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Abstract

Rice bacterial blight disease (BBD), caused by Xanthomonas oryzae pv. oryzae (Xoo), is 
one of the serious diseases in most rice production regions. In this report, we screened 
for resistance mutants from the mutation pool of TNG67 variety derived by sodium 
azide (SA) mutagenesis with phenotype investigation and assisted with fluorescent 
detection. SA0423 is a mutant of broad range resistance against Xoo for many years; 
the resistance was studied following the concept of central dogma. The inheritance 
of resistance was characterized, and three QTLs were mapped onto the genome of 
SA0423 using simple sequence repeat (SSR) markers and R/qtl by genomic approach. 
In transcriptomic approach, only one differential expression QTLs (eQTLs) were iden-
tified; two differentially expressed proteins (pQTLs) were identified and genetically 
characterized by proteomics after Xoo challenged in SA0423 mutant. To improve the 
bacterial blight resistance, makers are developed from QTLs, eQTLs and pQTLs to 
pyramid the resistance genes through marker-assisted breeding in our rice breeding 
programs.

Keywords: rice, bacterial blight disease (BBD), resistance, mutant, genetics, genomics, 

transcriptomics, proteomics, marker-assisted breeding (MAB)

1. Introduction

Rice is a staple food crop and provides more than one-fifth of the calories to humans [1]. 

However, rice production is often challenged by bacterial blight disease (BBD), which is one 

of the most destructive diseases caused by Xanthomonas oryzae pv. oryzae (Xoo). This disease 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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was first found in rice by Japanese farmers in 1884. It was not a serious problem in rice pro-

duction until the release of high-yielding varieties during the 1960s–1970s [2–4]. Some field 
observations displayed that this disease can lead up to 50% losses in rice planting areas [3, 5]. 

In Taiwan, BBD often occurs in the second crop season, and its annual pathogenesis area is 

usually more than 20,000 hectares, accounting for about 4% of the total rice production area. 

Because of climate change, this disease has become more and more serious recently [6, 7]. 

Furthermore, International Rice Research Institute (IRRI) proposed that BBD can cause up to 

70% of yield loss when susceptible varieties are grown in the environments suitable for Xoo 

pathogens (http://www.knowledgebank.irri.org/index.php?option=com_zoo&task=item& 
item id=806&Itemid=606).

The existing prevention of BBD includes field management, fertilizer control, pesticide appli-
cation and resistance varieties with the major resistance gene (R gene) or the pattern recog-

nition receptor gene (PRR gene). In field management, appropriate spacing could prevent 
rice plants from the infection of pathogens. Appropriate nitrogen fertilizer application could 

prevent rice plants from pathogens’ infection [8]. The spray of probenazole or other chemicals 

might prevent the infection before transplantation, but this treatment could not be applied 

in tropical regions [8–10]. So far, the use of resistant varieties is considered to be the most 

effective strategy against this disease. In recent years, there is no specific bactericide which 
could effectively control BBD, and chemicals application also increases production cost, plant 
injury and environmental pollution. On the other hand, the evolution of pathogens increases 

the diversity and the difficulty in the breeding program for durable or broad-spectrum resis-

tance [11–13]. Therefore, breeding the bacterial blight-resistant varieties is urgently required 

to meet the demand of a safe rice production.

Previous studies demonstrated that climate change has been proposed to affect the microflora 
of Xoo in the field and even change the life cycle and evolution of Xoo pathogen. Large-scale 

and long-term cultivation of Xa4-mediated resistant varieties also altered the Xoo popula-

tion. Consequently, resistant varieties carried with only Xa4 have become susceptible to Xoo in 

Southeast and South Asia [14]. Bacterial blight is one of the serious diseases often occurring in the 

second crop season (August to November) in Taiwan. Our previous results also displayed that the 

top 20 cultivars with large-scale cultivation in Taiwan were susceptible to Xoo (Table 1). Therefore, 

if the bacterial blight disease is endemic, it will cause serious loss to the rice production. These 

results indicated again that breeding of the bacterial blight-resistant varieties is urgently required 

to meet the demand of the Taiwanese rice industry.

