enterolactone 

and enterodiol have antioxidant, estrogenic, and anti-estrogenic activities in humans; fur-

thermore, they may protect against certain chronic diseases [14]. Several lignans have been 

described to have antiviral properties; however, therapeutic applications are limited due to 
the toxicity [15]. The extract, podophyllin, of Podophyllum roots and rhizome was included in 

the U.S. Pharmacopeia in 1820. In 1942, it was removed, because of its severe gastrointestinal 

toxicity [16]. However, Kaplan described in 1944, the successful treatment of venereal warts 

(Condylomata acuminata) in 200 members of the military by topically applied podophyllin [17]. 

The aryltetralin podophyllotoxin is the active ingredient in podophyllin, which has been com-

mercialized as a treatment for warts caused by the human papilloma virus [18]. Semisynthetic 

derivatives of podophyllotoxin were designed as chemotherapy compounds for oral adminis-

tration or for intravenous treatment [19, 20].
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3. Importance of podophyllotoxin and derivatives for chemotherapy

Podophyllotoxin is a tubulin-interacting agent that inhibits mitotic spindle formation [21]. 

As podophyllotoxin is severely toxic if applied systemic, a number of less toxic derivatives 

have been generated and these are now widely used in cancer chemotherapy. Interestingly, 
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Figure 1. Lignan pathway in Podophyllum hexandrum and Anthriscus sylvestris. (A) Coniferyl alcohol toward matairesinol 

(brown box), (B) matairesinol toward deoxypodophyllotoxin (purple box), and (C) deoxypodophyllotoxin toward 

podophyllotoxin and demethyldesoxypodophyllotoxin (green box). Lignan subgroups are shown by various colors: 
yellow = furofuran, orange = furan, red = dibenzylbutane, blue = dibenzylbutyrolactol, purple = dibenzylbutyrolactone, 

and green = aryltetralin.
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the derivatives currently used in the clinic, etoposide, and teniposide, have a different mode 
of action than podophyllotoxin. They inhibit topoisomerase II by stabilizing its binding to 

DNA, which results in double-stranded breaks in the DNA and arrest of the cell cycle in the 

G2 phase [21]. Etoposide (VP-16, VePesid®) was synthesized in 1966 by Sandoz and was fur-

ther developed by Bristol-Meyers from 1978 onwards. In 1983, it was approved by the FDA for 

the treatment of testicular cancer [22]. As etoposide is poorly soluble in water, the etoposide 

prodrug etoposide phosphate (Etopophos®) was designed by Bristol-Meyers Squibb, which 

was approved by the FDA in 1996 [23]. The prodrug is converted to etoposide within 30 min 

presumably by alkaline phosphatases. Furthermore, the pharmacokinetics and toxicity of eto-

poside phosphate are equal to etoposide [24, 25]. According to the National Cancer Institute 

and the Dutch government etoposide, phosphate should be used in combination therapy for 

various cancers (Table 1) [26–28]. Teniposide (VM-26, Vumon®) was synthesized in 1967 by 

Cancer Combination of drugs

Hodgkin lymphoma in children Vincristine sulfate, etoposide phosphate, prednisone, 

doxorubicin hydrochloride

Doxorubicin hydrochloride, bleomycin, vincristine sulfate, 

etoposide phosphate

Doxorubicin hydrochloride, bleomycin, vincristine sulfate, 

etoposide phosphate, prednisone, cyclophosphamide

Non-hodgkin lymphoma

- All Rituximab, ifosfamide, carboplatin, etoposide phosphate

Etoposide phosphate, ifosfamide, methotrexate

Lomustine, etoposide phosphate, chlorambucil, prednisolone

- B-cell Rituximab, etoposide phosphate, prednisone, vincristine sulfate, 

cyclophosphamide, doxorubicin hydrochloride

Malignant germ cell tumors

- Nonbrain Cisplatin, etoposide phosphate, bleomycin

- Ovarian/testicular Bleomycin, etoposide phosphate, cisplatin

- Advanced testicular Etoposide phosphate, ifosfamide, cisplatin

Acute myeloid leukemia

- Children Cytarabine, daunorubicin hydrochloride, etoposide phosphate

- Phase II Cytarabine and amsacrine, etoposide or mitoxantrone

High-risk retinoblastoma in children Carboplatin, etoposide phosphate, vincristine sulfate

