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Abstract

Free-living plant growth-promoting rhizobacteria (PGPR) have favourable effect on 
plant growth, tolerance against stresses and are considered as a promising alternative to 
inorganic fertilizer for promoting plant growth, yield and quality. PGPR colonize at the 
plant root, increase germination rates, promote root growth, yield, leaf area, chlorophyll 
content, nitrogen content, protein content, tolerance to drought, shoot and root weight, 
and delayed leaf senescence. Several important bacterial characteristics, such as biologi-
cal nitrogen fixation, solubilization of inorganic phosphate and mineralization of organic 
phosphate, nutrient uptake, 1-aminocydopropane-1-carboxylic acid (ACC) deaminase 
activity and production of siderophores and phytohormones, can be assessed as plant 
growth promotion traits. By efficient use, PGPR is expected to contribute to agronomic 
efficiency, chiefly by decreasing costs and environmental pollution, by eliminating harm-
ful chemicals. This review discusses various bacteria acting as PGPR, their genetic diver-
sity, screening strategies, working principles, applications for wheat and future aspects 
in terms of efficiency, mechanisms and the desirable properties. The elucidation of the 
diverse mechanisms will enable microorganisms developing agriculture further.
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1. Introduction

Wheat (Triticum aestivum L.) is one of the three major cereals (together with maize and rice), 

major source of energy, renewable resource for food, feed and industrial raw material, protein 

and fibre source in human diet, staple food crop for more than one-third of the world popula-

tion [1], grown both as a spring and winter crop.

Plant growth-promoting bacteria (PGPR), typically colonizing at the rhizosphere, is known to 

increase the yield and help alleviating the effects of biotic or abiotic stresses [2]. The practice 

of PGPRs is promising in reducing the use of chemical fertilisers, at the same time main-

taining yields at commercially viable levels and/or maintaining grain protein content [3]. As 
such, PGPR contributes to the improvement of both local and global environments, reduc-

ing dependence on non-renewable resources while still being economically competitive (both 

price and quality aspect) [4–6].

Several beneficial free-living rhizobacteria have been termed as PGPR, including, but not 
limited to, Acinetobacter, Acetobacter, Alcaligenes, Arthrobacter, Azotobacter, Azospirillum, 

Bacillus, Burkholderia, Beijerinckia, Enterobacter, Flavobacterium, Methylobacterium, Pseudomonas, 

Rhizobium, Paenibacillus and Pantoea [7–10]. These bacteria enhance growth through numerous 

mechanisms [2, 11–15]. A short list of mechanisms cover:

 - The biological nitrogen fixation (BNF) and phosphate solubilization

 - Secretion of hormones, for example, auxins, indole acetic acid (IAA), cytokinins, gibberel-
lins and ethylene

 - Facilitating the uptake of essential nutrients (N, P, Fe, Zn, etc.) from the atmospheric air 
and soil

 - Zinc and iron solubilization and organic matter mineralization

 - Secretion of certain volatiles and lowering of plant ethylene level

 - Induction of systemic resistance

 - Production of 1-aminocyclopropane-1-carboxylate deaminase (ACC)

 - Quorum sensing (QS) signal interference and inhibition of biofilm formation

 - Promoting beneficial plant-microbe symbioses

 - Exhibiting antifungal activity, exhibition of antagonistic activity against phytopathogenic 
microorganisms by producing siderophores, b-1,3-glucanase, chitinases and antibiotics

 - Interference with pathogen toxin production.

A non-exhaustive list of Plant Growth Promoting Rhizobacteria (PGPR)s used to alleviate vari-

ous stresses is given in Table 1, and the various other uses of these bacteria are listed in Table 2. 

Two important mechanisms employed by PGPR are the production of different phytohormones, 
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Stress type Bacterial inoculate Properties of the crop Reference

Drought/water Azospirillum brasilense Sp245 Wheat, growth rate of coleoptiles [132]

Drought Azospirillum brasilense INTA Az-39 wheat 
roots

Wheat (T. aestivum) [133]

Drought Azospirillum lipoferum Wheat (T. aestivum L.) [134]

Drought Burkholderia phytofirmans Wheat (T. aestivum)

Grain yield, photosynthetic rate, 

water use efficiency, chlorophyll 
content

[135]

Drought Bacillus safensis, Ochrobactrum 

pseudogregnonense

Wheat (T. aestivum) [137]

Heavy metal-stressed Bacillus sp Wheat (T. aestivum)

Indole-3-acetic acid
Antioxidant defence system
SOD shoots and roots

Shoot POD and CAT

[198]

Heavy metal Bacillus thuringiensis, Azotobacter 

chroococcum, Paenibacillus ehimensis, 

Pseudomonas pseudoalcaligenes

Higher heavy metal resistance

Siderophore,, indole acetic acid, 

HCN, P solubilization

[151]

Osmotic stress Azospirillum Wheat (T. aestivum) [199]

Osmotic stress Azospirillum brasilense sp. 245 Wheat (T. aestivum) [200]

Cold Pseudomonas spp. IAA, P solubilization, 
rhamnolipids, siderophores

[201]

Cold Bacillus megaterium M3, Bacillus subtilis 

OSU142, Azospirillum brasilense Sp245, 

Raoultella terrigena

Root and shoot dry weight, leaf 

total chlorophyll content, stomatal 

conductance, leaf relative water 

content

[171]

Temperature Bacillus amyloliquefaciens and Azospirillum 

brasilense

Wheat (T. aestivum) [202]

Heat stress Pseudomonas putida AKMP7 Wheat (Triticum spp) [98]

Temperature Pseudomonas fluorescens, Pantoea 
agglomerans, Mycobacterium sp

Wheat (T. aestivum) [203]

Salinity Azospirillum Wheat (T. aestivum) [62]

Salinity Pseudomonas putida, Pseudomonas 

extremorientalis, Pseudomonas chlororaphis 

and Pseudomonas aurantiaca.

