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Abstract

The highly advance usage of an agricultural waste of rice husk ash (RHA) from Oryza
sativa L. was developed by extracting the nanosilicate contained in RHA as a corrosion
inhibitor for carbon steel in 0.5 M NaCl media. The corrosion measurement was studied
using weight loss, potentiodynamic polarization, electrochemical impedance spectros-
copy (EIS), surface analysis, and adsorption isotherm study. The extracted nanosilicate
powder from RHAwas analyzed using Fourier Transform Infrared Spectroscopy (FTIR)
to identify the presence of functional groups (SiO2), whereas X-ray diffraction (XRD) to
identify the phase of silica from RHA. The particle size of nanosilicate was confirmed by
transmission electron microscopy (TEM) and Zetasizer analysis, and the results show
particle size of nanosilicate in the range of 5–10 nm. The maximum inhibition efficiency
(IE%) is up to 88% in NaCl media. On the other hand, the inhibitor adsorption proper-
ties follow Temkin isotherm with mixed type of inhibition properties. Surface analysis
on specimen that was treated with nanosilicate was smoother with fewer pits and pores
than untreated specimen. In future perspectives, nanosilicate from RHA has a promising
advantages and imminent applications for industries revolving with composites, bio-
medicine, and many more.

Keywords: paddy rice husk, nanosilicate, corrosion inhibitor, sodium chloride

1. Introduction

Corrosion inhibitors are a favorable method to prevent corrosion; it can reduce the rate of metal

corrosions from corrosive environments. Most of the processing industries, such as water heating

system (boiler), seawater cooling system, and pipes, made use of corrosion inhibitor as protective

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



measurement against corrosion. This is because of corrosion inhibitor is a straightforward use

and cost-effective. However, for more than a decade, inorganic and synthetic chemical-based

corrosion inhibitor such as chromate and nitrate-based has been widely used in the industries

and has led into a serious environmental deterioration and dreadful impact onto marine life as

excessive usage of inhibitor has exposed into the environment [1].

These environmental issues regarding the use of the synthetic corrosion inhibitor have led into

a rise in environmental warnings, by the authorities and NGOs, such as Environmental Pro-

tection Agency (EPA) and Food and Drug Administration (FDA), which has had issued some

industrial guidance regarding the use of corrosion inhibitor in the industries. Since then, the

urgency to develop environment-friendly corrosion inhibitor has greatly increased the

researcher’s interest especially in the development of corrosion inhibitor derived from natural

sources, i.e. rice husk waste [2].

In general, corrosion inhibitors based on natural sources are environmentally acceptable, less

toxic, inexpensive to process and abundant in nature compared to corrosion inhibitor based on

synthetic chemical [3, 4]. In this study, corrosion inhibitor based on nanosilicate derived from

rice husk waste would be the best candidate in replacing the synthetic corrosion inhibitor. As

past study reported, silicate is naturally inorganic corrosion inhibitor that has been used in

various applications, such as antifreeze in the engine, which helps prevent corrosion and as an

engine coolant and lubricant [5]. Apart from its application as corrosion inhibitor, silicate

extracted from rice husk can be manipulated into a lot of applications and fit into today’s high

technology advancement, for instance, fillers in high durability concrete and structures [6, 7],

drug delivery and biomedical applications [8], and many more.

Asia has the largest rice production in tropical regions. By-products of the production of rice

are rice husks and rice fingers. In 2007, statistics by the Ministry of Agriculture, Malaysia,

has reported that more than 408,000 tons of rice (Oryza sativa L.) husks were produced

in Malaysia every year. Rice husks contain a high percentage of silica, which is more than

90% [9].

In these times, the study in the field of nanotechnology is growing in parallel with the

development of science and technology. Nanotechnology had been applied in various fields,

such as biotechnology, medication, sensor, semiconductor, coating materials, and materials

industrial uses [10]. Applications of nanotechnology attract interests due to the nanosized

structure materials that contained unique properties compared to lump materials.

Based on past studies, commercial silicate corrosion inhibitor delivers good inhibition effi-

ciency for metals and alloys. According to experts, silicate corrosion inhibitors are non-toxic

and have been used many years in the industry. Moreover, silicate is a compound that has the

ability to be adsorbed on the metal surface to form a thin layer of barrier on the metal surface

and protects the metal from corroding [11].

Today, corrosion inhibitors’ products in the market were more prone toward selecting corro-

sion inhibitors derived from natural plant in order to solve corrosion and its problem. Some

researchers have been extracting organic and inorganic compounds containing distinctive
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corrosion inhibition properties. The source materials of natural corrosion inhibitors are

usually inexpensive, readily available and renewable. In other words, natural-based corro-

sion inhibitors can replace synthetic corrosion inhibitors that are highly toxic, have expensive

processing cost, and may cause harm to the environment. In this recent study, the waste from

the rice field which is the rice husk will be transformed into a new usable and advance

compound which is the nanosilicate compound for the use of solving corrosion problems in

heavy industrial usage operation. Figure 1 shows the summary of what is this study all

about.