The availability of resistant sources is the major limitation in breeding. A series of near isogenic 

lines (NILs) harboured various Xa genes (IRBB NILs) that were developed on the susceptible 

cultivar, IR24, at the International Rice Research Institute (IRRI) [15]. The IRBB lines, often 

applied in the domestic resistance breeding, were introduced and inoculated with Taiwan 

local pathogens to test their responses in our previous work. The results indicated that only 

the IRBB lines carried Xa5 or Xa7 showed moderate resistance while all other IRBB lines car-

ried single Xa gene showed susceptibility to the local pathogens (Figure 1) [16]. Many of the 

resistance genes were introduced into the susceptible varieties by marker-assisted selection 

(MAS) to improve bacterial blight resistance [17, 18]. However, many of these genes lose their 

Advances in International Rice Research266



resistance due to the fast evolution of pathogen [19]. It has been reported that durable or 

broad-spectrum resistance can prolong the bacterial blight resistance in rice [20, 21]. Actually, 

broad-spectrum and durable resistance can be accomplished by the introduction of one very 

resistance gene and pyramiding with two to three other resistance genes [22]. However, large-

scale and long-term cultivation of resistant varieties might result in changes of pathogen race 

in the Xoo population and cause the breakdown of resistance [14, 23]. These findings indicate 
that exploration of new germplasms with novel resistance genes become a crucial subject in 
breeding resistance variety.

Planting area during 2010–2015 Variety Response for Xoo

Order Ha XM42 XF89-b

1 484,063 Tai Nan No. 11 7 7

2 142,132 Taikeng No. 8 7 7

3 119,641 Taikeng No. 14 7 9

4 98,404 Taikeng No. 16 7 9

5 47,139 Taikeng No. 9 9 9

6 46,204 Taichung-Hsien 

No. 10

9 9

7 41,424 Taikeng No. 2 7 9

8 39,374 Kaohsiung 139 9 9

9 39,149 Taikeng No. 11 9 7

10 23,767 Taichung-Hsien No. 1 7 9

11 22,965 Taichung 192 9 7

12 19,357 Taikeng No. 4 7 7

13 19,108 Tail Nung No. 71 5 7

14 13,989 Tail Nung No. 67 9 9

15 13,867 Taikeng No. 5 7 9

16 9341 Tai Tung No. 30 9 7

17 9178 Kaohsiung 145 7 7

18 7318 Taoyuan No. 1 5 7

19 7152 Taikeng-No. 1 7 7

20 5660 Taichung-Hsien 

No. 17

9 9

Note: The resistance of the top 20 rice cultivars was investigated according to the Kauffman’s method [66]. The lesion 

level can be classified by a scale of five scores, such as 1 (HR), 3 (MR), 5, 7 (MS) and 9 (HS).

Table 1. The resistance investigation of the top 20 rice cultivars grown in Taiwan.
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2. Mutant screening

Sodium azide (NaN
3
, SA) induced mutants can be applied to any rice breeding program at 

any facility, while genetically modified mutants can only be handled in the isolating facilities 
under the governmental regulation. A TNG67 mutant pool was developed by SA mutagenesis 

at the Taiwan Agricultural Research Institute (TARI) in our previous breeding program. All 

the mutants were screened and purified according to their morphological traits by at least 
10 generations of self-crossing, selection and purification following pedigree procedures. 
Over 3000 pure line mutants on the same genetic background of TNG67 variety were main-

tained in the pool [24]. The genetic diversity of mutant lines in this pool includes disease 

resistance (blast, bacterial blight and sheath blight) [25], pest resistance (brown planthopper, 

white backed planthopper and leafroller) [26], herbicide resistance (bentazon, glufosinate and 

glyphosate) [27] and many agronomic traits; grain quality and morphology diversities sel-

dom found in rice cultivars. These results suggested that the TNG67 mutant pool should have 

high potential in basic research as well as variety improvement [24].

To improve the bacterial blight resistance for local rice varieties, we attempted to obtain the 
local resistant germplasms from the selection of TNG67 mutant pool [7]. So far, at least 50 

bacterial blight-resistant mutants have been selected from the mutant pool (Figure 2). These 

Figure 1. The resistance investigation of IRBB lines against the local pathogens in Taiwan [16].
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mutants might carry various genotypes of resistance and participate in the resistant pathway. 