Wheat (T. aestivum cv. Turon) 

wheat root tip coloniser, tolerated 

salt

[125]

Salinity Pseudomonas fluorescens 153, 169, 
Pseudomonas putida 108

Wheat (Triticum aestivum) grain 

yield, 1000 grain weight, grain 

yield

[143]

Salinity Pseudomonas putida N21, Pseudomonas 

aeruginosa N39 and Serratia proteamaculans 

M35

Wheat (Triticum aestivum L.) [142]

Salinity Azospirillum sp Durum wheat (Triticum durum) [128]
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Stress type Bacterial inoculate Properties of the crop Reference

Salinity Pseudomonas putida, Enterobacter cloacae, 

Serratia ficaria, and Pseudomonas fluorescens
Wheat [204]

Bacillus, Burkholderia, Enterobacter, 

Microbacterium, Paenibacillus

Wheat (T. aestivum) [46]

Salinity Bacillus pumilus, Pseudomonas mendocina, 

Arthrobacter sp., Halomonas sp., and 

Nitrinicola lacisaponensis

P solubilization, indole acetic 

acid (IAA), siderophore, 
ammonia,proline accumulation, 

salt tolerance, choline oxidase 
activity

[140]

Streptomyces sp Wheat (T. aestivum) [85]

Salinity B. subtilis, Arthrobacter sp. Wheat (T. aestivum) [97]

Azospirillum sp. Wheat (T. aestivum) [95]

Salinity Pseudomonas putida, Enterobacter cloacae, 

Serratia ficaria and P. fluorescens
Wheat (T. aestivum)

Germination rate percentage and 

index and improved nutrient 
status

[205]

Salinity Hallobacillus sp. SL3 and Bacillus 

halodenitrificans PU62

Root length, root elongation, dry 

weight

[1]

Salinity Enterobacter asburiae, Moraxella 

pluranimalium, Pseudomonas stutzeri
Number of tillers, grain weight, 
growth and yield

[138]

Table 1. PGPB-mediated IST against abiotic stress.

PGPR Source Plant growth regulation Results of addition of bacteria 

to plants

References

Azospirillum sp. Wheat rhizospheric N2 fixation Grain yield, dry matter, N 
content

[32]

Azospirillum brasilense Mutant Indole-3-acetic acid 
(IAA)

Number and length of lateral 
roots, distribution of root 

hairs.

[206]

Cyanobacteria Rhizospheric N2 fixation Root dry weight, N content 
root and hoot

[207]

Azorhizobium caulinodans Wheat N2 fixation Dry weight, nitrogen content [192]

Azotobacter chroococcum Wheat Rhizospheric P solubilization, N2 
fixation, IAA

Seed emergence radicle and 

plumule length

[114]

Azotobacter sp.

Azotobacter chroococcum

Wheat Rhizospheric N2 fixation Growth [73]

Paenibacillus polymyxa Wheat Cytokinin, N2 fixation Plant growth [208]

Azospirillum brasilense 

Sp7

Digitaria decumbens Lectins, N
2
 fixation Activities of a-glucosidase, 

b-glucosidase and 

b-galactosidase in 

wheat-seedling

[209]

Azospirillum brasilense 

75, 80 and Sp245
Non-sterilised and 
surface-sterilised 

wheat roots

N2 fixation Root-hair deformation 

colonization

[99]
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PGPR Source Plant growth regulation Results of addition of bacteria 

to plants

References

Azospirillium brasilense Wheat rhizospheric N2 fixation Plant growth, N accumulation 
and content, biomass, 

grain yield and protein 

concentration

[164]

Klebsiella pneumoniae 342 Maize N2 fixation Dry weight of roots and 

shoots, total N per plant 
colonized the interior of 

wheat roots

[26]

Pseudomonas denitrificans
Pseudomonas rathonis

Auxin Plant growth [210]

Bacillus simplex BS 

BNM-10, Bacillus firmus 

BF BNM-4

Wheat roots, Biomass number of ears 

nitrogen accumulation, N 
content

[172]

Azotobacter chroococcum

Pantoea agglomerans

Geographically and 

climatically diverse 

locations

Gibberellic acid (GA), 
IAA

Increase in number root hairs, 
thickening of roots, root and 

shoot biomass

[11]

Pseudomonas spp Rhizosphere of 

wheat

P solubilization, 

siderophore

Indole acetic acid
ACC deaminase, 
diacetyl-phloroglucinol

Protein content, yield and 

grain quality

[162]

Bacillus RC01,
Bacillus RC03

Rhizosphere of 

wheat

P solubilization, N
2
 

fixation
Root and shoot weight, total 

biomass

[111]

Azotobacter chroococcum Various sources N
2
 fixation Grain and straw yield, N 

content in grain and straw

[211]

Rhizobium 

leguminismarum Thal-8/
SK8), Pseudomonas sp. 

54RB

Rice N
2
 fixation

P solubilization

Root and shoot weight, plant 

height, spike length, grain 

yield, seed P content, leaf 

protein and sugar content

[185]

Pseudomonas putida, 

P. extremorientalis, 

P. chlororaphis, P. 

aurantiaca

Rhizosphere of 

wheat grown in 

saline soil

Hydrogen cyanide 

(HCN), IAA, ACC 
deaminase, protease, 

cellulases competitive 

colonisers, tolerated salt

Shoot and root length, shoot, 

root and dry matter of wheat
[125]

Acinetobacter 

calcoaceticus

Rhizospheres of 

wheat.

P solubilization, 

siderophore

IAA

Wheat growth, increase in 

the rate of germination, in the 

root length and dry weight

[106]

Azospirillum brasilense N
2
 fixation uptake of several macro and 

micronutrients

[5]

Acinetobacter 

calcoaceticus, A. 

baumannii, A. lwoffii

N
2
 fixation, 

siderophores, P 

solubilization

Root growth

Root length

[45]

Bacillus simplex KBS1F-
3, Bacillus megaterium 

NAS7-L, Bacillus cereus 

KFP9-F, Paenibacillus 

alvei NAS6G-6

Grass IAA, siderophores
P solubilization

Shoot and root

Weight colonisation

[212]
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PGPR Source Plant growth regulation Results of addition of bacteria 

to plants

References

Pseudomonas sp. Wheat P solubilization, 

ACC deaminase, 
siderophores, IAA

Increased soil enzyme 
activities, total productivity, 

and nutrient uptake, nutrient 

assimilation

[102]

Pseudomonas jessenii 

R62; Pseudomonas 

synxantha R81 and 
arbuscular mycorrhizal 

fungi (AMF)

Wheat roots P solubilization, 

IAA, siderophores, 
ACC deaminase, 
diacetyl-phloroglucinol

Grain yield

Protein and mineral nutrient 

concentration (P, K, Cu, 
Fe, Zn, Mn) alkaline and 
acid phosphatase, urease, 

dehydrogenase.