As for the future prospect, the availability of abundant raw materials from natural sources can

be the prime alternative to solve many industrial problems, i.e. corrosion. By utilizing the

waste material and economic resources, such as the rice husk as corrosion inhibitor, the rice

husk can produce efficient, harmless, and inexpensive nanosilica. Nanosilica can be extracted

from rice husk ash (RHA) and formulated properly in order to act as corrosion inhibitor. Apart

from that, the use of nanosilicate can be various and advance in the future. The three major

objectives of this research work are the following:

i. To formulate corrosion inhibitor based on nanosilicate from the extract of rice (O. sativa L.)

husk ash.

ii. To determine the inhibition efficiency of the corrosion inhibitor based on nanosilicate in

0.5 M NaCl.

Figure 1. The development of nanosilicate from paddy waste as natural corrosion inhibitors.
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iii. To determine the surface morphology and type of adsorption isotherm for nanosilicate-

based corrosion inhibitor on the surface of carbon steel samples.

2. Materials and methods

Rice (O. sativa L.) husk used in this study was obtained from Kedah, Malaysia. The chemicals

used in this process were sodium hydroxide (NaOH), sulfuric acid (H2SO4), and hydrochloric

acid (HCl) from Sigma-Aldrich.

2.1. Preparation and extraction method of nanosilicate from paddy waste for corrosion

inhibitor

The collected rice husks were cleaned with distilled water to remove dirt and unwanted

material before being dried. The cleaned rice husks were grounded using a blender and filtered

with a 500 micron filter. Then, rice husks (50 g) were burnt in a furnace at a temperature of

600�C for 6 h according to the past methods [12, 13].

After a complete combustion, rice husk turned into white-gray ash. Then, 10 g of the ash was

dissolved in 2.5 M NaOH (80 ml) to extract out the silica compound. This process carries out at

a temperature of 90�C on a heating plate while the mixture was stirred with a magnetic stirrer

for 3 h before it was filtered with filter paper. Then, a bright homogeneous and viscous gel of

silica was obtained. Reactions that occurred over the rice husk ash containing silica and

sodium hydroxide solution are as follows:

SiO2 sð Þ þ 2NaOH lð Þ ! Na2SiO3 lð Þ þH2O lð Þ (1)

The next process was the process of neutralization whereby silica gel in alkaline condition was

titrated with 2.5 M sulfuric acid until the pH reached to 2, before being stirred with a magnetic

stirrer at a temperature of about 90�C. After 3 h of stirring, the agglomerated silica gel was

rinsed with distilled water with a temperature of 60�C to remove the sulfuric acid, and the pH

would become neutral at around 7.5–8. Lastly, the silica gel was dried in the oven at 70�C for

10 h to obtain a silica powder. This process can be determined using the following equation:

Na2SiO3 gelð Þ þH2SO4 lð Þ ! SiO2 sð Þ þH2O lð Þ (2)

As for the preparation of nanosized silicate powder, reflux system method was followed. The

apparatus used in this process is 250 ml round flask, condenser, and a magnetic stirrer system.

Pure silica powder was filled in a round flask added with 80 ml of concentrated hydrochloric

acid (6 M HCl). This process was carried out for 4 h at a temperature of 90�C. Then, the mixture

was filtered using filter paper to obtain the silica gel. Later, 2.5 M NaOH (80 ml) is added in a

vessel comprising the sample to dissolve silica and stirred for 10 h. Then the mixture was titrated

with sulfuric acid (6 M H2SO4) to neutralize the pH of the solution to 7. The mixture was then

precipitated, and the nanosilica was filtered with nano-filter paper. Once all the nanosized silica
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is collected, it was dried in an oven for 48 h at a temperature of 50�C to obtain the nanosilicate

powder. Then, as for preparing the nanosilicate powder for corrosion inhibitor, past method was

followed in which the inhibition performance of nanosilicate is influenced by the molar ratio of

SiO2/Na2O [14].

In this study, the best molar ratio of SiO2/Na2O has been determined as 3:1. Corrosion inhibitor

based on nanosilicate with molar ratio (SiO2/Na2O) 3:1 was prepared by dissolving 6 g nanosilicate

powder in a solution of 250 ml of 0.2 M NaOH. This solution was stirred with a magnetic stirrer

until the solution appears clear and uniform. Equation was the reaction that occurs on nanosilicate

powder and sodium hydroxide solution:

SiO2 sð Þ þ 2NaOH lð Þ ! Na2SiO3 lð Þ þH2O lð Þ (3)

2.2. Corrosion test

ASTM G1-03 standard was followed for preparing corrosion test of carbon steel coupon in disc

shaped with a diameter of 1.5 cm. Steel used in this study is the SAE 1045 carbon steel which

consists of compositions Fe-bal; C, 0.4%; Mn, 0.75%; P, 0.004; and S, 0.5% in weight percentages.