Among them, SA0423 and SA0424 showed stable resistances against various Xoo pathogens 

for many years. The genetic analysis displayed that these two mutants might carry multiple 

resistant genes to confer broad-spectrum resistance and show different resistant phenotypes 
(data shown in the following section).

3. Genetic and mapping of resistant genes

At present, planting resistant varieties is accepted as the most efficient, reliable and economic 
strategy against bacterial blight. It has been proposed that the durable and broad spectrum resis-

tance of plants was usually governed by multiple genes or quantitative trait loci (QTLs) [28]. 

Therefore, the discovery of novel resistance genes against Xoo is very important in the breeding 

program for disease resistance. So far, 42 resistance loci (Xa) for BBD have been identified and 
characterized [refer to: http://www.nig.ac.jp/labs/PlantGen/english/oryzabase-e/; http://www.
gramene.org/; http://www. ricedata.cn/and previous reviews] [29–31]. Most of these genes 

were found to be controlled by dominance [32], but 14 of them, such as xa5, xa8, xa13, xa15, 

xa19, xa20, xa24, xa25, xa26b, xa28, xa31, xa32, xa33 and xa34, were found to be regulated in a 

recessive manner [33, 34]. These genes distribute among 9 chromosomes of rice genome, and 16 

of them are clustered on chromosome 4 (Xa1, Xa2, Xa14, Xa31(t) and Xa38) and chromosome 11 

(Xa3/26, Xa4, Xa10, Xa21, Xa22, Xa23, Xa30(t), xa32(t), Xa35(t), Xa36(t) and Xa40), respectively. 

At present, Xa1, Xa3/Xa26, xa5, Xa10, xa13, Xa21, Xa23, Xa25, Xa27 and Xa40 have been cloned 

Figure 2. The screening of resistance mutants from TNG67 mutation pool by inoculation of local pathogens in Taiwan.

The Application of Genomic Approaches in Studying a Bacterial Blight-Resistant Mutant in Rice
http://dx.doi.org/10.5772/67331

269



and characterized to encode six types of proteins, i.e. NBS-LRR, receptor kinase like protein, 
ER membrane protein, Os8N3 protein, MtN3/saliva family member and WAK3, indicating the 
existence of multiple mechanisms of bacterial blight resistance in rice [35–47].

Near isogenic lines (NILs) with various Xa genes on the background of IR24, a very suscep-

tible cultivar, named IRBB NILs were applied as the donor parents [15]. Besides, molecular 

markers linked with Xa genes in IRBB NILs were developed through comparative map-

ping strategy for improving the BBD resistance of commercial cultivars [17, 18]. However, 

it has been reported that the plant resistance genes may breakdown due to the fast evo-

lution of pathogen isolates [19]. Many studies suggested that large-scale and long-term 

cultivation of resistant varieties may result in changes of pathogen race in Xoo population 

and caused the breakdown of resistance [14, 23]. These findings indicated that exploration 
of new resistance genes has become an important subject for breeding resistance variety.

Among the previously selected resistant mutants, SA0423 shows a stable resistance to 

Taiwan local pathogens for years. Hence, their genetic properties and BBD resistance genes 

were characterized in our team. Except for the bacterial blight resistance, SA0423 also has 
thinner leaf blades, shorter plants, more erect plant type and less tiller number than its muta-

genesis parent, TNG67 (Figure 3). A strong and stable Taiwanese epidemic pathogen, Xoo 

XF89b, has been used for genetic analysis and mapping the bacterial blight-resistance genes. 
Taichung Native 1 (TN1), a very susceptible indica rice cultivar, was used as the recipient 

parent. The cross TN1/SA0423 was made to generate F
1
 and F

2
 materials for genetic analysis 

and mapping of resistant genes. After pathogen infection, the lesion lengths of TN1, SA0423 

and TN1/SA0423 F
1
 were 17.2 ± 1.1, 1.2 ± 0.7 and 3.4 ± 0.9 cm, respectively, indicating that 

Figure 3. Morphology of TNG67, SA0423 and their disease responses at 28 days after inoculation (DAI) with Taiwanese 
Xanthomonas oryzae pv. oryzae XF89b.
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the BBD resistance of SA0423 is partial dominance (Figure 4). The lesion lengths of the TN1/

SA0423 F
2
 population showed a continuous distribution (Figure 5) and indicated that the 

disease resistance of SA0423 is controlled by multiple genes or quantitative trait loci (QTLs).

