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Abstract

It is useful to have a quantitative measure of the contact hip stress and other relevant
biomechanical parameters. Parameters that correlate with clinically relevant features are
sought and relations between these parameters are studied. For this purpose, two
different models for the resultant hip force in the one-legged stance (the primitive model
and the HIPSTRESS model) are presented with which the effect of the shape of the pelvis
and proximal femora is described. Also, a special case of the primitive model—the
simple balance approximation—is considered. All three descriptions are based on the
equilibrium of forces of torques and differ by increasing amount of information on the
shape of the particular subject. It is shown in a case of normal hip and pelvis geometry
that the primitive model gives similar values of biomechanical parameters as the
HIPSTRESS model that was validated by clinical studies. The primitive model (but not
the simple balance approximation) merits to minimal standards to be used for under-
standing of the principles of the equilibrium of the forces and torques in the one-legged
stance and can in certain cases (such as the one shown) also yield a valid quantitative
estimation of the biomechanical parameters.

Keywords: hip stress, resultant hip force, hip osteoarthritis, cartilage degeneration, hip
dysplasia, hip osteotomy

1. Equilibrium of forces and torques

Within biomechanics the effects of mechanical forces (forces due to gravity, elasticity, and fric-

tion) on living mechanisms are considered. These forces determine the movement of human and

animals which is, especially in vertebrates, enabled by a complex and interconnected network of

muscles, tendons, and bones that act as a consistent kinematical chain. A living system is never

static on the cellular level, however, as a whole, the body can attain certain positions which are

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



taken to correspond to static equilibria. The body is in static equilibrium when the sum of all

external forces acting upon it equals to zero and sum of all torques subject to these forces equals

to zero. The first condition is expressed by equation

F ¼ ð�F sinϑF, � F cosϑF, 0Þ (1)

where Fi ¼ ðFx;i; Fy;i; Fz;iÞ is the i-th force and the second condition is expressed by equation

MF ¼ rF ·F ¼

i j k

�xF yF 0

�F sinϑF �F cosϑF 0

2

6

4

3

7

5

¼ ð0, 0, xFF sinϑF þ yFF cosϑFÞ,

(2)

where Mi ¼ ðMx;i; My;i; Mz;iÞ is the torque of the i-th external force, defined as a cross product

�xCMðWB �WLÞ þ FðxF cosϑF þ yF sinϑFÞ ¼ 0: (3)

with ri ¼ ðxi; yi; ziÞ the momentum arm of the i-th external force. Index i runs over all forces

acting upon the body.

The cross product can be expressed by the matrix

Mi ¼ ri ·Fi ¼
i j k
xi yi zi
Fx;i Fy;i Fz;i

2

4

3

5 (4)

with the result

Mi ¼
�

ðyiFz;i � ziFy;i), ðziFx;i � xiFz;i), ðxiFy;i � yiFx;iÞ
�

(5)

In the description of the static equilibrium, the image of the body is divided into segments. These

segments act one upon another which is expressed by means of intersegment forces. The seg-

ments are also subjected to attraction of the Earth. As these forces and their momentum arms in

general attain different directions in space, all torque components have in general nonzero

values. However, in certain situations the expressions are simplified, such as in the case where

the balance consists of a dimensionless rigid rod supported in a certain point, with two vertical

load forces F1 and F2, each acting on a different side of the support, with momentum arms r1 in

r2 (Figure 1). Let the positive x-axis point in the medial direction, positive y-axis in the superior

direction, and positive z-axis in the anterior direction.

There are three forces acting on the balance, the two load forces F1 in F2 and the ground force

originating in the support point. This force is called the resultant force R. As the forces F1 and

F2 act in the negative vertical direction,

F1 ¼ ð0; � F1; 0Þ; (6)

F2 ¼ ð0; � F2; 0Þ: (7)

The resultant force is not known; therefore, we will consider that it has three components,
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R ¼ ðRx; Ry; RzÞ (8)

To determine the momentum arms, a choice of the origin of the coordinate system must be

made. It is convenient to choose it at the origin of the resultant force R. In general, the

momentum arms have three components,

r1 ¼ ðx1; y1; z1Þ (9)

r2 ¼ ðx2; y2; z2Þ (10)

however, in the case presented in Figure 1, the rod extends in the direction of x-axis only, and

therefore the components of the momenta in the directions of y and z axes are equal to zero.