All the carbon steel coupon samples were grinded from 400 to 800 grit using SiC sand paper

with running tap water and were polished to produce carbon steel surface that has the same

surface roughness. As for weight loss test, the coupon was weighed and its diameter and

thickness were measured before and after undergoing weight loss immersion test for 7 days

in 25 ml in 0.6 M NaCl solution. After 7 days of immersion, the coupons were removed from

the solution and cleaned with distilled water and washed chemically and physically to remove

the corrosion product according to the method ASTM G1-03. Based on these data, it can be

calculated the lose weight (mg) by the following equation:

ΔB ¼ Bbefore�Bafter (4)

where ΔB is the loss of weight (mg) for the coupon, Bbefore is the weight of the coupon prior to

immersion (mg) and Bafter is the weight of the coupons after immersion (mg). The weight loss

of data can also be calculated by surface coverage (θ), using the following equation:

θ ¼
Bbefore�Bafter

Bafter
(5)

The percentage of inhibition efficiency (IE%) as well as through the equation, from Ref. [15]:

IE% ¼
Bbefore�Bafter

Bafter
· 100 (6)

To calculate the rate of corrosion (mg/cm2h), follow the following equation (Ref. [13]):

CR ¼
ΔB

LM
(7)
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where CR is the corrosion rate (mg/cm2h), ΔB is the weight loss of carbon steel (mg) after

immersion, L is the surface area (cm2) and M is the time (hours).

2.3. Electrochemical test

Potentiodynamic polarization analysis was carried out using the potentiostat K47 Gamry.

Potentiostat composed of three-cell electrode which are reference electrode (saturated calomel)

with liquid KCl, the working electrode (sample), and the auxiliary electrode (carbon rod). The

study was conducted at the potential range between –0.25 and 0.25 V at a scan rate of

1.0 mVs�1. The surface area of the carbon steel corrosion in contact with the medium is

1.0 cm2. Each experiment was repeated up to three times the reading. The percentage of

inhibition efficiency, IE%, is calculated using the following equation:

IE% ¼
Icorr 0ð Þ � Icorr ið Þ

Icorr 0ð Þ
(8)

where Icorr(0) = corrosion current density without the addition of inhibitors (mA cm2) and

Icorr(i) = corrosion current density with the addition of inhibitors (mA cm2).

Impedance studies were carried out using the potentiostat/galvanostat model high frequency

response analyzer (FRA Solartron-1260). The initial frequency range used is 1000 kHz–100 Hz

frequency end with 10 mV amplitude balance condition. Data were analyzed using the soft-

ware ZView. Percentage of corrosion inhibition efficiency (IE%) was calculated using the

following equation:

IE% ¼
Rct ið Þ � Rct 0ð Þ

Rct ið Þ
(9)

where Rct(0) is the charge transfer resistance without the presence of the inhibitor (Ω cm2) and

Rct(i) is the charge transfer resistance in the presence of inhibitors (Ω cm2).

2.4. Characterization of nanosilicate from rice husk

Few characterization tests had been performed on the nanosilicate, which are Fourier Trans-

form Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and TEM. As for FTIR, the equip-

ment used was Perkin Elmer Spectrum GX model. As for XRD, X-ray tube was operated at

60 kV maximum voltage and maximum current of 60 mA. Detection range is from 3 to 80�C.

Transmission electron microscopy (TEM) is performed using Phillips CM12 model. The data

obtained are in the form of an image or a two-dimensional image of the sample form. The

surface of carbon steel coupons that have reacted with corrosive medium and inhibitor solu-

tion through weight loss test was scanned through a scanning electron microscope (SEM)

ZEISS branded 55VP Supra model. In addition, Energy-dispersive X-ray (EDX) of INCA

PENTA FETX3 was also performed on the surface of carbon steel corrosion with corrosion

inhibitor and without inhibitors. EDX is used to determine the elements that are present on the

surface of carbon steel samples.
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3. Results and discussion

3.1. Nanosilicate extraction analysis

About 100 g of rice husk combustion in the furnace at a temperature of 600�C for 6 h resulted

in 14.22 g rice husk ash (14–22%). Previous studies [16] have found that the percentage of rice

husk ash is 12–20%. X-ray diffraction (XRD) was conducted to determine the phase that has

formed from rice husk ash. Later, an analysis of X-ray test fluorescent (XRF) was conducted to

determine the elemental composition contained in the rice husk ash.

Rice husk ash was burnt in a furnace at three different temperatures of 600, 700, and 900�C,

respectively, for 6 h with a heating rate of 5�C furnace/min. Then, the rice husk ash was analyzed

using X-ray diffraction to determine the silica phases formed in husks at three different firing

temperatures, which is either amorphous or the crystalline phase. The method is carried out

following the studies that have been done by Othman et al. [2].

Figure 2 shows the results ofXRDdiffractionpeak for rice huskash at different temperatures. Peak

formed between the ranges of 22�–25� 2θ is the peak,which confirms the presence of silica [16, 20].

At the sintering temperature of 600�C, the XRD diffraction peak shows peaks formed are broad

and wide. A second peak at 700�C has formed a sharp peak, whereas the third is the peak

combustion temperature of 900�C that has formed a very sharp peak in the range of 22–25� 2θ.