Small cell lung cancer Etoposide with cisplatin or carboplatin

Cisplatin, cyclophosphamide, doxorubicin, vincristine, 

methotrexate

Relapsed Wilms tumor Ifosfamide, carboplatin, and etoposide

Table 1. Cancer chemotherapy combination treatments with etoposide.
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Sandoz and was further developed by Bristol-Meyers from 1978 onwards [22]. It is used in 

the treatment of acute myeloid leukemia and myelodysplastic syndromes in children and in 

acute lymphocytic leukemia [29, 30]. Toxicity problems are still an issue with etoposide; there-

fore, novel derivatives were designed and evaluated in preclinical and clinical studies [31]. The 

derivatives NK611, Gl-311, and TOP-53 were discontinued after phase I or II studies [22, 32, 

33]. NK611, which is more water soluble than etoposide, shows similar toxic effects in humans 
as etoposide. However, only few patients showed efficacy in phase I studies [34–36]. No data 

of the phase I or II studies were found for GL-311 and TOP-53. Four newer derivatives are 

tafluposide, F14512, Adva-27a, and QS-ZYX-1-61 [31, 32]. Tafluposide (F-11782), a pentafluori-
nated epipodophylloid, inhibits topoisomerase I and II activity [37, 38]. In phase I study, stable 

disease was observed in 7 out of 21 patients with advanced solid tumors, such as choroid and 

skin melanoma [39]. Increasing the selectivity of anticancer agents is of great interest. As the 

polyamine transport system is upregulated in cancer cells, F14512 was designed to target the 

transport system by linking the epipodophyllotoxin core to a spermine chain [40]. Phase I study 

in adult patients with acute meloid leukemia showed clinical activity in relapsed patients, but 

limited activity in refractory patients [41]. F14512 will be tested in combination with cytarabine 

in a phase II study [41]. The minimal therapeutic effect of etoposide on dogs with relapsing lym-

phomas has resulted in a phase I study of F14512, which showed a strong therapeutic efficacy 
[42]. The derivative adva-27a, a GEM-difluorinated C-glycoside derivate of podophyllotoxin, is 
effective against multidrug resistant cancer cells [43]. Preparations are being made for a phase 

I study in pancreatic and breast cancer patients in Canada [44]. The derivative QS-ZYX-1-61 
induces apoptosis by inhibition of topoisomerase II in human non–small-cell lung cancer [45]. 

Further investigations are necessary for this compound.

4. Overview of the lignan biosynthetic pathway

Podophyllotoxin is produced in the lignan pathway, which we will discuss in more detail in 

this section (Figure 1). Lignins and lignans are the major metabolic products of the phenylpro-

panoid pathway in vascular plants. Lignins are derived from coumaryl, coniferyl, and sinapyl 

alcohol, whereas lignans are derived from coniferyl alcohol [46].

4.1. Coniferyl alcohol toward matairesinol

The pathway toward podophyllotoxin starts with pinoresinol, lariciresinol, secoisolariciresinol, 

and matairesinol. Pinoresinol and lariciresinol are found in most vascular plants, such as 

Arabidopsis thaliana. Some species follow the lignan pathway toward podophyllotoxin until the 

branch point matairesinol, such as the Forsythia species. Lignans further downstream toward 

podophyllotoxin are found in more specialized plants. An interesting question is whether the 

capability of podophyllotoxin production is restricted to a limited number of plants, or that 

other closely related plants have cryptic pathways as shown in bacteria [47]. To answer this 

question, an in-depth discussion of the lignan pathway is necessary as we do below. Coniferyl 

alcohol is converted into matairesinol in five steps by three enzymes: dirigent protein, pin-

oresinol-lariciresinol reductase, and secoisolariciresinol dehydrogenase (Figure 1A).
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4.1.1. Dirigent protein

In 1997, Davin and coworker showed that the dirigent protein (DIR) from Forsythia suspensa 

can couple two coniferyl alcohols stereospecific to (+)-pinoresinol after their oxidation by 
a nonspecific oxidase or nonenzymatic single-electron oxidant [48]. Davin and coworkers 

showed that the DIR protein lacks a detectable catalytic active (oxidative) center and that the 

rate of dimeric lignan formation is similar in the presence or absence of DIR protein; how-

ever, the DIR protein is necessary for enantioselectivity [48]. Both (+)- and (−)-pinoresinol-
forming proteins were found in plants. The (+)-forming DIR protein is important for the 
lignan pathway in the direction of podophyllotoxin synthesis. (+)-Forming DIRs are the 
ScDIR protein from Schisandra chinensis, the psd-Fi1 from Frullania intermedia, and PsDRR206 

