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Resumo

Os sistemas distribuidos controlados por computador (Distributed
Computer-Control Systems / DCCS) encontram-se largamente
disseminados, cobrindo aplicacoes que vao desde automacao e
controlo de processos industriais & avionica, robdtica e controlo
automovel. Muitas destas aplicacoes incluem actividades com ca-
racteristicas de tempo-real, i.e., actividades que tém de ser exe-
cutadas durante janelas temporais bem definidas. Pela sua natu-
reza distribuida, estes sistemas compreendem multiplas unidades
de processamento as quais, apesar de auténomas, necessitam de
comunicar entre si para assegurar o controlo global do sistema.
Assim, a troca de dados entre nodos encontra-se também sujeita
a restricoes temporais, donde o sistema de comunicacao tem de
garantir que esta ocorre de acordo com as restrigdes temporais
requeridas pela aplicacao.

Muitas aplicagoes de DCCS sao complexas e heterogéneas, in-
cluindo diferentes conjuntos de actividades, as quais exibem di-
ferentes propriedades e requisitos. Por exemplo, encontram-se
frequentemente actividades periédicas, resultando por exemplo
de controladores operando em malha fechada, e actividades es-
poradicas resultantes de eventos que ocorrem em instantes im-
previsiveis no ambiente a controlar. Todavia, a importancia e
tipos de requisitos temporais destas actividades sao independen-
tes da natureza da sua activacdo. Por outro lado, em sistemas
DCCS a flexibilidade tem vindo a crescer de importancia, em
resultado quer da necessidade de reduzir custos de instalacgao,
configuracao e manutencao, quer do uso deste tipo de sistemas
em aplicacoes emergentes, como manufactura agil (flexible man-
ufacturing), bases de dados de tempo-real com nimero variavel
de clientes, robodtica moével em ambientes nao estruturados e con-
trolo automatico de trafego, que tém de lidar com ambientes que
sao inerentemente dindmicos.

Aplicagoes exibindo este grau de complexidade e dinamismo re-
querem sistemas suportando servigos activados quer pela passa-
gem do tempo (time-triggered ) quer por eventos (event-triggered)
com garantias temporais e a0 mesmo tempo exibindo flexibilidade
operacional, suportando alteracoes dinamicas as caracteristicas

das actividades que compreendem.



No que respeita especificamente ao sistema de comunicacao, os
protocolos existentes genericamente nao preenchem estes requi-
sitos. Em sistemas eminentemente time-triggered, os servicos
event-triggered nao existem ou sao implementados de uma forma
ineficiente, enquanto em sistemas eminentemente event-triggered
algumas das propriedades mais interessantes exibidas pelos sis-
temas time-triggered sao perdidas. Por outro lado flexibilidade
e garantias temporais tém sido consideradas como propriedades
conflituosas; sistemas que providenciam servi¢os com garantias
temporais frequentemente requerem a especificacao estatica dos
requisitos de comunicacao, enquanto sistemas que suportam alte-
racoes dinamicas aos requisitos de comunicacao usualmente nao
fornecem garantias temporais.

O paradigma de comunicagdo apresentado nesta tese, denomi-
nado Flezible Time-Triggered communication (FTT), concentra
os requisitos de comunicacao e o escalonamento de trafego num
unico nodo e utiliza uma técnica para distribuicdo do escalona-
mento denominada master/multi-slave. Esta caracteriza-se por
consumir pouca largura de banda e por ser independente do al-
goritmo de escalonamento utilizado. Esta arquitectura facilita
nao s6 a implementacao de escalonamento on-line, suportando
portanto alteracdes aos requisitos de comunicagao durante o fun-
cionamento do sistema, como também a implementacao on-line
de controlo de admissao, o que permite rejeitar alteracoes que
comprometam as garantias temporais do sistema, assegurando
assim um comportamento previsivel.

Em alguns dominios especificos de aplicacao de DCCS, verifica-se
uma necessidade crescente de suporte a gestao on-line de Quali-
dade de Servigo (Quality of Service / QoS). Genericamente, esta
funcionalidade permite aumentar a eficiéncia da exploracao dos
recursos do sistema, pois habitualmente verifica-se uma relagao
directa entre o grau de recursos alocados as actividades de um
sistema e o respectivo QoS. A gestao dindmica de QoS requer um
alto grau de flexibilidade, donde esta tese também descreve como
o paradigma F'T'T suporta este tipo de servigo no que concerne

ao tréafego.



Esta tese apresenta o paradigma FTT e defende que este permite
combinar no mesmo sistema de comunicacao diferentes tipos de
trafego, com a possibilidade de alterar as suas propriedades, exe-
cutar gestao de QoS e alterar a politica de escalonamento durante
o funcionamento, sem comprometer as garantias temporais gran-
jeadas ao trafego e atingindo uma elevada eficiéncia no uso da
largura de banda.

O paradigma FTT apresentado nesta tese teve a sua génese no
protocolo FTT-CAN. Apés algum trabalho realizado sobre este
protocolo verificou-se que os conceitos principais poderiam ser
abstraidos, resultando um paradigma de comunicacao genérico,
passivel de implementacao em diversos meios de comunicacao.
Para verificar a performance do paradigma FTT, esta dissertagao
inclui algumas contribuic¢oes relativas ao protocolo FTT-CAN,
nomeadamente no que concerne ao estudo do desempenho em
termos de escalonamento e analise de tempos de resposta. Por
outro lado é também apresentada a implementacao do paradigma
FTT sobre Ethernet (FTT-Ethernet), a qual se destina a aplica-
¢Oes mais exigentes no que respeita a poder de processamento
e largura de banda, por exemplo aplicagoes integrando trafego
multimédia. No que respeita a este ultimo protocolo explora-se

essencialmente assuntos como a gestao dinamica de QoS.



Abstract Distributed computer-control systems (DCCS) are widely disseminated,
appearing in applications ranging from automated process and manu-
facturing control to automotive, avionics and robotics. Many of these
applications comprise real-time activities, that is, activities that must be
performed within strict time bounds. Due to its distributed nature, these
systems comprise multiple autonomous processing units that, despite be-
ing autonomous, need to exchange data in order to achieve control over
the environment. For this reason the data exchange among different
nodes is also subject to real-time constraints, and thus the communica-
tion subsystem must be able to deliver data within specific time bounds.
Many DCCS applications are complex and heterogeneous, comprising dif-
ferent sets of activities with different properties and requirements. For
instance, they commonly include periodic activities, e.g. resulting from
closed loop control, and sporadic activities resulting from events that oc-
cur at unpredictable instants in time in the environment under control.
These types of activities can have distinct levels of criticalness and time-
liness requirements, independently of their activation nature. On the
other hand, flexibility is becoming increasingly important in DCCS, due
both to the need of reducing the costs of set-up, configuration changes
and maintenance, and also to the recent use of DCCS in new types
of applications, such as agile manufacturing, real-time databases with
variable number of clients, automotive, mobile robotics in unstructured
environments and automatic traffic control systems, that must deal with
environments that are inherently dynamic.

To cope with such high degree of complexity and dynamism, distributed
real-time systems must support both time and event-triggered commu-
nication services under timing constraints and, at the same time, they
must be operationally flexible, supporting on-the-fly changes to the com-
putational activities they execute. Concerning specifically the commu-
nication subsystem, existing real-time protocols do not generally fulfill
these requirements. In systems eminently time-triggered, event-triggered
services are either non-existing or handled inefficiently, while in systems
eminently event-triggered, interesting properties of time-triggered ser-
vices are normally lost. On the other hand, flexibility and timeliness are
often considered as conflicting: systems that provide timeliness guaran-
tees are based on a static configuration of the communication activities
while systems that support dynamic changes to the communication ac-

tivities do not provide timeliness guarantees.



The communication paradigm herein presented, the Flexible Time-
Triggered communication (FTT) paradigm, centralizes the communica-
tion requirements and scheduling of synchronous traffic in a single node
and uses a master/multi-slave schedule distribution technique that re-
quires low overhead and is independent of the particular scheduling al-
gorithm employed. This architecture facilitates the implementation of
on-line scheduling, which supports dynamic changes to the message set
properties, and the implementation of on-line admission control, which
permits to ensure that changes to the message set are only accepted if
the timeliness requirements are all met.

In some application domains DCCS are also facing a trend towards higher
flexibility in order to support on-line Quality-of-Service (QoS) manage-
ment. This feature is generally useful to increase the efficiency in the
utilization of system resources since typically there is a direct relation-
ship between resource utilization and delivered QoS. On-line QoS man-
agement requires a high level of flexibility, and thus this dissertation also
describes how the FTT communication paradigm can support such type
of services.

This dissertation presents the FTT paradigm and argues that this
paradigm allows to combine in the same communication system different
types of traffic, with the ability to change their properties and the respec-
tive scheduling policy at run-time, without relinquishing predictability
guarantees and achieving efficient use of network bandwidth.

The FTT paradigm presented in this thesis has its roots in the FTT-
CAN protocol. After some work performed over the FTT-CAN protocol,
it was realized that the main concepts could be abstracted and used to
build a generic communication paradigm, which could be implemented
in distinct communication networks. To assess the performance of the
FTT paradigm, this dissertation includes some contributions to the FTT-
CAN protocol, mainly in what concerns scheduling and response-time
analysis. Moreover, it also presents an implementation over Ethernet
(FTT-Ethernet), which aims at more resource demanding applications,
supporting for instance multimedia activities. For this reason, in the
scope of the FTT-Ethernet protocol most of the work presented is related

to on-line QoS management.
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Chapter 1

Introduction

1.1 Overview

In the last decades distributed computer control systems (DCCS) became
widely disseminated, appearing in many application fields such as auto-
mated process and manufacturing control, automotive systems, avionics and
robotics [Pim90, [LA99, [Kop97]. Many of these applications pose stringent
constraints to the properties of the underlying control system, which arise
from the need to provide predictable behavior during extended time periods.
Depending on the particular type of application, failure to meet these con-

straints can cause important economic losses or even put human lifes in risk

[Kop97].

To cope with these requirements, early DCCSs have been developed based
on static off-line scheduling, i.e., all activities are modeled and analyzed dur-
ing system design, based on a complete a priori knowledge about the system
properties (e.g. [Kop99]). The resulting static schedule is used during system
run-time to coordinate all system activities. This framework provides a high
level of predictability, since all activities and respective activation instants
are known beforehand, and so a correct system will perform as planned in all
anticipated circumstances. For this motive, many safety critical applications

employ static off-line scheduling.

Frequently, complete knowledge about the system is hard or even impos-
sible to gather at design time [SLST99]. In this case, the use of static off-line
scheduling of activities would be impossible at all, or, even when possible,

would result in poor resource efficiency, because it would require the use of
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an extended range of conservative approaches. Thus, to be able to deploy
such kind of application in a more effective way, system activities should be
dynamically scheduled during run-time, as they are required. In this case it
is also possible to provide a priori guarantees about the system predictabil-
ity, however the amount of information required is lower than in the case of

static off-line scheduling.

1.2 Flexible real-time distributed systems

Many real-world systems are complex and dynamic, evolving during time
and consequently changing their requirements that nevertheless must be al-
ways fulfilled by the control system. Furthermore, the adoption of DCCSs in
markets such as the automotive, in which economic issues are of paramount
importance, requires highly efficient systems. To cope with the requirements
of such applications, DCCS systems must be able to adapt themselves to
the evolving requirements of the environment they are attached to. How-
ever, high resource efficiency frequently conflicts with static scheduling ap-
proaches, according to which resources are permanently allocated based on
worst-case requirements.

An initial step to improve efficiency consists in the provision of several
modes of operation during system design. At run-time, the particular mode
of operation that better fits the operational requirements is selected. Is-
sues concerning the timeliness during mode changes have been addressed
in previous scientific work [Ped99l [Foh93]. Some communication protocols
support the mode changes semantic to provide some level of flexibility (e.g.
Time-Triggered Protocol (TTP) [KG94]). Nevertheless, mode changes are
still restrictive, since all the modes are required to be completely known and
characterized during system design. For complex highly dynamic systems,
this degree of knowledge can be unavailable, or can result in an explosion on
the number of possible modes, making their implementation cumbersome or
even impossible at all.

To be able to support applications having such high complexity and high
degree of dynamism, a distributed real-time system must be operationally
flexible, meaning that it must support on-the-fly changes to the computa-
tional activities carried on. In distributed systems, computation activities

imply the execution of tasks, eventually residing in distinct nodes, as well as
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data exchanges between them using an appropriate communication network.
Both task execution and data exchange activities are closely related. In a
distributed environment tasks require as input and/or produce as output
data, which must be distributed by the underlying communication network
within constrained time boundaries [I'C94) [(GH98|. Failing to meet such
time constraints can result in feeding tasks with outdated data, which in its
turn can compromise the entire system behavior. From this strong inter-
dependency between tasks and communication activities within distributed
systems, it follows that changes in the properties of real time activities can
lead to changes both in the task and message scheduling.

Another requirement found in real-time distributed systems is the capac-
ity to deliver both time and event-triggered communication services under
timing constraints [LA99]. In time-triggered systems the communication
activities are triggered at pre-defined time instants, according to a global
schedule, thus requiring a global time synchronization. This approach al-
lows setting the different message streams out of phase, which in some cases
may result in a reduction in the number of message streams that become
ready for transmission simultaneously. Therefore, this type of systems is
well suited to convey periodic updates of state data. On the other hand, in
event-triggered systems communication activities occur only when required,
thus these systems are more adapted to convey alarms and management
data. Most DCCSs privilege either one or the other type of services. In
systems eminently time-triggered, event-triggered services are either non-
existing or handled inefficiently in terms of either response time or network
utilization. On the other hand, in systems eminently event-triggered, inter-
esting properties of time-triggered services such as global synchronization
and composability with respect to the temporal behavior are normally lost.
Thus, another aspect that should be addressed by a flexible system is the effi-
cient integration of both these traffic paradigms, with mechanisms providing

temporal isolation between them, in order to prevent mutual interference.

1.3 Central proposition and contributions

This work introduces a communication paradigm deemed to support the re-
quirements of flexible distributed real-time systems. It is our thesis that the

proposed communication paradigm allows combining in the same commu-
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nication system different types of traffic, with the ability to change traffic
properties and/or the respective scheduling policy during system run-time,
without relinquishing predictability guarantees and achieving efficient use of
network bandwidth. More specifically, the envisaged traffic types are time
and event-triggered with distinct timeliness requirements (hard/soft/non-
real-time). The proposed communication paradigm meets the following ob-

jectives:

e Support for on-line message scheduling of time-triggered messages based

on dynamic requirements;

e Support for on-line changes between different scheduling policies, both

with fixed and dynamic priorities, concerning the time-triggered traffic;

e Timeliness guarantees concerning the real-time traffic, based on on-line

admission control;

e Support for distinct traffic types (time and event-triggered) with tem-

poral isolation;
e Low protocol overhead;

The contributions found in this thesis relate to the specification, analysis and

implementation of such communication paradigm, and are the following:

1.3.1 Improvements on the FTT-CAN protocol:

The FTT-CAN protocol was developed at the University of Aveiro ([AFESS])
and relies on the Controller Area Network (CAN) [Rob91] as the base com-
munication network protocol. The initial implementation of the FTT-CAN
protocol comprised a planning scheduler and an on-line admission control
protocol based on a schedulability analysis for the periodic traffic assuming
fixed priorities. The research made in the scope of this thesis addresses on
one hand the scheduling of periodic messages using dynamic priorities and
respective feasibility analysis, and on the other hand the support for aperi-

odic traffic, both real and non-real-time, and respective timeliness analysis.

1.3.2 Specification of the FTT paradigm

Based on the set of requirements resulting from the main proposition of

this thesis, the major contribution consists on the definition of a framework
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able to support the communication requirements of flexible distributed real-
time systems. This framework is designated Flexible Time-Triggered (FTT)
paradigm and defines a communication system architecture. The system ar-
chitecture herein referred to is generic in the sense that it does not rely on
any particular network protocol. The only requirement posed by the FTT
paradigm with respect to the underline communication protocol is the ability
to exchange broadcast messages. The FTT paradigm defines a centralized
scheduling architecture, where a particular node, designated by Master, is
responsible for managing a database with all the relevant communication re-
quirements, performs on-line feasibility tests concerning the real-time traffic,
executes a dynamic scheduler and finally distributes the generated schedules
to the network devices. From the device side, the FTT paradigm also defines
the rules to perform communications. Furthermore, all these functions are
abstracted from the respective implementation, thus allowing applications
to be developed independently of the particular implementation and MAC.
To support such architecture, suitable scheduling and on-line admission pro-

tocols were also developed.

1.3.3 The FTT-Ethernet protocol

One important aspect of flexibility is related to scalability. Distributed real-
time systems are used in a wide range of applications, with different require-
ments in many aspects, namely bandwidth. Observing that some applica-
tions require greater bandwidth than the one made available by traditional
fieldbus protocols like CAN, the FTT paradigm was also implemented over
Ethernet, leading to the FTT-Ethernet protocol. With respect to this proto-
col, besides the implementation of the functions strictly related with the FTT
paradigm, a further research was developed in the field of dynamic Quality of
Service (QoS) handling and support for multimedia message streams. Con-
cerning the dynamic QoS management, an implementation of the Elastic
Task Model [BLA9S| was performed, providing support for message streams
characterized by ranges of acceptable QoS concerning the network utiliza-
tion, as well as a method to assign dynamically the best possible QoS to

each such message, according to the available network resources.



6 CHAPTER 1. INTRODUCTION

1.4 Organization of the dissertation

In this chapter we have outlined the scope of the thesis and briefly discussed
the need for further research on the flexibility of the communication net-
works supporting distributed real-time systems. Finally, it was presented
the central proposition of this thesis and its main contributions. The re-
minder of this thesis provides background information on this research field
and presents the work done in order to support the proposition made above,

being organized as follows:

Chapter 2 includes a brief overview of the area of real-time systems, with
special emphasis on the issues that are addressed in this dissertation.
Starting with an informal presentation of the main concepts on real-
time systems, the focus then moves to an overview of the most relevant

results in the field of scheduling algorithms and schedulability analysis.

Chapter 3 is devoted to distributed real-time systems. This chapter starts
by a characterization of distributed real-time systems, task activation
and co-operation models and message scheduling. Then it presents an
overview of some of the more relevant communication protocols used
in DCCS systems. Besides the dedicated communication protocols,
developed specifically for use in DCCSs, are also addressed real-time
protocols based on Ethernet, which recently has been target of inter-
est both from the scientific and industrial communities. This chapter
includes two tables that summarize the properties of these protocols in
issues ranging from the support of different types of traffic to timeliness

guarantees and operational flexibility.

Chapter 4 presents the Flexible Time-Triggered communication paradigm.
This chapter is the heart of this dissertation and starts by present-
ing a set of requirements that flexible real-time communication net-
works must fulfill, as well as the justification for the proposal of a new
paradigm. Then the FTT paradigm is presented in detail, both from
an architectural and functional point of view. Furthermore, this chap-
ter also presents a generic schedulability analysis, both concerning the
synchronous and asynchronous traffic, adapted to cope with the FTT
constraints. Although generic, the analysis herein presented must be

slightly adapted to handle the peculiarities of the underline commu-
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nication network, issue that is addressed in Chapters 6 and 7, for the
FTT-CAN and FTT-Ethernet implementations, respectively.
Although chronologically the FTT paradigm as appeared after the
FTT-CAN protocol, the presentation becomes more clear and under-
standable if the paradigm is presented before the implementations.
For this reason the FTT paradigm is presented in Chapter 4, while
the FTT-CAN and FTT-Ethernet implementations are presented in
Chapters 6 and 7, respectively.