Through the analysis of the results of the XRD, diffraction peak formed demonstrated the forma-

tion of an amorphous phase. While the pointed summit has represented the formation of crystal-

line phases.

Figure 2. The results of XRD diffraction peak for rice husk ash at different temperatures.
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According to previous studies, temperature and time during burning have affected the phases

of the rice husk silica, in which combustion temperature below 700C formed an amorphous 3

phase, while temperatures above 700�C showed the formation of crystalline phase [19]. In this

study, rice husk ash containing an amorphous phase has been selected as the main material for

corrosion inhibitors. Silica particles with amorphous phases have some features that are suit-

able to act as corrosion inhibitors compared to crystalline phase, such attributes that helps in

corrosion inhibition in amorphous silica are high surfaced area, small particle sizes, easily

dissolved, irregular shapes, and high reactivity. Thus, the burning of rice husk at a temperature

of 600�C is more suitable to be used to produce amorphous silica phases.

At a temperature of 700�C, rice husk ash was burnt, forming a semicrystalline phase and at a

temperature of 900�C showed fully formed crystalline silica phases. Crystalline silica phases

are unlikely suitable in this study, due to the insoluble crystalline phase [16]. Moreover,

crystalline silica particles are harmful to human as it can caused silicosis, which is a respiratory

disease caused by inhaling silica haze for long term as stated by the World Health Organiza-

tion (WHO) in 1999.

The composition of the elements contained in rice husk ash was determined using X-ray

instrumentation fluorescent (XRF) as shown in Table 1. The main element is oxygen (O) which

is at 51.23% and silicon (Si) 42.44% (percentage by weight). In addition to the O and Si, there

are also other elements, such as K, P, Mg, Ca, Fe, S, Na, Mn, Al, Zn, and Cl. These results show

that rice husk ash contains the elements of O and Si, which represents the compounds of silica

(SiO2). Thus, rice husk ash has a high percentage of silica, which reached 93.67%. Some

previous studies have also indicated that the elemental composition of the silica from rice husk

ash up to 90% more [16].

Apart from that, the extraction nanosilicate from rice husk ash was analyzed using Infrared

Spectroscopy (FTIR) to identify functional groups of the nanosilicate (SiO2). Then particle size

was determined using the transmission electron microscopy (TEM) and particle size instru-

mentation (Zetasizer) to determine the average size of the particles dispersed in solution.

Elements Percentage (%)

Oxygen 51.23

Silica 42.4

Potassium 2.7

Phosphorous 1.0

Magnesium 0.6

Calcium 0.4

Iron 0.4

Sulfur 0.4

Sodium 0.18

Manganese 0.09

Aluminum 0.05

Table 1. The percentage breakdown of the elements contained in the rice husk ash.
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Based on Figure 3, it shows that the spectrum produced two major peaks. A sharp peak and

high intensity on adsorption band at 1055 cm�1 wave characterize the presence of siloxane

groups of Si–O–Si asymmetric, whereas the peak at 791 cm�1 adsorption band characterizes

the presence of Si–O–Si groups of symmetry at low intensity. The main peak shown in the

spectrum is the peak that has been identified as a compound of silica (SiO2) [13].

Additionally, peaks of 3375 and 1634 cm�1 indicating the presence of silanol groups, which

bind the 7 water group of (Si–O–H) due to the reaction between the silica with a solution of

NaOH and 8 water during the extraction process silica from rice husk ash. The peak on the

plane stretching vibration (plane) of 958 cm�1, which further indicates silanol group [17].

Other than that, the analysis of transmission electron microscopy (TEM) was used to identify

the particle size of the silicate from the rice husk ash extraction. The results of TEM analysis

have found that the size of the particles is nanosized silica powder. Figure 4 represents

nanosilicate micrograms of powder extract from rice husk ash. Silica was observed clotted

with nanoscale size of approximately 5–10 nm. The silica has a spherical shape similar to

previous studies [17].

The concentration of NaOH solution has affected the particle size nanosilicate formed. In the

past study, it has been reported that nanosilicate powder particle measurement is influenced

by the concentration of NaOH as solvent extraction, i.e. 2.0, 2.5, and 3.0 M NaOH [17]. The

results obtained are nanosized silica with different measurements for each concentration of

NaOH. NaOH solution with a concentration of 2.5 M produced silica particles having a

particle size smaller than the concentration of 2 and 3 M NaOH, which is 5–10 nm.

Figure 3. FTIR spectrums of nanosilicate powder.
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Figure 4 is a TEM micrograph of a solution of the formulated nanosilicate corrosion inhibitor.