[163]

Pseudomonas putida 

AKMP7
sorghum Phytohormones(IAA, 

GA), HCN, ammonia, 
Siderophore, 

P-solubilization

Increased root, shoot length, 
dry biomass, chlorophyll 

content

[98]

Bacillus sp. (AW1), 
Providencia sp. (AW5), 
Brevundimonas diminuta 

(AW7)

Rhizosphere of 

wheat

P-solubilization, 

N
2
 fixation, ACC 

deaminase siderophore, 

ammonia, HCN

Seedling length, germination, 

plant height, panicle weight, 

root weight

[40]

Pseudomonas fluorescens 

153 and 169, P. putida 4 

and 108

ACC deaminase, 
IAA-like products, P 
solubilization

Height, tillers, number of 

grains/spike, garain and straw 

yield, N, P and K uptake

[54]

Pseudomonas lurida Radish P solubilization IAA, 
HCN, siderophores

Growth and nutrient uptake 

parameters

[64]

Providencia sp. PW5 Wheat rhizosphere Ammonia siderophore, 
HCN, IAA, P 
solubilization Zn 
solubilization

N uptake in wheat grain. 
protein content grain Fe, Zn, 
Mn, and Cu content

[161]

Pseudomonas fluorescens 

MKB37
Barley Siderophore ACC 

deaminase. Protease 

phytate

Grain number, weight and 

yield

[23]

Azospirillum sp., 

Azotobacter sp.

Bacillus megaterium

Wheat N
2
 fixation, P 

solubilization

Plant height, number spikes, 

grain yield, protein content

[213]

Azospirillum brasilense Wheat N
2
 fixation Agronomic performance and 

yield of wheat

[35]

P. fluorescens and 

Serratia sp.

Rubus and wheat P solubilization Shoot length, root and shoot 

dry weight, P uptake

[214]

Hallobacillus sp. SL3, 

Bacillus halodenitrificans 

PU62

Naturally saline 
habitats

ACC deaminase, IAA, 
HCN, siderophores, P 
solubilization,

Seed germination, root length, 

root elongation, dry weight 

root biomass

[1]

A. chroococcum (W5), 

Mesorhizobium ciceri 

(F 75), P.striata (P27), 

S.marcescens (L11)

A.torulosa

N
2
 fixation

P solubilization,

Nutrient status of soil and 
plants, plant biomass, N and 
P uptake

[177]
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including auxins, cytokinins and gibberellins, and the synthesis of several enzymes, such as phos-

phatase and catalase, modulating plant growth and development as well as strengthening their 

immune system [16, 17]. In a review, Palacios et al. compiled many molecules facilitating interac-

tions of PGPB with plants [18]. The list includes plant hormones, hydrolytic enzymes, antibiotics, 

flavonoids, other signal molecules, toxic molecules, siderophores, exopolysaccharide, volatiles, 
polyamines, lectins and vitamins. The PGPR efficiency, in turn, depends upon a number of factors 
like soil mineral content, type of crop and its genotype, specific PGPR strain and its combination 
with the plant, competition with indigenous strains, environmental conditions and the growth 

parameters evaluated, as illustrated in greenhouse and field trials [3] and other studies [19–22].

Despite the promising features from agronomic efficiency and crop yield perspective, the key 
bottleneck for the commercial use of PGPRs is their varying performance under field condi-
tions: the results obtained in a field are not always similar to those of laboratory [23], which 

calls for immediate further research on the agricultural use of these PGPRs.

PGPR Source Plant growth regulation Results of addition of bacteria 

to plants

References

Bacillus OSU-142, 

Bacillus M3, A. brasilense 

sp. 245, B. megaterium 

RC07, P. polymyxa RC05, 
B. licheniformis RC08, 
R. terrigena, B. cepacia 

FS Tur

N
2
 fixation

P solubilization

Grain and straw N content, 
root and shoot weight. grain 

and total biomass yield, 

protein content, grain weight 

per spike

[3]

Bacillus spp. Rhizospheres of 

wheat and tomato

IAA, lipase, protease, 
siderophore, P 

solubilization salt 

tolerant

Germination, root length, root 

weight, panicle weight

[52]

B. subtilis IB-22
B. subtilis IB-21

Zeatin type cytokinins Shoot concentrations of 

zeatin, total chlorophyll and 

nitrogen contents of wheat 

leaves

[90]

Streptomyces spp. Wheat roots P solubilization, 

phytase, chitinase, IAA, 
siderophore

Growth, biomass, Fe, Mn and 

P content antifungal activity

[43]

P. brassicacearum subsp. 

brassicacearum RZ310
Pseudomonas sp. PO283, 
Pseudomonas sp. PO366

Rhizosphere of 

wheat

IAA, ACC deaminase Both coleoptiles and root 

elongation, root length, wheat 

seedling growth, growth and 

biomass of Wheat coleoptiles

[215]

S.liquefaciens, S. 

marcescens, B. 

thuringiensis

Wheat rhizosphere Zn solubilizing Enhance grain yield and Zn 
content of wheat

[160]

Bacillus sp., 

Pseudomonas, sp., 

Arthrobacter sp.

Wheat rhizosphere P solubilization Plant biomass

P, K, Mg, Zn and Mn contents 
at harvest

[216]

Table 2. Examples of plant growth-promoting substances released by some commonly employed PGPR.
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2. Mechanisms of plant growth promotion

2.1. Biological nitrogen fixation

PGPR improve plant growth by multiple mechanisms. A well-established mechanism is the 
biological nitrogen fixation (BNF), as described in extensive literature available on diazotro-

phic association in wheat and subsequent addition of nitrogen to the ecosystem [24], con-

tributing to the total N
2
 requirement of wheat [25–27]. Nitrogen fixation is considered to be a 

direct plant growth-promoting trait and the nitrogen-fixing rhizobacteria provide an alterna-

tive source to inorganic nitrogen fertilizers.