Chapter 5 discusses the suitability of the FTT paradigm to support sys-
tems that benefit or even require dynamic QoS management. This
chapter starts by discussing the internal implications of supporting
this type of service. Then two illustrative QoS management policies

are presented, which are used in a simple case study.

Chapter 6 and 7 present two FTT implementations, one based on the
Controller Area Network protocol (Chapter 6), and another based on
Ethernet (Chapter 7). Although from the application point-of-view the
set of services provided by any of the implementations is basically the
same, their internals must cope with the particularities that each one
of the underline communication protocols presents. Such particulari-
ties become specially visible in what concerns the message arbitration,
access-control and arbitration techniques employed in each case, which
are carefully discussed. Moreover, these chapters also include the small
adaptations that must be performed in the generic schedulability anal-
ysis presented in Chapter 4.

Both of these chapters include simulation and experimental results that

allow, in some extent, to assess the performance of the protocols.

Chapter 8 contains a brief summary and discussion about the contribu-
tions presented in this dissertation and suggests some lines of future

research that seem promising.
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Chapter 2

Real-time systems

fundamentals

2.1 Basic concepts on real-time systems

Computer-based control systems are becoming a commonplace. They are
often found in applications ranging from bread toasters, washing machines,
automatic doors and access control systems to automotive, avionics, robotics
and process and manufacturing industries. A computer-based control system
comprigses at least a sensory system to gather data about the state of the
system under control, or environment, a computer able to execute a control
algorithm and an actuation system.

The nature of the computations made in this kind of systems is very

broad, ranging from complex numerical computations required to imple-
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Figure 2.1: Generic computer-based control system block diagram
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ment advanced control algorithms or image processing used for instance in
robotics, to basic operations like turning some device on or off according to
a binary input fed by some sensor. A broad range of values is also found
concerning the time granularity. For example, in industrial environments it

is usual to find control loops in the range of seconds to milliseconds.

Systems are considered to produce logically correct results when its out-
puts are related to the actual inputs according to the laws determined dur-
ing system specification. However, for some systems, this requirement is
not enough. For instance, if the bread toaster controller takes an exces-
sive amount of time to turn it off after detecting that the bread is enough
toasted, the output of the process can become a piece of charcoal. Such
kind of systems, in which computations must be carried within specific time
boundaries, are referred as having real-time requirements. More concisely,
a real-time computer system is a computer system in which the correctness
of the system behavior depends not only on the value of the computation but
also on the time at which the results are produced [SR88]. Thus, a real-time
system must react to changes in the state of the object under control within
time boundaries, which depend on the dynamics of the controlled object.

The last instant at which a result can be produced is called deadline.

Depending on the particular application, failing to meet deadlines can
have dissimilar consequences. For example, to be able to reach some geo-
graphical position, a mobile robot must collect data from the environment
and use it to perform trajectory planning. However, to be able to deal with
real environments, it must also be able to detect and avoid obstacles. If due
to some system overload, the trajectory planning task sometimes does not
have enough computational resources to execute, the robot will take more
time to reach its goal, but eventually will reach it, provided that the deadline
miss ratio is not too high. On the other hand, if, in the course of the same
overload, the robot fails in timely detecting the presence of an obstacle, it
can collide with it. This failure can cause economical losses, for example if
the robot or the object with which it collides becomes damaged, or it can
also put human lifes in risk, for example if the undetected object is a person.
In deadlines are classified as firm or soft. If a result has utility even
after the deadline has passed, the deadline is classified as soft, otherwise it
is firm. Whenever failing to meet a firm deadline can lead to a catastro-

phe, the deadline is called hard. Whenever a computer system executes at



2.2. SCHEDULING REAL-TIME SYSTEMS TASKS 11

least one activity having an hard deadline it is called a hard real-time system
or safety-critical real-time system. If no hard real-time deadlines exist, the

system is called soft real-time system.

2.2 Scheduling real-time systems tasks

In the scope of real-time systems, processes (or logical units of concurrency
within the system, interacting to achieve a common goal [Aud93]) in a real-
time application are mapped on software tasks. Tasks thus represent ac-
tivities handled by the computational system. Usually computational sys-
tems execute several activities, eventually with different deadline constraints.
Some of these activities are independent of each other, with no precedence
constraints or shared resources. Other activities must be executed in some
specific order, or share access to some entities, such as data structures or
I/O devices.

To be able to perform correctly, the resources required by all the activ-
ities should be granted in a way that they can be completely served within
their respective deadlines, while respecting any other requirements, such as
precedence constraints. The procedure of selecting which task should be
executed at a particular point in time is called scheduling and the set of
rules that, at any time, determines the order in which tasks are executed is
called a scheduling algorithm. More accurately, a scheduling problem can
be defined [But97 by three sets: a set of n tasks J = {Ji,Ja, ..., Jn}, a
set of m processors P = {Py, P5,..., P, } and a set of s types of resources
R ={R1, Ry, ..., Rs}. Furthermore, precedence relations among tasks can be
specified through a directed acyclic graph and each task can have associated
timing constraints. In this context scheduling means to assign processors
from P and resources from R to tasks from J in order to complete all tasks
under the imposed constraints.

Real-time scheduling is perhaps the research topic that deserved most
attention from the real-time research community. A common taxonomy (e.g.
[Butd7]) of real-time task scheduling is presented in Figure

Off-line. All scheduling decisions are made prior to system execution.
The resulting schedule is stored in a table, called dispatcher table, which
contains the list of tasks and the respective activation instants. During run-

time a cyclic executive, called dispatcher, sequentially and repeatedly scans
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Figure 2.2: Taxonomy of real-time scheduling algorithms

the list and activates the tasks at the appropriate instants. To be able to use
this approach, a complete characterization of the properties of the task set
is required in advance. Therefore, this method cannot handle systems that
require runtime changes to the task set. On the other hand, such systems
require low runtime overhead and support complex scheduling algorithms.
The former property results from the fact that, during runtime, the overhead
is due only to the dispatcher execution, which in turn only needs to read data
sequentially from a table. The latter feature results from the fact that the
scheduling is performed prior to system execution. Thus, the time required
to build the schedule is not tightly constrained. Moreover, the scheduling
algorithm can be (and usually is) executed in a computational system other
than the one used to deploy the system, which can have more adequate

resources to perform this function.

On-line. Scheduler decisions are taken during system runtime, upon
the occurrence of some event that requires rescheduling. Such events can
be for instance the arrival of new tasks, a blocking, or the termination of
the currently executing task. To select the next task to execute among the
ready ones, a particular parameter, usually called priority, is used. The
priority is derived by some specific methodology, resulting for instance from
the temporal properties of the task or its relative importance. This approach
supports runtime changes to the message set, since in each invocation the
scheduler considers only the set of ready tasks. On the other hand, the
runtime processing required to find a schedule can be substantial. Since
the time required to build the schedule is overhead in what concerns the
execution of application tasks, the complexity of the scheduling algorithms

must be bounded.

Static. Scheduling decisions are based on fixed information that is avail-
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able at pre-runtime, e.g. fixed priorities.

Dynamic. Scheduling decisions are based on information that is avail-
able at runtime, only, e.g. the release instants of aperiodic tasks.

Non-preemptive. A running task executes until it decides to release
the allocated resources, usually on completion, irrespectively of other tasks
becoming ready, eventually with higher priority. In this case scheduling
decisions are only required after task’s completion instants.

Preemptive. A running task can be suspended or interrupted during
its execution, if at some instant a task with higher priority becomes ready.
In non-preemptive systems, when a task becomes ready, it must wait at least
for the completion of the running task, independently of their relative prior-
ities. This effect is called blocking. Preemptive systems are more responsive
concerning higher priority tasks, since these tasks do not suffer blocking from
lower priority ones. However, in this case, scheduling events are generated
more often, in all task activation instants, resulting in higher overhead when

compared with non-preemptive systems.

2.3 Schedulability analysis

Hard real-time systems demand a high degree of predictability, thus the
feasibility of the schedule should be guaranteed in advance. On the other
hand, soft real-time systems have less stringent requirements, and missing
deadlines have no catastrophic consequences. Scheduling algorithms fall into
two classes, guarantee-oriented and best effort [SR92]. In off-line scheduled
systems task properties such as activation instants, worst-case computation
times, etc. are known a priori, and the schedule is built before runtime.
Provided that the assumptions concerning the task properties are accu-
rate, if a feasible schedule is found the tasks are guaranteed to meet their
deadlines during system runtime. Thus, this kind of algorithms fall into
the guaranteed-oriented class. However, in on-line scheduled systems, that
knowledge might not be available, e.g. when tasks are created and removed
dynamically during runtime. In this case, if there is an on-line admission
control mechanism based on a schedulability test, responsible for rejecting
changes to the task set that compromise the system timeliness, the schedul-
ing algorithm also falls into the guarantee-oriented class. This scheduling

paradigm is known as dynamic planning based [RS94], because the resources
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Figure 2.3: Exact, sufficient and necessary schedulability tests

of accepted tasks are reserved into the future. On the other hand, if changes
to the task set are always accepted without any kind of assessment, it is not
possible to guarantee the system timeliness, and thus such algorithms fall in
the best effort category .

The schedulability test algorithms are closely related to the particular
scheduling algorithm. The schedulability test result must reflect the ability of
the particular scheduling algorithm to find or not a feasible schedule. In some
cases, the schedulability test is exact, meaning that, if a feasible schedule can
be built, the test result is positive, and conversely, a negative result implies
that the scheduling algorithm is unable to find a feasible schedule. However,
exact schedulability tests can be too complex to execute on-line, or even be
computationally intractable [GI75]. Sufficient schedulability test algorithms
can be simpler. However, a sufficient schedulability test can reject feasible
sets. On the other hand, sets rejected by a necessary schedulability test
algorithm are not certainly schedulable, but tasks sets that are not rejected
may be not schedulable. Figure 23 depicts the guarantees delivered by these
types of schedulability tests.

2.4 Examples of scheduling algorithms

This section briefly presents some paradigmatic scheduling algorithms and
respective schedulability analysis. Particular attention is devoted to Rate
Monotonic and Earliest Deadline First scheduling algorithms because later

on these algorithms will be re-used for message scheduling.

2.4.1 Task model

Tasks are activated in response to some event. For instance, in a computer
controlled system, whenever a sensor detects a change in a particular en-

vironment variable, the task that implements the control algorithm can be
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activated and executed when possible. In this case the activation instants of
the tasks cannot be predicted. These tasks are called aperiodic. If there is a
minimum inter-arrival time between any two consecutive activations, tasks
are called sporadic. Some other tasks are required to be activated regularly.
This situation is often found in computer control systems, to enforce the
sampling of data at some desired rate. These tasks are known as periodic.
To be able to schedule a set of tasks, scheduling algorithms need to have a
minimum level of knowledge about each task properties. A set of periodic
tasks I' can be denoted by:

FZ{Ti(CZ‘,TZ‘,PhZ‘,DZ‘,PTZ‘),iz1,...,7},} (21)

where:

C; is the worst case computation time required by task 7;;

T; is the period of task 7;;

Ph;, is the initial phase of task 7;;

D; is the relative deadline of task 7;;

Pr; is the priority or value of task ;.

The activation instant (a; ;) and absolute deadline value (d; ) of the generic

k" instance of the periodic task 7; can be computed as:

aikzphi—i-(k—l)*Ti
dik = @ik + D;

The same notation is valid for sporadic tasks, except that the period (73)
becomes the minimum inter-arrival time (mit;) and the initial phase is not
defined. In this case the activation instant and absolute deadline instants

can be computed as:

Qi) 2> A -1 + mit;

dig = @ik + D;
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2.4.2 On-line scheduling algorithms

The seminal work by Liu and Laylan [LL73] includes two of the most impor-
tant scheduling algorithms for independent task scheduling in single CPU
systems. These algorithms are the Rate Monotonic, for static priorities sys-
tems and Earliest Deadline First for dynamic priorities systems. The rele-
vance of these algorithms results from the fact that they are optimal among
their classes. An algorithm is optimal if it is able to generate a feasible

schedule whenever some other algorithm of the same class is able to do it.

Rate Monotonic algorithm

The Rate Monotonic (RM) algorithm [LL73] is an on-line preemptive algo-
rithm based on static priorities.

According to the RM algorithm, priorities are assigned monotonically
with respect to the tasks period; the shorter the period, the greater the
priority:

VTZ',T]' el : T; <Tj = Pr; > P?“j (2.2)

At runtime, whenever a task instance is activated or the running task
finishes executing, the scheduler selects the task with highest period among
the ready ones. The overall complexity of this algorithm is O(n) since in-
serting a new task instance in an order queue of n elements may take up to
n steps. At dispatching time, selecting the highest priority ready task just
requires to get the first element of the head of the queue.

Earliest Deadline First Algorithm

The Earliest Deadline First (EDF) [LL73] algorithm is an on-line preemptive
algorithm based on dynamic priorities. According to the EDF algorithm, the
earliest the deadline the highest the priority of the task. During runtime the

following relation holds:

VTZ‘,T]' elg 1 d; < dj = Pr; > P?“j (2.3)

where I'g is the subset of I' comprising the ready tasks and (d; ,d;) are

the absolute deadlines of tasks 7; and 7.



24. EXAMPLES OF SCHEDULING ALGORITHMS 17

‘Task‘T‘C‘
1 4 | 2
2 6 | 2
3 11 ] 1

Table 2.1: Periodic task set properties
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Figure 2.4: Schedule generated by RM

At runtime, whenever a task instance is activated or the running task fin-
ishes executing, the scheduler selects the task with highest period among the
ready ones. Since the task priorities are dynamic, it is necessary to sort the
ready task queue whenever new task instances are activated. Thus, the time
complexity of this algorithm is O(n*log(n)). If follows that EDF scheduling
requires higher runtime overhead than the RM scheduling algorithm, which
can be problematic in systems based on low processing power CPUs, often
found in some embedded distributed control applications. However, as it will
be seen further on, compared to RM, the EDF algorithm is able to achieve
higher utilization factors and, at the same time, the number of preemptions
can be potentially lower. This results in a trade-off between runtime over-
head and schedulability level, which must be evaluated case by case. Figures
P4 and depict the timeliness relative to the schedules generated both
by an RM and EDF schedule algorithms for a periodic task set with the
properties stated in table E11

In Figure Z4] concerning the RM scheduler, it can be observed that task
71 always executes first, since it has the shortest period among all tasks, and
thus the highest priority. Task 79 always executes before task 73 because it
has a shorter period. However, in Figure 23 concerning the EDF scheduler,
the priority depends on the distance to the deadline, and thus it changes
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Figure 2.5: Schedule generated by EDF

during runtime. For instance, at time t=6 task 73 has the shortest deadline

and thus executes before task 7.

Other scheduling algorithms

Many other scheduling have been developed along the years. Two other well-
known algorithms are the Deadline Monotonic (DM) [LWS&2] and the Least-
Laxity (LL) algorithms [MDZ8]. The DM algorithm belongs to the class of
the static priorities preemptive algorithms and uses the same assumptions
as the RM algorithm except that relative deadlines can be shorter than the
periods. In this algorithm task priorities are assigned according to the task
relative deadlines instead of periods. The DM algorithm is also optimal in
its class [LW82]. The LL algorithm makes the same assumptions as the EDF
algorithm. However, the priority assignment is made according to the laxity
of the task, i.e., the amount of time that a task can wait to be able to finish
within the deadline. The LL algorithm also is optimal in its class [MDZS].

2.4.3 Schedulability tests

Most of the schedulability tests fall in one of two classes: utilization-based
and response-time based. The former ones have a lower computational com-
plexity than the latter ones, thus from this point of view are more suit-
able to be used in on-line scheduled systems. However, response-time based
schedulability tests are usually less pessimistic and can provide individual

response-time bounds for each task.
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Utilization-based schedulability tests

Liw and Layland present a sufficient schedulability condition for the RM
algorithm [LL73]. The following assumptions are assumed:

e Task set only comprises periodic tasks;
e Relative deadlines of all tasks are equal to the tasks periods;
e Independent tasks, i.e., no precedence or mutual exclusion constraints;

o All task instances have the same worst-case execution time.

Moreover, it is implicitly assumed that, once started, task instances execute
until completion or preemption and that the operating system overhead (e.g.
time required for context switching and tick handling) is small and can be
ignored. However, when required, the operating system overhead can be
accounted for in the analysis.

The processor utilization factor of a task set is defined as the fraction
of the processor time spent in the execution of the task set. The ratio
between the computation time of a task and its period gives the fraction of
the processor time spent in executing that task. Thus, the utilization factor

U of a task set composed by n tasks is:

U= Z(%) (2.4)
i=1

The sufficient schedulability analysis presented in [LL7Z3] consists in the
computation of the least upper bound for the task set utilization. For all
task sets having a utilization factor below this bound there exist a feasible
schedule. The least upper bound is given by the following equation:

n
U= ;(%) <n(2i —1) (2.5)

This function approaches (~ 0.69) as n goes to infinity. For task sets with
harmonic periods the least upper bound is one, the maximum attainable in
single processors. To perform this feasibility test it is required to sum the
utilizations of each task. For a task set with n messages this takes n steps,

thus the computational complexity of this method is O(n).
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Other utilization-based analysis for the RM scheduling algorithm have
been proposed, some of them providing exact results ([LSDR8Y]) even for
arbitrary deadlines ([Leh9()]). However, despite being more complex to com-
pute, they still do not provide timing information for individual tasks, as
response-time based schedulability tests do.

An extension of the original analysis of Liu and Layland for non-preemptive
systems was presented in [SS93]. In this case high priority tasks can be
blocked by running lower priority tasks. This blocking occurs at most once
in each task instance activation if a suitable resource access protocol is used
(e.g. Priority Ceiling Protocol). For these assumptions, a set of n periodic
tasks is schedulable by RM if:

Ci+ B;

7 < i(27 —1) (2.6)

=
Vi, 1<i< -
i _z_n,;(Tj)—F

where B; is the time during which task 7; is blocked by lower priority tasks
(priority inversion). The task set is supposed to be ordered by decreasing
priorities, i.e., Vi, : 1 <4,j <n,i<j= P > P;.

B; is determined as follows:

{ B; =0, P; = minj_q , {Pj} (2.7)

B, = max;eip(i) {Cj} , B 7"é minj:l..n {Pj}
where [p(7) denotes the set of tasks having lower priority than task 7; .
In [LL7Z3] it is also presented a schedulability condition for the EDF

algorithm. It relies on the same assumptions of the RM schedulability test

above referred. This condition is exact (necessary and sufficient):

U= (<1 (2.5)
i=1 "

As in the case of RM schedulability test, it is required to sum the uti-
lizations of each task. For a task set with n messages this takes at most n

steps, thus the complexity of this method is also O(n).

Response-time based schedulability tests

Several response-time based schedulability tests have been proposed. Partic-

ularly interesting approaches are [TPS6] and [ABRWYIl, [ABRF93], since they
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not only provide schedulability tests for task sets with arbitrary fixed prior-
ity ordering, but also provide estimations of the actual worst-case response
time of each task.

According to the method presented in [ABRT93|, the longest response
time of a periodic task 7;, denoted as R;, is given by the sum of its com-
putation time (C;) with the amount of interference that it can suffer from
higher priority tasks (I;), calculated in the critical instant, i.e., the instant in
which the combination of the activations of the tasks causes the maximum

interference.

