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Abstract

In this work, thin-film deposition of FePc particles nucleated and grown in gels was car-
ried out in air by spin coating. The surface morphology and structure of these films were
analysed by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR)
spectroscopy. The optical parameters have been investigated using spectrophotometric
measurements of transmittance in the wavelength range of 200-1100 nm. The absorption
spectra recorded in the UV-Vis region for the deposited samples showed a single band,
namely the B or Soret band in the region between 285 and 305 nm. The dependence of the
Tauc and Cody optical gaps associated with the thickness of the film was determined and
found to be around 4.2 eV from direct transitions and 3.8 eV from non-direct transitions.
The films’ electric properties and their dependence in the presence of radiation of sev-
eral wavelengths were evaluated. At lower voltages, ohmic conduction is evident, while
space-charge limited conductivity (SCLC) governed by an exponential trap distribution
is to be found at higher voltages.

Keywords: thin films, spin coating, metallophthalocyanines, optical properties,
electrical properties

1. Introduction

Photoconducting agents and other photoelectronic compounds embedded in polymer films
as nanocomposite films have attracted considerable attention, as they exhibit many useful
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optical and electrical properties. Because of their large chemical and structural stability, as
well as their optical and electrical properties, metallic phthalocyanines (MPcs) have been
introduced into polymeric matrices as nanoparticles. A polymeric matrix composite (PMC) is
a compound material consisting of a polymeric primary phase, or matrix, which is embedded
in a secondary phase based mainly on matrix-reinforcing fibres and particles. The polymeric
matrix enhances material stability, as it limits the introduction of environmental oxygen or
water, which could reduce the potential usefulness of the MPcs. Nanostructuring also permits
two other goals: to achieve optical homogeneity of the polymeric composite medium and
to take advantage of specific properties of MPcs in their crystalline form. MPcs are usually
ordered in crystalline arrangements, as their aromatic rings stack neatly. Due to the strength
of m bonds, MPcs can be accommodated in a large number of different structures, which
depend on the substituents they have. The type of structure determines the physical proper-
ties of a specific MPc, as well as its applications. The main modes of MPc molecular organiza-
tion that may be observed are: (i) crystals, which can be in the alpha or beta allotropic forms
(the beta polymorph being thermodynamically more stable). The two types are distinguished
by the angle formed between the symmetry axis and the stacking direction. Alpha and beta
crystals form angles of 26.5 and 45.8°, respectively. (ii) Liquid crystals, where Pcs are substi-
tuted by flexible lipophilic chains, which allow the formation by substituents of a quasi-liquid
medium surrounding the in-plane aromatic nuclei, which overlap in columns distributed over
two-dimensional positions with hexagonal or tetragonal symmetries. (iii) Thin films are solid
structures whose thicknesses can be neglected for many physical purposes. In applications
involving interaction with electromagnetic waves, thin-film thickness must be of the same
order as the wavelength of the interacting disturbance. Thin films represent the Pcs arrange-
ment most commonly considered for electronic applications. (iv) Skewer-structured polymers
are obtained by polymerizing MPcs through bridge ligands; due to the variety of ligands that
may be used and their properties, the distance between molecules can be controlled rather
well and, thanks to the rigidity of the unidirectional connection in this type of structures, very
good electronic and optical properties can be obtained from the material.

The purpose of this work is to report the generation of MPc crystals, their dispersion into a
polymeric matrix and the evaluation of their optical and electrical properties in thin-film form.
In this study, a polystyrene polymeric matrix was used. The materials thus obtained were char-
acterized by different methods, including infrared (IR) and ultraviolet-visible (UV-Vis) spec-
troscopy, as well as scanning electron microscopy (SEM). First nanoparticles were synthesized
in a molecular solution obtained from a supersaturated MPc solution. Second a solid composite
was prepared by introducing pre-grown colloidal MPc particles into a polymeric matrix in a
spin coating process. Spin coating leads to the production of uniform, flat, high-quality films or
coatings. This process involves the application of a certain amount of nanoparticles suspended
in a polymer and previously solved in an organic solvent. A small amount of the fluid is put on a
substrate attached to a plate that is made to rotate at high speed, so that the resulting centripetal
force spreads the suspension until the desired film thickness is achieved for the composite mate-
rial. This process has four stages: deposition, centrifugation, de-centrifugation and evaporation.
The evaporation of the fourth stage represents the main thinning mechanism for the film. After
the film is deposited, it is annealed for 10 min at 90°C to accelerate matrix polymerization.
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As some polymeric materials have conductivities similar to those of metals, they represent an
important research area for the next generation of organic electronic devices. Conductivities
in some polymers, such as poly(3,4-ethylenedioxythiophene) (PEDOT), are comparable to
those of indium oxide or tin, while showing significant optical transmission. In this work, the
electrical conductivity of the thin films was evaluated by means of a four-point technique. The
films” electric properties and their dependence in the presence of radiation of several wave-
lengths were evaluated in order to determine whether this type of PMC films may have appli-
cations in the construction of electronic and optoelectronic flexible devices, such as OLEDs,
photovoltaic devices and visual information devices. Additionally, the optical activation ener-
gies were evaluated by the Cody and Tauc methods from the transmittance values of the films
at different thicknesses [1, 2].