A linkage map covering 12 chromosomes with an average distance of 11.2 cM was constructed 

and applied to map the resistance of SA0423 using 361 TN1/SA0423 F
2
 individuals [48]. QTL 

analysis was performed using the R program language platform (version 3.1.0; http://www.r-
progect.org/) with an add-on package, qtl [46, 47]. Three QTLs are detected on chromosomes 

11, 8 and 6 and account for 21.1, 11 and 9.6% of the observed phenotypic variance, respectively 
(Table 2 and Figure 6). Three QTLs are localized to 6, 7 and 14 cM intervals, respectively; they 

contribute to approximately 47% of the total phenotypic variation (resistance) and no epistatic 
effect could be detected among them [48].

Figure 5. Distribution of lesion length (cm) after inoculation with Taiwanese Xanthomonas oryzae pv. oryzae XF89b in an 
F

2
 population from the cross, TN1/SA0423.

Figure 4. Morphology of TN1, SA0423 and their F
1
 individual, and the disease response at 28 days after inoculation (DAI) 

against Taiwanese Xanthomonas oryzae pv. oryzae XF89b (A, upper panel). The lower panel of (B) shows the morphology 
of leaf lesion at 28 DAI; left panel shows the leaf lesion (cm) investigated at 28 DAI. Error bar is the standard error of 
mean (n = 3). Means with the same letter are not significantly different at 5% level by LSD test.
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4. Transcriptomic studies

According to QTL analysis, all the three identified QTLs contribute to 47% of the resistance 
indicating that other resistance genes may exist in SA0423 [48]. Therefore, the transcriptomes 

of TNG67 and SA0423 were determined by microarray technologies to explore the bacterial-
resistant genes in SA0423.

QTL Chr. QTL 

(Confidence 
interval) (cM)

LOD Phenotyping 

variance (%)

Additive effect Dominance 

effect

qBBR11.1 (Q1) 11 124 (121–127) 26.60 21.10 –1.64 –0.44

qBBR08.1 (Q2) 8 39 (34–41) 15.04 11.04 –1.20 –0.82

qBBR06.1 (Q3) 6 120 (111–125) 13.20 9.58 –1.13 0.79

Note: QTLs are labelled according to the principles of previous publications [67, 68].

Table 2. Putative QTLs were identified from the F
2
 population of TN1/SA0423.

Figure 6. The linkage mapping of SSR/InDEL markers and SA0423 resistance QTLs in the F
2
 population of TN1/SA0423. 

The markers and genetic distances (cM) are labelled to the right and left of the chromosome, respectively. The QTLs 

are coloured with red, and other published genes and QTLs associated with BBR are labelled as blue dots and lines, 

respectively.
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For a precise and non-destructive investigation in the infection process of bacterial blight 

pathogen after inoculation, a Xanthomonas fluorescent expression plasmid, pRBBZsGFP, 
was constructed with a strong fluorescent gene ZsGFP and the pBBR1MCS vector for 

simultaneous detection of bacterial blight pathogen infection and the gene expression [49]. 

Pathogens infection with XF89bZsGFP was conducted on the dark-treated albino seedlings of 

TNG67 rice variety; the multiplication and colonization of XF89bZsGFP could be detected in 

0.5 hour after inoculation, and the maximum fluorescence was observed on the same leaf in 
1 hour after inoculation (Figure 7). However, the fluorescence was reduced in the following 
time course indicating that the multiplication and colonization of XF89bZsGFP might be sup-

pressed by the endogenous immune system of rice. At 7 DAI (days after inoculation), the 

stronger fluorescence was observed again on the same leaf and extended continuously to 
the leaf base, suggesting that the rice immune system was broken down by the XF89bZsGFP.