Azospirillum is a kind of nitrogen-fixing bacterium that lives in close association with plants in 
the rhizosphere. Its beneficial effects on wheat yields in both greenhouse and field conditions 
have been reported [28, 29]. Balandreau found that Azosprillum lipoferum inoculation increased 

yield around 1.8 t/ha and wheat grain by up to 30% [30, 31]; Okon and Labandera-Gonzalez 

by inoculation with Azospirillum brasilense [31]. In an earlier study, Boddey et al. were unable 
to observe fixed N in wheat from similar organisms [32]. Further, Ruppel and Merbach inves-

tigated the dinitrogen-fixing ability strain of Pantoea agglomerans and Azospirillum spp. and 

in hydroponic experiments with wheat found that bacterial strain inoculation affected plant 
growth, by nitrogen uptake and the amount of biologically fixed dinitrogen. In this sense, 
when Azospirillum brasilense is inoculated using seed inoculation, it increases the productiv-

ity of wheat [33–35]. P. agglomerans, as a diazotroph, is able to fix molecular N
2
 with wheat [36]. 

Ruppel et al. reported P. agglomerans to be superior strain for winter wheat, reporting a grain 

yield increase for different wheat cultivars ([37], also in Ref. [38]). Moreover, a nitrogen-fixing 
P. agglomerans Lma2 was isolated from wheat rhizosphere, it was found to have the ability to 

produce IAA, siderophores and solubilize P, and growth performance of plant was signifi-

cantly better in the presence of salt [39].

Acinetobacter strains also possessed BNF properties, siderophore and ammonia production as 
well as mineral solubilization. Rana et al. reported a positive correlation of BNF potential of 
Providencia spp. AW4 and Brevundimonas diminuta AW7 strains with panicle weight and plant 
height in wheat, indicating the enhancing plant growth role of BNF [40].

2.2. Phosphate solubilization and mineralization

Soil stores several structures and forms of phosphate, both organic and inorganic. Phosphorus 

plays a key role in photosynthesis, respiration, root development, signal transduction, energy 

transfer, macromolecular biosynthesis and the resistance ability of plants to diseases and adverse 

conditions. However, majority of soil phosphorus is insoluble that is not available to plants. The 

secondary significant contributing factor to promoted growth is the availability of phosphorous 
in the rhizospheric region, as a result of phosphate solubilization by the PGPR [41].

PGPRs serve as phosphate (and zinc) solubilizer (PSB). This is due to the decreased pH of the 

medium, indicating the possible involvement of organic acids such as gluconic acid. Plant 

growth promotion can be achieved through solubilization of inorganic phosphates by these 
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organic acids. de Werra et al. showed that this happens with not only gluconate but also 

malate [42, 43]. These results were consistent with earlier report on the P and Zn solubilizing 
properties of Acinetobacter sp. [44]. Nearly all the Acinetobacter species isolated from rhizo-

sphere soil of the three wheat varieties in the present study were efficient phosphate and zinc 
solubilizers and produced iron chelating siderophores [45]. Phosphate solubilizing bacteria 

(PSB) belong largely to the genera pseudomonads, bacilli and rhizobia [46].

Phosphorus-solubilizing Bacillus strains have been reported to increase the plant biomass 

and yield of wheat as well as uptake of nutrients [47]. Similar results have been reported 

by Afzal et al. when a combination of nitrogen-fixing Rhizobium leguminosarum with 
P-solubilizing  Pseudomonas sp. strain 54RB have been used [48]. Similarly, several Pseudomonas 

spp. strains have been tested in the field for their efficacy to increase growth and yield of 
wheat [49]. Four P solubilizer (Arthrobacter WP-2, Bacillus MP5, Rhodococcus M28 and Serratia 

5D) and one phytohormone producer (Azospirillum WS1) strains tested as single-strain inoc-

ula resulted in improved growth of wheat plants [50]. Some Bacillus species can improve 

phosphate solubilization of the soil [51, 52]. On the other hand, Baig et al. reported a positive 

correlation between P-concentration in soil, P-solubilization activity of the Bacillus strains 

and P uptake by wheat plants [53]. Along the same line, improvement of growth and yield 
of wheat was observed and reported upon inoculation with P-solubilizing microorganisms. 

Both PGPR (Bacillus and Pseudomonas spp.) are similar in effectively solubilizing phosphate. 
A short list of phosphate-solubilizing bacteria (PSB) includes P. fluorescens 153, P. fluorescens 

169, P. putida 4 and P. putida 108 together with their capability in natural soil ecosystem to 
synthesize ACC deaminase and IAA-like products [54].

Combined application of PSB with conventional fertilizer (50% PSB, 25 kg/ha P
2
O

5
) improves 

plant growth. Similarly, a combination of PGPRs are more effective when compared with 
isolated applications as reported by Hassan et al. for wheat crops and by Baig et al. for wheat 

yield and P uptake [53, 55].

2.2.1. Mineralization

Mineralization of most organic phosphorous compounds is carried out by means of phos-

phatase enzymes. The conversion of insoluble inorganic P to a form accessible by plants is 

achieved by PSB via organic acids, chelation and exchange reactions [56]. However, organic 

P forms, particularly phytates, are predominant in most soils (10–50% of total P) and must 
be mineralized by phytases (myo-inositol hexakisphosphate phosphohydrolases) to be 
available P for plants [57, 58]. Previous research has shown that Bacillus sp., Providencia sp., 

Brevundimonas and Alcaligenes were recorded positive for P solubilization [40, 59].

Singh et al. reported that phytase-producing bacteria from Himalayan soils showed ability 

to solubilize inorganic phosphate, producing phytase, siderophores, ammonia and IAA and 
increased availability of P, IAA and ammonia leading to increased plant growth [57]. The role 

of PGPR in production of phosphataes, β-gluconase, dehydroginase, antibiotic, solubilization 
of phosphates and other nutrients, stabilization of soil aggregates, improved soil structure 

and organic matter contents has been recognized.
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2.3. Production of plant hormones and other beneficial plant metabolite

There are five groups of plant hormones of well-known PGRs, namely auxins, gibberellins, 
cytokinins, ethylene and abscisic acid [60]. Direct plant growth promotion includes symbiotic 

and non-symbiotic PGPR, which functions through production of these plant hormones [11, 

61–63]. Much attention has been given on the role of phytohormone auxin. Production of 
indole-3-ethanol or indole-3-acetic acid (IAA), the compounds belonging to auxins, which is 
known to stimulate in cell elongation, division and differentiation responses in plants, has 
been reported for several bacterial genera [12, 17, 64]. PGPR promote root growth by increas-

ing root surface area, which, in turn, promotes nutrient uptake, thereby indirectly stimulating 

plant growth positively [52, 65]. Khalid et al. reported a correlation between in vitro auxin 
production and increase in early growth parameters of inoculated wheat seeds [66].