Figure 4 has shown that the solution of the corrosion inhibitor has a fine particle sized of a

nanosize between 10 and 100 nm. Characterization of particle size analysis was used to

determine the average particle size of nanosilicate corrosion inhibitor. Results of the analysis

states that there are three types of peaks indicate the average size of nanosilicate (Figure 5). It

also shows the size distribution of the silica resulting from the analysis of zeta sizer. The

average diameter size of the silica in the first peak is 1.1 nm, which has a share of 5.4%. Wide-

sized silica that was featured by this peak was 0.14 nm, whereas the second peak that covers

17.2% indicates the presence of silica that has a diameter of 61.91 nm. The resulting width of

silica of this peak is 8.2 nm. The third peak is the highest peak percentage and that is 77.4%.

Figure 4. TEM image for nanosilicate powder from the extraction of rice husk and also TEM micrograph of nanosilicate

corrosion inhibitor solution.

Figure 5. The graph zeta sizer analysis showed three types of particle size peak of nanosilicate.
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Size diameter of silica is 467 nm with a width of 69.66 nm. Thus, from this discussion it

concluded that the corrosion inhibitor solution of nanosilicate has a nanosized particle of silica.

3.2. Corrosion measurement analysis in 0.5 M NaCl as corrosive media

3.2.1. Inhibition effect through weight loss test

Table 2 shows the results of weight loss test after the addition of nanosilicate corrosion

inhibitor in 0.5 M NaCl as corrosive media. The results of the weight loss for carbon steel

samples without the presence of nanosilicate were recorded at the value of 4.3 mg. The effect of

the inhibitor at concentration of 0.003 M nanosilicate has reduced the weight loss to 3.4 mg.

The higher the addition of nanosilicate concentration, which is at 0.008, 0.016, and 0.03 M, the

lower the weight loss of carbon steel. Based on these results, it has been found that the weight

loss of carbon steel sample is proportional to the increase in the concentration of nanosilicate

corrosion inhibitor.

Table 2 also shows the corrosion rate of carbon steel and IE% in the presence of nanosilicate

corrosion inhibitors. Table 2 shows that the corrosion rate decreased after the addition of the

nanosilicate corrosion inhibitor in NaCl media. According to the study of the past discussions

which stated that the corrosion rate decreases with increasing concentrations of inhibitors, it

has shown that the number of molecule inhibitors can reduce the corrosion reaction of carbon

steel [18].

Not to mention, nanosilicate corrosion inhibitor also affects the IE% outcome of carbon steel

sample. The highest efficiency percentage was demonstrated by the addition of 0.03 M

nanosilicate at an efficiency up to 88.4%. The IE% continues to increase with increasing

concentration of inhibitor [19]. This is due to the adsorption of nanosilicate corrosion inhibi-

tor’s molecules that managed to cover the surface of carbon steel [20], in which it makes a

separation between the surface of carbon steel samples and the corrosive media. Apart from

that, previous study has stated that the presence of cations Na+ and Cl� ion also has encour-

aged the inhibition process for carbon steel samples [21].

Equation (10) until Eq. (14) is a reaction between carbon steel (Fe2+) with NaCl as corrosive

medium containing decomposing chloride ions. Then, the ions reacted with Fe2+ to produce

FeCl2:

Inhibitor concentration (M) Weight loss (mg) Corrosion rate (mg/cm2h) Inhibition efficiencies (IE%)

0 4.3 0.556 0

0.003 3.4 0.440 20.9

0.008 1.4 0.181 67.4

0.016 1.0 0.129 76.7

0.030 0.5 0.065 88.4

Table 2. Weight loss, inhibition efficiencies %, and the corrosion rate of carbon steel in 0.5 M NaCl aqueous media

without and with the presence of rice husk ash nanosilicate.
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NaCl ! Naþ þ Cl (10)

Fe2þ þ Cl� ! FeCl2 (11)

Fe ! Fe2þ þ 2e releaseof electronsð Þ (12)

Fe2þ þ 2e ! Fe acceptselectrons
� �

(13)

NaSiO3 ! Naþ þ SiO3
� nanosilicateð Þ (14)

Fe2þ þ SiO3
� ! FeSiO3ð Þ2 acomplexthin layercompound

� �

(15)

The presence of nanosilicate inhibitor molecules that have functional groups of SiO2� plays an

important role as inhibition agents. The reaction between Fe2+ with nanosilicate inhibitors has

produced a complex compound which forms a thin layer (Eqs. (5) and (6)). In aqueous

solution, the functional groups of nanosilicate SiO2� will donate a pair of electrons on the

surface of carbon steel whenever Fe2+ ions were released into the electrolyte solution. Further-

more, the inhibitor functional group, which is SiO2�, is empty d-orbitals, which can form a thin

layer and increase the adsorption and protection on the steel surface.

The thin layer on the surface of carbon steel that was formed is a compound that has high

stability compared to Fe only [22]. Moreover, the carbon steel that has been added with

nanosilicate corrosion inhibitors has more resistant toward corrosion as the nanosize of the

silicate also contributes to the inhibition efficiency. Advantages of nanosilicate inhibitor is

shown by the ability of nanosize silicate molecules that have a high surface area that can

protect almost all of the active sites on the surface of carbon [12, 13]. Furthermore, the nanosize

particle of nanosilicate forms a protective layer with good adhesion on the surface of carbon

steel [23].