After the infection of Xoo XF89b, RNA samples prepared from the leaves of TNG67 and 
SA0423 collected at 0, 0.5, 1, 2 and 6 hours, respectively, were applied in the transcriptomic 

analysis with Agilent Oligo Microarray (60K, custom-made, Agilent Technologies) [50]. The 

results demonstrated that 2727, 3585 and 18,432 differentially displayed transcripts were 
identified in SA0423, TNG67 and in both, respectively. Among them, 58 genes involved 
in SA0423 resistance were further conducted by bioinformatics strategies [refer to: http://
www.nig.ac.jp/labs/PlantGen/english/oryzabase-e/; http://www.gramene.org/; http://www.
ricedata.cn/and previous reviews] [29–31] as well as “plant-pathogen interaction” pathway 

(http://www.genome.jp/kegg), and clustered with BioLayout Express3D [51]. By confirming 
with real-time RT-PCR, 17 resistance gene candidates (Table 3) were selected for bioinformat-

ics analysis, they have been proposed to be involved in plant-pathogen interaction pathway, 

biosynthetic pathway of plant hormones, autophagy and signal transduction prior to the 

induction of plant immune system [52].

To confirm the function of the identified genes from transcriptomic analysis, the SSR markers 
flanking in 5 cM region of these genes were retrieved from GRAME web site, screened for the 
polymorphic markers between TN1 (the susceptible parent) and SA0423 (the resistant parent), 

and then genotyping was performed in the F
2
 population [53]. Simultaneously, the disease lesion 

of F
2
 individuals was investigated to represent the resistance phenotype after the inoculation of 

Xoo XF89b. The linkage between genotype and phenotype was conducted using R/qtl software by 
the single marker regression model. The results displayed that only RM6838 adjacent to Ankyrin 

showed a significantly high LOD (6.86) (Table 4) indicting that Ankyrin (LOC_Os08g15840) has 
a high potential to be involved in the resistance of SA0423. The bioinformatics analysis shows 

that this Ankyrin protein shares 76% similarity with the Arabidopsis RING type ligase, XBAT32, 

of an XB3 family. In Arabidopsis, Ankyrin has been proposed to negatively regulate 1-aminocy-

clopropane-1-carboxylate synthase (ACS), a key enzyme involved in the ethylene biosynthesis 
pathway, and then compromised immune system [54]. The real-time RT-PCR displayed that the 

expression level of Ankyrin in SA0423 was lower than that of TNG67, and higher expression levels 
of OsACS1 and OsACS3 were found in the BBD resistance mutant, SA0423 (Figure 8). These find-

ings showed that ethylene metabolism may involve in the disease resistance of SA0423. A total 

of 15 mutations in the coding region resulting two mutation residues, Ser280Pro and Thr381Ala, 
were discovered in the Ankyrin of SA0423 through cloning and sequencing (data not shown). 

At the same time, the transgenic rice plants with less expression of ankyrin showed a significant 
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Figure 7. Visualization of X. oryzae pv. oryzae and E. coli expressing GFP in the dark-treated albino TNG67 seedlings.
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Gene name Gene ontology

AnkyrinAnkyrin repeat-rich protein BP Cellular process, biosynthetic process, protein 

modification process, post-embryonic development, 
anatomical structure morphogenesis, response to 

endogenous stimulus

MF Binding, protein binding, catalytic activity,

ATG1ATG1 BP Cellular process, cellular component organization, 

protein modification process

CC Plasma membrane

MF Molecular function

CaM_Chr.1-1OsCam1-3-Calmodulin BP Biological process, response to abiotic stimulus, post-

embryonic development, signal transduction

MF Binding, protein binding

CaM Chr.1-2OsCam3-Calmodulin BP Biological process, response to abiotic stimulus, post-

embryonic development, signal transduction

MF Binding, protein binding

CaM_Chr.2EF hand family protein BP Protein modification process, biosynthetic process

CC Cytoplasm

MF Binding

CaM_Chr.5OsCam2-Calmodulin BP Signal transduction

CC Plasma membrane

MF Signal transducer activity, binding, protein binding

CMPGImmediate-early fungal elicitor 

protein CMPG1

BP Protein modification process, biological process

CC Intracellular

MF Catalytic activity, binding

DUF26Domain of Unknownfunction 

26-lc

BP Protein modification process, cellular process, 
metabolic process

CC Plasma membrane

MF kinase activity, protein binding, cellular process,

FMOFlavin-containing 

monooxygenase family protein
BP Cell death, signal transduction, metabolic process, 

response to biotic stimulus, cellular process, response 

to stress

CC Endoplasmic reticulum, membrane, cell

MF Nucleotide binding, catalytic activity, binding

JOMJasmonateO-methyltransferase BP Multicellular organismal development, cellular 

process, metabolic process

CC Cellular component

MF Binding, protein binding, transferase activity

PxMPPeroxisomal membraneprotein BP Biological process

CC Peroxisome, membrane

MF Molecular function
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Gene name Gene ontology