The momentum arm of the force F1 points in the negative direction of x-axis,

r1 ¼ ð�x1; 0; 0Þ (11)

while the momentum arm of the force F2 points in the positive direction of x-axis,

r2 ¼ ðx2; 0; 0Þ (12)

The momentum arm of the resultant force R is zero, due to our particular choice of the origin,

rR ¼ ð0; 0; 0Þ (13)

The torques of all three forces are

Figure 1. Scheme of a simple balance if the load forces act in the vertical direction.
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M1 ¼ r1 · F1 ¼
i j k

�x1 0 0
0 �F1 0

2

4

3

5 ¼ ð0, 0, x1F1Þ (14)

M2 ¼ r2 ·F2 ¼
i j k
x2 0 0
0 �F2 0

2

4

3

5 ¼ ð0, 0,� x2F2Þ (15)

MR ¼ rR ·R ¼
i j k
0 0 0
Rx Ry Rz

2

4

3

5 ¼ ð0, 0, 0Þ (16)

In general, the equilibrium of forces is given by three equations for three components,

F1;x þ F2;x þ Rx ¼ 0 (17)

F1;y þ F2;y þ Ry ¼ 0 (18)

F1;z þ F2;z þ Rz ¼ 0 (19)

Following Eqs. (17)–(19), the components of the force R are

Rx ¼ 0 (20)

Ry ¼ F1;y þ F2;y (21)

Rz ¼ 0 (22)

and the resultant force can be given as

R ¼ ð0; F1 þ F2; 0Þ (23)

The equilibrium of torques is given by three equations for three components,

M1;x þM2;x þMR;x ¼ 0 (24)

M1;y þM2;y þMR;y ¼ 0 (25)

M1;z þM2;z þMR;z ¼ 0 (26)

As the torque of the force R is equal to zero and also the components of the torques due to load

forces in the x in y directions are equal to zero, there remains only one nontrivial equilibrium

equation for torques,

M1;z þM2;z ¼ 0 (27)

Considering also the expressions (14) and (15), we obtain

x1F1 � x2F2 ¼ 0 (28)

and finally
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F1

F2
¼

x2

x1
(29)

2. A two-segment model for the resultant hip force in the one-legged stance

In a simple model of a one-legged stance (Figure 2), the body is divided into two segments: the

loaded leg and the rest of the body (Figure 2a). The two segments are connected by the hip

joint. Figure 2b presents an abstraction of the two segments (labeled I and II, respectively). For

simplicity, the pelvis is taken to be leveled in the model. The sizes of the boxes correspond to

approximate weight proportion of the two segments. Further, it is assumed that all the forces

lie in the frontal plane of the body through the centers of both femoral heads (their components

in the z direction are zero). The forces and momenta arms acting on the segment I are indicated

in panels b and c. The hip is loaded at the medial side by the weight of the segment I (denoted

as WB �WL), where WB is the weight or the entire body and WL is the weight of the loaded

leg, and at the lateral side by a force of an effective muscle (denoted by F), which pulls the

segment toward the loaded leg. There are several muscles which are active in the one-legged

stance, but in this simple model all of them are represented by one effective muscle with one

origin at the crista iliaca and the other at the greater trochanter (Figure 2c). It is taken that the

muscle force acts in the direction of the line connecting both origins, expressed by the inclina-

tion angle ϑF.

The model is based on equilibrium equations of forces and torques (Eqs. (1) and (2), respec-

tively) acting on the segment I. Momentum arms of the weight of the segment I and of the

I

II

I
F

R
W - W
B L

r
F

W -W
B L

R

F

a b c

rCM

Figure 2. Scheme of a two-segment model of the one-legged stance. The body is divided into two segments: the loaded

leg and the rest of the body (a). Abstraction of the two segments (labeled I and II, respectively) (b). Forces and their

momentum arms (c).
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effective muscle force can be determined from the geometry of the pelvis and proximal femur

and the weight of the segment I can be determined from the body weight and an approxima-

tion that the leg weights about 1/7 of the entire body [1]. There are three unknown parameters

in the model: the magnitude of the effective muscle force (F) and the magnitude and direction

(inclination with respect to vertical) of the resultant hip force (R and ϑR, respectively).