from Pisum sativum [49–51]. In A. thaliana, 16 DIR homologs were found of which four were 

characterized as follows: two formed (−)-pinoresinol (AtDIR5 and AtDIR6); the other two 
showed nonstereoselective coupling of coniferyl alcohols [49, 52]. On the other hand, Linum 

usitatissimum has (+)-forming and (−)-forming DIR proteins [53]. Kim and coworkers solved 

the crystal structure of the (+)-pinoresinol forming PSDRR206 of P. sativum to 1.95A [54]. 

Homology modeling of the (−)-pinoresinol forming AtDIR6 in the PSDRR206 crystal struc-

ture showed six additional residues in the longest loop of the (+)-forming DIR, which are 
present in all (+)-forming DIRs. Site-directed mutagenesis could be used to confirm whether 
one or more of these residues are responsible for the enantioselectivity of the DIR [54].

4.1.2. Pinoresinol-lariciresinol reductase

In 1996, Dinkova-Kostova and coworkers found the pinoresinol-lariciresinol reductase (PLR) 

in F. intermedia, which could reduce (+)-pinoresinol to (+)-lariciresinol and sequentially to 
(−)-secoisolariciresinol [55]. The (−)-secoisolariciresinol-forming PLRs are important for podo-

phyllotoxin synthesis. These PLRs were found in F. intermedia (PLR-Fi1), Linum album (PLR-La1), 

L. usitatissimum (PLR-Lu2) and Linum corymbulosum (PLR-Lc1) [56–59]. A PLR with opposite 

enantioselectivity was found in L. usitatissimum (PLR-Lu1) [57, 58]. PLR can have selectivity or 

preference toward one of the enantiomers. The Thuja plicata PLRs accept both enantiomers of 

pinoresinol; however, they were selective for the lariciresinol substrate, as PLR-TP1 accepts only 
(−)-lariciresinol and PLR-TP2 only (+)-lariciresinol [60]. In Linum perenne, it was found that PLR_

Lp1 can convert (±)-pinoresinol to (±)-lariciresinol and (±)-secoisolariciresinol, with a preference 

for (+)-pinoresinol and (−)-lariciresinol [61]. The F. intermedia (PLR-Fi1) and L. usitatissimum 

(PLR-Lu1) PLRs were found to convert (+)-lariciresinol to (−)-secoisolariciresinol before deple-

tion of (−)-pinoresinol [56, 57]. On the other hand, L. album (PLR-La1) and L. perenne (PLR-LP1) 

PLRs first seem to convert all (+)-pinoresinol to (+)-lariciresinol before converting (+)-lariciresinol 
further to (−)-secoisolariciresinol [57, 61]. For A. thaliana proteins with strict substrate, specific-

ity toward pinoresinol was found as weak or no activity toward lariciresinol was observed [62]. 

Therefore, these proteins are annotated as pinoresinol reductases (AtPrRs). AtPrR1 reduces both 

enantiomers, and AtPrR2 only reduces (−)-pinoresinol [62]. The crystal structures of PLR-Tp1 of 

T. plicata were resolved to 2.5 A, and a homology model of PLR-Tp2 with opposite enantioselec-

tivity was deduced from the PLR-Tp1 structure [63]. Three residues in the substrate binding site 

were different, which could explain the enantioselectivity [63].
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4.1.3. Secoisolariciresinol dehydrogenase

Secoisolariciresinol dehydrogenase (SDH) from F. intermedia and P. peltatum convert (−)-secoiso-

lariciresinol into (−)-matairesinol, through the intermediary (−)-lactol. Neither of them was able 
to convert the opposite enantiomer [64]. Crystallization of P. peltatum SDH (1.6 A) showed 

that it is a tetramer. The ternary complex was obtained by the addition of cofactors and 

(−)-matairesinol. Based on the position of (−)-matairesinol, also (−)-secoisolariciresinol could 
be modeled into the crystal structure. Using the same constrains, (+)-secoisolariciresinol could 
not be modeled into the crystal structure, which could explain the enantioselectivity [64, 65].