2. Research method

2.1. Crystallization process

To carry out the crystallization of MPcs embedded in a polymeric matrix, the gel crystallization
method was used, where a very viscous medium that favours slow crystallization is used to
mix the constituent phases, mainly by diffusion. In this method, crystal growth in the gel takes
place by diffusion-controlled mass transport. This procedure minimizes the sedimentation and
convection effects of traditional crystallization by evaporation methods. One must take into
account that the crystallization mechanism consists of three steps, i.e. solution supersaturation,
formation of crystalline nuclei and crystal growth. The gel is a means to transport molecules or
ions (precipitant agents, shock absorbers), with no or almost no chemical reactivity to molecules
and ions that diffuse through their three-dimensional polymeric network. Gels can be classi-
fied, according to their preparation method, as chemical or physical. Chemical gels are those
obtained by poly-addition processes, like those achieved from neutralization of sodium metasil-
icate, or by poly-condensation processes, such as those obtained from the hydrolysis reaction of
tetramethoxysilane. The physical gels, including agar and agarose, are defined as those where
the gelation process is carried out by the variation of some physical parameter, like temperature.

For the current study, tetramethoxysilane gel at 10% volume, with 50% of ethanol for crystal-
lization in FePc capillary tubes, was used. Before introducing the solved gel into the capillary,
this tube must be carefully washed with detergent, followed by double-distilled water and
then acetone, and finally dried with warm air. The introduction of gel into the capillary is car-
ried out by the application of air pressure with a syringe, taking care to avoid the formation
of bubbles in the gel. The gel must occupy the central 4-cm section of the capillary. After the
dispersion has gelled (a process which takes about 4 weeks), MPc is added through the ends
of the capillary, travelling a distance of 3 cm of length. These MPcs, previously dissolved,
must be added in the same way as the gel, by means of air pressure with the help of a syringe,
while taking care not to form bubbles. The capillary is then sealed at the two ends and kept at
a constant temperature of 22°C, until the product is formed. The conformation of the system
used for gel crystallization can be shown in Figure 1, where the diagram of the tube used
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Figure 1. Capillary system used for crystallization.

for the crystallization is divided into three parts, as shown in the figure: one in the middle,
where the gel was initially placed and the two ends where the dissolved MPc was placed
before the MPc molecules migrated to the gel zone, where they nucleated and grew. This
gel-based technique provides continuous control over the crystal or particle growth process,
since it becomes possible to increase the growth rate by adding a larger amount of reagents
through the ends of the capillary. Moreover, it also reduces the risk of damage to the crystal
or the particle that could occur because of physical instabilities in the experimental arrange-
ment, as it avoids the direct manipulation of the grown crystals.

2.2. Thin-film deposition and characterization

Most of the advanced devices manufactured today depend, at some point of their fabrication,
on the synthesis and growth of films or thin layers. For this work, thin-film deposition of FePc
particles nucleated and grown in gels was carried out in air by spin coating. The material was
deposited onto a Corning 7059 glass, quartz, (100) single-crystalline silicon (c-Si) 200 Q-cm
wafers and ITO-coated glass slides. The quartz and Corning glass substrates were ultrasoni-
cally degreased in warm methanol and dried under a nitrogen atmosphere. The silicon sub-
strates were chemically etched with a p-etch solution and dried under a nitrogen atmosphere.
The composition of the solution was selected to have an FePc: polystyrene ratio of 1:3 in chlo-
roform. The solution was spin coated on the substrates in a two-step process: 2500 rpm for
30 s, followed by annealing at 393 K for 10 min. These processes, spin coating and annealing,
were repeated to obtain a suitable thickness. The thicknesses of the films obtained in the pres-
ent study are shown in Table 1. We also report the determination of optical parameters related
to the main transitions in the UV-Vis region, as well as the fundamental energy gap calcula-
tions for these films. Devices consisting of polystyrene matrix film were placed onto Corning
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Sample Film thickness  Direct Cody Indirect Cody Direct Tauc optical ~ Indirect Tauc
(nm) optical gap (eV)  optical gap (eV)  gap (eV) optical gap (eV)
Thin Film 1 29 5.4 5.4 5.4 5.1
Thin Film 2 35 5.3 5.3 5.3 47
Thin Film 3 52 5.3 5.2 5.3 4.7
Thin Film 4 75 5.3 5.2 5.3 4.3
Thin Film 5 99 5.3 5.1 5.3 43
Thin Film 6 122 5.3 47 5.3 4.2
Thin Film 7 348 43 43 4.2 3.8