SAMSAM dependent carboxyl 
methyltransferase

BP Biological process, cellular process, metabolic process

CC Cellular component

MF Transferase activity

SNARESNARE associated Golgiprotein CC Cytosol

UbiUbiquitin family protein MF Molecular function

Xa2OsSAUR21—Auxin-responsive 
SAUR gene family member

BP Response to endogenous stimulus

MF Molecular function

Xa25Nodulin MtN3 family protein BP Biological process, cellular process, transport

CC Plasma membrane, membrane, cell

MF Transporter activity

xa5Transcription initiation factor IIA 

gamma chain

BP Biosynthetic process, nucleobase, nucleoside, 

nucleotide and nucleic acid metabolic process

CC Nucleoplasm

Note: BP, biological process; CC, cellular component; MF, molecular function.

Table 3. The resistance gene candidates identified from transcriptomic analysis in a bacterial blight-resistant mutant, SA0423.

Gene Chromosome Position (cM) Marker LODz

CaM_Chr.1-1 1 50.8 RM6039 0.8941

CaM Chr.1-2 1 50.9 RM572 1.7618

CaM_Chr.2 2 25.3 RM6378 0.0886

CMPG 2 131 RM13938 0.5618

Xa2 4 107.4 RM17492 1.2685

JOM 4 120.3 RM17604 0.5006

xa5 5 3 RM17741 0.2725

CaM_Chr.5 5 104.7 RM6972 0.5717

FMO 6 19.1 RM19556 0.2034

SAM 6 33.5 RM276 0.1920

DUF26 7 73.2 RM3826 0.1547

SNARE 7 116.1 RM1362a 0.2325

Ankyrin 8 42.9 RM6838 6.8579

ATG 10 73.7 RM5471a 0.0479

Ubi 10 99.8 RM147 0.2880

Xa25 12 57.9 RM28157 0.4657

PxMP 12 69.6 RM519 0.2940

Note: z LOD, log
10

 of odds.

Table 4. Linkage analysis between the resistance gene candidates and the resistance trait of SA0423 by R/qtl.

Advances in International Rice Research276



resistance against Xoo XF89b isolate. Therefore, Ankyrin is considered to be one of the expression 
quantitative trait loci (eQTLs) involved in the bacterial blight resistance of SA0423.

5. Proteomics study

Proteomics technology provides a direct investigation of proteins which may participate in rice 

disease resistance. In previous studies, plasma membrane (PM) proteomic analysis of the geneti-

cally modified rice suspension cells with Xa21 demonstrated that PM-associated ATPase, phos-

phatase, hypersensitive-induced response protein, prohibitin, zinc finger/C2 domain protein, 
universal stress protein and heat shock protein might be involved in the early immune response 

against compatible and incompatible Xoos [55]. A proteomic analysis of Java 14 seedling revealed 
that 20 differentially displayed proteins were responded to bacterial inoculation and categorized 
into energy, metabolism and defence pathways [56]. These proteomic studies were conducted 

at 0, 12, 24 even 72 hours after inoculation [55, 56] whereas considering the rapidity of defence 

observed in other plant-pathogen interactions [57] and the short life cycle of Xoo, it is expected 
that Xoo might induce rice reprogramming immediately after pathogen infection.