R, =C;+ I (2.9)

The amount of interference due to higher priority tasks is:

R;

I = Z | [TJ C; (2.10)
Vj€hp(i)

where hp(i) is the set of tasks with higher priorities.

Combining equations E29 and EZT0 results:

R.

Ri=Ci+ Y, {ﬂ C; (2.11)
viehp(i) ' 7

Unfortunately, the response time R; appears in both sides of equation

LTIl However, it can be used an interactive technique to solve it. Let 77" be

the n'" approximation of the real value of r;. The successive approximations

are generated by:

it =Ci+ ) VT—’W C; (2.12)
Vj€hp(i)

The iteration starts with ) = 0% and stops when "

in [ABRT93|, it can be shown that ™™ > 7» and so the iteration can

)
n+1 n
i =T

=r". As referred

be stopped either when r or when 7" exceeds the task deadline

or period (for Deadline Monotonic or Rate Monotonic scheduling policy,
n+1

i

respectively). Moreover, in each iteration of Equation either r
+1
>

= T,?
and the process is finished, or r]' rI* meaning that (at least) an instance
of an higher priority task became ready. Thus, iteration steps are lower-

bounded by the lower execution time among the higher-priority task, which
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implies that the termination condition is reached in a finite number of steps.

The analysis presented in [ABRT93] also includes the effect of non-
preemption due to resource sharing. Moreover, it can be extended to in-
dependent non-preemptive systems. In this case Equation can still be
used but the interference equation must be redefined to include the blocking

factor due to lower priority tasks, as follows:

Li=Bi+ > {ﬁw C; (2.13)
Vjchp(i)

The blocking term B; is still given by 1 As in the case of Equation
21T Equation is also solved iteratively. Note however that Equation
does not include the computation time of the task 7; itself, since in
non-preemptive systems, once a task is dispatched it cannot be interrupted
by other tasks.

Contrarily to what happens in fixed priority systems such as DM or RM,
the worst-case response times of a general task set scheduled by EDF are
not necessarily obtained with a synchronous pattern of arrival, i.e., when
all tasks become ready at the same (arbitrary) time instant. In fact, the
worst-case response time of a task 7; is found in a deadline busy period,
in which all tasks but 7; are released synchronously from the beginning of
the deadline busy period and at their maximum rate [GRS96]. In order to
find the worst-case response time of 7;, it is necessary to consider several
scenarios, in which 7; has an activation released at time a, while all other
tasks are released synchronously, at an arbitrary time instant, usually ¢ =0
[Spud6]. Thus, for a given value of a, the response time of a 7; instance

released at time a is given by:

Ri(a) = max{C;, L;(a) — a} (2.14)

where L;(a) is the length of the busy period that includes 7; activation.

To compute L;(a) the following iterative computation is performed:
L) = 0,25 () = Wi(a, L (0)) + (1 + {%J )Ci (2.15)

where W;(a,t) includes the contributions of all instances of all tasks ex-

cept 7; having absolute deadlines smaller or equal to a + D;, i.e.:
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D. _ .
Wi(a,t) = Z min { {i—‘ 14 {MJ } C;  (2.16)
- T T
J#i
dj <a-+ D;

The issue of EDF task scheduling analysis on non-preemptive systems
was addressed in [GBS96]. As in the case of fixed priorities addressed above,
also in systems based on EDF, the schedulability analysis is similar in both

the preemptive and non-preemptive cases. The only two differences are:

e Due to the absence of preemption, a task instance with a later absolute

deadline can cause blocking, thus inducing priority inversions;

e The calculation of the busy period must be performed until the start
time of the task instance instead of its completion time, since, once

dispatched, the task instance always executes until completion.

Therefore, Equations EZZT4] and for non-preemptive systems become

respectively:

Ri(a) = max{C;, Li(a) + C; — a} (2.17)
(k+1), \ _ o (o 7 (R) a
L) = max (G- WP+ |56 @1

Wi(a,t) = Z min{l + {i—‘ 1+ {MJ}C]‘ (2.19)
o T; T;
J#
Dj <a-+ D;

As in the case of preemptive systems, Equation is a monotonic non-
decreasing step function, and can be solved iteratively, starting with LY (a) =
0.
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2.5 Conclusion

This chapter presents a brief overview about the major concepts and chal-
lenges concerning real-time systems. Starting from a generic perspective
about real-time computer-based control systems, the chapter evolves to is-

sues like task scheduling, scheduling algorithms and schedulability analysis.

Computer-based control systems comprise sensors to gather data from
the environment, computers to execute control algorithms and actuators to
drive the environment. Some of these activities may have to be performed
within strict time bounds. In this case the system is called a real-time system.
Moreover, if failing to meet these temporal constraints can be tolerated, the
system is called soft real-time, while if such failure can lead to catastrophic

results the system is called hard real-time.

For hard real-time systems it is necessary to assign the resources required
by the computational activities so that they can be completely served within
the required time bounds. Moreover, other requirements commonly found,
such as precedence constraints, must also be fulfilled. Scheduling has been a
fertile research field, with a large variety of methodologies described in the
literature. One important aspect concerns the instant where the schedule
decisions are performed. In off-line scheduled systems, scheduling decisions
are made prior to system execution, and their results are stored in a table
that is used during run-time to trigger the system activities. In on-line
scheduled systems the schedule is built during system run-time, based on

the instantaneous system requirements.

While in some real-time systems it is possible to characterize in advance
all the activities, in others this is either difficult or even impossible at all. In
the former case it is possible to schedule the activities off-line. However, the
latter type of systems are more efficiently supported by on-line scheduling,
since in this case the activities are scheduled for execution based only on the

instantaneous system state.

In off-line scheduled systems, once a feasible schedule is found, the real-
time behavior of the system in assured. If no such schedule is found, the
system designer can tune some of the system parameters and repeat the
process the number of times necessary to achieve positive results, since this
job is carried before system runtime. However, in on-line scheduled systems,

this is not possible, since scheduling is carried during system run-time, and
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thus the scheduler must promptly select the activity that should be executed
next. Continued real-time behavior can be achieved in this latter case by
the execution of appropriate schedulability tests, which reject the admission
of activities that may compromise the system real-time behavior.

Distinct schedulability analysis differ in their accuracy and computa-
tional cost. Some techniques require less computational resources (e.g. utilization-
based) when compared to others that produce more exact results, but incur
in higher computational overhead (e.g. response-time based). The issue
of computational cost is particularly relevant in on-line scheduled systems
that must respond promptly to changes in the system requirements during
run-time. To assure continued real-time behavior the schedulability analysis
must be performed whenever the requirements change. Thus, in this case,
the system responsiveness to such changes depends directly of the complexity

of the schedulability analysis.



26

CHAPTER 2. REAL-TIME SYSTEMS FUNDAMENTALS



Chapter 3

Distributed real-time systems

Several definitions of the term "distributed system" can be found in the lit-
erature. None of them is completely in agreement with any one of the others,
and they depend heavily on the particular “environment and background”.
For example, in the COSI project [PDO0], meant to assess critically and de-
velop new ways of thinking about social processes, distributed systems are
systems made of a collection of entities (humans, technical systems, insects,
etc.) and where decision (control) is totally or partially taken by these enti-
ties. Moving to the field of computer science, Tannenbaum [Tan95)| defines
a distributed system as a collection of independent computers that appear
to the users of the system as a single computer. On its hand, Coulouris et
al [CDK94] go deeper and define a distributed system as a system consist-
ing of a collection of autonomous computers linked by a computer network
and equipped with distributed system software. Distributed system software
enables computers to coordinate their activities and to share the resources
of the system — hardware, software, and data. Users of a well-designed dis-
tributed system should perceive a single, integrated computing facility even

though it may be implemented by many computers in different locations.

The bottom line is that distributed systems comprise multiple autonomous
processing units (or entities), cooperating to achieve a common objective or
goal. To achieve their goal the processing units need to exchange information,
thus each one is attached or integrates a network interface unit providing ac-
cess to a suitable communication system. This type of system is loosely
coupled in the sense that all information exchange is performed exclusively

via the communication system using messages.

27
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A distributed real-time system is a distributed system in which there exist
real-time activities, i.e., activities that must be carried within specific time
bounds. To be accomplished, these time-constrained activities require the
execution of tasks in some processing units, which, in its turn, may eventually
require the exchange of data with other task(s) that may be executing in
different processing units. Thus, to be able to perform real-time activities,
the distributed real-time system must be able to execute both tasks and data
exchanges strictly within the time boundaries imposed by the timeliness
requirements of each of the real-time activities carried out in the system

Distributed real-time systems are required to closely interact with the
environment under control. In some circumstances the environment can be
completely characterized and its requirements are considered as time invari-
ant. This situation is typically found in distributed computer control sys-
tems, in which control engineers specify the control loops based on system
dynamics and then generate the timing requirements of the corresponding
tasks and messages. However, real systems often do not fit within these re-
strictive assumptions: complete knowledge about the environment is some-
times too costly or even impossible to gather, environments evolve and thus
change their properties during lifetime, upon overload or failure conditions
the best possible functionality level must be delivered, etc.. Typical appli-
cations fitting in this category are mobile robotics, multimedia and adaptive
control systems. To cope with this framework, a distributed real-time sys-
tem must be operationally flexible, i.e., must be able to adapt itself to the
evolving requirements during runtime, without disruption of the services de-
livered to the system. The flexibility can have several forms: use of adequate
scheduling policies, in order to deliver best possible performance in normal
situations, but with the capability to change to more robust scheduling poli-
cies upon errors or overloads; capacity to accommodate new activities and
remove or change the properties of existing activities, in order to adapt to

the evolving requirements.

3.1 Real-time communication

Distributed systems comprise a set of autonomous processing devices, which,

to accomplish their mission, need to exchange information across the net-
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work. Thus, the temporal behavior of the whole distributed system depends
not only on the timeliness of tasks executing on each processing device but
also on the capability of the underlying communication system to provide
message delivery within specific timing requirements [GH9S|, [TC94]. Com-
munication systems able to support such temporal requirements are called
real-time communication systems. The remainder of this section addresses

some important issues concerning real-time communication.

3.1.1 Event and Time-triggered communication paradigms

Over the last years, a recurring debate concerns the paradigm used for ap-
plication architectures, with event-triggered (ET) ones being opposed to
those based on time-triggering (TT) [APE(2]. One of the main
aspects of this debate concerns the communication infrastructure in dis-
tributed applications. This discussion has been fostered by the appearance
of the Time-Triggered Protocol - TTP [KG94, that highlighted the
advantages of that paradigm in real-time communication systems. More
recently, such paradigm has also been addressed by the ISO Technical Com-
mittee TC22/SC3/WG1 that, in 1999, set up a task force (TF6) to work on
the definition of a new CAN-based standard, TT-CAN [[nf00], which is a
time-triggered profile for CAN. In event-triggered communication, messages
are sent by the application upon the occurrence of some event, such as a
change in the value of some input. On the other hand, according to the
time-triggered paradigm, messages are sent only in precise pre-defined time
instants.

Event-triggered communication does seem more ergonomic and even more
resource efficient. However, when worst-case requirements are considered,
that efficiency is not verified. Since events are asynchronous by nature, a
typical worst-case assumption is that all events that must be handled by the
system will occur simultaneously. In order to cope with such situation in a
timely fashion, the required amount of resources (e.g. network bandwidth)
is very high.

On the contrary, the time-triggered approach forces the communication
activity to occur at pre-defined instants in time at a rate determined by the
dynamics of the environment under control. One of the features of this ap-
proach is that it allows relative phase control among the streams of messages

to be transmitted over the communication system. By using this feature,
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messages of different streams can be set out-of-phase allowing a reduction
on the number of messages that become ready for transmission simultane-

ously.

This feature is responsible for one of the most important properties of
time-triggered communication as stressed by Kopetz [Kop97], i.e. the sup-
port for composability with respect to the temporal behavior. This property
assures that, when two subsystems are integrated to form a new system, the

temporal behavior of each of them will not be affected.

This does not hold true for event-triggered communication. In this case,
the level of contention at the network access that each subsystem feels before
integration is always increased upon integration due to the traffic generated
by the other subsystems. Furthermore, the relative phase control allowed by
the time-triggered approach may lead to two other positive effects. Firstly,
it improves the control over the transmission jitter felt by periodic message
streams. Secondly, it supports higher network utilization with timeliness
guarantees. Therefore, when considering worst-case requirements, the time-
triggered approach is more resource efficient than the event-triggered one.
However, when considering average-case requirements, time-triggered com-
munication is considerably greedy when compared to event-triggered one.
Consequently, by dimensioning a system according to its worst-case require-
ments, as typical in hard real-time systems, the time-triggered approach
tends to be less expensive than the event-triggered one. Nevertheless, since
the average network utilization of event-triggered systems is normally lower,
such systems can easily support other types of communication with less strin-
gent or no timing constraints (e.g. traffic associated with the management
of either remote nodes or network) without any additional cost. This fact
can have a positive impact on the overall efficiency of the communication
system utilization, reducing its exploitation costs. Apart from the above
considerations on network utilization, it is commonly accepted [T'C99| that
time-triggered communication is well adapted to control applications that
typically require regular transmission of state data, with low or bounded,
jitter (e.g. motion control, engine control, temperature control, position
control). On the other hand, event-triggered communication is well adapted
to the monitoring of alarm conditions that are supposed to occur sporadi-
cally and seldom, and also to support asynchronous non-real-time traffic e.g.

for global system management.
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3.1.2 Combining event and time-triggered traffic

Despite their different characteristics, many applications do require joint
support for both event and time-triggered traffic (e.g. automotive [LA99])
and thus, a combination of both paradigms in order to share their advantages
is desirable. An important aspect is that temporal isolation of both types
of traffic must be enforced or, otherwise, the asynchrony of event-triggered
traffic can spoil the properties of the time-triggered one. This isolation is
achieved by allocating bandwidth exclusively to each type of traffic.

A typical implementation makes use of bus-time slots called elementary
cycles, or micro-cycles (e.g. [RN93]), containing two consecutive phases ded-
icated to one type of traffic each. The bus time becomes, then, an alternate
sequence of time-triggered and event-triggered phases. The maximum dura-
tion of each phase can be tailored to suit the needs of a particular application.
If each type of traffic is forced to remain within the respective phase then
temporal isolation is guaranteed. This concept is used, for example, in the

WorldFIP [[ECQO(], Foundation Fieldbus-H1 [[ECO(0] and FlexRay [MEQ(2]
fieldbuses.

Even protocols relying in a pure TDMA approach usually support event-
triggered communications semantics, usually by reserving time for pooling
this type of traffic, as in the case of TTP/C [Kop99|. However, in this case,
if no transmission request for the respective message is pending the slot is
wasted, i.e. unused. This time-based polling mechanism for each event-
triggered message causes these ones to be undifferentiated from the time-
triggered traffic, inheriting the properties referred in the previous section,
particularly high efficiency under worst-case requirements and low efficiency
under average-case requirements whenever these are substantially lower than

the former ones.

3.1.3 Message Scheduling

Distributed systems usually rely on a shared medium network to interchange
data among nodes. Therefore, as for the case of tasks in microprocessors,
to be able to meet their timing constraints, messages access to the commu-
nication network must also be properly scheduled. Other similarities can
be found between message scheduling in communication networks and task

scheduling in microprocessors [CM95]; messages can also have distinct time-
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liness requirements (soft, hard, best effort) and activation patterns (peri-
odic, sporadic). This resemblance allows the application of several results
obtained for task scheduling into message scheduling (e.g. [ITBW935] and
[Nat00]). Moreover, some of the paradigms found in real-time task schedul-

ing (off-line, on-line with fixed/dynamic priorities) are also found in real-time
message scheduling [AF98].

However, message scheduling in distributed real-time systems has its own
challenges, due to the particularities of this environment. On one hand, the
resource requests are issued by entities spread among the system nodes and
thus can not be immediately known, as in the case of centralized systems.
Moreover, also due to the systems distributed nature, complete knowledge
about the system state is sometimes unavailable, and thus scheduling deci-
sions must be taken based on incomplete information [SS33]. Due to the lack
of complete information about the system state or the substantial overhead
required to get such information, optimal scheduling techniques developed

for microprocessors, when transported to distributed systems frequently do
not keep their optimality [MZ95].

Another issue is related to the lack of preemption during message trans-
missions. Preemptive systems are known to have higher level of schedula-
bility than non-preemptive ones, thus the lack of this feature in message
transmission can penalize efficiency. A partial solution to this problem is
implemented by most of the available communication protocols and consists
in limiting the maximum length of each message, thus avoiding “long” peri-
ods of blocking. Long messages sent by the application are broken is several
“short” messages (i.e., messages respecting the maximum length defined by
the particular communication protocol), transmitted and reassembled at the
destination. The counterpart is an increased overhead in systems nodes,

required by the break and reassembling procedures.

Real-time communications are usually implemented based on some kind
of multiple access networks [MZ95], within somehow limited geographical
spaces (e.g. a manufacturing cell, an enterprise building, a ship). System
nodes comprise the hardware required to handle the communications (a Net-
work Interface Card) and usually have a layered communication architecture.
Each layer has a set of protocols responsible for carrying out the specific op-
erations that must be made available to other layers. Figure Bl shows the

architecture of the ISO Reference Model for Open Systems Interconnection
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OSI Reference Model "Collapsed" 3-layer model

Application layer

Presentation layer

Host Session layer Application layer
Computer
Transport layer
Network layer

Data-link layer Data-link layer

NIC

Physical layer <> Physical layer

Figure 3.1: Layered communication architecture

[Zim&0]. Frequently, real-time communication networks employ a “collapsed”
OSI-based architecture, in which the upper 5 layers are merged into a single
application layer, as shown also in Figure BJl The OSI Reference model
was developed for generic communication systems. Many distributed ap-
plications are implemented on constrained hardware resources, and thus the
implementation of the full OSI reference model can be too expensive in terms
of both CPU power and memory, thus the need to some lightweight protocol
stack.

Nevertheless, independently of the architectural peculiarities, a commu-
nication stack comprises some or all of the following functions: an applica-
tion interface, providing common services required to the particular applica-
tions; a presentation layer, to provide an uniform data access, independently
of the equipment (interoperability); a session layer, allowing to open and
close dialogs between senders and receivers; a transport layer which handles
the end-to-end communication; a network layer which handles the node ad-
dressing and message routing; a data-link layer responsible for the access to
the communication medium and logical data transfer; and finally a physical
layer, which handles the way the messages are transmitted physically over
the communication medium (pins assignments, number of wires, electrical
characterization, repeaters).

The performance of the communication system as a whole strongly de-
pends on the performance of each one of its layers. New techniques have been

recently proposed to enhance the performance concerning the time spent in
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the internal processing at the different protocol layers, for example by pro-
viding distinct queues and paths for real-time and non-real-time traffic (e.g.
[STHOZ]). However, the data-link layer is of utmost importance, since it is
this layer that is responsible for deciding when nodes can access the bus
and for how long. Medium access control (MAC) protocols can be classified
in two classes: controlled access and uncontrolled access ([I’ho98]). In the
former class, access to the communication channel is handled by a particular
mechanism which is responsible for ensuring that collisions (i.e. simultaneous
message transmission by two or more distinct nodes) cannot occur. Com-
monly used mechanisms are: master-slave, token passing and Time-Division
Multiple Access. Concerning the latter class, uncontrolled access, no global
arbitration method exists and thus collisions can occur. However, special
mechanisms are used to detect these events and resolve them. Carrier-Sense
Multiple Access based protocols, such as Ethernet, use this method.