2.1. A primitive model for resultant hip force

In the model (Figures 3 and 4), we have chosen the origin of the coordinate system at the center

of the hip joint (that coincides with the center of the femoral head and the center of the

acetabular shell). The loading forces are the weight of the segment I,

WB �WL ¼ ð0; � ðWB �WLÞ; 0Þ; (30)

with momentum arm rCM,

rCM ¼ ðxCM; yCM; 0Þ (31)

and the force of the effective muscle, which lies in the frontal plane through centers of the

femoral heads,

F ¼ ð�F cosϑF; � F sinϑF; 0Þ; (32)

with momentum arm rF,

rF ¼ ð�xF; yF, 0Þ: (33)

The origin of the weight of the segment I is taken at the center of mass of the segment. It is

approximated that this point lies in the sagittal plane of the body through the midline. Note

that the components of the forcesWB �WL and F in the direction of the y-axis were taken to be

negative, as these forces point downward and we have chosen that the positive direction of the

y-axis is upward. Also, the component of the force F in the direction of the x-axis and the

momentum arm of the effective muscle force in the direction of the x-axis are negative. The

resultant hip force R is written as

R ¼ ðR sinϑR; R cosϑR; 0Þ: (34)

The respective torques are

MWB�WL
¼ rCM · ðWB �WLÞ ¼

i j k
xCM yCM 0
0 �ðWB �WLÞ 0

2

4

3

5 ¼ ð0; 0; � xCMðWB �WLÞÞ (35)

MF ¼ rF · F ¼
i j k

�xF yF 0
�F cosϑF �F sinϑF 0

2

4

3

5 ¼ ð0; 0; xFF sinϑF þ yFF cosϑFÞ (36)

and
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Figure 3. Scheme of forces and momentum arms in the primitive model subject to segment I.
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Figure 4. Scheme of a two-segment model of the one-legged stance.
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MR ¼ ð0; 0; 0Þ; (37)

as the momentum arm of the resultant hip force is zero due to the choice of the origin of the

coordinate system.

Following the above procedure, in particular Eq. (26), which describes equilibrium of torques,

we obtain

�xCMðWB �WLÞ þ FðxF sinϑF þ yF cosϑFÞ ¼ 0: (38)

Rearranging the above equation yields for the unknownmagnitude of the effectivemuscle force F,

F ¼
xCMðWB �WLÞ

ðxF cosϑF þ yF sinϑFÞ
: (39)

Following Eqs. (20)–(22), we obtain for the components in the direction of the x-axis

R sinϑR ¼ F sinϑF (40)

and in the direction of the y-axis

R cosϑR ¼ ðWB �WLÞ þ F cosϑF: (41)

Dividing Eq. (40) by Eq. (41) eliminates the unknown magnitude of the resultant hip force R and

yields the expression for the inclination of the resultant force with respect to the vertical ϑR,

tanϑR ¼
sinϑF

cosϑF þ ðWB �WLÞ=F
: (42)

By knowing F and ϑR, the magnitude of the resultant hip force R is then expressed from Eq. (40),

R ¼ F
sinϑF

sinϑR
: (43)

It is often convenient to present the results with respect to the body weightWB. We also take into

account thatWL ¼ WB=7 [2] to get the expression for the normalized effective muscle force

F

WB
¼

6

7

xCM
ðxF cosϑF þ yF sinϑFÞ

; (44)

the inclination of the resultant hip force

tanϑR ¼
sinϑF

cosϑF þ 6WB=7F
; (45)

and the normalized resultant hip force
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R

WB
¼

6

7
1þ

xCM

xF þ yF tanϑF

� �

: (46)

In a special case when the effective muscle force points in the vertical direction, i.e., ϑF ¼ 0

(Figure 4), the expressions (44)–(46) simplify into

F

WB
¼

6

7

xCM
xF

; (47)

tanϑR ¼ 0; (48)

R

WB
¼

6

7
1þ

xCM
xF

� �

: (49)

Note that these expressions (Eqs. (47)–(49)) are the same as if obtained for a simple balance

with the two loading forces

F1 ¼ ð0;� F; 0Þ (50)

and

F2 ¼ ð0;� ðWB �WLÞ; 0Þ (51)

and respective momentum arms

rF ¼ ð�xF; 0; 0Þ (52)

and

rCM ¼ ðxCM; 0; 0Þ: (53)