A comparative proteomics analysis was conducted to characterize the proteomic profiling in 
leaves of TN1 (as a susceptible control), TNG67 and SA0423 after the infection of Xoo XF89b at 
0, 6, 48 and 72 hours after pathogen inoculation (Figure 9). There were 60, 38 and 96 differen-

tially displayed protein spots identified only in SA0423, TNG67 and TN1, respectively, by the 
separation of two-dimensional gel electrophoresis (2-DE). Finally, a total of 150 disease resis-

tance-related proteins were identified from these protein spots through the ESI-Q-TOF mass 

Figure 8. Quantitative analysis of mRNA expression of Ankyrin and OsACS homologs in TNG67 and SA0423 after 

inoculated with Xoo XF89b by using real-time RT-PCR.
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spectrometry (MS) analyses. Ten resistance protein candidates (Table 5) were then determined 

by bioinformatics approach including annotation of metabolic pathway, comparative map-

ping analysis with published resistance loci [refer to: http://www.nig.ac.jp/labs/PlantGen/eng-

lish/oryzabase-e/; http://www.gramene.org/; http://www.ricedata.cn/and previous reviews] 
[29–31] as well as ‘plant-pathogen interaction’ pathway (http://www.genome.jp/kegg), and 
clustered with BioLayout Express3D [51]. These candidates were proposed to be involved in 

ascorbate, glyoxylate and glutathione, and oxidative phosphorylation metabolisms.

The candidate genes identified from proteomics approach were genetically confirmed as 
previously described, the SSR markers flanking in 5 cM region of them were retrieved from 
GRAMENE web site, and screened for polymorphism TN1 (the susceptible parent) and 

SA0423 (the resistant parent). Genotyping analysis was performed in 94 TN1/SA0423 F
2
 indi-

viduals using the polymorphic markers. The lesion of these F
2
 individuals was investigated 

after the inoculation of Xanthomonas oryzae pv. oryzae XF89b as the resistance phenotype. The 
linkage between genotyping and resistance was analysed by MapDisto according to Lorieux’s 
protocol [60]. The result displayed that only RM5970 adjacent to the putative 2,3-bisphospho-

glycerate-independent phosphoglycerate mutase (BIPM) and RM14099 adjacent to aspartate 

aminotransferase (AST) showed significant association with the SA0423 resistance (Table 5). 

BIPM has been proposed to have some important roles in glycolysis, stomatal movement, veg-

etative growth and pollen production in Arabidopsis [61], but it was usually found to be dif-

ferentially expressed under abiotic or biotic stress [62–64]. AST was found to be up-regulated 

in rice spotted leaf 5 (spl5) mutant that showed spontaneous HR-like lesions on its leaves, and 

a broadly enhanced resistance against rice blast and bacterial blight pathogens [65]. Based on 

these findings, BIPM and AST are found to have high potential to participate in the resistance 
mechanism of SA0423. These results provide novel insights into the molecular mechanisms of 

rice response to Xoo infection and discovery of new resistance genes as the basis for applica-

tion in molecular breeding. Therefore, both BIPM and AST are considered to be the proteomic 

quantitative trait loci (pQTLs) for the bacterial blight resistance in SA0423.

Figure 9. 2-DE image analysis of rice leaf proteome under Xoo XF89b infection. Total leaf proteins were extracted and 
separated by 2-DE then stained with sliver staining according to the previous protocol [58, 59]. An equal amount (200 μg) 

of the total proteins was loaded on each gel strip. The differentially expressed resistance-related proteins in TN1, TNG67 
and SA0423 are marked as N, T and S, respectively.
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Gene Marker hmzA hmzB htz n m(hmzA) m(hmzB) m(htz) R2 A D |D/A| F p

L-ascorbate peroxidase 1, 
cytosolic (APX1)

RM7197 30 35 29 94 6.56 8.28 7.57 0.05 0.862 0.15158 0.18 2.5 0.08795

Putative 

2,3-bisphosphoglycerate-

independent 

phosphoglycerate mutase 

(BIPM)

RM5970 16 28 50 94 8.29 8.841 6.52 0.12 0.276 –2.04831 7.41 6.05 0.00337 * *

Glyceraldehyde-

3-phosphate 

dehydrogenase, putative, 

expressed (G3PD)

RM14336 23 23 40 86 6.75 7.833 7.4 0.02 0.539 0.10949 0.2 0.77 0.46538

Aspartate 

aminotransferase (AST)

RM14099 42 22 14 78 6.61 9.433 7.29 0.14 1.412 –0.73185 0.52 6.34 0.00281 **

2,3-bisphosphoglycerate-

independent 

phosphoglycerate mutase, 

putative, expressed 
(BIPME)