Inoculation with A. brasilense Cd and the application of pure IAA to the roots both increased 
root length, number of lateral roots and number of root hairs in wheat as observed by earlier 

workers [67, 68]. IAA-producing Azospirillum sp. also promoted alterations in the growth and 

development of wheat (Triticum aestivum L.) plants [69–72]. Bacteria of the Azotobacter genus 

synthesize auxins, cytokinins and GA-like substances, and these growth materials are the 
primary substances controlling the enhanced growth [73]. These hormonal substances, which 

originate from the rhizosphere or root surface, affect the growth of the closely associated 
higher plants. The highest concentration of IAA is produced by bacterial strain P. fluorescens 

and Kocuria varians [74]. Specifically for wheat, the positive effect of PGPR via IAA has been 
reported [75–78].

When applied in optimum concentrations, bacterial indole-3-acetic acid (IAA), synthesized by 
gram-positive and -negative, photosynthetic, methylotrophic and cyanobacteria, is reported to 

stimulate root hair formation, at the same time increasing the length and the number of primary 

and lateral roots [66, 72, 79]. IAA synthesis by these bacteria is reported to be affected by trypto-

phan, vitamins, salt and oxygen levels, as well as pH, temperature, carbon and nitrogen source. 
For example, IAA from Azospirillum brasilense Sp245 stimulates early plant development and 

increases significantly the plants and roots yield (in dry weight) and the N-uptake efficiency 
of wheat [71, 80]. The ability to synthesize ABA, particularly under stressful conditions, for 
example, salinity, and to affect the ABA level in plants was detected in PGPB from the genera 
Azospirillum, Bacillus, Pseudomonas, Brevibacterium and Lysinibacillus [15, 81, 82]. Both plants and 

bacteria can be synthesized via several pathways, including the indole-3-pyruvic acid (IPA), 
indole-3-acetamide (IAM) and indole-3-acetonitrile (IAN) pathways, which are often regulated 
by tryptophan, carbon and nitrogen availability, a reduction in growth rate and abiotic factors 

such as temperature, pH and oxygen [79].

As a PGPR application to wheat seedlings, Sachdev et al. reported that IAA producing 
Klebsiella strains significantly increased the root length and shoot height, when compared 
with the control, in pot experiments [83, 84]. Similarly, Khalid et al. reported up to 28% higher 
grain yields in wheat grown in field as a result of seed inoculation in peats with high auxin-
producing rhizobacteria [66]. The capability of auxin synthesis detected in many bacterial 
strains from the genera Azospirillium, Pseudomonas, Bacillus, etc., is thought to underlie the 

activation of plant root growth by these microorganisms [81]. Sadeghi et al. demonstrated 
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that a Streptomyces isolate increased plant growth in wheat and produced indole acetic acid 

and auxin in presence of salt [85]. Phytohormone-producing Bacillus sp. and B. subtilis have 

potential at field level to improve wheat productivity and may be helpful in formulation of an 
effective biofertilizer for wheat [52, 79, 86–89]. A complete understanding of the IAA system 
can further mediate the efficient use of these PGPRs for biofertilizer.

Cytokinins can be produced by representative strains of Bacillus, Rhizobium, Arthrobacter, 

Azotobacter, Azospirillium and Pseudomonas. The plants inoculated with cytokinin-producing 

bacteria B. subtilis showed the increased chlorophyll content and cytokinin accumulation, which 

led to the increase in weight of shoots and roots [90, 91]. On the other hand, treatment of plant 

with a substance obtained from cytokinin-producing microorganisms, typically colonizing in 

wheat roots [92, 93], increased chlorophyll content in leaf; in this case, the level of chlorophyll 

was comparable to that observed in the plants treated with a synthetic cytokinin benzyladenine. 

Cytokinins can promote stomatal opening, stimulate shoot growth and decrease root growth.

2.3.1. Accumulation of osmolytes

Proline is a known osmoprotectant, promoting the protection of the plant from drought, salt 

and other stresses [94]. Alternative to proline accumulation, another defence strategy is to 
increase total soluble sugar level in plants under salinity stress. PGPRs have been demon-

strated to enhance wheat stress tolerance via osmolyte accumulation as reported in Refs. 

[95–97]. Ali et al. used P. putida AKMP7 resulting in significant increase in proline levels in 
heat-stressed wheat plants [98].

Yegorenkova et al. suggested that lectin-carbohydrate interactions are involved in the initial 

stages of bacterial-plant root attachment [99]. Additionally, PGPR producing extracellular poly-

meric substance are reported to enhance greatly the soil volume macropores and the rhizosphere 

aggregation of soil, which results in increased water and fertiliser availability to plants [46].

2.4. Siderophore and exopolysaccharide production by PGPR

With its unique physico-chemical properties, iron (Fe) has a key role in plant growth, taking 

part in several metabolic pathways including TCA cycle, nitrogen fixation, respiration and 
ETC, oxidative phosphorylation and photosynthesis, biosynthetic regulation (chlorophyll, 
toxin, vitamins, antibiotic, cytochrome and pigment) and as cofactor for numerous enzymes 
[100]. Following this, iron deficiency (typically caused by low iron bioavailability) is fre-

quently seen at elevated pH, alkali soils in dry regions, as well as in case of excessive fertilizer 
and pesticides application.

Siderophores are small iron carriers, chemically high-affinity iron chelating compounds 
secreted by PGPRs and are among the strongest soluble Fe3+ binding agents known. 

Comprehensive information on the role of siderophores in increasing iron oxide solubility 
and promoting dissolution in soils requires the consideration of the rates of various processes 

such as siderophore exudation, the uptake, and the degradation rates [101]. In BNF, sidero-

phores are expected to play significant role, since in its very essence, nitrogenase requires Fe 
[102], also supported by a high correlation between N and Fe uptake.
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Siderophore productions promote the crop growth, or protect the plant against pathogens. 

Produced by microorganisms, these are found in soil solutions and influence Fe nutrition of 
plants [103]. The role of siderophores has been reported as signalling molecules and as such, 

their use points to avenues for novel agricultural applications [54].