Following Eqs. (29), (50), and (51), we obtain

F

ðWB �WLÞ
¼

xCM

xF
(54)

or (by taking into account that WL ¼ WB=7)

F

WB
¼

6

7

xCM
xF

: (55)

Following Eqs. (22), (50)–(51), and WL ¼ 6WB=7, we obtain

R ¼ Fþ
6

7
WB; (56)

or, normalized
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R

WB
¼

6

7
þ

F

WB
: (57)

Taking into account Eqs. (55) and (57) yields

R

WB
¼

6

7
1þ

xCM
xF

� �

: (58)

It can be seen that Eqs. (47) and (55) are identical. Likewise, Eqs. (49) and (58) are identical.

Although the effective muscle attachment point on the iliac bone, the center of the femoral

head, and the center of mass of the body segment I do not lie in the same horizontal plane,

the model of simple balance derived for a weightless rigid bar with all forces originating in the

same horizontal plane, gives the same solution, owing to a special case that the forces lie in

the vertical direction only. It should however be kept in mind that this is a consequence of the

simplifications used in the model of the one-legged stance and that in reality segment I has a

characteristic shape that may impact the forces, which is not considered in the simple balance

model. Some textbooks use a simple balance as an illustrative model to explain the principles

of the effect of the muscle forces (the principles of different types of levers). It should be borne

in mind that such approximations are valid only if all forces act in the same direction.

Figure 5 shows the dependence of the magnitude of the resultant hip force R on the ratio

between parameters xCM and xF, for the primitive model with two different inclinations of

the effective muscle force (ϑF ¼ 20 degrees, solid line, and ϑF ¼ 10 degrees, dotted line),

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4

x   /x
CM F

R/W
B

Figure 5. Dependence of the normalized resultant hip force R=WB on the ratio between geometrical parameters xCM=xF
for the primitive model (Eq. (46)) with two different inclinations of the effective muscle force (ϑF ¼ 20 degrees, solid line,

and ϑF ¼ 10 degrees, dotted line), and for the simple balance model (Eq. (58)) (broken line). yF=xF ¼ 2.
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and for the simple balance model (broken line). It can be seen that for larger xCM=xF and

larger inclinations ϑF, the difference between the models becomes substantial. Figure 6

shows the dependence of the inclination of the resultant hip force with respect to vertical

direction ϑR on the ratio between parameters xCM and xF, for the primitive model with two

different inclinations of the effective muscle force (ϑF ¼ 20 degrees, solid line, and ϑF ¼ 10

degrees, dotted line), and for the simple balance model (broken line). It can be seen that in

the primitive model the inclination of the resultant hip force increases with increasing

xCM=xF, the effect being more pronounced for larger inclination of the effective muscle

force ϑF. In the simple balance model, the resultant hip force points in the direction of the

y-axis (i.e., ϑR ¼ 0).

2.2. HIPSTRESS model for resultant hip force

The primitive model and the simple balance approximation consider only one muscle acting in a

hip in the one-legged stance. Measurements however indicate that there are several muscles that

are active in this body position. The static equilibrium requires that the resultant of all external

forces acting on each segment is zero and that the resultant of all external torques acting on each

segment is zero, therefore in a more realistic model, contributions of all active muscles should be

taken into account. The equilibrium equation for forces acting on segment I is

WB �WL þ

X

i

Fi þ R ¼ 0; (59)

Figure 6. Dependence of the inclination of the resultant hip force with respect to vertical direction ϑR on the ratio between

geometrical parameters xCM=xF for the primitive model (Eq. (45)) with two different inclinations of the effective muscle

force (ϑF ¼ 20 degrees, solid line, and ϑF ¼ 10 degrees, dotted line), and for the simple balance model (ϑR ¼ 0, Eq. (48))