RM8084 24 52 18 94 6.74 8.134 6.73 0.05 0.695 –0.70982 1.02 2.34 0.10172

Triosephosphate 

isomerase (TRI)

RM24714 16 33 45 94 7.43 8.23 7.01 0.03 0.401 –0.81535 2.03 1.44 0.24307

30S ribosomal protein S4, 

chloroplastic (RP30S)

RM5579a 18 36 40 94 6.59 8.479 7.05 0.06 0.943 –0.48336 0.51 3 0.05439

Fructose-bisphosphate 

aldolase, chloroplastic 

(FBPA)

RM26143 10 46 35 91 8.09 7.596 7.31 0.01 –0.247 –0.53336 2.16 0.24 0.78348

Cysteine synthase (CYS1) RM520 23 28 43 94 7.8 6.835 7.8 0.02 –0.483 0.47717 0.99 0.91 0.40443

Table 5. Linkage analysis between the resistance protein candidates and the resistance trait of SA0423 by MapDisto. The “**” was indicated “statistical significance” 
(p ≤ 0.05).
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6. Conclusion

Breeding resistance variety is the best strategy to overcome the bacterial blight disease dam-

age in rice and is a very challengeable work. Availability of resistant genotype is the major 

limitation to the resistance improvement. However, plant disease resistance is a complex trait 
usually regulated by QTLs, epistatic effect, and influenced by the interactions among patho-

gen, host and environment.

In this review, a durable resistance mutant, SA0423, was firstly obtained from screening a 
sodium azide-induced mutation pool on the genetic background of TNG67 rice variety. The 

genomic approaches and technologies were conducted according to the concept and flow 
of Central Dogma. In the genomic study, the inheritance and gene corresponding to the 

BBD resistance of SA0423 was conducted. Linkage maps were constructed, and three QTLs 

(qBBR06.1, qBBR08.1 and qBBR11.1) for resistance were identified from SA0423. Meanwhile, 
the linkage markers for each QTL were developed according to the linkage map for marker-

assisted breeding.

The transcriptomics and proteomics technologies were applied to identify the expressed 
genes and proteins corresponding to the pathogen inoculation for BBD resistance on SA0423. 

The differential displayed genes (or proteins) were annotated by blast with the gene data-

base (NCBI and GRAMENE websites), and then their putative biological functions or the 

participating pathways were predicted by GO analysis. Besides, they were compared with 

the published resistance genes in Xa locus or putative rice ‘plant-pathogen interaction’ path-

way to confirm the resistance genes or pathway in SA0423. The results demonstrated that 17 
candidate genes (eQTLs) and 10 candidate proteins (pQTLs) might be involved in SA0423 

resistance mechanism. The association between these candidates and SA0423 resistance was 

further evaluated by integration of genotyping and phenotyping of TN1/SA0423 F
2
 progeny 

through genetic approach. Both genomic and bioinformatics approaches were integrated to 

confirm the function and genetic relationship of the candidate genes with BBD resistance. The 
final results suggested that only one major expression QTLs (eQTLs) [53] and two protein 

QTLs (pQTLs) (Lin et al., 2017, paper in preparation ) are confirmed to confer the resistance 
of SA0423. It is worth to note that both the eQTLs and pQTLs identified in this study are not 
identified in the genetic mapping approach, and the products of eQTLs were not found in the 
protein profiling (pQTLs), and vice versa. These results showed that the genomic approach 
alone cannot unravel all the genes involved in the disease resistance of SA0423.

Phenomics or phenotype can provide the solid evidence for gene function. Our previous 

findings were tested through transgenic approach as well as marker-assisted backcrossing 
(MABC). The transgenic rice plants with less expression of ankyrin and BIPM showed signifi-

cant resistance against Xoo XF89b isolate, supporting that these two eQTLs are involved in 
BBD resistance in rice. The identified resistance QTL, qBBR11.1, of SA0423 was introduced 
and improved the BBD resistance in a very susceptible indica variety, TCS10, through MABC 

approach. These results demonstrated that the QTLs identified from genomic, transcriptomic 
and proteomic approaches can be practically applied to improve the BBD resistance in rice 

breeding program.
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