4.2. Matairesinol toward deoxypodophyllotoxin

Plant feeding experiments performed by various groups have revealed the metabolites 

intermediate between matairesinol and podophyllotoxin, such as yatein and deoxypodo-

phyllotoxin in P. hexandrum [66, 67]. This was followed by the identification of the enzymes 
in P. hexandrum (Figure 1B). Marques and coworkers found that pluviatolide synthases in 

P. hexandrum (CYP719A23) and P. peltatum (CYP719A24) can convert (−)-matairesinol into 
(−)-pluviatolide by formation of the methylenedioxy bridge [68]. Lau and Sattely used tran-

scriptome mining in P. hex``vandrum to identify four additional biosynthetic enzymes in the 

lignan pathway, which convert (−)-pluviatolide into deoxypodophyllotoxin [69]. Pluviatolide 

4-O-methyltransferase (PhOMT3) converts (−)-pluviatolide into bursehernin by methylation 
at C4′OH. Bursehernin 5′-hydroxylase (CYP71CU1) incorporates a molecular oxygen at C5′ 
in bursehernin, which results in (−)-5′-desmethyl-yatein. In the following step, 5′-demethyl-
yatein O-transferase (OMT1) converts (−)-demethyl-yatein to (−)-yatein by methylation 
at C5′OH. In the last step, deoxypodophyllotoxin synthase (2-ODD) converts (−)-yatein 
to (−)-deoxypodophyllotoxin by ring closure between C2 and C7′ [69]. Sakakibara and 

coworkers suggest a different route toward deoxypodophyllotoxin for Anthriscus sylvestris 

(Figure 1B) [70]. Feeding experiments showed incorporation of matairesinol, thujaplicatin, 

5-methylthujaplicatin, and 4,5-dimethylthujaplicatin into yatein [70]. This was followed by 

the discovery of the enzyme thujaplicatin O-methyltransferase (AsTJOMT), which methyl-

ates thujaplicatin to form 5-O-methylthujaplicatin [71]. Furthermore, they found incorpora-

tion of matairesinol and pluviatolide in bursehernin, but no further incorporation into yatein. 

No literature has been reported in the presence of 5-demethylyatein in A. sylvestris. However, 

feeding of 5-demethylyatein to A. sylvestris results in yatein formation [70]. In the transcrip-

tome of L. album, genes related to OMT3 and CYP71CU1 were found; however, no gene 
related to CYP719A24 was found (Figure 1B) [72, 73]. The differences in the lignan pathways 
in P. hexandrum, A. sylvestris, and L. album indicate the possibility that the later part of the 

lignan pathway might have convergently evolved in the various species, which decreases the 

probability of the presence of a cryptic pathway in other species.

4.3. Conversion of deoxypodophyllotoxin into demethyldesoxypodophyllotoxin

The P. hexandrum enzyme that converts deoxypodophyllotoxin into podophyllotoxin has not 

been identified yet. Lau and Sattely, attempted to find this enzyme, presumably a cytochrome, by 
mining the publicly available RNA-sequencing data set from the Medicinal Plants Consortium. 
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Furthermore, they analyzed transcriptome data from P. hexandrum after upregulating the podo-

phyllotoxin biosynthesis genes by wounding the leaves. Both methods were successful in iden-

tifying podophyllotoxin biosynthesis genes as described in the previous session; however, the 
enzyme converting deoxypodophyllotoxin into podophyllotoxin was not found (Figure 1C). 

They found two P450 cytochromes that can convert deoxypodophyllotoxin into 4′-desmethy-

lepipodophyllotoxin [69]. In the first step, CYP71BE54 converts (−)-deoxypodophyllotoxin to 
(−)-4′-demethyldesoxypodophyllotoxin. In the second step (-)-4’-demethyldesoxypodophyll-

toxin is converted to (−)-4′-desmethylepipodophyllotoxin by CYP82D61.

5. Engineering approaches

In this part, we will focus on genetic engineering approach`es to produce podophyllotoxin in a 

heterologous system. In order to produce podophyllotoxin in Escherichia coli or Saccharomyces 

cerevisiae, the pathway from the easily available glucose toward coniferyl alcohol has to be 

implemented into these organisms.

5.1. Production of coniferyl alcohol in E. coli and S. cerevisiae

Coniferyl alcohol can be produced in E. coli by a co-culture system. Coumaryl alcohol is pro-

duced upon insertion of four phenylpropanoid pathway genes [74]. The production can be 

increased by addition of four key shikimate pathway genes to overproduce tyrosine [75]. 