Table 1. Characteristic parameters of the FePc/polystyrene films.

glass substrates with a contact conductor of indium tin oxide (ITO) by spin coating. After the
deposition, in order to diffuse MPc particles into the polystyrene matrix, the films were heat
treated at 393 K for 10 min. The electric conductivity at 298 K of the device was evaluated with
a four-point probe; for these measurements, the substrates were ITO-coated glasses with sil-
ver strips acting as electrodes. The strips were deposited by the painting process, the current
due to hole-injection from positively-biased ITO was measured and the current due to hole-
injection from silver was measured by reversing the polarity of the bias voltage [3].

2.3. Instruments

For the preparation of the thin films, a Best Tools Smart Coater 200, operating at 400 W, 110 V
and 50/60 Hz, was used. FT-IR measurements were obtained with a Nicolet iS5-FT spectropho-
tometer using KBr pellets for the powders and silicon wafers as substrates for the thin films.
Film thickness values were determined by profilometry in a quartz substrate with a Bruker pro-
filometer, model DEKTAK XT, with STYLUS, LIS 3, 2 um RADIUS-Type B. For SEM, a ZEISS
EVO LS 10 scanning electron microscope was coupled to a microanalysis system and operated
at a voltage of 20 kV and a focal distance of 25 mm, using thin films on a glass substrate. The
size and distribution of dispersed particles were observed using a JEOL JEM2010 transmission
electron microscope (TEM), LaB, cathode at 200 kV, 105 uA. UV-Vis spectroscopy was carried
out in a Unicam spectrophotometer, model UV300, with a quartz substrate. Electric character-
ization was performed with a programmable voltage source, an auto-ranging pico-ammeter
Keithley 4200-SCS-PK1 and a sensing station with a Next Robotix lighting controller circuit.

3. Results and discussion

The capillaries with FePc at the ends and tetramethoxysilane in the centre were allowed to
stand at 22°C for 2 weeks. Subsequently, the generated particles were extracted from the
capillary within the gel and were observed by SEM. Figure 2a and b show, at different magni-
fications, the FePc particles embedded in tetramethoxysilane. Despite being very small, they
showed several structures-amorphous particles, regular particles and needles. In all cases,
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there was a heterogeneous distribution of particles inside the gel. The particles were removed
from the tetramethoxysilane, washed and dried in a vacuum. The use of this technique dem-
onstrated its applicability to the in situ formation of nanometric-size particles inside the gel.
A preliminary TEM study of the nanometric FePc particles was also performed. Figure 2c
shows a high-resolution bright field image of the FePc sample, where particles ranging in
size between 2.8 and 20 nm can be seen. The shape of the particles is irregular, although some
quasi-spherical forms can be discerned. A heterogeneous dispersion of the nanoparticles can
also be seen. Among the advantages of using this technique for reinforcing particles in the
manufacture of composite materials are that a very small sample can be used and the continu-
ous manipulation of particles can be avoided; furthermore, it permits a continuous control of
the growth process. It is difficult to determine the crystalline arrangement from TEM imaging
in real space, so a wider characterization by IR spectroscopy was required. IR spectroscopy
was specifically used to identify the structural nature of FePc, given that the IR spectrum
depends on the crystal structure [4]. MPcs are known to have different polymorphs which are
strongly identified by the IR absorption technique [4, 5]. It has been reported that the a-form
of MPc can be characterized by a band around 720 cm™, while the -form can be character-
ized by a band at a greater wave number at approximately 778 cm™ [4-7]. In Table 2, it can be
observed that FePc particles were present in the o and {3 crystalline structures.

Figure 2. Gel with FePc particles (a) 1000%, (b) 7000x and (c) HRTEM micrographs.
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Sample v (C—C) cm™ v (C=N) cm™ v (C—H) cm™ a-form cm™ B-form cm™
FePc (particle) 1609 1336 1164, 1119, 750 724 771
Thin Film 1 1607 1331 1163, 1119, 754 - 769
Thin Film 2 1609 1336 1164, 1119, 750 724 771
Thin Film 3 1603 1330 1164, 1117, 754 720 770
Thin Film 4 1604 1330 1163, 1119, 754 720 771
Thin Film 5 1604 1331 1166, 1117, 755 721 771
Thin Film 6 1603 1331 1165, 1119, 755 719 769
Thin Film 7 1603 1331 1165, 1116, 754 719 769

Table 2. Characteristic FT-IR bands for particles and thin films (cm™).