A comprehensive study and classification of access protocols suited to
real-time communication over multiple-access networks is presented in [MZ95].
In this work the MAC protocols are described as consisting of two processes:
access arbitration and transmission control. The access arbitration process
determines when a node can access the communication channel to send mes-
sages; the transmission control process determines for how long a node can
continue to use the channel to send messages. Examples of protocols rely-
ing either in access arbitration or transmission control are also presented.
Furthermore, in this work it is also presented and analyzed, in terms of ef-
ficiency and message timeliness, the implementation of several scheduling

policies (e.g. Rate Monotonic, Minimum-Laxity-First).

3.1.4 Co-operation models

As referred in the beginning of this section, distributed systems comprise
multiple autonomous processing units, cooperating to achieve a common ob-
jective or goal. Information exchange is carried by a suitable communication
system and consists not only in the physical transmission of the message
across the network but also in the way it is distributed by the nodes in the
network, i.e., co-operation model. Depending on the particular application,
nodes may need data that resides in one or more other nodes. Moreover, the
same data can also be needed in several distinct nodes. Thus, communication

can be one-to-one, one-to-many, many-to-one and many-to-many.
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Two well-known co-operation models are the producer-consumer and
client-server [VROI].

The producer-consumer model associates unique logical handles to
each message type. Messages are generated and received based only on
these logical handles, without any explicit reference to the particular source
or destination nodes of the messages. Consumer nodes select the logical
handle(s) related to the data they need to perform their own computations
and receive all messages identified with those handle(s). Producer nodes
need not to know who and how many are the consumers of its data, and
conversely receiver nodes need not to know which particular node is the

producer of the data.

The producer-consumer co-operation model inherently supports one-to-
one and one-to-many communication, without incurring in spatial data con-
sistency problems, since the same data message is used to update all the
local images in all the consumer nodes in the network. However, this prop-
erty can be lost if the underline communication network does not support
atomic broadcasts. In this case, due to errors during transmission, some
nodes can receive correctly a message while others can receive the very same
message with errors. If this situation happens, different nodes can end up
with different images of the same entity, i.e., spatial inconsistency.

On the other hand, this model does not solve the problem of temporal
consistency. Whenever there are several producer nodes, there is contention
for message transmission on the network among the several producers, and
therefore some messages are delayed in this process, which can result in out-
dated values sent to the bus. This problem has been solved by the producer-
distributor-consumer (PDC) model [Tho93], which adds a coordination
layer to the producer-consumer model. In the PDC model the producers
behave as slaves with respect to an arbitrator node (called master), and thus
only transmit messages when authorized. The master node is fed with the
properties and temporal requirements of the messages that are exchanged
by the bus and builds a suitable schedule, which, then is used to grant the
producers the right to transmit their messages.

Another approach is the client-server model. In this case, nodes that
are producers of some data that can be required elsewhere in the network
behave as servers. The nodes that need the data (clients) issue requests to

the respective server, which in its turn replies with the demanded data value.
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This communication model is inherently one-to-one, and can lead to both
spatial and temporal data inconsistency problems when used to support one-
to-many or many-to-one communication. For instance, if the same data is
required in several nodes, different nodes issue the respective requests to the
server. If the data value changes during this period, the successive replies of
the server will carry different values for the same entity, resulting in spatial
inconsistency. On the other hand, when a node needs data from different
servers, it must issue the requests sequentially, one after the other, which
can result in temporal inconsistency. Another problem posed by this model
is related with the internal scheduling and processing of requests inside the
servers. The requests reach the servers asynchronously and take some time to
be processed, thus the time required to handle a particular request depends

on the request arrival pattern, which is not deterministic [VROT].

3.2 Fieldbus Protocols - brief survey

Over the last 30 years a large number of real-time communication proto-
cols for distributed computer-controlled systems have emerged, developed
by different companies and organizations all over the world. These proto-
cols, known as fieldbuses, are used at the field level to interconnect devices
such as sensors, PLLCs and actuators. Although fieldbuses are to some extent
similar to general-purpose local area network protocols, they are tailored to

fulfill the specific requirements of real-time computer-controlled distributed

systems, such as [Pim90), DecOT]:

e Handle short messages in an efficient manner;

e Support for periodic traffic with different periods as well as aperiodic
traffic;

e Bounded response time;
e No single point of failure;

e Low cost, both at the device level as well as at the infrastructure

installation and maintenance levels.

In the remainder of this section it will be presented a brief overview of some of

the most relevant fieldbus protocols, with special emphasis on the scheduling
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paradigms, support for dynamic communication requirements, handling of
event and time-triggered traffic and temporal isolation between TT and ET
traffic. Particular attention is devoted to the CAN protocol, since one of the

FTT paradigm implementations is based on it.

3.2.1 The Controller Area Network (CAN) protocol

The Controller Area Network [Rob9T] (CAN) protocol was developed in the
mid 1980s by Robert Bosch GmbH, aiming at automotive applications, to
provide a cost-effective communications bus for in-car electronics and as an
alternative to expensive and cumbersome wiring looms. It is standardized as
ISO 11898-2 [ISOY3] for high speed applications (1Mbps) and ISO 11519-2
[ISO94D)] for lower speed applications (125Kbps). The transmission medium
is usually a twisted pair cable and the network maximum length depends
on the data rate. Due to its bitwise arbitration mechanism, it is required
that the bit time must be long enough to allow the signal propagation along
the entire network as well its decoding by other stations, which imposes a
fundamental limit to the maximum speed attainable (e.g. 40m @ 1 Mbps;
1300m @ 50 Kbps).

CAN uses a multi-master bus architecture and employs the Carrier Sense
Multiple Access with Non-destructive Bitwise Arbitration (CSMA/NBA)
mechanism. It uses a priority arbitration scheme based on numerical identi-
fiers to resolve collisions between nodes trying to transmit at the same time.
A logical zero on the bus is dominant (dominant bit) and overwrites a one
(recessive bit). Therefore, if a node transmits a logical one whilst another
transmits a logical zero, the resulting logical level on the bus is zero (the one
is overwritten). A node wishing to transmit must first sense the bus, and it
can start to transmit the message only when there is no activity (CSMA),
starting by the identifier, most significant bit first. During the transmission
the nodes also monitor the bus state. If a node transmits a recessive bit and
senses a dominant bit in the bus, it infers that an higher priority message is
also being transmitted and thus gives up from the arbitration process. There-
fore, the node transmitting the message with the highest priority among the
ones that where ready in the beginning of the arbitration process wins the
arbitration process. Nodes that loose the arbitration process must wait for
the bus to become free again before trying to re-transmit its message. This

arbitration scheme does not consume bandwidth, i.e., the transmission time
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Figure 3.2: CAN 2.0A message frame

of the message that wins the arbitration process does not depend on the
number of messages that contend for the bus access.

A CAN message frame (Figure B2) consists of: identifier, data, error,
acknowledgment and CRC fields. The identifier field consists of 11 or 29
bits (CAN 2.0A/2.0B respectively) and the data field can carry between 0
and 8 bytes. When a device transmits a CAN message it first transmits
the identifier field followed by the data field. The identifier field determines
which node gains access to the bus. Individual nodes can be programmed
to accept messages with specific identifiers. In this case, an internal data
transfer will occur if the identifier of the transmitted message matches the
identifier of the message which the node is configured to receive. On the
other hand, nodes that are not programmed with the same identifier as the
transmitted CAN message will not receive the message. This is known as
acceptance mask filtering and is normally performed by the CAN hardware.
The RTR bit is used for a remote transmition request. When this bit is set,
the CAN frame has an empty data field. The node that transmits messages
with that identifier will send a message, carrying the requested data, in reply
to this request.

CAN controllers have transmit and receive error counters which register
errors during transmission and reception respectively. These counters are
implemented in hardware and are incremented or decremented (with differ-
ent weights) by each erroneous or correct message transmission or reception
events. During system runtime the error counters may increase even if there
are fewer corrupted frames than uncorrupted ones. During normal operation
the CAN controller is in its error-active state. In this state, the node is able
to transmit an active error frame every time a CAN frame is found to be
corrupted. If one of the error counters reaches a warning limit of 96 error
counts, indicating significant accumulation of errors, this is signaled by the
controller usually using an interrupt. The controller then operates in its error
active mode until a limit of 127 error counts has been exceeded. Once 128

error counts has been reached, the CAN controller enters an error-passive
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state. In this state, an error-passive controller is still able to transmit and
receive messages but signals errors by transmitting a passive error frame. If
the error count reaches or exceeds a limit of 256, the controller enters its
Bus-OFF state. In this state the controller can no longer transmit or receive
messages until it has been reset by the host processor, resetting its hardware
counters back to zero.

In real-time message scheduling, the computation of the transmission
time of messages is of paramount importance, since it is required to per-
form any kind of analysis. To provide clock information embedded in the bit
stream, CAN does not allow the transmission of more than 5 consecutive bits
of the same polarity. When such situation occurs in the data to be transmit-
ted, CAN automatically inserts a bit of opposite polarity. By reversing the
procedure, these bits are removed at the receiver side. This technique, called
bit-stuffing, implies that the actual number of transmitted bits not only can
be larger than the size of the original frame, but also can vary in consecutive
instances of the same message, depending on the particular message instance
contents. According to the CAN standard [Rob31]|, the total number of bits
in a CAN frame without bit-stuffing is given by Equation Bl, where DLC
is the number of bytes of payload data in a CAN frame ([0, 8|) and 47 is the
number of control bits (Figure B2).

CAN_LENN, st =47+ 8% DLC (3.1)

The CAN frame layout is defined such that only 34 of these 47 bits are
subject to bit-stuffing. Therefore the worst-case number of bits after bit-
stuffing is given by Equation B2 ([NHNPQOT]).

(3.2)

34+ 8% DLC — 1
CAN_LENStuff:47+8*DLC+{ o J

4

3.2.2 WorldFIP

The WorldFIP protocol (European fieldbus standard EN50170 ([CEN96])
and international standard IEC61158 ([IEC0O0])) is based on the producer-
distributor-consumers (PDC) communication model [Tho93] according to
which process variables are made available by producer nodes, one at a time,

and are distributed to consumer nodes that use them.
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The distributor function is performed by the bus arbitrator (BA) which
schedules the producers access to the bus. The addressing method is based on
identified variables, i.e., the addressed entities are variables to be exchanged
and not nodes. At each network node, the protocol data link layer (DLL)
manages a set of buffers holding the values for the variables to be exchanged.
These buffers are available locally to the application software through ap-
plication layer (AL) services, which allow writing to or reading from such
buffers. The contents of the DLL buffers in the consumer nodes are auto-
matically updated by the communication system through a network service
called buffer transfer. Each buffer transfer corresponds to an atomic network
transaction which includes an identification frame (ID _DAT) sent by the BA
with the identification of the variable to be produced and a response frame
(RP_DAT) sent by the node that produces the identified variable, contain-
ing the respective updated value. The consumer nodes receive the response
frame and overwrite the respective DLL buffer of the identified variable with
its new value.

As referred above, the bus access arbitration is centralized and performed
by a particular node called Bus Arbitrator (BA). At run-time, the BA uses
a static schedule table, the BAT, to schedule periodic transactions. This
table is usually built off-line, prior to the system operation. Two important
parameters are associated with a WorldFIP BAT: the elementary cycle (EC)
and the macro-cycle (MC). The elementary cycle determines the resolution
available to express the variable’s scan periods. The inverse of its duration
represents the maximum rate at which the BA may scan any variable. Usu-
ally, the EC duration is set equal to the maximum common divider of the
variable’s scan periods. The BAT contains the sequence of ECs that describe
the network periodic traffic during one Least Common Multiple (LCM) pe-
riod, which is called the macro-cycle.

Aperiodic message transfers are carried after the last periodic transaction
of the EC, if enough room is available (Aperiodic window in Figure B3)). The

aperiodic buffer transfer takes place in three steps:

1. When transmitting a periodic data frame, a node having buffered ape-
riodic messages signals this status by setting the aperiodic request bit
in the data frame (RP_DAT);

2. The BA collects the aperiodic requests and latter on, in the aperiodic
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Figure 3.3: Periodic message properties and resulting BAT

window, queries the nodes for the list of pending aperiodic requests;

3. Finally, the BA processes the list of pending requests using the same
mechanism as for periodic buffer transfers, but using the aperiodic

window.

Over the last years scheduling and schedulability analysis issues of WorldFIP
networks have been addressed is several academic works.

Concerning specifically the aperiodic requests, Vasques and Juanole [V.I94]
derive an upper bound to the worst-case response time for the aperiodic re-
quests, which includes the load due to the periodic transfers during the whole
MC and the time required by all other aperiodic requests that can be issued
during that period of time. In [PB97)|, Pedro and Burns propose a less pes-
simistic analysis based on a lower bound to the aperiodic window of each
EC. Almeida et al present an improved schedulability analysis for both the
periodic [AE99] and aperiodic traffic [ATEV{T). This work is based on the
construction of a timeline, and can be used for on-line admission control.

Duworzecki [Dwo98] presents a scheduling technique which claims to be
more efficient than RM and EDF. The computational complexity of the
approach presented by the author is considerably higher than the RM/EDF
schedulers, however, since the BAT is built offline, such impact has a limited
relevance.

Kim et al [KJK98] present a methodology to reduce both the amount of
memory required by the BAT and the message release jitter. An offline built
BAT must hold the schedule for the duration of a macro-cycle. When the
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message set has messages that have relative prime periods, the LCM, and
thus the BAT size, can become very large. To reduce this effect, the authors
reduce the larger scan periods, avoiding relative prime values. Concerning
the message release jitter issue, the authors propose to reduce the message’s
scan periods until they become harmonic in powers of 2. In this case it
becomes possible to build a jitter free schedule. However, both of these
methods imply an increase in the bandwidth utilization, and thus reduce the
system schedulability.

Some effort has also been devoted to add support for dynamic message
sets to the WorldFIP protocol. For example, Almeida et al [APE99] propose
on-line planning-based scheduling and admission control techniques. With
this approach, the BAT is periodically built, based on the current message
properties. Thus, if these change, in its next invocation the scheduler uses the
updated values to build the BAT. On the other hand, changes are always
subject to admission control. Therefore the timeliness guarantees are not

compromised despite the dynamic environment.

3.2.3 Profibus

The Profibus protocol (European fieldbus standard EN50170 (J[CEN96]) and
international standard IEC61158 ([[ECH0]) is a fieldbus network designed for
deterministic communication between computers and PLCs and field devices
such as sensors, valves, etc. The Profibus MAC protocol is based both on
token passing between masters and master-slave between master and slave
nodes. Token passing is used between master stations to grant the bus access
to each other. When a particular master holds the token, it uses a master-
slave procedure to communicate with slave stations.

The MAC is implemented at the layer 2 of the OSI reference model, and
in Profibus is called Fieldbus Data Link (FDL). The FDL layer is responsible
for controlling the bus access and for providing data transmission services.

The data transmission services supported by the Profibus protocol are
message broadcasting (from masters) and one-to-one communication be-
tween masters and slaves. Only the master holding the token is allowed to
send broadcast messages or initiate a transaction with one slave. Slave nodes,
when pooled by a master, must respond in a bounded time ("immediate-
response"). This is particularly important for the real-time operation of the

protocol, since it allows to upper bound the transactions duration, and thus
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Figure 3.4: Profibus token-passing and master-slave relations

perform worst-case computations. A message cycle consists of a master’s
action frame (send, request or send/request frame) and the associated re-
sponder’s acknowledgment or response frame, which, as referred above, is
constrained to arrive within a predefined time, called slot time. If the re-
sponse is not received by the master, the request is repeated. The number of
retries before a communication error report is defined during system setup
in all master stations. This is part of the cycle time and is the major source

of the pessimism in the existing analysis.

The Profibus FDL layer supports a poll list, used for cyclically polling
the network slaves (e.g. sensors). On the other hand, network sharing among
masters is accomplished by a set of rules constraining the amount of time
that each master can hold the token. After receiving the token, the measure-
ment of the token rotation time begins and stops at the next token arrival,
resulting in the real token rotation time (TRR). In a Profibus network, a
target token rotation time (TTR), common to all masters, is pre-configured.
The value of this parameter must be carefully choosen to meet the respon-
siveness requirements of all masters. When a master receives the token, it
computes the token holding time (TTH), which is given by the value of the
difference, if positive, between TTR and TRR.

In Profibus there are two distinct classes of messages, high-priority and
low-priority, using two independent outgoing queues. If a late token is re-
ceived, i.e. real token rotation time (TRR) greater than the target token
rotation time (TTR), the master station may execute at most one high-

priority message cycle. Otherwise, the master station may execute message
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cycles while TTH is greater than zero. Note that the TTH is always tested
at the beginning of the message cycle execution, therefore, once a message
cycle is started, it is always completed, including any required retries, even if
TTH expires during the transaction ( TTH overrun). Low-priority message
cycles are executed only if there are no high-priority messages pending and
TTH is greater than zero.

Low-priority messages are further subdivided in three subtypes: poll list,
non-cyclic low-priority and Gap List message cycles. As referred above, the
poll list messages are used for cyclically polling the network slaves, and are
processed after all the high-priority messages being handled. If the poll cycle
is completed and the master still can hold the token (i.e. TTH > 0), it then
processes the non-cyclic messages, which are produced by the application
layer and remote management services.

The Gap is the address range between two consecutive master addresses,
and each master periodically checks the Gap addresses to handle dynamic
changes in the logical ring.

The timeliness analysis of real-time traffic has been addressed in [IV99b].
The message queues in Profibus are First-Come-First-Served, which can
cause timeliness problems in heavily loaded networks. Enhancements to

the protocol consisting on local priority-based message scheduling have been

presented in [T'V99al and [CMTV0Z].

3.2.4 P-Net

The P-NET protocol (European fieldbus standard EN50170 ([CEN96]) and
international standard IEC61158 ([IECO0]) is a multi-master standard based
on virtual token-passing scheme among masters and master-slave between
masters and slaves. The system architecture is similar to the presented in
Figure B4 relatively to the Profibus protocol.

In a P-NET system each master has a node address (NA), between 1
and the number of masters expected within a system. All masters contain
an Idle Bus Bit Period Counter (IBBPC) which is incremented for each bit
period the bus is idle and reset to zero when bus activity is detected. Each
master also has an Access Counter (AC), which is incremented when the
idle bus bit period counter reaches 7 =40 bit periods (520us at 76.8Kbps).
If a master has nothing to transmit, or indeed is not even present, the bus

will continue to be inactive. Following a further period of o =10 bit periods
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(130us at 76.8Kbps), the idle bus bit period counter will have reached 50, so
all the access counters will be incremented again, allowing the next master to
access the bus. The virtual token passing will continue every 10 bit periods,
until a master does require access. When the access counter exceeds the
maximum number of masters, it is preset to 1. To avoid loss of synchrony
during long idle periods, when the IBBPC counter becomes higher or equal
to 360, the token master should send a sync frame. This frame does not
carry any meaningful data, but causes all the IBBPC counters to be cleared,
resulting in AC counters synchronization.

The P-NET standard allows each master to perform at most one message
cycle per token visit. After receiving the token, the master must transmit a
request before a certain time has elapsed. This is denoted as the master’s
reaction time, and the standard imposes a worst-case value of up to p = 7 bit
periods. A slave is allowed to access the bus between 11 and 30 bit periods
after receiving a request. This delay is denoted as the slave’s turnaround
time. The limitation to one message cycle per token visit together with
the upper bounds on the master’s reaction time and slave’s turnaround time
allow to perform timeliness analysis, and thus evaluate if, for a given message
set and system topology, the timing requirements are completely fulfilled.