The wheat seed inoculation was tested for their effect on wheat in terms of healthier germi-
nation and productivity. The organisms used were siderophoregenic pyoverdin-producing 

Pseudomonas putida and Pseudomonas aeruginosa strains from two diverse habitats. Inoculation 
with siderophoregenic PGPR increased percentage germination, shoot height, shoot and 

root length, weight of spikelets, chlorophyll content, grain yield and iron content [100, 104, 

105]. Inoculated wheat plants showed increase in total iron uptake and physiologically avail-
able iron contents. Acinetobacter calcoaceticus obtained from wheat rhizosphere produces cat-

echol type of siderophores during exponential phase, which is influenced by iron content of 
medium [106]. Ca, Cd and Mg ions and succinic acid stimulated the synthesis of the sidero-

phore examined, whereas Zn and Pb ions partially decreased its level.

Some PGPR strains may also protect plants from salt and drought stress by producing exopoly-

saccharides (EPS), binding, in turn, Na+ or by biofilm formation [107]. Resultingly, reduced 

Na+ results in lower Na+ uptake and high K+/Na+ ratio, promoting survival in salt-stressed 
conditions [107, 108]. Another example is the wheat seedling inoculation by EPS producing 
strain of Pantoea agglomerans (NAS206) isolated from the wheat rhizosphere, growing in a 
Moroccan vertisol. It had a positive effect on aggregation and stabilization of root-adhering 
soil, by increased mean aggregate diameter and macroporosity [109].

2.5. PGPR and plant nutrient uptake

Seed inoculation with the bacterium has been found to improve the growth and nutrient 

uptake of wheat seedlings via promotion of the plant growth and increased root surface area 

or the general root architecture [110]. With enlarged root hairs, nutrient uptake is promoted 

[21, 71, 77, 111].

The PGPR effects also increase N and P uptake in field trials [112], presumably, by stimulating 

greater plant root growth. Both A. chroococcum and P. agglomerans were found to increase plant 

growth, plant dry matter, as well as N and P uptake [25, 113]. Azospirillum-inoculated plants 

under drought conditions had increased Mg, K and Ca contents compared to non-inoculated 
plants [62, 114–117]. The increase in nutrient accumulation/uptake due to biofertilizers/

PGPR was previously reported in wheat [118–120]. Sharma et al. reported that the majority 

of 13 tested Pseudomonas spp. strains increased the macro (N, P, K and S) and micronutrients 
uptake (Cu, Fe, Zn and Mn) in wheat [102, 121].

Inoculation of efficient plant-growth-promoting actinobacterial Streptomyces species signifi-

cantly improved the Fe, Mn and P content of wheat plants when compared with an unin-

oculated control [43, 105]. Yasin et al. investigated the effects of selenate fertilization and 
bacterial inoculation on Se uptake and plant growth [122]. They found that Bacillus pichinotyi 

enhanced wheat growth, dry weight, shoot length and spike length, Se and Fe concentration 

in wheat kernels and stems. Selenium (Se) is an essential trace element for humans [123], and 

Wheat Improvement, Management and Utilization126



they reported that inoculation with rhizospheric microorganisms significantly enhanced 
wheat Se content.

2.6. Alleviation of abiotic stress in wheat by PGPR

Abiotic stress is the major cause of decreasing crop productivity worldwide. The applica-

tion of the combination of PGPR and mycorrhizal fungi alleviates the stress conditions, as 

reported by Nadeem et al., via the regulation of hormones, nutrition uptake and growth [124]. 

Similar outcomes have been reported by Cakmakci et al. for wheat and spinach plants [77]. 

Enzymatic activities in the leaves of these plants such as glucose-6-phosphate dehydrogenase, 

6-phosphogluconate dehydrogenase, glutathione reductase and glutathione S-transferase 

have been observed.

Additionally, numerous studies suggested that both IAA and ACC deaminase-producing bac-

teria protect plants most effectively, against a wide range of different stresses [125]. Notable 
reports among those are Azospirillum strains helping to cope with salt stress [126–128] and 

Bacillus and Azospirillum leading to improve heat tolerance in wheat [129].

2.6.1. Drought

Drought stress, exhibited as limited water supply, usually causes a severe loss in plant yield, 
where the combination of severity and duration are critical factors for plant survival [130]. The 

application of PGPR can counteract damaging effects of moisture stress, and therefore boost 
crop yields. Creus et al. reported that growing Azospirillum brasilense Sp245-primed wheat 

under drought stress conditions resulted in large increase in water content and potential, and 

apoplastic water function in both shoots and roots compared to the non-primed plants [62].

Moreover, Pereyra et al. reported that Azospirillum inoculation provided a better water status 
in wheat seedlings under osmotic stress due to morphological modifications of the coleoptile 
xylem architecture [131]. Azospirillum-inoculated wheat seedlings subjected to osmotic stress 

developed significant higher coleoptiles, with higher fresh weight and better water status 
than non-inoculated seedlings [132]. In this regard, ABA-producing bacteria Azospirillum pro-

moted resistance of Arabidopsis, maize and wheat plants to soil drought [81]. Azospirillum 

brasilense INTA Az-39-inoculated wheat plants under typical dry land farming conditions 
exhibited better growth and increased vegetative growth, shoot and root dry matter accumu-

lation, grain number and grain yield [133]. According to Arzanesh et al. results, inoculation of 
wheat with Azospirillum spp. can alleviate drought stress on plant growth and yield through 

adjusting plant water characters [134].

Inoculation of wheat with Burkholderia phytofirmans PsJN significantly diluted the adverse 
effects of drought on relative water contents and CO

2
 assimilation rate, thus improving the 

photosynthetic rate, water use efficiency and chlorophyll content over the uninoculated con-

trol [135]. In a similar study conducted on wheat under water stress environment showed that 
mycorrhizal inoculation enhanced the activities of antioxidant enzymes such as peroxidase 
and catalase compared to those in uninoculated control plants [136]. Several other studies 

report similar outcomes [137].
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2.6.2. Salinity

Salinity decreases the yield of many crops because salt inhibits plant photosynthesis, pro-

tein synthesis and lipid metabolism. Nutrient contents decrease in the roots and shoots with 
increasing NaCl concentration in the growth medium. PGPR counteract osmotic stress and 
help plant growth. Investigations on interaction of PGPR with other microbes and their effect 
on the physiological response of crop plants under different soil salinity regimes are still in 
incipient stage.