3.2.2. Potentiodynamic polarization analysis

Figure 6 shows the polarization curves for carbon steel in 0.5 M NaCl media with and without

the presence of nanosilicate corrosion inhibitors. The Ecorr values after the addition of

nanosilicate shifted toward more positive for all concentrations than the sample without

corrosion inhibitor solution. The apparent shift provides information that nanosilicate from

rice husk ash is probably a mix type class of inhibitors. The decline in the value of the current

density (Icorr) can be observed on the cathodic and anodic reaction after nanosilicate with

various concentrations of inhibitor is added to 0.5 M NaCl. This proves that the addition of

nanosilicate is able to inhibit both the anodic and cathodic reactions. Icorr devaluation that

occurred in the anodic and cathodic reactions indicates the presence of molecular nanosilicate

preventing current flow carried by ions in the electrolyte solution of NaCl. In the cathodic

reaction, nanosilicate molecules adsorbed on the surface of carbon steel in turn can inhibit and

prevent the cathodic reaction (decrease). Nanosilicate molecules that are present in a negative

charge (SiO3
2�) are engaged in the solution, which creates competition between the anion

chloride (Cl�) to approach the interface steel and bulk solution and then generates resistance

to corrosion.
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Based on polarization curves and the data obtained, the inhibition behavior of nanosilicate

inhibitor by potentiodynamic polarization test is in term with the results from weight loss

analysis. Lower Icorr value of polarization curves shows an increase in the IE% for all concen-

trations of nanosilicate inhibitor, in which higher concentration of nanosilicate inhibitor causes

the corrosion rate to decrease, which is from 0.174 to 0.026 millimeters per year (mmpy). These

results indicate that nanosilicate molecules have been adsorbed on the surface of the carbon

steel and reduced corrosion attack in NaCl medium.

Table 3 explains the changes in the apparent shift of Ecorr for carbon steel samples with the

presence and absence of nanosilicate inhibitor. Corrosion rate of corrosion inhibitors can be

identified based on the maximum shift of Ecorr. When the maximum displacement of Ecorr

value is <85 mV, then the inhibitor showed a mixed type inhibitor. Meanwhile, if the maxi-

mum value is Ecorr > 85 mV, it can be classified as cathodic or anodic type of inhibitor. The

results of the analysis showed that the nanosilicate inhibitor provides maximum displacement

value of Ecorr which is >85 mV. Thus, nanosilicate inhibitor for carbon steel in NaCl media can

be categorized as cathodic or anodic type corrosion inhibitor.

Figure 6. Polarization curves for carbon steel with various concentrations of nanosilicate inhibitor in 0.5 M NaCl as

corrosive media.
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The corrosion potential (Ecorr) of carbon steel that has been treated with inhibitors has shifted

toward more positive values than those untreated with inhibitor. Therefore, the corrosion poten-

tial of the reaction shows that the inhibition process is a mix type corrosion inhibitor but more

prominently toward anodic type of inhibitor [19]. This is due to the inhibitor molecules that have

been adsorbed on the steel surface to form a thin layer, which can prevent corrosion attacks of Cl

ions. This is most likely due to the absorption and the formation of a protective film that has been

formed between molecule inhibitors of nanosilicate and Fe atoms of carbon steel.

The results in Table 3 show that the nanosilicate inhibitor has an average value of polarization

resistance (Rp), which is more than 20 kΩ. Concentration of nanosilicate inhibitor of 0.030 M

has the highest Rp value, which means it has lowest corrosion rate. Since higher Rp value

decreases the corrosion rate, it causes IE% to be higher as well.

3.2.3. Electrochemical impedance spectroscopy analysis

Figure 7 is a suppress semicircle graph of Nyquist plot showing the carbon steel that has been

treated with and without nanosilicate inhibitor at concentrations of 0.003, 0.008, 0.016, and

0.03 M. According to the plot, the size of the overlapping semicircle of carbon steel increased

with the development in silicate inhibitor concentration which causes an increase in the

corrosion resistance of carbon steel [24]. Besides that, nanosilicate inhibitor that has been

added at different concentrations has changed the corrosion mechanism of carbon steel in

NaCl media [25].

From the impedance analysis (Figures 7 and 8), the IE% of 0.0016 M concentration has reached

up to 21.65% only. Furthermore, past studies [26] state that for some situations, corrosion inhib-

itor effectiveness sometimes gives the declining or negative and inefficient result due to the

concentration of the inhibitor, which is probably too low or too high during the impedance test.