P-Net has some interesting features, like the low overhead required in the
nodes to implement the protocol and the simplicity of dynamically adding
and removing nodes. However, the master-salve transmission control tech-
nique combined with the restriction of being possible only one message cycle
per token visit limits the performance of this protocol.

The timeliness analysis of real-time traffic has been addressed in [T'VISD].
As in the case of Profibus, P-NET message queues are First-Come-First-
Served, thus potentially causing the same timeliness problems in heavily
loaded networks. Enhancements to the P-NET protocol, also consisting on

local priority-based message scheduling have been presented in [TV98al.

3.2.5 DeviceNet

DeviceNet [OODVAQT] was developed by Rockwell Automation as an open
fieldbus standard based on the CAN-protocol. It was designed specifically
for automation technology. The Open DeviceNet Vendor Association, Inc
(ODVA) is responsible for the specification and maintenance of the De-

viceNet standard.
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DeviceNet is part of a family of three open network standards (DeviceNet,
ControlNet and EtherNet/IP) that use a common application layer (ISO
Layer 7), designated by Control and Information Protocol (CIP). The control
part of CIP handles the exchange of real-time I/O data, while the information
part of the CIP defines the exchange of data for configuration, diagnosis and
management.

DeviceNet defines two different types of messaging: 1/O Messaging and
Explicit Messaging.

I/O messages are for real-time control-oriented data and provide a dedi-
cated communication path between a producing application and one or more
consuming applications (one-to-many co-operation model). Typically high
priority identifiers are assigned to these messages and use source addressing
(i.e. the ID CAN field identifies the data and not the sender or destination
devices). I/0O messages are not constrained concerning their length, and
thus fragmentation is supported. The DeviceNet Communication Protocol
is based on connections, which must be established before the start of the
communications. The process of connection establishment reserves system
resources, such as CAN ID address ranges.

Explicit messages provide multi-purpose, point-to-point communication
paths between two devices and are used to perform node configuration and
diagnosis. Explicit messages typically use low priority identifiers and contain
the specific meaning of the message right in the data field.

DeviceNet supports both periodically triggered traffic and event-based
traffic.

The periodically triggered traffic (cyclic option) is used typically in control-
loops. In this case the application associate a specific period to each state
variable, and the protocol performs the transmission of the respective mes-
sages according to the respective period.

With event-based traffic, a device only produces its data when the vari-
ation on its value since the last transmission exceeds a given pre-defined
value. DeviceNet provides a membership service for sources of this type of
data by means of an adjustable background heartbeat rate. Devices send
data whenever it changes or the heartbeat timer expires. With this method
consumer nodes detect a failure in a producer node if no data is received
during a period of time exceeding the heartbeat period.

By default, both change of state and cyclic are acknowledged exchanges.
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However the protocol allows to selectively suppress acknowledges, which is

useful for applications that exhibit fast changes of state or cyclic rates.

3.2.6 TT-CAN

Time-Triggered CAN (TT-CAN) [[nf(0] is another communication proto-
col based on CAN. As discussed in Section B2ZTIl CAN prioritizes messages
according to their ID field using bitwise arbitration. Nevertheless, a CAN
message can be delayed if some other message is already in the process of
transmission, independently of their relative priorities, or if another message
with higher priority also competes for the bus. Lower priority messages, due
to interference of higher priority messages, can potentially suffer high latency
jitter in the media access.

Considering these drawbacks, TT-CAN goals are to reduce latency jitters,
guarantee a deterministic communication pattern on the bus and use the
physical bandwidth of a CAN network more efficiently.

Communication in TT-CAN involves the periodic transmissions of a ref-
erence message by a special network device called time master. This refer-
ence message introduces a system-wide reference time. With synchronized
nodes, messages can be transmitted at specific time slots, without competing
with other messages for the bus (exclusive windows), thus contention on bus
access is avoided and the latency time becomes predictable and independent
of the message’s CAN identifier. Exclusive windows ownership is defined at
pre-runtime, during system design. Moreover, TT-CAN also allows to re-
serve time slots for shared access, in which several messages can try to be
transmitted on the same time slot (arbitration windows). In this case the
protocol relies on a contention resolution mechanism that is based on CAN,
except that message transmission is made in single-shot, i.e., nodes do not
try to retransmit the message when they loose arbitration. This mechanism
is required to ensure that arbitrating windows do not overrun their respec-
tive pre-allocated time. Independently of being transmitted on exclusive or
arbitrating windows, messages have the CAN standard format. Moreover,
because TT-CAN preserves the original CAN CSMA/NBA channel access
protocol for event messages, it is inherently limited to a 1 Mbps (or lower,
depending on the bus length) data transmission rate.

The period between two consecutive reference messages is called the ba-

sic cycle. A basic cycle consists of several time windows, which can be of
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Figure 3.5: TT-CAN system matrix

different sizes and types (exclusive or arbitration). Several basic cycles may
be combined to build the so-called system matrix, which completely char-
acterizes the communication pattern (Figure BI). The sequence of basic
cycles in the matrix cycle is controlled by the reference messages. A TT-
CAN node is not required to know the whole system matrix, but instead it is
only required to know the time marks that are necessary to define the time
slots assigned to messages transmitted by the node itself and to check for
received messages. The structure of the basic cycle is the same for all cycles
within the system matrix, meaning that all the transmission columns have
the same width, usually corresponding to the length of the longest message

that is transmitted in the respective column.

3.2.7 TTP/C

The TTP/C [TTT] protocol is a reliable and fault-tolerant commu-
nication protocol, designed to permit high performance data transmission,
clock synchronization, membership services, fast error detection and consis-
tency checks. A TTP/C network consists of a set of communicating nodes
connected by a replicated interconnection network (Figure Bf). A node
computer comprises a host computer and a TTP/C communication con-
troller with two bi-directional communication ports. Each of these ports
is connected to an independent channel of a dual-channel interconnection
network. Via these broadcast channels the nodes communicate using the

services of the communication controller.

The TTP/C protocol implements broadcast communication that pro-
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Figure 3.6: TTP/C architecture

ceeds according to an a priori established time-division multiple access (TDMA)
scheme. This TDMA scheme divides time into slots, each being statically
assigned to a particular node, and, during its slot, each node has exclusive
write permission to the network. The slots are grouped in the so-called
TDMA rounds. In a TDMA round every node is granted write permission in

at least one slot, and the access pattern repeats itself in successive rounds.

A distributed fault-tolerant clock synchronization algorithm establishes
the global time base needed for the distributed execution of the TDMA
scheme. Nodes can send different messages in different TDMA rounds, al-
though the slot length is constrained to be the same. To handle this feature,
the protocol defines cluster cycles, comprising several TDMA rounds with
all the possible message combinations.

Each node holds a data structure containing the message descriptor list
(MEDL), where the data concerning the complete data communication pat-
tern is stored. The MEDL contains the information relative to all messages
exchanged on the system, which, combined with the global time-base, allows
fast detection of missing messages.

The TTP/C protocol provides frames for application data (N-frames),
protocol-state information exchange (I-frames) and mixed user data and pro-
tocol information (X-frames).

To allow for integration of nodes into an active cluster, some nodes of
the cluster periodically broadcast actual network controller state (C-State)

in I-frame or X-frame messages. Nodes willing to integrate listen to these
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frames to acquire membership status, global time and the actual position
within the TDMA round (synchronization process) and then become active.

Message scheduling in TTP/C is performed at pre-runtime, which turns
out this protocol unsuited to handle dynamic message sets. Nevertheless a
limited degree of flexibility still exists, both due to the possibility of pre-
configuring several modes of operation and to the possibility of reserving
TDMA slots for later expansion.

Up to 30 global modes can be pre-configured and can be requested by
any node, out of a user-specified set of nodes, by using dedicated messages
(Mode change request and Clear Mode change request). The execution of a
mode change is globally synchronized by the communication protocol. Static
information indicating which node may request which mode change at which
time is also included.

When building TTP/C communication schedules, a certain percentage
of the available bandwidth is assigned to the pre-defined communication
requirements. The remaining bandwidth is statically assigned for future
expansion of specific existing nodes, and/or nodes to be added at a later
time.

During system configuration, the TTP/C protocol allows the reservation
of an a priori specified number of bytes for the transmission of event-triggered
messages in the time slots. This implies that the bandwidth assigned for
aperiodic message transmission cannot be shared among nodes. Thus, effec-
tively, event-triggered traffic is handled as the periodic one, which leads to a
poor efficiency, since, typically, the occurrence of such events is seldom, and

thus, most of the time, the allocated bandwidth is not used.

3.2.8 FF-H1

The Foundation Fieldbus H1 (FF-H1) protocol (international standard IEC
61158 [[ECO0]) was developed to interconnect field devices such as sensors,
actuators and controllers, both in manufacturing and process industries.
Foundation Fieldbus defines two device types: basic device and link mas-
ters. A link master is any device that can become a Link Active Scheduler
(LAS). Conversely, a basic device does not have such property. At any in-
stant each network link has one and only one Link Active Scheduler (Figure
B). At link boot or upon failure of the existing LAS, the link master devices
on the segment bid to become the LAS. The link master that wins the bid
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begins operating as the LAS. Link masters that do not become the LAS act
as basic devices. Link masters can act as LAS backups by monitoring the
LAS activity and then bidding to become the LAS when a LAS failure is
detected.

The LAS operates as the bus arbiter for the link, and must perform the

following tasks:

e To recognize and add new devices to the link;

e To remove faulty devices from the link;

To distribute Data Link (DL) and Link Scheduling (LS) time;

To poll devices for process loop data (scheduled transmission times);

To distribute a priority-driven token to devices between scheduled

transmissions.

Network time synchronization is achieved by means of Time Distribution
(TD) messages, periodically broadcast by the LAS. The global network time-
base is used both to perform the scheduled message transmissions and to
schedule user application functions blocks, i.e., functions that describe de-
vice’s functions and define how these can be accessed.

In each link only one device can communicate at a time. Permission to
communicate on the bus is controlled by the LAS and granted to link devices
by means of a token. Only the device with the token can communicate. The
LAS uses four types of tokens.

A time-critical token, compel data (CD), which is sent by the LAS

according to a schedule.
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A non-time-critical token, pass token (PT), which is sent by the LAS
to each device in ascending address order. Upon reception of the PT token,
devices can send unscheduled messages.

An execute sequence (ES) token is used to pass a delegate token to
other LM in the network, allowing them to initiate transactions during the
period of time specified in the ES token.

The LAS maintains a list of all devices that need access to the bus and
are active, which is called the Live List. Probe node (PN) messages are
periodically sent to nodes that are absent from the live list, allowing their
integration, for instance, when a device is connected during system operation.
Changes to the live list are broadcast by the LAS to synchronize the other
link master’s live list according to the current system status.

The Foundation Fieldbus protocol supports several co-operation models:

Publisher /Subscriber: used to transfer critical process data, such as
process variables. The publisher entity posts the data in a local buffer.
This buffer only contains room for a single data instance, thus if the ap-
plication updates the data, the old value is overwritten. The value of the
data is broadcast to the subscribers when the publisher device receives the
corresponding CD command from the LAS. Transfers of this type can be
scheduled periodically.

Report Distribution: used to broadcast and multicast event and trend
reports. Transfers of this type are queued and delivered to the receivers in
the order transmitted. These transfers are unscheduled and occur between
scheduled transfers. There is no flow control, therefore corrupted messages
are not retransmitted.

Client /Server: used for request/response exchanges between two de-
vices. These transfers are sent and received in the order submitted for trans-
mission, according to their priority, and with queuing. In this case transfers
are flow controlled and employ a retransmission procedure to recover from
corrupted transfers.

Scheduled data transfers are typically used for the regular cyclic transfer
of process loop data between devices on the fieldbus. Scheduled transfers use
publisher /subscriber type of reporting for data transfer. The Link Active
Scheduler maintains a list of transmit times for all publishers in all devices
that need to be cyclically transmitted. When it is time for a device to publish
data, the LAS issues a Compel Data (CD) message to the device. Upon
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receipt of the CD, the device broadcasts (publishes) the data to all devices
on the fieldbus. When the LAS uses one of the specified scheduling profiles
known as dynamic, on-line change requests to the scheduling table can be
performed, which are accepted only if the resulting schedule is feasible.

Unscheduled transfers are used for operations like set point changes,
mode changes and software upload/download. Unscheduled transfers use
either report distribution or client/server type of reporting for transferring
data. All of the devices on the fieldbus are given a chance to send unsched-
uled messages between transmissions of scheduled data. The LAS grants
permission to a device to use the fieldbus by issuing a pass token (PT) mes-
sage to the device. When the device receives the PT), it is allowed to send
messages until either it has finished or the maximum token hold time has
expired. This kind of transfers is handled in a best-effort way, meaning that
no timeliness guarantees are provided by the protocol. However, the protocol
specifies three levels of priorities (urgent, normal and time-available), that
correspond to distinct levels of QoS. The PT defines the priority level(s) be-
ing served, which depend on the token rotation time. The priority is lowered
in case of early tokens, and increased in case of late tokens.

The Foundation Fieldbus protocol allows the interconnection of several
fieldbus links into a Foundation HSE (High Speed Ethernet) backbone by
means of Link Devices (Figure B). This supports system-wide communica-

tion, even between devices residing on different links.

3.2.9 FlexRay

FlexRay [Con(1] is a protocol that specifically aims at efficiently combine
time-triggered and event-triggered communication. The latter type of com-
munication is based on the ByteFlight [PBG99] communications link in-
vented by BMW for airbag systems. This protocol was developed specifically
for advanced automotive control applications, being supported by companies
like BMW, GM, Bosch, Motorola and Philips. The constraints of such en-
vironment, namely the need to limit the number of different communication
systems within vehicles, motivated the quest for a fieldbus providing high
data rate, determinism and fault-tolerance, but also with some degree of
flexibility, in order to support a broader range of in-vehicle subsystems.
Unlike most of the fieldbus protocols, FlexRay presents a 4-layer archi-

tecture, comprising:
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Figure 3.8: FlexRay communication cycle structure

Application Layer: application software;
Presentation Layer: frame filtering and frame status handling;

Transfer Layer: fault confinement, error detection and signaling, frame

validation, frame format, synchronization, timing;

Physical Layer: fault confinement, error detection and signaling, error con-

finement in the time-domain, bit transmission.

Concerning the network topology, FlexRay supports both star and bus topolo-
gies, with optional redundant communication channels.

Both synchronous (time-triggered) and asynchronous (event-triggered)
data transmissions are supported by FlexRay. Communication is done in
fixed duration time slots, designated communication cycles (CC), which con-
tain a static and a dynamic part (Figure B8). Synchronous traffic is trans-
mitted within the static part and asynchronous traffic is transmitted in the
dynamic part. Any of these parts may be empty, thus a CC can contain only
synchronous traffic, only asynchronous traffic or a mix of both.

The communication cycle starts with special control symbol (SoC), fol-
lowed by the so-called sending slots, where messages are effectively trans-
mitted. The sending slots are represented by the ID numbers.

In the static part all the sending slots have the same length, defined at
pre-runtime, and are pre-assigned according to a TDMA strategy. Therefore,

bus access is made without contention. Sending slots can be multiplexed,
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allowing nodes to send different messages in different communication cycles.
Thus, regarding the static part, the communication pattern can be described
by a matrix.

In the dynamic part the bus arbitration is based on waiting times, using
a mini-slotting scheme (CSMA/CA). Message IDs have associated a unique
priority, and sending slots are assigned in decreasing order of priority, thus
higher priority messages are sent first. Contrarily to the static part, in the
dynamic part messages are only sent when required by the application. A
timer is used to detect vacant slots and increment the slot counters in case

of such event.

3.2.10 Fieldbus properties summary

Table 3.2.1 summarizes some of the properties of the several fieldbus systems

above discussed.

Fieldbus Scheduling Dynamic ET TT TT/ET Efficient
paradigm * comm. req. | traffic | traffic | isolation | ET handling
WorldFIP || ST-+(DBE/SP) No Yes Yes Yes -
FF-H1 DP+(DBE/SP) Yes? Yes Yes Yes -/+
TTP/C ST No No Yes Rk Rl
TT-CAN ST+ (DBE/SP) No Yes Yes Yes +
ProfiBus DBE/SP Yes Yes Yes® No -/+
P-Net DBE/SP Yes Yes Yes® No -/+
DeviceNet DBE/SP Yes Yes Yes? No +
FlexRay ST+SP Yes* Yes Yes Yes +
Legend:

1 ST- Static Table-Driven; SP- Static Priorities-Driven;
DBE- Dynamic Best Effort; DP- Dynamic Planning-Based
XX+YY : XX for TT traffic and YY for ET;
(XX/YY) : XX or YY for ET traffic depending on pre-analysis.

2 assuming a dynamic scheduling profile, only ("N" for all other profiles)

3 Automatic Cyclic Transmissions

4 Concerning the event-triggered traffic only.

Table 3.2.1: Fieldbus properties summary
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3.3 Ethernet-based RT protocols - brief survey

Apart from the protocols designed specifically to operate at the field level,
a lot of effort was also devoted to the possibility of using general-purpose
communication protocols employed in other areas (e.g. Ethernet, ATM,
FDDI) at the field level. Several reasons have fostered this line of research
[DecOTl, BMOT, Mon00 VC94|, but the main arguments are that, on one
hand, traditional fieldbuses have difficulties in supporting the growing band-
width demand felt in some DCCS applications and, on other hand, pose
interoperability difficulties when integrated in more complex systems com-
posed by layered network architectures. Ethernet, in particular, has received
recently a considerable interest from the scientific and industrial communi-
ties. For this reason, this section presents a brief reasoning about the use of
Ethernet at field level and then visits some of the most relevant contributions
in this area.

The first question that should be answered is what makes Ethernet so
appealing to convey time-constrained traffic, considering that its designer
has not envisaged this kind of applications. Thus, some properties of this
protocol, such as the non-deterministic arbitration mechanism, pose serious
challenges concerning its use at this level. Several works address this subject
(e.g. [DecOdl, VCO4, BMOT]). Particularly, [DecO] presents a thorough rea-
soning on the pros and cons of using Ethernet at the field level in industrial
systems, culminating with two concise sets of arguments, one in favor and
the other against the adoption of Ethernet as a fieldbus.

Commonly referred arguments favoring the use of Ethernet in this field,

can be summarized as follows:

e [t is cheap, due to mass production;
e Integration with Internet is easy;

e TCP/IP stacks over Ethernet are widely available, allowing the use of
application layer protocols such as FTP, HT'TP and so on;

e Steady increases on the transmission speed have happened in the past,

and are expected to occur in the near future;

e Due to its inherent compatibility with the communication protocols

used at higher levels, the information exchange at plant level becomes
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easier;

e The bandwidth made available by existing fieldbuses is insufficient to
support some recent developments, like the use of multimedia (e.g.

machine vision) at the field level;

Availability of technicians familiar with this protocol;

Wide availability of test equipment from different sources;

Mature technology, well specified and with equipment available from

many sources, without incompatibility issues;

On the other side, Ethernet does not fulfill some fundamental requirements
that are expected from a communication protocol operating at the field level.
In particular, the destructive and non-deterministic arbitration mechanism
has been regarded as the main obstacle faced by Ethernet concerning this
application domain. The common solution to this obstacle, nowadays, is
the use of Switched Ethernet that allows to bypass the native CSMA /CD
arbitration mechanism. In this case, provided that a single NIC is connected
to each port, and the operation is full-duplex, no collisions occur.