Addition of the genes for methyltransferase and HpaBC in another strain resulted in the 

accumulation of 125 mg/L coniferyl alcohol after 24 h. Co-culturing was necessary as HpaBC 

converts tyrosine to an unwanted side product [74]. The full biosynthetic pathway toward 

coniferyl alcohol has not been tested for expression in S. cerevisiae yet. However, produc-

tion of ±100 mg/L coumaric acid has been shown [76]. To convert coumaric acid to coniferyl 

alcohol in S. cerevisiae, four or five additional genes have to be expressed; therefore, in order 
to produce coniferyl alcohol levels similar to E. coli, further optimization of coumaric acid 

production is necessary.

5.2. Cellular localization of enzymes from the lignan pathway

In order to engineer the lignan pathway for podophyllotoxin production in a heterologous cell, 

knowledge about the localization of lignans and their corresponding enzymes is necessary. 

Localization to the wrong organelle might abolish or lower production, as was shown for peni-

cillin production [77]. The monolignol coniferyl alcohol is synthesized in the cytosol and trans-

ported over the plasma membrane for incorporation into lignin or lignan by an ABC membrane 

transporter, whereas the glucosylated form (coniferin) for storage could only be transported 

over the vacuolar membrane possibly by another ABC membrane transporter or proton-cou-

pled antiporter [78, 79]. Analyses of transmembrane helices by the TMHMM predictor [80] indi-

cated that DIR has one transmembrane helix. Furthermore, the DIR protein is a glycoprotein 

with a secretory signal peptide [50]. This indicates that the DIR protein is membrane attached, 
which is consistent with the findings in F. suspense stems. Only the insoluble fraction was 
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capable of stereoselective conversion of coniferyl alcohol to (+)-pinoresinol, whereas soluble 
enzyme preparations only form racemic pinoresinol [81, 82]. As the DIR protein was found 

primarily localized within the plant cell wall [83], it might be difficult to target DIR to its natu-

ral compartment in bacteria and yeast. However, there is strong indication that monolignol 

dimerization also occurs intracellular as shown by protoplast experiments in A. thaliana and 

the racemic pinoresinol formation in crude cell-free enzyme preparation of F. suspense stems 

[81, 84]. The disadvantage is the absence of stereoselectivity in the coupling of the two coniferyl 

alcohols. However, this should not be a problem, if the influx of coniferyl alcohol is large 
enough. The following proteins lack a transmembrane helix or signal peptide according to the 

TMHMM predictor and SignalP [85]: PLR, SDH, OMT3, OMT1, and 2-ODD. PLR and 2-ODD 
are localized to the cytoplasm, and SDH, OMT3, and OMT1 to the chloroplast according to the 

plant specific localization tool Plant-mPloc [86]. However, the specific chloroplast localization 
tools ChloroP and PCLR suggest no chloroplast localization, which was confirmed by the local-
ization tools MultiLoc2-LowRes and LocTree3 [87–90]. Therefore, we think that the proteins 

PLR, SDH, OMT3, OMT1, and 2-ODD are all localized in the cytoplasm. The four cytochromes 

CYP719A23, CYP71CU1, CYP71BE54, and CYP82D61 contain a targeting peptide and one or 
two transmembrane helixes. They are probably located in the endoplasmic reticulum (ER) 

membrane (according to an analysis by Plant-mPloc and MultiLoc2) as most plant cytochromes 

are anchored in the ER membrane and face the cytosolic side [91]. Our hypothesis is that deoxy-

podophyllotoxin is converted to podophyllotoxin by a cytochrome that is ER bound (Figure 2). 

Production of podophyllotoxin in E. coli would be feasible assuming that PLR, SDH, OMT3, 

OMT1, and 2-ODD can be actively expressed in the cytosol. As coniferyl alcohol has been pro-

duced before in this organism and cytochrome P450 enzymes with modified N-terminus have 
also been expressed successfully [92], some of the major steps toward podophyllotoxin might 

be performed in E. coli. The disadvantage of E. coli is the lack of NAD(P)H P450 reductase, the 

redox partner of cytochromes necessary for the supply of electrons from the cofactor NAD(P)H 

[92]. The establishment of a renewable supply has been proven difficult in E. coli.