(broken line). yF=xF ¼ 2.
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where index i runs over all muscles that are active in the one-legged stance. The equilibrium of

torques is expressed by equation

rCM · ðWB �WLÞ þ
X

i

ri · Fi ¼ 0; (60)

where ri is the momentum arms of the respective muscle forces and i runs over all the forces

that are active in the one-legged stance. It was taken into account that the torque of the

resultant hip force is zero since we have chosen the origin of the coordinate system in the

center of the femoral head, that is, the origin of the resultant hip force. The HIPSTRESS model

for resultant hip force takes into account nine effective muscles: gluteus minimus anterior,

gluteus minimus middle, gluteus minimus posterior, gluteus medius anterior, gluteus medius

middle, gluteus medius posterior, tensor fasciae latae, piriformis, and rectus femoris [2]. The

geometryof the individual subject is taken into account by rescaling the coordinates of the reference

muscle attachment points according to the geometry of the pelvis and proximal femur. However, if

the standard anteroposterior radiogram is used to assess the geometrical parameters, only the

coordinates in the directions of the x and y axes can be taken into account. The magnitude of the

force of the i-th muscle is taken to be proportional to the muscle cross section area Ai and average

tension in the muscle σi. Muscle forces are considered to act in straight lines between the muscle

attachment points,

Fi ¼ Aiσi

ðri � r0 jÞ

jri � r0 jj
; (61)

where ri is the coordinate of the origin of the i-th muscle on segment I and r0i is the

coordinate of the origin of the i-th muscle on segment II. Both coordinates are measured

with respect to the center of the articular sphere (i.e., the center of the femoral head and the

acteabular shell).

The forces and the torques have three dimensions, therefore the model consists of six equations

(three for equilibrium of forces and three for equilibrium of torques). For known origin and

insertion points of the muscles and known cross-section areas, the unknown quantities are the

muscle tensions and three components of the resultant hip force R. Since there are 9 effective

muscles and 3 components of the force R, there are 12 unknowns and 6 equations. To solve this

problem, a simplification was introduced by dividing the muscles into three groups (anterior,

middle, and posterior) with respect to the position. It was assumed that the muscles in the

same group have the same tension. This reduced the number of unknowns to six as required

for solution of the complex of six equations. The muscle origin and insertion points and the

muscle cross-section were taken from Refs. [3] and [4], respectively. The geometry of the

individual patient was taken into account by correction of muscle attachment points according

to the geometrical parameters obtained from the standard anteroposterior radiograph, the

distance from the center of the femoral head to the midline xCM, the height of the pelvis H,

the width of the pelvis C, and the position on the greater trochanter relative to the center of the

femoral head xT and yT (Figure 7). Results obtained with the HIPSTRESS model for resultant

hip force showed that the force lies almost in the frontal plane of the body through both

femoral heads [1]. To further simplify the calculations it was assumed in most clinical studies
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using HIPSTRESS model that the force lies in the frontal plane and is, like in the primitive

model, represented by its magnitude R and its inclination with respect to the vertical ϑR.

3. HIPSTRESS model for contact stress in the hip

Once we know what is the overall load R (the magnitude of the resultant hip force R and its

inclination with respect to the vertical direction ϑR) that the hip must bear in order to keep the

balance in the one-legged stance, it should also be clarified how this load is distributed over the

load-bearing area. Namely, it is the local load that determines the development of cells. There-

fore, we are interested in stresses connected to the load. The model HIPSTRESS for contact hip

stress has previously been described in detail in Ref. [5]; therefore, only brief description will be

given here. The readers who wish to understand the derivation of the equations are kindly asked

to refer to the pointed literature.

We neglect all other stresses but the contact hip stress acting perpendicularly to the spherical

articular surface, by assuming that the joint is well lubricated. A surface is imagined that is a

Figure 7. Geometrical parameters needed for determination of resultant hip force within the HIPSTRESS model.
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part of a sphere with radius r, representing the hip joint. The contact hip stress p is connected

to the resultant hip force,

∮ p dA ¼ R; (62)

where A is the area element and the integration is performed over the load-bearing area of the

articular surface.

It is assumed that stress is proportional to strain due to the squeezing of the cartilage between

the femoral head and the acetabulum [6], which yields

p ¼ p0 cosγ; (63)

where p0 is the stress at the stress pole and γ is the angle between the vector pointing from the

origin of the coordinate system to the pole and the vector pointing from the origin of the

coordinate system and the chosen point on the articular surface. The load-bearing area is

bounded on the lateral side by the acetabular roof given in the radiogram by the center-edge

angle of Wiberg ϑCE and on the medial side by the line where the cosine function (63) vanishes.