IR spectroscopy was also used in this study to ascertain the presence of the more representa-
tive bonds in the FePc compound and to determine whether significant chemical changes
took place in this compound during gel nucleation and growth. Table 2 shows the charac-
teristic bands of the FePc particles deposited in the gel. The band appearing at 1605 + 4 cm™
was assigned to the C=C stretching vibration for pyrrole. The peak responsible for carbon-
nitrogen stretching and bending occurs at 1332 + 4 cm™. The peaks located at 1164 +2, 1117 +2
and 753 +2 cm™ are due to the interaction of carbon atoms with the peripheral-ring hydrogen
atoms [8-10]. As mentioned above, spin coating and annealing were carried out to produce
the thin films. IR spectroscopy was performed in these films in order to verify that no chemi-
cal changes occurred in the FePc when interacting with the polymeric matrix. The results
reported in Table 2 indicate that the MPc did not experience any chemical changes during
the deposition; on the other hand, in the thinnest film, the crystalline phase o is not observed.
It is worth mentioning that the signals in the MPc film show slight changes in location. This
occurs because, in thin films deposited by any method, internal stress affects intramolecular
angles and bonding energies. Nevertheless, no significant changes occurred in these films, so
we may conclude that the production of thin films from the FePc-polystyrene composite by
the spin coating and annealing method is appropriate.

The films obtained by spin-coating were analysed by SEM. Figure 3 shows the presence of
the two phases-polymeric matrix and reinforcement. During the annealing, polymerization of
polystyrene generated the needles shown in the images, while the FePc appears as irregular
conglomerates. It is possible to observe that the MPc particles have been embedded in the
matrix homogeneously, i.e. the particles are not agglomerated or separated, which in turn
indicates that polystyrene is an appropriate matrix for this kind of films.

Optical absorption measurements are widely used to characterize the electronic properties of the
thin films through the determination of parameters describing the electronic transitions, such as
the band gap [11]. Additionally, the absorption spectra of different polymorphs of some Pc com-
pounds show significant differences among each other [7, 12]. MPcs have two typical absorption
bands, namely the Q-band in the visible region and the B or Soret-band in the near-ultraviolet
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(b)

Figure 3. SEM images for spin-coated films (a) 83x, (b) 500x y (c) 1000x.

region [13-17]. The Q-band absorption is responsible for the characteristically intense blue/green
colour of the FePc and this band has been interpreted in terms of mt-t* excitation between bond-
ing and antibonding molecular orbitals [7, 18]. The electronic spectrum of the FePc particles
obtained in tetramethoxysilane (Figure 4a) shows the characteristic Q-band absorption in the
578-750 nm region. The Soret-band of FePc arising from the deeper 7t levels = LUMO transitions
is observed in the UV region at about 400463 nm. On the other hand, the optical transmittance
spectra of the thin-films deposited on quartz were recorded from 200 to 1100 nm and are shown
in Figure 4b. Differences in the transmittance of the films under examination can be attributed to
differences in thickness (see Table 1) according to Beer’s law [19]. When the thickness of the film
increases, its transmittance diminishes. The UV-Vis spectra of FePc-polystyrene thin films exhib-
ited a characteristic B-band in the region between 285 and 305 nm. The observation of a single
peak in the Soret band resembles that observed for CoPc, NiPc and other Pc thin films [20, 21].
This may imply that the splitting structure of this peak could be affected by the orbital overlap
of the Pc ring with the central metal [21], although this effect could also be attributed to the pres-
ence of the polymeric matrix which, while protecting the FePc from oxygen and environmental
humidity, also alters its optical properties in the visible region of the spectrum.

Considering the above results, we further apply the Cody and the Tauc models for the determina-
tion of the band gaps of the thin films [7, 22, 23]. The Cody model provides an effective option for
the determination of the optical band of thin films in terms of its thickness. It uses the dependence
between the photon energy (hv) and the absorption coefficient (a). The optical gap associated
with the thin films is determined by extrapolating the linear trend observed in the spectral depen-
dence of (a/hv)" on hv. Here, 1 is a number characterizing the transition process, depending upon
the nature of the electronic transitions responsible for the absorption; for direct transitions, 1 =2,
and, for indirect transitions, n = 2. The intersection with the x-axis of this linear extrapolation cor-
responds to the Cody optical gap for a given thickness of the film [22, 23]. The Cody optical gaps
Eg. and Eg, for both transitions were obtained from the curves corresponding to those shown in
Figure 5 for the film with the largest thickness (Thin Film 7), which was of 348 nm.