In addition, the charge transfer resistance (Rct) has been seen higher after the addition of

nanosilicate inhibitor compared with the absence of inhibitor. This matter shows that there

has been molecular adsorption of nanosilicate molecule on the surface of carbon steel that

forms a protective layer. Without the presence of nanosilicate inhibitors, Rct value is at

0.496 kΩcm2. While after the addition of nanosilicate at concentration of 0.003, 0.008, 0.016,

Concentration (M) Ecorr (mV)

Icorr
(A/cm2)

Bc

(mV/Dec)

Ba

(mV/Dec) Rp (kΩcm2) Kadar Kakisan (mmpy) IE (%)

0 �719.0 1.49 · 10�5 154.1 95.1 1.714 0.174 0

0.003 �594.8 1.05 · 10�5 269.2 93.7 2.868 0.123 29.5

0.008 �440.4 0.39 · 10�5 204.3 53.4 4.697 0.046 73.8

0.016 �620.7 0.41 · 10�5 241.3 81.2 6.426 0.048 72.5

0.030 �647.9 0.22 · 10�5 102.4 84.3 8.953 0.026 85.2

Table 3. Results from potentiodynamic polarization analysis of carbon steel with various concentrations of nanosilicate

inhibitor in NaCl 0.5 M.
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Figure 7. Nyquist plot for carbon steel with various concentrations of nanosilicate in 0.5 M NaCl.

Figure 8. Bode plot for carbon steel with various concentrations of nanosilicate in 0.5 M NaCl.
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and 0.03 M, it gave each values of Rct at 0.630, 1.146, 0.634, and 5.426 cm2 kΩ. Based on these

results, it shows that with the addition of nanosilicate inhibitors, the values of IE% and Rct

have increased. The highest values of IE% and Rct given are at the concentration of 0.03 M.

Thus, it can be stated that the adsorption of molecules on the surface of carbon steel

nanosilicate occurs well at a concentration of 0.03 M.

According to Figure 8, the overlapping semi-circular suppress can be seen at high frequencies,

while the curve of induction is at low frequencies. There is only one time constant that was

shown in the Bode plot of carbon steel in 0.5 M NaCl media at various concentrations of

nanosilicate. Figure 8 shows that the phase angle shifted to a higher value when the

nanosilicate inhibitor reacts with various concentrations when added to the NaCl medium.

This is due to the undergoing process of adsorption molecules on the surface of the metal [27].

Generally, the phase angle shift occurs with increasing concentrations of inhibitors that can

further increase the inhibition efficiency percentage.

Moreover, the minimum phase angle is seen at low frequencies with values approaching to 80�.

The highest phase shift angle approaching 90� explains good inhibition properties [28]. Other

than that, Log Z value increased with the increasing of nanosilicate inhibitor concentration

except at a concentration of 0.016 M. The maximum Z value was recorded at concentrations of

0.03 M. The curve of the graph was plotted horizontally at high frequencies for each nanosilicate

concentration. According to past studies, it has stated that the formation of the oxide layer occurs

at low frequencies, while the adsorption of molecules occurs at a high frequency of mid region

with the gradient value of �1 which represents the capacitance value [28].

3.2.4. Surface morphology analysis

Morphology analysis of the carbon steel surface through light microscope with the presence

and absence of nanosilicate in the 0.5 M NaCl medium was conducted. Preferred concentra-

tions are 0.03 M. Figure 9(a) shows pitting corrosion that happens on the sample surface, while

in Figure 9(b) there is no indication of pitting corrosion on the carbon steel surface that has

been immersed in 0.5 M NaCl with 27 nanosilicate corrosion inhibitors. On the inhibitor-

treated carbon steel, it was found to have less pitting corrosion. The surface appears to have

more even surface than the surface of untreated carbon steel. These results correspond with the

results of the weight loss test, potentiodynamic polarization and impedance. The percentage of

inhibition efficiency (IE%) for carbon steel in 0.5 M NaCl medium only reached at 86% in

0.03 M nanosilicate inhibitor.

Based on Figure 9(c), the images show that the surface of carbon steel without corrosion inhibi-

tors appeared to be rough and porous. This is in accordance with a statement by Na and Pyun

[29] that corrosion pits occur in a nearly neutral medium and in the presence of Cl� ion, whereas

Figure 9(d) shows the carbon steel surface that has been treated with nanosilicate inhibitor, and it

shows less pitting compared to Figure 9(c). Thus, it is proven that the nanosilicate inhibitor has

the potential as corrosion inhibitor for carbon steel in 0.5 M NaCl medium.

Figure 9(c) and (d) also represents the EDX analysis (to provide elemental identification and

quantitative compositional information) on carbon steel surfaces that have been immersed in

the 0.5 M NaCl medium with the presence and absence of nanosilicate inhibitor. The main
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compositions on the surface of carbon steel that has been immersed in 0.5 M NaCl without

being treated with nanosilicate inhibitor are Fe (91.34%), O (8.39%), and Cl (0.27%) (Figure 9

(c)). However, in Figure 9(d), there are no chloride and oxygen detected. It shows that the

corrosion has been retarded by nanosilicate inhibitor.