Rhizobacteria that are residing within the rhizosphere of plants growing in saline habitats 

may have already been adapted to salt stress that may be a valuable resource to develop 

crop inoculants. Raheem and Ali isolated rhizobacteria that were producing beneficial plant 
growth-promoting metabolites such as IAA and ACC-deaminase activity [138]. The isolation 

of indigenous microorganisms from the stress-affected soils and screening on the basis of 
their stress tolerance and PGP traits may be useful in the rapid selection of efficient strains 
that could be used as bio-inoculants for stressed crops [139, 140]. For several durum cultivars, 

PGPR efficacy in mitigating salt stress in tetraploid wheat is salt level and bacterial strain-
specific [128, 141, 142]. There are some instances of ameliorating salt-stricken cereal crops by 

PGPR’s. Salinity stress in the wheat was alleviated by inoculations with four strains of PGPR, 

Pseudomonas fluorescens 153, 169, Pseudomonas putida 108 and 4 [143]. Upadhyay et al. consid-

ered the impact of PGPR inoculation on the growth and antioxidant of wheat under saline 
conditions [46]. In a follow-up study, Upadhyay et al. investigated the effects of two salt-toler-

ant PGPR (B. subtilis and Arthobacter sp.) on wheat plants under different salinity regimes and 
the results obtained demonstrated alleviation of the salinity stress effects on plants treated 
with bacteria [97]. Similar outcome has been reported by Nia et al. for Azospirillum strains on 

wheat plants [144]. Several PGPR of the genus Pseudomonas contain ACC-deaminase enzyme, 
and when inoculated into plant roots may sustain plant growth under salinity [125, 142].

2.6.3. Mitigation of cold stress in wheat by PGPR

The over-wintering ability of PGPR is fundamental when considering uses in colder climates. 

De Freitas and Germida reported that Pseudomonas species are able to over-winter in suf-

ficient quantities on the roots of winter wheat [145]. It has also been argued that antifreeze 
protein activity of many bacterial species may contribute to their survival in colder climates 

[146–148].

The effect of inoculation with 12 psychrotolerant Pseudomona strains on cold alleviation and 

growth of wheat seedling at cold temperature was investigated in Ref. [105]. Psychrotolerant 

PGPR inoculation improved metabolite levels, such as chlorophyll, anthocyanin, free proline, 

total phenolics, starch content, physiologically available iron, proteins and amino acids that 

are sign of alleviation of cold stress in wheat plants.

Higher chlorophyll content in leaves of cold acclimated winter wheat over control plants was 

also reported [105]. Proline is a dominant amino acid that accumulates in many organisms 

upon exposure to environmental stress and plays multiple roles in plant adaptation to stress. 
Also increased proline content in wheat plant at low temperature with the bacterial inocula-

tion is an indication to chilling tolerance [105].
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Turan et al. conducted greenhouse experiments in wheat and barley under cold stress condi-
tions to determine the growth, freezing injury, antioxidant enzyme activity effect of four dif-
ferent rhizobacteria and boron [149]. The authors showed that boron+PGPR treatments have 

positive effect on root and shoot growth, H
2
O

2
, and SOD, POD and CAT antioxidant enzyme 

activities of wheat and barley plants under cold and control conditions. This suggests that the 

PGPB application can ameliorate the deleterious effects of cold stress by increasing chloro-

phyll content, photosynthetic activity and relative water content, altering mineral uptake, and 

decreasing membrane damage, increasing cold tolerance in wheat and barley.

2.6.4. Metal stress tolerance in wheat

Plant growth-promoting bacteria are able to also grow in heavy metal-contaminated environ-

ment and protect plants against heavy metals toxicity in contaminated soils [150, 151]. Hasnain 

and Sabri reported that upon Pseudomonas sp. inoculation of wheat in Pakistan, growth was 

stimulated, less toxic ions were taken up and increased auxin content was observed [152].

Under Cr stress conditions, Shahzadi et al. reported root length, shoot length, root dry weight 
and shoot dry weight, respectively, as compared to uninoculated control plants upon inocula-

tion of wheat seeds with Pseudomonas fluorescens Q14 and Bacillus thuringiensis KAP5 [153]. 

In this context, ACC-deaminase producing PGPR could play vital role in improving the 
plant growth under metal-stress condition and they may enhance bioremediation process in 

Cr-contaminated environment. Similarly, Jamali et al. studied the relationship of bacterial Cr 
mobilization in soil with total Cr accumulation in wheat [154]. Hassan et al. reported that 

inoculation with PGPR decreased the deleterious effects of cadmium pollution by chelating 
and influencing its bioavailability and increased the wheat growth [155]. Singh et al. found that 

PGPR having ACC-deaminase activity were resistant against Cd, Cr, Pb and Cu toxicity, and 
increased the wheat and pigeon pea growth [156]. Consequently, uses of rhizospheric micro-

organisms are generally considered as safe, cost effective and reliable technique for elimina-

tion of heavy metals from environmental compartments [150, 157, 158]. Govindasamy et al. 

observed that growth-promoting ability of rhizoacteria containing ACC deaminase in wheat 
seedlings through modulation of stress ethylene synthesis enhanced root elongation signifi-

cantly and minimized ethylene synthesis in wheat seedlings under induced cadmium stress 

condition [159].

2.7. Improve yield and quality of wheat

Beneficial rhizobacteria associated with cereals has increased recently and several studies 
clearly demonstrated the positive and beneficial effects of PGPR on growth and yield of wheat 
at different environment under variable ecological conditions (Turan et al., 2010).

Zn solubilizing rhizobacteria significantly influenced the growth, yield and Zn concentration of 
wheat grain over uninoculated control and Zn fertilizer [160, 161]. Similarly, increased nutrient 

concentrations in wheat due to inoculation were reported in Refs. [5, 118, 162–165]. It is pointed 
out by Mäder et al. that microbial inoculants have been shown to be a valid option for sustain-

able high quality wheat production in low-input areas, promising to improve the nutritional 

status and health of the rural population [163]. In a survey of 20 years of experiments, Okon 

The Role of Soil Beneficial Bacteria in Wheat Production: A Review
http://dx.doi.org/10.5772/67274

129



and Labandera-Gonzalez reported that 60–70% of the experiments showed yield increases due 
to inoculation, with statistically significant increases in yield from 5 to 30% [31].