Eq. (62) is represented by three equations for three components of the force and is subject to

three unknown parameters of the model, that is, the position of the stress pole on the articular

surface given by two angles Θ and Φ, and the value of stress at the pole p0. The azimuthal

angle of the pole is Φ ¼ 0 or π, as the resultant hip force in the one-legged stance lies in the

frontal plane of the body. In order to get the solution for Θ, a nonlinear algebraic equation

should be solved,

tan ðϑR þΘÞ ¼
cos 2ðϑCE �ΘÞ

ðπ2 þ ϑCE �Θþ 1
2 sin ð2ðϑCE �ΘÞÞÞ

(64)

which simplifies into

tan ðxþ yÞ ¼
cos 2ðy� xÞ

ðπ2 þ ðy� xÞ þ 1
2 sin ð2ðy� xÞÞÞ

(65)

by introducing the expressions

x ¼ Θþ
1

2
ðϑR � ϑCEÞ; (66)

and

y ¼
1

2
ðϑR þ ϑCEÞ: (67)

As ϑR and ϑCE are the input parameters, and the unknown parameter is x, the solution of

Eq. (64) is determined solely by the parameter y. The normalized value of stress at the pole is

then expressed from
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p0r
2

R
¼

3

2

sin ðyþ xÞ

cos 2ðy� xÞ
, (68)

while its proper value can be calculated by multiplying the left side of Eq. (68) by R and

dividing it by r2. The polar angle is given by

Θ ¼ x�
1

2
ðϑR � ϑCEÞ: (69)

Figures 8 and 9 show the dependence of the polar angle and stress at the pole (Eqs. (69) and

(68), respectively), on parameter y. Clinical studies that have validated the HIPSTRESS method

have used the parameter peak stress on the weight-bearing area as the relevant quantity.

Figure 8. Dependence of the position of the pole Θ on parameter y.

Figure 9. Dependence of the value of contact stress at the pole p0 on parameter y.
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Namely, the stress pole is an abstract point in which the respective spheres outlining the

femoral head and the acetabulum most closely approach each other upon loading of the joint.

The pole may therefore be located within the load-bearing area of the joint or outside it. In the

first case, the peak stress is identical to the value of stress at the pole pmax ¼ p0, while in

the second case, the peak stress is taken at the point on the load-bearing area that is closest to

the stress pole. If this takes place at the acetabular rim, the peak stress is calculated according

to the expression pmax ¼ p0 cos ðϑCE �ΘÞ [5]. It was shown that biomechanical parameters

calculated with HIPSTRESS models for resultant hip force and contact hip stress were useful

in explaining early osteoarthritis in dysplastic hips [7], hips with primary osteoarthritis, hips

subject to avascular necrosis of the femoral head [5], hips that were in childhood subject to the

Perthes disease [8], effect of different osteotomies [9–12], and the direction and volumetric

wear of total hip endoprosthesis [13]. Evidently, the models include the relevant parameters

of the individual hip to have a predictive value.

4. Comparison of the primitive model and the HIPSTRESS model

The primitive model and the HIPSTRESS model both use the same characteristic points on the

iliac bone and on the greater trochanter (i.e., the highest and the most lateral points). In both

models, the center-edge angle and the radius of the articular surface (i.e., the radius of the

femoral head) is needed to calculate stress distribution. Both models consider the center of

mass and the corresponding momentum arm. There are however differences in parameters for

the resultant hip force. The HIPSTRESS model includes more parameters (H; C; xCM; xT, and

yT) than the primitive model (xCM; xF, and ϑF) to characterize geometry of the individual hip

and pelvis. The parameters of HIPSTRESS (but not the primitive model) enable consideration

of the inclination of the femoral neck.

For illustration we calculate the biomechanical parameters by using both models and also the

simple balance approximation. Figure 10 shows the measured geometrical parameters for the

primitive model and Figure 11 shows the measured parameters for the HIPSTRESS model.