However, just avoiding collisions does not make Ethernet deterministic:
for example, if a burst of messages is sent to a single port of a switch at
a rate larger than its transmission rate, its buffers can be exhausted and
messages lost. Therefore, even with Switched Ethernet some kind of higher
level coordination is required. Moreover, bounded transmission is not the
only requirement in a fieldbus.

Other important requirements commonly referred to in the literature
[DecOTl ISO94a] are: temporal consistency indication, precedence constraints,
efficient handling of periodic and sporadic traffic. These are not all intrinsi-
cally supported neither by shared Ethernet nor by switched Ethernet.

In the quest for achieving real-time behavior on Ethernet several ap-
proaches and techniques have been used. The remainder of this section
presents and characterizes some paradigmatic efforts, some of which are
general and others have been developed specifically for Ethernet. Partic-

ular emphasis is given to the latter ones.
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3.3.1 The Ethernet protocol

Ethernet was born about 30 years ago, invented by Bob Metcalfe at the
Xerox’s Palo Alto Research Center. Its initial purpose was to connect two
products developed by Xerox: a PC and a brand new laser printer. Along
the time this protocol has evolved in many ways and it has become the IEEE
802.3 standard. Despite the standard presenting some differences relatively
to the original Ethernet specification, we will consider the IEEE standardized
version, only. Therefore, in the scope of this thesis the term “Ethernet”
always refers to the IEEE 802.3 standard, unless explicitly stated otherwise.

In terms of transmission speed, it has grown from the original 2.94Mbps
to 10Mbps [[EES2, TEER, TEEal, TEES|, then to 100Mbps [[EEd] and more
recently to 1Gbps [[EEg]. Ten Gbps specification is expected to become

available soon.

Concerning the physical medium and network topology, Ethernet also
has evolved: it started with a bus topology based firstly on thick coaxial
cable [[EED] and afterward on thin coaxial cable [[EEal. In the mid 80’s a
more structured and fault-tolerant approach, based on a star topology, was
standardized [[EE€], running however at 1Mbps, only. In the beginning of
the 90’s an improvement on this latter technology was standardized [[EEf],
running at 10Mbps over category 5 unshielded twisted pair cable.

Along this journey over the last three decades, two fundamental proper-

ties have been kept unchanged:

e a single collision domain, i.e., frames are broadcast on the physical
medium and all the network interface cards (NIC) on it receive the

message, and

e the arbitration mechanism, which is called Carrier Sense Multiple Ac-
cess with Collision Detection (CSMA/CD).

According to the CSMA/CD mechanism, a NIC having a message to be
transmitted must wait for the bus to become idle. When this happens, it
starts the transmission. Since other NICs can also have messages ready for
transmission, a collision can occur. In this case, all the stations that detect
the collision abort the transmission of the current message and transmit a
jam sequence, to ensure that all other adapters become aware of the occur-

rence of a collision. Next, the nodes wait for a certain time before retry
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Preamble
(7 bytes)

Length
(2 byte)

Destination Addr. Source Addr.
(6 bytes) (6 bytes)

SOF Data PAD FCS
(1 byte) (1..1500 bytes) | (0..46 byte) (4 bytes)

Figure 3.9: Ethernet frame

the message transmission. This waiting time is selected randomly from a
discrete set of values. The upper bound of this set doubles its value by each
consecutive collision (exponential back-off). After 10 collisions the upper
bound of the waiting time interval does not grow anymore, which is the rea-
son why the mechanism used by the Ethernet protocol is known as truncated
exponential back-off. The number of retries is limited to sixteen.

The use of a single broadcast domain and the CSMA/CD arbitration
mechanism has created a bottleneck in highly loaded networks: above a
certain threshold, as the load increases the throughput of the bus decreases.
A solution to this problem, known as thrashing, has been proposed in the
beginning of the 90’s, consisting on the use of switches in the place of hubs.
A switch creates a single collision domain for each node connected to it.
This way, collisions never occur unless they are intentionally created for
managing purposes. Switches also keep track of the addresses of the NICs
connected to each port, therefore each NIC only receives the traffic addressed
to itself. This architecture allows the existence of multiple transmission paths
simultaneously, between different network nodes. Since using switches the
devices on the network no longer share the bandwidth and collisions don’t
occur, the throughput increases significantly.

Figure presents the Ethernet frame format. Ethernet frames start
with a preamble field meant to allow synchronization, followed by a start of
frame (SOF) delimiter. Then the destination and source addresses are in-
cluded, with 6 bytes each, to identify respectively the sender and recipient(s)
of the message. The number of data bytes carried in the message is defined
in the length field. The data itself is placed in the Data field, which can
contain between 0 and 1500 bytes. To allow collision detection, the 10 Mbps
Ethernet requires a minimum packet size of 64 bytes. So, shorter message
must be padded with zeros (PAD field). Finally, the Ethernet frame ends
up with a frame check sequence (FCS), meant for error detection. The FCS
is performed on both address, length and data fields. The probability of
undetected errors is 1 in (232 — 1) bits.

The TEEE controls the assignment of addresses by administering a por-
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tion of the address field. The IEEE does this by providing 3 byte identifiers
called "Organizationally Unique Identifiers" (OUIs), which are assigned to
each manufacturer of Ethernet interfaces. The manufacturer in turn creates
the full 6 byte addresses using the assigned OUI as the first 3 bytes of the
address, and locally selecting the lower 3 bytes according to some internal
policy. Provided that the locally assigned 3 bytes are unique, the full address
becomes unique. This 6 byte address is also known as the physical address,
hardware address, or MAC address, and is commonly pre-assigned to each
Ethernet interface when it is manufactured.

As each Ethernet frame is sent onto the shared signal channel, all Ether-
net interfaces look at the destination address field. The interfaces compare
the destination address of the frame with their own address. The Ethernet
interface with the same address as the destination address in the frame will
read in the entire frame and deliver it to the networking software running
on that computer. All other network interfaces will stop reading the frame
when they discover that the destination address does not match their own
address. This mechanism provides unicast communication.

A multicast address allows a single Ethernet frame to be received by a
group of stations. Network software can set a station’s Ethernet interface
to listen for specific multicast addresses. This makes it possible for a set of
stations to be assigned to a multicast group which has been given a specific
multicast address. A single packet sent to the multicast address assigned to
that group will then be received by all stations in that group.

There is also the special case of the multicast address known as the
broadcast address, which has the 6 byte address filled with ones. All Ethernet
interfaces that see a frame with this destination address will read the frame

in and deliver it to the networking software.

3.3.2 Modification of the Medium Access Control

This approach consists on modifying the Ethernet MAC layer to achieve a
bounded access time to the bus (e.g. [LR93), SS8F, [Coud?]). For instance, a
method described in [LR93] (CSMA/DCR) consists in a binary tree search
of colliding nodes, that is, there is a hierarchy of priorities. Whenever a
collision happens the lower priority nodes voluntarily cease contending for
the bus, and higher priority nodes try again. This process in repeated until

a successful transmission occurs.
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Two main drawbacks can be identified: in some cases the firmware must
be modified, therefore the economy of scale obtained when using standard
Ethernet hardware is lost; the worst-case transmission time, which is the
main factor considered when designing real-time systems, can be orders of
magnitude greater than the average transmission time. This forces any kind
of analysis to be very pessimistic and thus, leads to an under-utilization of
the bandwidth;

3.3.3 Addition of transmission control over Ethernet

Another way to achieve time-constrained communications over Ethernet con-
sists in adding a layer above it, intended to control the instants of message
transmissions, ending up with a bounded number of collisions or even a com-
plete avoidance of them. The major advantage of this kind of approach, when
compared to the modification of the MAC layer, is that standard Ethernet
hardware can be used.

Several different ways of doing transmission control over Ethernet are

referred below.

Master /Slave

In this case, all ordinary stations in the system transmit messages only upon
receiving an explicit command message issued by one particular station called
master. This approach supports relatively precise timeliness, depending on
the master, but introduces a considerable protocol overhead caused by the
master messages (notice the number of messages is duplicated). Also the time
required by slaves to process the request and respective response (turnaround
time) contributes to reduce the bus utilization efficiency. Moreover, with
this approach the handling of event-triggered traffic is normally inefficient
because the master must first become aware of any request before inquiring

the respective station.

Token-passing

This method consists on circulating a token among the stations. Only the
station currently holding the token is allowed to transmit and the token

holding time is upper bounded (IEEE 802.4 timed-token is one example).
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This scheme is still not very efficient due to the bandwidth used by the
token and induces large jitter in the periodic traffic due to variations in the
token holding time. Furthermore, token losses generally impose long periods

of bus inaccessibility.

Timed Token

This particular technique is also based on token-passing and it is the basis
for the RETHER protocol [VC94]. When in real-time mode, RETHER di-
vides network nodes in two groups: the RT group for nodes with bandwidth
reservations; the NRT group for all the others. The real-time messages are
assumed to be periodic, and time is divided in cycles with the duration of
one time unit. Access to the channel for both kinds of traffic is regulated
by a token. First the token visits all the RT senders having messages to be
produced in that cycle, and after the NRT nodes, if enough time is left until
the end of the cycle.

An on-line admission mechanism is provided; only messages that can be
timely handled and don’t jeopardize the remaining RT set are accepted. The
major drawbacks of this approach are: lack of support for real-time sporadic
traffic; high overhead (similar to master/slave); lack of support for dynamic

priorities concerning the periodic traffic;

TDMA

In this case, stations transmit messages at pre-determined disjoint instants in
time in a cyclic fashion. This approach requires precise clock synchronization
and does not lend itself well to dynamic changes in the message set because
the communication requirements are distributed and thus, changes must be
done globally. On the other hand, it uses the bus bandwidth efficiently since
there are no control messages beyond those to achieve clock synchronization

and also there is no need for explicit addressing.

Virtual Time Protocol

This protocol [MZ95, IMKRH] tries to reduce the number of collisions on the
bus while offering the flexibility to implement different scheduling policies.
It prioritizes messages by mapping different message parameters (e.g laxity

or arrival time) in waiting periods, and operates in the following way.
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When a node wishes to transmit a message, it waits for a given amount of
time, counting from the moment the bus became idle. This amount of time
is calculated according to the desired scheduling policy. When that time
expires, and if the bus is still idle, the node tries to transmit the message.
Collisions can still occur since there is no guarantee that two different nodes
can have messages with the same priority. In this case the protocol uses a
probabilistic approach, in which the nodes involved in the collision retransmit
the message with a given probability p.

This kind of approach has some important drawbacks:

e Performance is highly dependent on the proportional constant value
used to relate the waiting time with the scheduling policy in use, which
leads to collisions if this factor it is too short, and to a large amount of
idle time (low efficiency in bandwidth utilization), if the proportional

constant is too long;

e Proportional constant is dependent on the properties of the message

set, therefore on-line changes can lead to poor performance;
e Lack of support for time-triggered traffic;

e The unbounded worst-case transmission time, resulting from the prob-
abilistic collision resolution mechanism, renders this protocol unsuit-

able for use in hard real-time systems.

One of the most interesting features of this approach it is its ability to achieve
performances close to the theoretical model for some scheduling policies.
For instance, in [ZB&7] it is shown that the Virtual Time protocol performs
close to the exact minimum laxity first policy under a wide range of load

conditions.

Windows Protocols

This type of protocols has been proposed both for CSMA /CD and token ring
networks [MZ93)]. Concerning the CSMA /CD implementation, the operation
is as follows. The nodes on a network agree on common predefined time
interval named window, and the bus state is used to assess the number of
nodes with messages to be transmitted within the time window. If only one

message is ready within in the window, it will be transmitted. However;
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if more than one node has ready messages within the window, a collision
occurs. In this case the window size is successively reduced until only one
message is in the window. Finally, if no nodes have ready messages within
the window, then the window size is increased.

This method has some important drawbacks:

e The time and space required to maintain the window can incur is sub-
stantial overhead [MZ95];

e Lack of explicit support for time-triggered traffic;

e Since collisions make part of the protocol, worst-case transmission time
is much higher than average transmission time, leading to bus under-
utilization when timeliness must be guaranteed (i.e. for hard real-time

systems).

On the positive side, this approach, unlike priority-based protocols, is not

limited by the number of available priority levels.

Traffic shaping

As opposed to transmission control, this technique follows an approach based
on the fact that, if the bus utilization is kept low, then the probability of
collisions is also low (although not zero). Therefore, if the network av-
erage load is kept below a given threshold and traffic bursts are avoided, a
given probability of collisions can be obtained. Implementations of this tech-
nique are presented in [KSZ99, [KSO0, BMOT, [CCBM0?]. An interface layer
called traffic smoother is placed between the transport layer (TCP/UDP)
and Ethernet. Real-time traffic is assumed to be event-triggered and gener-
ated pseudo-periodically, since it is generated by some kind of control system.
Moreover, the real-time traffic is assumed to use a small fraction of the bus
bandwidth and is transmitted on demand, without interference of the traffic
smoother. Non-real-time (NRT) traffic can be bursty and it is handled by the
traffic smoother, which keeps track of previous message transmissions (both
RT and NRT) performed by the node. According to this history record,
the traffic smoother releases NRT messages in a controlled fashion, in order
to follow a desired node’s traffic generation rate. This way, at the network
level, the interference on the RT traffic due to NRT traffic is kept inside a
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(probabilistic) bound. Several techniques have been developed to manage
the behavior of the traffic smoother, such as the leaky bucket proposed by
Kweon et al [KSO0| and fuzzy logic in Carpenzano et ol [CCBMQO2.

One major drawback of this approach is that all the guarantees are sta-
tistical - it cannot be guaranteed a priori that a specific message can be
transmitted within a specific time interval. Therefore this approach is not
well suited to support hard real-time traffic. Moreover, this approach lacks

explicit support for time-triggered traffic.

Switched Ethernet

The use of switches became very popular recently, as a way to improve
the performance of shared Ethernet. Switches provide a private collision
domain for each one of their ports, i.e., unlike a hub, there is no "direct"
connection between the ports. When a node transmits a message, this one is
received by the switch and then buffered in to the ports where the receivers
of the message are connected. If several messages addressed to a given port
arrive in a short interval, they are buffered and then sequentially transmitted.
The IEEE 802.1D standard defines 8 priority queues in output ports. The
scheduling policy used at this level is a topic currently addressed in the
scientific community (e.g. [INOI]).

Unfortunately the use of a switch in an Ethernet network is not enough
to make it real-time, in the general case. For instance, output buffers can be
exhausted and messages lost if bursts of messages are sent to the same output
port. This situation can occur more often than desired, even in the field of
distributed control systems. In this kind of systems the producer/consumers
model is frequently used. According to this co-operation model the producer
of a given datum (e.g. a sensor reading) sends it to several consumers of that
datum. This model is efficiently supported in Ethernet by means of special
addresses, called multicast addresses. Each network interface card can define
a local table with the multicast addresses related to the data that it should
receive. However, the switch has no knowledge of these local tables, therefore
treats all the multicast traffic as broadcasts, i.e., messages with multicast
destination addresses are transmitted to all ports. Therefore, depending on
the predominant type of traffic exchanged in a given application (unicast vs.
multicast/broadcast), one of the main benefits of using Switched Ethernet,

i

multiple simultaneous transmission paths, can be seriously compromised.
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Other problems concerning the use of switched Ethernet are [Dec(T]:

e In the absence of collisions the switch introduces an additional latency;

e The number of available priority levels is too small to support the

implementation of efficient priority based scheduling;

e The switch only makes Ethernet deterministic under controlled loads.

3.3.4 Ethernet-based protocols properties summary

Table 3.3.1 summarizes some of the properties of the several Ethernet-based

protocols above discussed.

Traffic classes
Real-time Non Dynam. Time. Temp. Effici- COTS
Protocol Comm. Guar- Isolat Hard-
Time Event Real Req. anties sotat. eney ware
Trig Trig Time
CSMA/DCR No Yes Yes Yes Hard! No Low? No®
TDMA Yes No No No Hard N.A. High Yes
Virtual time No Yes Yes Yes Hard! No Low? Yes
Windows No Yes Yes Yes Hard! No Low? Yes
Time-token Yes No Yes Yes Hard Yes Low3 Yes
Switch No Yes Yes Yes No* No High Yes
Traffic
No Yes Yes Yes Soft No Low? Yes
Smoothing
Legend:

1 Worst-case response time much higher than the average value
2 Collisions are part of the protocol
8 Each real-time message is preceded by a control message

4 Can be achieved by the use of admission control (not part of the

protocol)
5 Requires modifications to the NIC’s firmware
N.A. Not applicable

Table 3.3.1: Ethernet-based protocols properties summary
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3.4 Conclusion

This chapter starts by a brief presentation of distributed real-time systems,
with particular emphasis in issues like co-operation models, message schedul-
ing and message triggering paradigms. Further on it presents a survey on
some of the most representative protocols that have been developed to sup-
port such kind of distributed systems.

Many real-world systems are complex and dynamic, evolving during time
and require, or at least benefit, from the presence of a flexibility real-time
communication network. For this reason, the protocols analyzed in this

chapter have been assessed in what concerns issues like:

e Support for different traffic classes with distinct timeliness require-

ments;
e Support for dynamic changes on the message properties;
e Support for different message triggering models (time and event-triggered);
e Temporal isolation between the different types of traffic;

e Efficiency in bus bandwidth utilization;

The results are summarize in Table 3.2.1 concerning fieldbus protocols and
in Table 3.3.1 concerning Ethernet-based protocols. From the observation of
these tables, it can be concluded that none of the analyzed protocols fulfills
all the properties referred above. Therefore, applications demanding flexible
communication systems do not find adequate support in these protocols. In
the following section it will be presented a new communication paradigm,

the Flexible Time-Triggered paradigm, that aims at filling this gap.
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Chapter 4

The FTT paradigm

The requirement for flexibility is becoming increasingly important in dis-
tributed computer-controlled systems motivated by the need to reduce the
costs of set-up, configuration changes and maintenance [ST96], [Tho98]. This
requirement extends to all system levels including the field level in process in-
dustries and the cell and machine control levels in manufacturing industries,

where fieldbus-based distributed computer control systems can be found.

Moreover, recent applications such as agile manufacturing, real-time da-
tabases, automotive, mobile robotics and machine vision must deal with envi-
ronments that are inherently dynamic. This type of applications are not eas-
ily or efficiently supported by "open loop" scheduling algorithms [SLST99],
i.e., algorithms in which once the schedules are created they are not "ad-
justed" based on continuous feedback about the system evolution. While
open-loop scheduling algorithms can perform well in static or dynamic sys-
tems in which the workloads can be accurately modeled, they can perform
poorly in dynamic systems, where such degree of knowledge is hard to find
or even non-existent. A possible methodology to support this type of re-
quirements consists in regarding the computer system as a control system
with the scheduler as the controller, and integrate practical feedback control
techniques into scheduling algorithms [SLST99]. To support such frame-
work efficiently, the real-time communication system should support on-line
changes to the communication requirements, to reflect the evolving require-

ments, but nevertheless keeping timeliness and predictability guarantees.

This chapter presents a reasoning about the requirements posed to the

communication system in the framework of flexible real-time distributed

69
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computer control systems, culminating with a concise set of properties that
must be fulfilled. Then, a new communication paradigm, the Flexible Time-
Triggered (FTT) architecture, which supports these requirements, is pre-

sented.