3.2.5. Adsorption isotherm analysis

The relationship between corrosion inhibitor molecules and carbon steel surface can be

explained by adsorption isotherms. To identify adsorption processes occurring in the study,

the degree of surface coverage (θ) for each nanosilicate concentration inhibitor at different

temperature of 40, 50, and 60�C (313, 323, and 333 K) was calculated. Data from the weight loss

analysis of 0.5 NaCl medium were considered to explain the mechanism of adsorption by the

adsorption isotherm plot [2]. Generally, the adsorption isotherm reported for the study of

corrosion inhibitor is agreement to Langmuir isotherm. However, the type involved isotherm

is dependent on many factors such as the type of inhibitor, the concentration of the inhibitor,

corrosion medium use, temperature and methods of measurement carried out. Hence, the plot

of the Langmuir, Freundlich, and Temkin isotherm is used as a comparison in this study.

Figure 9. Light microscope and SEM image of carbon steel that has been treated in 0.5 M NaCl (a) without the presence of

nanosilicate inhibitors, (b) in the presence of nanosilicate inhibitors and energy dispersive X-ray (EDX) analysis of

immersed carbon steel (c) without the presence of nanosilicate inhibitors (d) in the presence of nanosilicate inhibitors.
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In the Langmuir adsorption isotherm equation, Temkin, and Freundlich, respectively,

exhibited linear graph with the regression line. The thermodynamic data for the Langmuir,

Freundlich, and Temkin isotherm, respectively, are shown in Table 4. The results are obtained

by comparing the regression (R2) of the respective adsorption isotherms; it was found that the

corresponding plot and regression value are close to 1 which is the Temkin isotherm. In the

0.5 M NaCl medium, the regression at 40�C, 50�C, and 60�C is close to 1, i.e. 0.9989, 0.9950, and

0.9535. This indicates that the temperature is suitable for the adsorption of nanosilicate on

carbon steel through Temkin isotherm model [30].

The results of thermodynamics for nanosilicate adsorption on the surface of carbon steel have

produced a negative value for ΔGo
ads. This shows that adsorption process has occurred

spontaneously [31]. Huge value of Kads characterizes the stability and strength of the interac-

tion of the inhibitor molecules that has been adsorbed on the surface of metal/steel. Results of

Temkin isotherm plots indicate the adsorption of nanosilicate molecule inhibitors occurred

physically as R2 regression is approaching to 1. It is clearly shown that the Temkin adsorption

isotherm is suitable for nanosilicate corrosion inhibitors on the surface of carbon steel in 0.5 M

NaCl medium.

Generally, if the ΔGo
ads is about �20 kJ mol�1 or lower, it indicates the interaction between the

electrostatic interactions of charged molecules and charged metal surface (Table 5). This

condition is also called physical adsorption. Meanwhile if the ΔGo
ads is �40 kJ mol�1 or more

negative than �40 kJ mol�1, it shows that the charge of the molecule inhibitors is moved to the

metal surface to form a coordination bond called chemical adsorption [32]. In this study, the

ΔGo
ads is obtained between the range of �27 and �30 kJ/mol�1. Therefore, it can be seen that

the mechanism for nanosilicate adsorption on the surface of carbon steel is applicable for

mixed adsorption (physical and chemical) [15]. Through physical adsorption, inhibition occurs

as in electrostatic attraction between the charged molecules of nanosilicate inhibitors and

carbon steel surface. Meanwhile, the chemical adsorption of charged nanosilicate inhibitor

molecules and the surface of carbon steel molecules can cause better absorption by forming

chemical bonds.

Adsorption isotherm Temperature (�C) R2

Langmuir 40 0.7686

50 0.9910

60 0.9389

Freundlich 40 0.9295

50 0.9753

60 0.8815

Temkin 40 0.9989

50 0.9950

60 0.9535

Table 4. Plots of Langmuir, Freundlich and Temkin adsorption isotherm for nanosilicate inhibitor in NaCl medium at 40,

50, and 60�C.
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4. Conclusions

Nanosilicate corrosion inhibitors from the rice husk ash have good inhibition properties to reduce

the corrosion rate of carbon steel in 0.5 M NaCl. The effectiveness of amorphous nanosilicate

corrosion inhibitor with nanosized SiO2 functional groups with particle sized of 10–100 nm, as

corrosion inhibitor, was proven through the weight loss test and electrochemical measurement

test. The maximum IE% value reached up to 88.4% in 0.5 M NaCl media. This inhibitor can be

classified into a mixed type of corrosion inhibitors. The presence of the protective layer has been

contributing to the corrosion resistance reaction on the surface of carbon steel. Through morphol-

ogy and microstructure analysis on the carbon steel samples, less corroded surface was seen on

the samples treated with nanosilicate inhibitor. The adsorption isotherm tests showed that the

nanosilicate inhibitor possess Temkin adsorption isotherm and ΔGo
ads value obtained between

the ranges of �27 and �30 kJ/mol�1. The applications of silica derived from rice husk as

corrosion inhibitor have proven its ability to retard corrosion in sodium chloride media. How-

ever the usage of rice husk plant waste would not stop on the extracts of nanosilicate only. Apart

from nanosilicate, there were other compounds in the rice husk such as lignin and cellulose that

would be a major interest for researchers in the future. As research trends nowadays that are

more prone toward greener and environmental friendly approach, the waste of rice husk would

be the best candidate for source of natural-based products with vast applications in advance.
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