To determine the magnitude and the inclination of the resultant hip force (R and ϑR, respec-

tively) in the primitive model, we use the measured parameters and Eqs. (44)–(46), while in the

simple balance approximation, with ϑR ¼ 0, R is obtained by using Eq. (58). To estimate R and

ϑR in the HIPSTRESS model, we used the nomograms as described in [1]. The results of all

three models are depicted in Table 1. It can be seen that for the chosen hip and pelvis, the

magnitude of the resultant hip force in the primitive model and in the HIPSTRESS model differ

by only 9%, while in the simple balance approximation the result deviates by about 40%. The

inclination of the resultant hip force ϑR is by definition zero in the simple balance approximation,

but it is also small in the primitive model and in the HIPSTRESSmodel. By using these results we

can estimate the parameter y in all three models. Knowing y, we estimate also parameter x in all

three models by using Figure 10. Parameter x is needed to calculate the position of the poleΘ by

using Eq. (69). Finally, the value of stress at the pole is obtained by using the respective values of

y and Figure 9. The inset of the figure with the values corresponding to all three models is shown

in Figure 12.
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Figure 10. Geometrical parameters needed for the determination of the resultant hip force within the primitive model.
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Figure 11. Geometrical parameters needed for the determination of the resultant hip force within the HIPSTRESS model.
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It can be seen that in the primitive model and in the HIPSTRESS model the pole lies within the

load-bearing area while in the simple balance approximation it falls outside the load-bearing

area (Table 1). The HIPSTRESS model in this case yields the lowest stress. Note that in the

simple balance approximation the hip would according to the criteria of the HIPSTRESS

[14, 15] be considered as dysplastic since it exhibits rapidly decreasing stress at the lateral

acetabular rim. However, the center-edge angle is 27� which is considered as a healthy hip. The

simple balance model overestimates hip stress and is in most cases not suitable to give

quantitative result regarding biomechanical parameters of the hip and pelvis.

The example that we have shown corresponds to a normal hip geometry. Also, the values of

peak stress that were obtained by the primitive model and the HIPSTRESS model are within

the values corresponding to hips that would remain without clinical problems up to about 85

years of age [16]. In this case, the primitive model proved successful in estimating biomechan-

ical parameters. However, to see whether it has a predictive value, it should be validated by

clinical studies. The advantage of the primitive model is that it is simpler and does not need

Parameter SBA Primitive HIPSTRESS

r (cm) 2.47 2.47 2.47

ϑCE (degrees) 27 27 27

xCM (cm) 8.9 8.9 8.9

xF (cm) 3.5 3.5

yF (cm) 14.2 14.2

ϑF (degrees) 0 11

C (cm) 4.2

H (cm) 14.6

xT (cm) 7.0

yT (cm) 1.7

R=WB 3.2 2.2 2.4

ϑR (degrees) 0 7 12

y 13.3 17 20

x 27 12 2

p0=WB (m�2) 4693 2693 2172

pmax=WB (m�2) 4572 2693 2172

Θ(degrees) 40 22 10

SBA, simple balance approximation.

Table 1. Geometrical and biomechanical parameters for a hip with total hip endoprothesis as determined by simple

balance approximation, primitive model and HIPSTRESS model of a one leged stance.
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special software. Determination of the resultant hip force with the primitive model is scale

independent which is an advantage over the HIPSTRESS model. Namely, the HIPSTRESS

model uses three-dimensional coordinates of the muscle attachment points of a reference hip

and pelvis but only the x and y coordinates are rescaled according to the hip considered, while

the z coordinates of the reference hip remain in the model. Therefore, the HIPSTRESS model

for the resultant hip force is biased by the artifact that it depends on the size of the hip.

We have used standard anteroposterior radiograms to measure geometrical parameters. Imag-

ing with magnetic resonance has recently improved to enable determination of three-dimen-

sional positions of muscle attachment points for the needs of the HIPSTRESS method, but has

not yet been used for the determination of biomechanical parameters by this method. This

would be a major improvement over using radiograms, as the direct data on the muscle

attachment points could be used and there would be no need for rescaling of the reference

geometry. In considering the three-dimensional data the primitive model could not do justice

to the system as its assumptions are bounded to the simplification to two dimensions. How-

ever, the primitive model (but not the simple balance approximation) merits to minimal

standards to be used for understanding of the principles of the equilibrium of forces and

torques in the one-legged stance, and can in certain cases (such as the one shown here) also

yield a valid quantitative estimation of the biomechanical parameters.

y (degrees)

p r R/
0

2

0
0 20 40

1

Figure 12. Estimation of the value of p0 for the primitive model (solid lines), simple balance approximation (dotted lines),

and HIPSTRESS model (broken lines).
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