4.1 Why a new protocol

Concerning specifically the fieldbus system, flexibility implies dynamic com-
munication requirements, meaning that on-line addition, removal and adap-
tation of message streams must be supported. On the other hand, most
of the data exchanges handled by the fieldbus are also subject to stringent
timing constraints arising from control and monitoring requirements. Unfor-
tunately, flexibility and timeliness have typically been considered separately
and most of the fieldbuses available today favor either one aspect or the other
[Tho98], i.e., either time-constrained services are guaranteed sacrificing flex-
ibility or such guarantees are sacrificed in exchange for higher flexibility.

Another requirement typically found in fieldbus systems is the capac-
ity to deliver both time and event-triggered communication services under
timing constraints. The former ones are well suited to convey periodic up-
dates of state data whilst the latter ones are more adapted to convey alarms
and management data. Again, existing fieldbus systems privilege either one
or the other type of services. In systems eminently time-triggered, event-
triggered services are either non-existing or handled inefficiently in terms of
either response time or network utilization. On the other hand, in systems
eminently event-triggered, interesting properties of time-triggered services
such as composability with respect to the temporal behavior are normally
lost [Kop93)].

The requirement for flexibility is sometimes considered as conflicting with
the time-triggered approach [Kop97, [KG94], since, according to this model,
communication activities occur at pre-defined instants in time. However,
time-triggered systems also may profit from flexibility [BAN(, Mar02]. To
achieve such behavior, the time-triggered traffic should be scheduled on-
line, with the scheduler basing its decisions on the actual communication
requirements. However, such flexibility should not compromise the system
timeliness and predictability, and thus such flexible real-time systems should

incorporate admission control, as discussed in Section B3l
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Different scheduling policies provide schedules that exhibit different prop-
erties and imply different computational costs (Section EZl). Therefore, a
communication system with the capacity to support distinct scheduling poli-
cies can be adapted to different platforms and applications. For instance, in
platforms with low processing power available, it can be used a fixed priority
(e.g. RM) instead of dynamic priority (e.g. EDF) based scheduling policy,
lowering the scheduling overhead at expenses of a potentially lower utiliza-
tion of the communicational channel. Furthermore, in some circumstances
it can be important to have the possibility to change on-line the scheduling
policy of a given system. For example, during normal operation a system
could be scheduled by EDF to maximize the communication channel utiliza-
tion efficiency. However, upon a degradation in the communicational channel
performance (e.g. due to electromagnetic interference), the transmission of
the most important messages should be privileged. This behavior can be

achieved by switching to a fixed-priority value-based scheduling policy.

Frequently real-time entities have a limited lifetime. For example, in
distributed control systems one or more nodes execute control algorithms
based on sensor data generated elsewhere. The communication between sen-
sor and controller nodes is performed exclusively through the communication
network. If, due to some problem, a sensor node fails in transmitting the
value of an environment variable, the control algorithms may not be fed with
correct inputs. In this case the controller nodes should be informed of the
failure, to enable them to take some corrective actions, whenever possible
and desired. Hence, the network protocol itself should provide services to
know if the data values are still in accordance with the corresponding envi-

ronment variables, which is a property designated by temporal consistency

[DecOT] or accuracy [Kop97].

Another issue is related with the cooperation model. In many applica-
tions the same data is required in different network nodes. This require-
ment is efficiently supported by the producer-consumer co-operation model
(Section BET.A)). However, to provide this co-operation model efficiently, the
communication system should have intrinsic support of multicast services,
i.e., a single data message transmission should reach all consumer nodes.

To comply with all of these requirements, adequate choices of commu-
nication paradigms and protocols are needed. More specifically a protocol

able to handle such flexibility requirements must support:
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e Time-triggered communication with operational flexibility;

e Support for on-the-fly changes both on the message set and on the
scheduling policy used;

e On-line admission control to guarantee timeliness to the real-time traf-

fic;
e Indication of temporal accuracy of real-time messages;

e Support of different types of traffic: event-triggered, time-triggered,

hard real-time, soft real-time and non-real-time;

e Temporal isolation: the distinct types of traffic must not disturb each

other;
e Efficient use of network bandwidth;

e Efficient support of multicast messages;

As presented in Section B2 none of the existing fieldbus protocols fulfills
all of these requirements. For instance, concerning the support of event and
time-triggered traffic, existing protocols either do not support both types
of traffic (e.g. TTP/C), or both types are supported but without temporal
isolation (e.g. Profibus, P-Net, DeviceNet). In the cases where tempo-
ral isolation is enforced, the event-triggered traffic is handled inefficiently
(e.g. WorldFIP, Foundation Fieldbus-H1), and/or the time-triggered traffic
is specified statically, thus not supporting operational flexibility concerning
the time-triggered traffic (e.g. TT-CAN, FlexRay). The same situation hap-
pens with the Ethernet-based protocols analyzed in Section B3 The Flexible
Time-Triggered paradigm herein presented addresses these issues and fulfills
the requirements for flexibility, timeliness and efficient combination of time

and event-triggered traffic.

4.2 The Flexible Time-Triggered paradigm

The Flexible Time-Triggered (FTT) paradigm has its roots in the FTT-
CAN protocol [AFFE9S, [APF99], originally developed within the Electronic
Systems Laboratory in the University of Aveiro. The FTT-CAN protocol

is based on Controller Area Network, and aims to provide support for the
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combination of both time and event-triggered traffic with temporal isolation
and operational flexibility concerning the time-triggered traffic. Its main tar-
get is low processing-power micro-controllers, used in embedded distributed
real-time applications. During the development of the FTT-CAN protocol it
was realized that the main concepts could be abstracted to form the Flexi-
ble Time-Triggered paradigm, a general communication paradigm, which, in
its turn, could have implementations using other communication infrastruc-
tures.

The FTT paradigm defines the system architecture and application pro-
gramming interface (API) as seen from the application software. Each of
the FTT implementations has its peculiarities, such as bit-rate, admissible
message lengths, addressing schemes, etc. However, these characteristics are
abstracted, and the paradigm exhibits a common set of properties, which are
independent of the particular implementation. The envisaged target systems
range from low processing-power micro-controllers, like the 8051, used typi-
cally in embedded industrial control systems, to high performance systems,
able to handle complex activities, such as computer-vision and autonomous

mobile robot control.

4.2.1 System architecture

The FTT paradigm presents an asymmetric architecture, comprising one
master node, possibly replicated for fault-tolerance reasons, and one or more
station nodes (Figure EI). The master node is responsible for the man-
agement and coordination of the communication activities, and the station
nodes execute the application software as well as the network protocol.

The master node implements the centralized scheduling concept, in
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which both the communication requirements, message scheduling policy and
on-line admission control are localized in one single node. Such concentration
of functions allows to have at any instant complete knowledge of current
system requirements and also the possibility to make atomic changes to any
of them. Moreover, such architecture also facilitates the implementation of
on-line admission control with fast response.

The distribution of the scheduling decisions to the network stations is
periodically performed by the master through a special control message, the
trigger message (TM). Thus, concerning the coordination of the communica-
tion activities, a master-slave relation is established between the master and
the stations. To reduce the efficiency penalty usually associated to master-
slave communication, the FTT paradigm uses a relaxed master-slave ap-
proach, designated master/multi-slave transmission control, in which
a single trigger message causes the transmission of several slave messages,
eventually originated in distinct station nodes. This method reduces the
number of control messages, consequently improving the bandwidth utiliza-
tion, and, at the same time, benefits from the timeliness properties associated
to master-slave communication.

By using centralized scheduling and consistent interfaces between the
scheduler, dispatcher, admission control manager and requirements manager,
together with the distribution of the schedule decisions by means of the
trigger message, the system gets a high degree of flexibility since:

e The station nodes on the network are not aware of the particular
scheduling policy in use, since they strictly follow the traffic sched-
ule conveyed in the trigger message. Therefore any scheduling policy
can be implemented, irrespectively of its complexity and nature (e.g,
fixed priorities, dynamic priorities), provided the master has enough

processing power to timely compute and distribute the schedule.

e Several scheduler modules can be implemented, and the system can
change between them "on-the-fly", autonomously or on demand. For
example, the system can be configured to use Earliest Deadline First
(EDF) scheduling in order to maximize the utilization factor under
normal system operation, and switch to some kind of value-based fixed
priorities scheduling on overloads, in order to guarantee that most im-

portant messages are scheduled within their deadlines.
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Figure 4.2: The Elementary Cycle structure

e All the required scheduling information is carried on the trigger mes-
sage, therefore, when changing message properties (e.g. its period-
icity), the synchronization of the update throughout the network is

intrinsically guaranteed.

e The master holds enough information to know the demands of real-
time traffic and how much leeway the system has, therefore it can safely
allocate bus bandwidth to other kinds of traffic without jeopardizing

the timeliness of real-time traffic.

4.2.2 The Elementary Cycle

In the FTT paradigm the bus time is slotted in consecutive fixed duration
time-slots, called Elementary Cycles (ECs). The EC starts with the reception
of the TM, and all nodes are synchronized by its reception. Each EC is
composed by two consecutive windows, synchronous and asynchronous, that
correspond to two separate phases (Figure E22).

The synchronous window conveys the time-triggered traffic, according to
the contents of the trigger message. The length of the synchronous window
(Isw(i)) can vary from EC to EC, according to the number and length of
messages scheduled for that particular EC. It is however possible to impose a
limit to the maximum size of the synchronous window (LSW), and thus grant
to the asynchronous window a minimum guaranteed bandwidth share. The
time-triggered traffic is subject to admission control and thus all messages
accepted by the system have their timeliness guaranteed (dynamic planning-
based scheduling).

The asynchronous window has a duration (law(i)) equal to the time
gap between the EC trigger message and the synchronous window. It is
used to convey event-triggered traffic, herein called asynchronous because
the respective transmission requests can be issued at any instant. Unlike the
synchronous traffic, the arbitration within the asynchronous window is not

resolved by the master node. The only information supplied in the trigger
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message related with the asynchronous window is their duration. A suitable
protocol must then be used to perform the message arbitration within this
window. The asynchronous traffic is handled in a best-effort policy. However,
the use of deterministic medium-access policies combined with the possibility
to define a minimum guaranteed bandwidth to the asynchronous traffic al-
lows, when required by the application, to pre-analyze its requirements and
compute if a given set of real-time asynchronous messages can meet their
deadlines in worst-case conditions. This feature is usually required only by
asynchronous messages related to alarms or other similar real-time events.
In general, the asynchronous window is mainly devoted to non-real-time
traffic, such as software upload/download, remote diagnostics and configu-
ration, remote calibration, etc., with relaxed real-time requirements or even

no real-time requirements at all.

In order to maintain the temporal properties of the time-triggered traf-
fic, such as composability with respect to the temporal behavior, the syn-
chronous window must be protected from the interference of asynchronous
requests. A strict temporal isolation between both phases is enforced by
preventing the start of transmissions that could not complete within the
respective window. Since the message lengths are not correlated nor with
the EC duration neither with the synchronous and asynchronous window
durations, a short amount of idle-time («) may appear at the end of the

asynchronous window (exclusion window).

The FTT paradigm does not specify the relative order of the synchronous
and asynchronous windows. This aspect is only defined by specific protocol
implementation. The justification for this procedure is that particular imple-

mentations can profit form a particular window arrangement (e.g. [PAQO0]).

The communication services of the FTT paradigm are delivered to the
application by means of two subsystems, the Synchronous Messaging System
(SMS) and the Asynchronous Messaging System (AMS), that manage the
respective type of traffic. The SMS offers services based on the producer-
consumer model [TC99] whilst the AMS offers send and receive basic services,
only. The components of each of these services are spread among the master

and the station nodes, and presented in the following sections.
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4.2.3 Master node architecture

The master node plays the role of system coordinator and it is responsible
for providing an interface to allow system management, maintaining a local
database holding the system communication requirements, building sched-
ules generated according to the particular scheduling policy implemented
and broadcasting these schedules at appropriate time instants. Figure
depicts the internal architecture of an FT'T master.

The Application Interface provides a set of services that are used by
the application software to perform the system configuration. All the inter-
action with the application software is made through this interface. These
services are available both locally and remotely, via the network. The fol-

lowing classes of services are available:

e System configuration and management: set-up of the EC duration, bus
speed, network topology and overheads (e.g. guard bands, message

processing);

e Message management: addition and exclusion of messages, as well as

modification of their properties;

e System Status Record access: retrieve information about system per-

formance, like jitter figures, bandwidth use for each traffic class.
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The System Requirements Database (SRDB) holds the properties of
each of the message streams to be conveyed by the system, both real-time
and non-real-time, as well as a set of operational parameters related to system

configuration and status. This information is stored in a set of three tables.

The Synchronous Requirements Table (SRT) includes the properties
of the synchronous messages conveyed by the system ( Definition ECTI).

SRT = {SMZ'(DLCZ‘,CZ',Phi,B,DZ‘,PTZ‘,*Xfi), 1= 1--NS} (4.1)

where for each message SM; of a set of Ng synchronous messages, DLC; is
the data length in bytes, C; is the respective transmission time (including
all overheads), Ph; allows to define an initial phase, P; is the period or
minimum inter-arrival time, respectively for periodic and sporadic messages,
D; is the deadline and, finally, Pr; is a fixed priority. The basic time unit in
the FTT paradigm is the elementary cycle duration, thus both Ph, P and
D are expressed as integer multiples of the EC duration (E). Synchronous
message exchange is based on the producer-consumer co-operation model,
therefore it uses source addressing, i.e., the message identification is related

to the message contents and not with the particular sender or consumer(s).

Besides the basic properties above defined, the SRT also supports an ad-
ditional optional field (X f) that can be used by particular scheduling algo-
rithms that require other types of information. For instance, if it is required
to support message streams with different levels of acceptable Quality of Ser-
vice (QoS) concerning the respective bandwidth, the SRT can be extended
with an admissible period range (Minimum, Nominal and Maximum). On
the other hand, this mechanism also allows to restrict the operations allowed
on the message stream attributes. For example, some flags can be used to
indicate which messages can or cannot be removed or if the QoS manager
can automatically update their properties.

The Asynchronous Requirements component is composed by the re-
union of two tables, the Asynchronous Requirements Table (ART) and the
Non-Real-Time Requirements Table (NRT).

The ART (Definition EE2) is used to store the properties of the asyn-
chronous messages conveyed by the system that, despite being asynchronous,

may or may not have timeliness requirements. For example alarm messages
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usually have hard timeliness requirements while messages used to perform
remote diagnosis or configuration frequently do not have such timeliness con-
straints. The asynchronous messages are scheduled according to a best-effort
policy, based on fixed priorities. Nevertheless, it is possible to pre-analyze
the communication requirements in order to verify if a given subset of asyn-
chronous message set, having timeliness requirements, can be scheduled by

the system within their deadlines, in all anticipated load conditions.

ART = {AMZ'(DLCZ‘,Ci,miti,Di,PTi), 1= 1..NA} (4.2)

This table is similar to Definition EETl except for the use of mit;, minimum
inter-arrival time, instead of period, and the absence of initial phase Ph;,
since asynchronous messages are triggered by the application software at any
instant, without phase control. As in the case of the synchronous messages,
the asynchronous message exchange is based on the producer-consumer co-
operation model, therefore it uses also source addressing.

The non-real-time traffic is handled strictly according to a best-effort
policy. Since no timeliness guarantees are provided, the master node only
needs to keep track of which stations produce this kind of traffic, and, for each
of them, the size of the respective longest non-real-time message, as required
to enforce the temporal isolation between synchronous and asynchronous
traffic.

NRT = {NM;(SID;, MAX DLC;, MAX C;, Pr;),i=1.Ny} (4.3)

The NRT contents is defined by Definition BE3] where SID; is the node’s
identifier , MAX DLC; is data length in bytes of the longest non-real-
time message produced by the node, MAX (' is the respective maximum
transmission time, including all overheads, and Pr; is the node’s non-real-
time priority, which can be used to implement an asymmetric distribution
of the bus bandwidth among the different nodes. Finally, Ny is the number
of stations producing non-real-time messages.

The last component of the System Requirements Database is the System
Configuration and Status Record (SCSR). This record stores all system
configuration data, such as the bus transmission speed, duration of the el-

ementary cycle, minimum amount of bandwidth allocated to asynchronous
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traffic, protocol overheads dependent on the network topology (e.g. network
length and number of repeaters), etc. Moreover, the scheduler also stores
in this record data concerning traffic figures, such as the bandwidth used
by each traffic class. This information is made available to the application
layer, therefore it can be used either in preliminary field tests for profiling
purposes or at run-time to improve the system adaptability (e.g. changing
the scheduling policy or message properties depending on some thresholds),

raise alarms when some figures override specific thresholds, etc.

The Scheduler uses the information provided by the SRDB to build the
EC-Schedules for the synchronous traffic. More specifically, the Scheduler
reads the message properties of the both synchronous and asynchronous mes-
sages, as well as the system configuration information stored in the SCSR reg-
ister, and, based on such data, decides which synchronous messages should
be transmitted in the following EC, according to the particular scheduling
algorithm implemented. The result of such computation is placed in the
EC-Schedule register (ECSR).

The Scheduler also gathers information about the scheduled messages
and update the SCSR status record accordingly. The data placed by the
Scheduler in the EC-Schedule register explicitly defines the IDs of the mes-
sages that shall be transmitted, as well as the duration of the synchronous
window. However, particular implementations can require additional in-
formation. For example, in implementations based on shared Ethernet or
RS-485 the message transmission must be performed in exclusive time slots
to avoid collisions, thus information about the specific message transmission

time of each message must also be placed in the ECSR.

The Admission Control is based on the schedulability test of the syn-
chronous traffic. The schedulability test must consider not only the message
properties but also other relevant information like the maximum length of
the synchronous window or which particular scheduling algorithm is being
used. The admission control is invoked whenever there is a request for a
change in the SRT. Changes are accepted only when the schedulability test
result indicates that the system timeliness is not jeopardized. In any case
the application interface is notified about the result of the change request.

Both the Scheduler and the Admission Control are encapsulated in mod-
ules with clearly defined interfaces. The system supports a seamless integra-

tion of several different modules that can be switched on-line, according to
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Figure 4.4: FTT station internal architecture

some triggering event, as referred above.

The Dispatcher reads the EC-Schedule Register, builds the next trigger
message with such EC schedule and broadcasts it over the network. Since it
is the reception of the trigger message in the remaining nodes that signals the
beginning of an EC, it is important to schedule the Dispatcher task regularly,

with sufficient precision.