Pseudomonas strains significantly increased grain yield of wheat [23, 49, 143, 166]. Similarly, 

Shaharoona et al. reported that N use efficiency increased in response to inoculation with 
Pseudomonas fluorescens at all fertilizer levels in wheat [167]. PGPR isolates significantly 
increased shoot and root length, shoot and root dry weight, grain weight per spike, shoot and 

root N content and also enhanced the N contents of inoculated wheat seedlings [168]. Barneix 
et al. reported that inoculation of wheat with Bacillus simplex and Bacillus firmis resulted in 

consistent increase in dry matter and wheat grain quality. A number of other Bacillus spp. 

isolated from wheat rhizosphere have also been investigated for their growth-promoting 

property in wheat having similar effects on dry weight [10, 40, 169], the latter focusing on iso-

lating and characterizing PGPRs. Trials with rhizosphere-associated plant growth-promoting 

N
2
-fixing and P-solubilising Bacillus and other species indicated yield increases in many crops 

such as wheat [43, 51, 170, 171]. In wheat, several rhizobacteria have been reported as improv-

ing grain yield, grain protein concentration or both [3, 135, 140, 164, 172].

3. Co-inoculation of multiple PGPRs

Inoculation with mixed different strains could be an alternative to inoculation with individual 
strains, likely reflecting the different mechanisms used by each strain in the consortium [173]. 

Combined inoculation with N
2
-fixing and phosphate solubilizing bacteria were more effec-

tive than a single microorganism for providing a more balanced nutrition for plants [19, 174]. 

There are numerous examples in wheat whereby synergistic effects of multiple PGPRs are 
observed [97, 175, 176]. Among those, notable is the combined inoculation of mixtures and 
biofilmed bio-inoculants (Anabaena torulosa + Pseudomonas striata and/or Anabaena torulosa + 

Azotobacter chroococcum) were superior over single inoculation and chemical fertilizer control 

in term of plant growth and nutrient uptake [177]. The benefits can be on nutrient uptake, but 
also in root physiology as exemplified by Manjunath et al. as co-inoculation of wheat with 
two proteobacterial (Providencia sp. and Alcaligenes sp.) and two cyanobacterial (Anabaena 

oscillarioides and Anabaena torulosa) inoculants, similarly in Ref. [178, 179].

Seed bacterization with both strains, P. fluorescens BAM-4 and B. cepacia BAM-12 single or 
combined significantly enhanced growth and yield, but increase in bacterial population, spike 
length, P content of shoots and grain yield was more in co-inoculation treatment than single. 

The best among the bioinoculation treatments was B. cepacia BAM-12 + TCP and B. cepacia 

BAM-12 + P. fluorescens BAM-4 + TCP for P content with free and immobilized cells [180].

Several authors conducted experiments on wheat either under pot and field conditions to 
examine the effect of co-inoculations of PGPR on the growth and yield of wheat. Kumar et 
al. found that B. megaterium, A. chlorophenolicus and Enterobacter significantly increased plant 
height, grain yield and straw yield [181]; Baris et al. concluded that Bacillus megaterium M3 

and Mixed (Bacillus subtilis 05U142, B. megaterium M3, Azospirillum brasilense Sp245) inocula-

tion provided greater plant nutrient element concentrations than mineral fertilizer application 
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[182]. Similar outcomes also compared with chemically fertilized soils are reported in Refs. 

[53, 183–185].

Nowadays, there is a greater awareness to use biological components such as PGPR and 
mycorrhizal fungi as a component of integrated nutrient management strategies to obtain 

higher input use efficiency, to maintain the desired productivity through optimization of the 
benefits from all possible sources, to cope with increasing fertilizer costs and their long-term 
adverse effects on agricultural ecosystems such as increased nutritional imbalances, declining 
productivity, adverse conditions prevailing in this ecosystem, and or a combination of these 

factors, as reported in Refs. [113, 177]. Note that some PGPR inoculants may adversely affect 
mutualistic associations between plants and indigenous soil microorganisms and suggest a 

possible reason as to why spring wheat growth was not consistently enhanced by these pseu-

domonad PGPR [186]. Co-inoculation of Azotobacter and Mycorrhiza increased grain yield and 

yield components of wheat [187].

Wheat rhizobacterial community structure is highly dynamic and influenced by different fac-

tors such as wheat cultivar line ages, plant’s age, growth stage, distance from the soil to the 

root, root exudation pattern, multiple soil properties and agronomic practises [162, 188, 189]. 

Roesti et al. employed a consortia formed by a PGPR Pseudomonas spp. and an indigenous 

AMF to study their effect on the bacterial community structure and wheat growth [162].

All in all, greater attention should be paid to new combinations of different types and proper-

ties organisms such as N
2
-fixing and P-solubilizing bacteria for improvement of biofertilizers 

efficiency [19].

4. PGPR reduce chemical fertilization

Due to high cost of chemical fertilizers and negative environmental effects, the use of PGPR as 
biofertilizer is advantageous for development of sustainable agriculture, increasing agronomic 

efficiency, once the use of chemical fertilizers can be reduced or eliminated if the inoculants 
are efficient [6]. The use of bio-fertilizers with a good management can decrease the leaching 

loss of nitrate and phosphate from the agricultural land and improve the ground water qual-

ity [190]. Also, the use of PGPR with low-fertilizer rate is also an environment friendly step 
and would be a viable supplementary strategy for further increasing crop yields [71, 78, 191].

Trials conducted under greenhouse conditions showed that most of PGPR in the absence of 

any fertilizer application achieved increases in root and shoot weight [3], corresponding to 

nitrogen treatment at the rate of 40 and 80 kg N ha−1 in wheat. Furthermore, co-inoculation 

of N
2
-fixing and P-solubilizing bacteria always gave equal or higher grain yield than conven-

tional application of nitrogen.

Rosas et al. studied the promotion effect of Pseudomonas aurantiaca SR1 on maize and wheat in 

field treatments that included phosphorus and nitrogen fertilization [166]. Both crops, when 

inoculated with the SR1 strain, presented significant promoting effect in growth parameters 
and higher yields with lower fertilization doses than conventionally applied. Additionally, 
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PGPR are also important with respect to an efficient use of resources such as P and N, as illus-

trated by a 95% increased P use efficiency of wheat grains [163].

It could be concluded that application of PGPR with low-fertilizer rates could be a viable sup-

plementary strategy for maximum benefits and should be employed with appropriate doses of 
fertilizers to get maximum benefit in terms of fertilizer savings and better growth in any yield 
of crops. Experiments as field trials with dry land areas, the co-inoculations of PGPR strains for 
wheat, maize and barley with chemical fertilizers gave improved response [3, 183, 192–197].
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