For this film, the optical gap value is similar for both transitions, direct and indirect (see Table 1);
apparently, the high concentration of FePc related to the highest thickness could be the cause
of the similar values, but this could also be related to the fact that 4.3 eV is the lower (indirect)
gap of the films under examination and may be quantitatively close to the direct gap for that
particular film. On the other hand, the Tauc model argues that the optical gap associated with
the thin film is determined through an extrapolation of the linear trend observed in the spectral
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Figure 4. UV-Vis spectroscopy for: (a) FePc and (b) thin films.
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Figure 5. Plot of (a) (a/hv)"? and (b) (a/hv)? versus photon energy hv of Thin Film 7.

dependence of (ahv)" over a limited range of hv [1, 2]. The Tauc optical gaps for Eg, and Eg,
were obtained from the curves corresponding (see Table 1) and they are shown in Figure 6 for
the film with the largest thickness (Thin Film 7). According to Table 1 for the thicker film the
smaller gap is obtained. At this thickness, the concentration of FePc is sufficient to decrease
the gap and increase the overlap between Pc molecules. As the stacking between molecules
increases, the electron flux increases significantly with respect to films with small thickness. On
the other hand, for each of the remaining films, the indirect transition is the predominant one,
with significantly lower values than the direct transition; this may be expected because of the
mainly amorphous characteristics of the films and their effect on orbital overlap, despite FePc
showing some « or {3 crystalline forms. It is important to mention that the variations in optical
gaps obtained for the different films are of low significance. This may be attributed to the similar
morphology of these systems, which differ only in the quantity and size of the FePc particles
and the arrangement of their molecules in the polymeric matrix. Additionally, the gap depends
on the number of electrons of the metal in the Pc ring [7, 19], which is the same for all these films.
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Finally, in order to evaluate the electrical properties of the thin films, the four-point technique
was employed, using the glass substrate with an ITO conducting contact. This study was
performed on the sample labelled Thin Film 7, which was the one having the lowest optical
gap. The film had a surface area of 2.16 cm?®. Figure 7 shows the I-V characteristics of Thin
Film 7 under different illumination types (yellow light, white, blue, orange, green, infrared,
UV and dark [no light]). Regardless of the wavelength of the incident radiation, the thin film
follows the same behaviour. At lower voltages (around 10 V), ohmic conduction is evident,
while space-charge limited conductivity (SCLC) governed by an exponential trap distribu-
tion is found at higher voltages. On the other hand, the I-V characteristics display symmetric
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Figure 7. [-V characteristics of Thin Film 7: (a) ITO is positively biased and (b) ITO is negatively biased.
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behaviour, both when (a) the current due to hole injection from positively biased ITO was
measured and also when (b) the current due to hole injection from silver was measured by
reversing the polarity of the bias voltage. This can be explained by a negligible energy barrier
at the ITO/FePc-polystyrene and FePc-polystyrene/Ag interfaces leading to a SCL bulk current
when either the ITO or silver electrode is positively biased [24-26].

4. Conclusions

Different types of particles and crystalline polymorphs of FePc can be obtained with tetrame-
thoxysilane. This blend of structures can be used to produce thin films of a polystyrene matrix in
a FePc matrix-reinforcing base by spin coating. Upon examination of the resulting films by SEM,
a homogeneous particle distribution is found within the polystyrene matrix. IR spectral analysis
confirms that FePc is rich in a and  polymorphs. None of the MPc samples suffers chemical
degradation during the thin-film deposition and annealing processes. The UV-Vis spectra of
the particles in tetramethoxysilane show two well-defined absorption bands, namely, the Soret
and the Q-bands. The exact position of these bands depends on their particular structure, metal
complexation, and peripheral substituents. However, only the Soret band appears in the UV-Vis
spectra of the thin films, which can be attributed to the presence of the polymeric matrix. The
optical gap was calculated from the Cody and Tauc models and the information obtained from
the absorption spectra indicates that these films absorb light on either side of the blue-green
region. Since these FePc compounds absorb light on either side of the blue-green spectrum, they
could be used as photosensitive materials in practical applications. The electrical conductivity of
the films was evaluated and ohmic characteristics were found at low voltages, while an SCLC-
type behaviour can be observed at higher voltages. Bias inversion in the I-V measurements does
not have a significant effect on the thin-film electric transport characteristics.
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