5.3. Conversion of deoxypodophyllotoxin to (epi)podophyllotoxin by engineering

In 2006, Vasilev and coworkers showed that the human liver cytochrome P450 3A4 (CYP3A4) 
together with human NADPH P450 reductase can convert deoxypodophyllotoxin stereoselectiv-

ity into epipodophyllotoxin [93]. The disadvantage of this system is the usage of frozen cells and 

therefore the need to supply a regenerative system, such as glucose-6-phosphate dehydrogenase 

and NADP. Changing the system to a resting cell assay or cell-free assay with the usage of a 

cheaper cofactor and increasing the electron transfer between cytochrome and reductase would 

greatly increase the usability of this system. As CYP3A4 is quite unspecific, an approach to find 
a dedicated cytochrome converting deoxypodophyllotoxin into podophyllotoxin could be pro-

vided by the systematic analysis of cytochrome encoding genes found by Kumari and coworkers, 

who analyzed the transcriptome of P. hexandrum cultivated at two temperatures. The expression 

of DIR protein, PLR and SDH were upregulated by at least a factor two at 15°C compared to 25°C 

[94], accompanied by an increase of podophyllotoxin accumulation at 15°C. Fifteen cytochrome 

transcripts were upregulated by at least a factor two at 15°C compared to 25°C. These fifteen 
upregulated cytochrome transcripts would be interesting candidates for future investigation. 
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A cytochrome p450 system with high activity toward deoxypodophyllotoxin can form a very 

interesting production platform in conjunction with a sustainable source of this lignan, as is A. syl-

vestris, a common wild plant in Europe and temperate Asia, that can be cultivated easily [95, 96].

5.4. Production of etoposide

Industrially, podophyllotoxin is chemically converted to etoposide (Figure 3). Podophyllotoxin 

is converted to 4′-demethyl-epipodophyllotoxin by demethylation and epimerization in two 
steps with a yield of 52% followed by the protection of the phenolic group by conversion to 
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Figure 2. Schematic view of the proposed cellular localization of the enzymes in the lignan pathway in plant cells.
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4′-O-carbobenzoxy-epipodophyllotoxin in one step with 89% yield [97]. 4′-O-carbobenzoxy-
epipodophyllotoxin is then glycosylated to the esterification of ortho-cyclopropylethynylbenzoic 

acid, which is obtained in six steps from β-D-Glucose pentaacetate [98, 99]. After glycosyl-

ation, the protective groups are removed in one step with 90% yield [98]. As podophyllotoxin 

production from deoxypodophyllotoxin is not yet applicable on industrial scale, the chemical 

conversion of deoxypodophyllotoxin into epipodophyllotoxin is of interest, which can be per-

formed in one step with a yield of 53% [100]. Epipodophyllotoxin can be converted chemically 

to etoposide in the same manner as podophyllotoxin. The chemical synthesis of etoposide from 

deoxypodophyllotoxin can be shortened by production of 4′-demethyl-epipodophyllotoxin 
from deoxypodophyllotoxin by CYP71BE54 and CYP82D61 from P. hexandrum (see Section 

4.3). As only proof of concept has been shown, optimization is required to make this enzy-

matic conversion suitable for industrial application. Whether deoxypodophyllotoxin can be 

converted chemically directly to 4′-demethyl-epipodophyllotoxin still needs to be investigated.

6. Future perspectives

Recent insights in the lignan biosynthetic pathway by Lau and Sattely [69] have progressed 

the research in the lignan pathway enormously. Engineering of the lignan pathway in a heter-

ologous host will become feasible, if the localization of the enzymes in the pathway has been 
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determined. Depending on this localization, either E. coli or S. cerevisiae could be a suitable 

host for production of podophyllotoxin from glucose. The only missing step is the conversion 

of deoxypodophyllotoxin to podophyllotoxin. Finding this enzyme or replacing this step by 

the epipodophyllotoxin producing CYP82D61 (with or without CYP71BE54) will advance the 
development even more. Alternatively, deoxypodophyllotoxin can be chemically converted 

to etoposide. Considering the huge number of enzymes necessary for conversion of glucose 

to podophyllotoxin in E. coli or S. cerevisiae, commercial production in microbial hosts still 

has a long way to go. Until that time, an alternative approach can be the extraction of deoxy-

podophyllotoxin from the easy to cultivate A. sylvestris and converting this to (epi)podophyl-

lotoxin. Enzymatic conversion needs to be optimized in order to obtain a system that can be 

used by the industry. Improvement should focus on engineering a cheap system, by usage 

of a resting cell assay or the usage of a cheap cofactor in a cell-free system. Furthermore, the 

deoxypodophyllotoxin conversion should be scaled up to industrial production.
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