4.2.4 Station node architecture

Station nodes, also known as ordinary or slave nodes, execute the application
software required by the user, eventually requesting the services delivered
by the communication system. The station node’s internal architecture is
depicted in Figure B4

The application software interacts with the communication system trough
a real-time API (RT _API) which enables the applications to:

e Define which messages are locally produced or consumed;
e Update the value of such real-time entities;

e Get the value of such real-time entities;
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e Set-up callbacks associated to communication events such as message
transmission and reception, as well as error conditions such as deadline

misses;

Moreover, the FTT architecture also provides support for the integration of
foreign communication protocols. This traffic is included in the NRT class,
and thus it is intercepted by the FTT communication stack and transmitted
within the asynchronous window, after explicit permission of the master
node. This way the timeliness of the F'T'T real-time traffic is not jeopardized
by the presence of traffic belonging to other protocols. The access to this
communication stack is made trough its native application layer interface,
which is denoted as Non-Real-Time API in Figure 241

The Node Requirements Database

The Node Requirements Database (NRDB) holds the node’s communica-
tion requirements, and is composed by two components, the Synchronous
Requirements component and the Asynchronous Requirements component.
The exchange of synchronous messages is performed with autonomous
control, i.e. the transmission and reception of messages is carried out exclu-
sively by the network interface without any intervention from the application
software. The message data is passed to and from the network by means of
shared buffers. This means that the network interface, in what concerns the
synchronous messages, behaves as a temporal firewall between the applica-
tion and the network, since it isolates the temporal behavior of both parts,
increasing the system robustness. There are two complementary API func-
tions available to the application layer, SMS produce and SMS consume,
which allow respectively producer nodes to update the local buffer with new
data and consumer nodes to read the actual contents of the local buffer.
The information about each of the synchronous messages (Nyg) is stored
in the NRDB’s Synchronous Requirements Table (N_SRT), and consists of
(Definition EE4)) the respective data length (DLC;), the indication if it is a
message locally produced or consumed (P_C;), timer field to manage time
validity information (T'mr;), address of tasks associated with communica-

tion events, namely transmission (T'z__ev;), reception (Rz_ev;) and deadline
miss (DM _ev;).
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N SRT ={N_SM;(DLC;,P_C;,Tmr;,Tx_ev;, Rx_ev;,
DM_SUZ', Dbuffl), 1= 1..NN5'} (4.4)

The N_SRT table also holds a pointer to the data buffer (Dbuf f;) used
to store the data itself. It should be noted that there is concurrency in
the access to the data buffer between the RT API and the communication
stack software. Moreover the use of basic mutual exclusion methods, such
as semaphores, must be avoided because the communication software cannot
be delayed when it is time to transmit a message. Therefore methodologies
like double-buffering or Cyclic Asynchronous Buffers ([Buf97|), which allow
multiple access, should be used. Alternatively it can also be used a single
buffer, if there is an indication about the message validity in message frame,
together with a suitable integrity verification function performed both in

sender and receiver nodes.

An optional field can be appended to the table to store other relevant in-
formation, such as the number of messages received and transmitted, number

of deadlines missed, jitter, lateness, message group definition, etc.

The transmission of the real-time asynchronous messages follows the ex-
ternal control paradigm, i.e. the transmission of messages takes place upon
explicit requests from the application software. Such requests are issued by
means of a basic API service called AMS send, which is a non-blocking send
function with queuing. The queue is ordered first by priority, according to
the message identifiers, and second by request instant (FCFS). The length of
each asynchronous message queue is set at configuration time and defines the
maximum number of messages that can be queued at the same time. This
is particularly relevant when the minimum inter-arrival time of transmission
requests in a given stream is shorter that the worst-case time to process a

single request of that stream.

The delivery of messages to the application software is accomplished by
means of a complementary API basic service called AMS receive, a receive
function that allows waiting for a specified, or unspecified message. At the
receiving node, the AMS also queues the messages arriving from the network
until they are retrieved with the AMS receive service. The length of the

queue is also set-up at configuration time, similarly to the queue in the
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sender side. In this case, the important aspect is the time the application

takes to process each message.

More complex and reliable exchanges, e.g. requiring acknowledge or re-
questing data, must be implemented at the application level, using the two

basic services referred above.

N ART ={N_AM;(DLC;,P_C;,Tmr;,Tx_ev;, Rx_ev;,
DM ev;, Dqueue;), it = 1..Nya} (4.5)

The information about each of the asynchronous real-time messages (Ny4)
sent or received by the node is stored in the NRDB’s Asynchronous Require-
ments Table (N_ART) (Definition EED)), and consists of the respective data
length (DLC;), the indication if it is a message locally produced or consumed
(P_C;), timer field to manage time validity information (T'mr;), address of
tasks associated with communication events, namely transmission (T'z__ev;),
reception (Rz_ev;) and deadline miss (DM _ev;), and finally a pointer to
the queue holding the messages waiting to be transmitted or already received
but waiting to be read by the application, respectively if the node is a sender

or a receiver of the particular message stream (Dqueue;).

N_NRT = {N_NMZ(SIDZ, MAX_DLCZ, P_Ci, P’I“Oti, T.’I}_G’Ul',
Rx_ev;, DM _ev;, Dqueue;, DqueueFP;), i = 1..Nyn} (4.6)

Non-real-time asynchronous message transmission is performed only af-
ter an explicit pol by the master node. The information about each of the
non-real-time messages (Nyy) sent or received by the node is stored in the
NRDB’s Non-Real-Time Requirements Table (N NRT') (Definition EZH), and
consists of the identification of the sender node (SID;), the respective max-
imum data length (M AX DLC;), the indication if it is a message locally
produced or consumed (P_Cj), the indication if it is an FTT message or
a foreign protocol message (Prot;), address of tasks associated with com-
munication events, namely transmission (T'z__ev;), reception (Rxz_ev;) and
deadline miss (DM _ev;), and finally a pointer to the queue holding the mes-

sages waiting to be transmitted or already received but waiting to be read
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Figure 4.5: FTT station network software architecture

by the application, respectively if the node is a sender or a receiver of the
particular message stream (Dqueue;).

The Prot provides support to the possibility of exchange messages from
other protocols within an FTT system. If the Prot field is set to non-FTT,
the P_ (' field is ignored, since it is not performed any filtering concerning
this kind of traffic. Moreover, in this case there are allocated two message
queues, Dqueue; and DqueueF P;, used respectively for message transmis-

sion and message reception.

Communication stacks

The access to the communication medium is performed trough an adequate
communication protocol. Two parallel stacks can be used, one for real-time
and the other for non-real-time communication, as depicted in Figure
The non-real-time protocol stack provide the means to allow FTT to
co-exist with other protocols. For instance, in the FTT-Ethernet protocol,
this mechanism is used to allow the exchange of TCP/IP messages among
system nodes, thus supporting standard applications and protocols such as

FTP, HTTP and others to execute in system nodes. This aspect is par-
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ticularly interesting, since there is a strong pressure for supporting the use
of standard tools, namely web-based, to perform device management and
monitoring as well as to facilitate the interoperability among the different
plant levels [MART00, (Wol((]]. Different techniques can be used to imple-
ment this mechanism, such as encapsulation of foreign-protocol frames within
FTT frames, procedure commonly known as tunneling. In other cases, such
as with Ethernet, the native data frame already incorporates a control field
that supports protocol multiplexing, thus in this case switching among the

stacks can be performed just by handling the respective frame type tag.

The real-time protocol stack follows the collapsed 3 layers OSI reference
model typically found in fieldbus systems. It provides a specific application
interface, the Real-Time Application Programming Interface (RT _API),

The data-link layer (DLL) of the native communication protocol is mod-
ified, with the addition of a transmission control layer, both for real-time
and non-real-time communication. This is referred to as the FT'T Interface
Layer (Figure EEX) and it triggers and manages all communication activities

in the system.

Concerning the synchronous traffic, the FTT Interface Layer receives and
decodes the EC trigger message and transmits messages that carry entities
produced locally and requested elsewhere, according to the information of
the EC-Schedule. On reception of synchronous real-time frames the FTT
Interface Layer matches the ID of the received messages with the list of the
locally consumed entities, by checking the Node Requirements Database. If
the received message is locally consumed, its local buffer is updated with the

received data.

With respect to the asynchronous traffic, the FTT Interface Layer com-
putes the temporal limits of the asynchronous window and when the asyn-
chronous window begins it gets the asynchronous messages (if any) from the
respective queues and transmits them according to the particular arbitra-
tion mechanism used. Moreover, the FTT interface layer must also detect
the end of the asynchronous window and prevent the start of any message
transmission that does not fit within this window, in order to enforce tempo-
ral isolation between traffic classes. On reception of asynchronous real-time
frames the FTT Interface Layer matches the ID of the received messages with
the list of the locally received entities, by checking the Node Requirements

Database. If the received message is locally received, the received data is
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placed in the respective reception queue.

Moreover, the FTT-Interface layer also receives the polling requests is-
sued by the master node concerning the non-real-time traffic and transmits
the required data right after the reception of the pol command. On recep-
tion, the non-real-time traffic is intercepted and queued by the FTT Interface
Layer. Whenever the received non-real-time data frames are from a foreign
protocol, they are unwrapped and reassembled (if required by the particular
implementation) and then sent to the non-real-time stack. This methodol-
ogy makes the FTT protocol operation fully transparent from the point of

view of the non-real-time applications.

Additionally, the FTT interface layer is also responsible for the manage-
ment of the temporal accuracy information of real-time entities. Associated
with each real-time entity there is a timer, which is set to the validity inter-
val, as specified by the application layer for the particular real-time entity,
when the local buffer is updated. The timer is then decremented while the
message waits to be transmitted, and its actual value at transmission time is
inserted in the message just before its transmission. On the consumer side,
the timer continues being decremented. Whenever the application software
consumes the real-time entity, the associated timer value is also delivered
together, allowing it to assess whether their value is still within the defined
temporal validity window. Since message deadlines are expressed in EC du-
ration multiples (F), the resolution of the temporal accuracy timer is also

FE, which reduces the overhead associated to their maintenance.

4.3 Synchronous Traffic Analysis

As discussed in Section 3 hard real-time systems demand a high degree
of predictability, thus the feasibility of the schedule should be guaranteed
in advance. Moreover, in on-line scheduled systems like FT'T, messages can
be created, changed and removed dynamically during runtime. In this case
a suitable admission control mechanism is required to assess during system
run-time if such operations can be accepted, that is, if the resulting message

set is schedulable.

The remaining of this section is devoted to the discussion of schedulability

tests that can be used for on-line admission control.
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4.3.1 Synchronous Message Model

As discussed in Section EZ2] the scheduling model used for the synchronous
traffic does not allow the transmission of messages to cross the boundary
of the synchronous window. This is achieved by using inserted idle-time,
i.e., whenever a message does not fit completely within the synchronous
window of a given EC it is delayed to the next. Moreover, this same behavior
is also enforced in the asynchronous window, despite its implementation
being somehow different. Consequently, the EC trigger message is always
transmitted regularly, without any blocking. The only limitation on the
regularity of the EC results from the imprecision of the internal master clock
and from the jitter that the supporting Operating System can induce in
the activation of the Dispatcher task. Nevertheless, by proper selection of
hardware and operating system, such imprecisions can be bounded to a value
that can be safely neglected, typically a small fraction of the duration of the
smallest message that can be transmitted over the bus. However, the use
of inserted idle-time has also a negative impact on the traffic schedulability,
since within the synchronous window it corresponds to a reduction on its
length, and on the asynchronous window it corresponds to bus time that is
wasted, since no messages are transmitted at all in it.

Besides the issue of the inserted idle-time, the synchronous message

model of FTT can be characterized as follows:

e synchronous message periods F; and relative deadlines D; are integer

multiples of the elementary cycle duration (E);
ViPBob=mx*FE;D;=n*xFE, mnecN (4.7)

e all instances of a synchronous message SM; are regularly activated

(a; ), according to its period Pj;
Vi,aLk:k*Pi,kEN (4.8)

e all instances of a synchronous message SM; have the same relative

deadline D;, which is less than or equal to the respective period P;;

V“g s d@k = Ak + Di (4.9)
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e all instances of a synchronous message SM,; have the same worst-case

transmission time Cj;

Vi,cik =Ci (4.10)

e worst-case message transmission times are necessarily shorter than the

maximum synchronous window length (LSW);

Vi, C; < LSW (4.11)

e message activations are always synchronous with the start of the EC;

Vik 0k =mxE meN (4.12)

Moreover, it is assumed that all synchronous messages are independent.

In [AEQT], Almeida et al present several techniques for the schedulability
analysis of task sets scheduled with inserted idle-time, in similar conditions
to those referred above. The model used to schedule the synchronous traffic
in FTT is very similar to the one presented in [AEQT|, named blocking-free
non-preemptive scheduling. In this model, tasks periods and deadlines are
integer multiples of a basic cycle duration (E), the execution times are always
shorter than E and task activations are always synchronous with the start of
a cycle. The only difference is that in [AEQT] the whole cycle is available to
execute tasks, while in the FT'T model the synchronous traffic is restricted
to the synchronous window within each EC, with maximum length LSW.

One of those techniques is based on the adaptation of the existing analysis
for preemptive scheduling of tasks with fixed priorities. Basically, it consists
in inflating the message transmission times by a factor that allows accounting
for the inserted idle-time. This adaptation is pessimistic by considering that
the inserted idle-time always has its maximum value in every cycle, thus
leading to an analysis that is sufficient, only. Another technique is based
on the construction of the timeline during the longest busy interval. In this
case, it is possible to calculate the exact amount of idle-time inserted in each
EC during the busy interval, and thus a necessary and sufficient analysis is
supported.

In both cases the analysis in [AEQT] requires a simple modification to

account for the impact of the EC trigger message and asynchronous phase,
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Figure 4.6: Expanding the synchronous window to allow using the blocking-
free non-preemptive model

therein not considered.

4.3.2 Utilization-based schedulability analysis

In order to transform the FTT message model into the task model used in
JAEQT], so that the analysis therein presented can be used, it is necessary to
model the effect of both the trigger message and the limitation on the length
of the synchronous window, which can be restricted only to a fraction of the
EC length.

A simple technique to model these effects is to inflate all execution times
by a factor equal to % This is equivalent to expanding the synchronous
window up to the whole EC (Figure LHl) and carries no consequence in terms
of schedulability since messages scheduled for a given synchronous window
will remain within the same cycle. Applying this transformation to the
original set of messages SRT (Definition El) results in a new virtual set
that can be expressed as SRT® (Definition EET3)) in which all the remaining

parameters but the execution times are kept unchanged.

«C;, i=1.Ng} (4.13)

The results in [AE(T] are now directly applicable over SRT®, particularly
the theorem stating that any existing analysis for fixed priorities preemptive
scheduling can be used in this model if the execution times C? are replaced by
C! as in Equation EET4] where E is the cycle duration and X° the maximum

inserted idle-time (X° = max, (X?)).
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C°+x FE
I
C=B-x0
Expanding EET with the transformation in and noting that X° =
2= % X, yields the final transformation (Equation ECIH) that has to be

carried out over the original message transmission times, i.e. those in the

(4.14)

SRT, so that any existing analysis for fixed priorities preemptive scheduling

can be used.

I
LSW — X

However, any schedulability assessment obtained via that theorem is just

sufficient, only. The reason is the pessimism introduced when using an upper
bound for X. Except for a few particular situations, the exact value X =
maxy, (X,) cannot be determined. Nevertheless, an upper bound is easy to
obtain, e.g. the transmission time of the longest message among those that
can cause inserted idle-time [AE(T].

An important corollary of the theorem referred above is that Liu and
Layland’s utilization bound for Rate Monotonic [LL73] can be used with just
a small adaptation as part of a simple on-line admission control for changes
in the SRT incurring in very low run-time overhead. This is expressed in
Condition T8

N, c LSW — X SRT schedulable

; 1 —
Z <fl) < Ns(28 = 1)« <T) = with RM under  (4.16)
= Z any phasing

A similar line of reasoning can be followed to adapt the Liu and Lay-
land’s utilization bound for EDF [LL73]. In this case, the maximum in-
serted idle-time (X) plus the remaining amount of time in the EC outside
the synchronous window (F — LSW) can be considered as the worst-case
transmission time of a virtual message v, with worst-case transmission time
C, = FE—LSW + X that is added to the original set and transmitted every
EC (P, = 1EC), as depicted in Figure E71

This virtual message v has the highest possible priority, since P, = D,, =
1 EC, and fills in the part of the EC that cannot be used by the synchronous

messages. Assume, now, that the resulting extended set, i.e. the original
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Figure 4.7: Modeling the effect of the inserted idle-time, asynchronous win-
dow and trigger message

SRT plus the virtual message, can be scheduled preemptively. Due to the
absence of preemption instants, motivated by the synchronous activation
model, and due to the absence of blocking, due to the inserted idle-time, the
Liu and Layland’s bound can be used (Equation EETT]).

N

E—-—LSW+4+ X C;
_ = <1 4.1
Ui B Tl (4.17)

However, due to the extra load imposed by the virtual message, all other
messages will finish transmission either in the same EC or later in this sched-
ule than in the original one with the traffic confined to the synchronous win-
dow and with inserted idle-time. Thus, if the extended set is schedulable the
SRT will also be. This results in the sufficient schedulability condition EETSl

N SRT schedulable

~ (C; LSW — X .
> (5 )%= withEDFunder (4.18)
i=1 ! any phasing

The analysis above presented is pessimistic, because it considers that the
inserted idle-time always has its maximum value, thus leading to an analysis
that is sufficient, only. However, in the FTT context these schedulability
tests are executed on-line. In highly dynamic applications, with frequent
changes to the message set or in which the system’s response to change
requests must be prompt, schedulability tests should have the lower compu-
tational complexity possible. Both schedulability tests presented above have
a computational complexity of O(n), similar to the one of the original Liu
and Layland’s analysis [LL73], and can be computed in O(1), by keeping

track of the current message set utilization, when used on-line.
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4.3.3 A necessary and sufficient schedulability test

As discussed in Section 43 response-time based schedulability tests are
usually less pessimistic than their utilization-based counterparts, and also
provide estimations of the actual worst-case response time of each message.
However, the trade-off is a higher computational complexity. In applications
that do not have strict restrictions in the response time of change requests to
the message set properties, or, in other hand, in systems where the critical
resource is not the computational power but the transmission medium band-
width utilization, it may be desirable to have more accurate schedulability

tests.

In J[AEQT] Almeida et al also present a new analysis based on a traf-
fic timeline, which allows obtaining an accurate schedulability assessment
for fixed priorities scheduling such as RM and DM. Moreover, the analysis
therein presented becomes necessary and sufficient if both of the following

assumptions are verified:

Al All messages must be considered in-phase, i.e., ready for trans-
mission at a hypothetical instant t=0 called critical instant (worst-

case phasing);

A2, No lower priority message can be scheduled before a higher pri-
ority one. Otherwise, one could not guarantee that the first mes-
sage instance after the critical instant suffers the worst-case re-

sponse time.

This analysis requires the execution of a simple algorithm (Algorithm 4.1)
to obtain the worst-case response times to transmission requests (Rwe;,i =
1..Ny), considered as the maximum time lapse from message exact periodic

activation to complete transmission.



94 CHAPTER 4. THE FTT PARADIGM

1. for (k=1;k <Ns;k++) { Rwey, =0;ri(1) =1; }
2. for (n=1; (n < Dysand Rweys = 0) 5 nt++) {
3. Isw(n) = 0;

4. for (k =1;k < Ns:;kt++) {

5. rp(n+1) = ri(n);

6. if (Isw(n) + r(n)*Cy < LSW) {

7. Isw(n) = Isw(n) + 7,(n)*Cy;

8. ri(n+1)=0;

9. if (Rwey, = 0) Rwey, = n;

10. }

11. if (n mod P, = 0) rg(n+1) = 1;

12. }

3.}

Algorithm 4.1: Timeline analysis

The algorithm consists in determining, for all messages, the EC where
they are first transmitted after the critical instant (line 9). This is carried
out EC by EC (line 2), taking into account the effective message sequence
in the schedule imposed by the respective priorities (line 4). This way, the
inserted idle-time in each EC is accounted for with exactitude (lines 6 and
7), consequently resulting in exact worst-case response times.

The algorithm herein presented differs from the one in [AE(I] in that
it accumulates the load of each EC (lsw(n)) up to the maximum length of
the synchronous window (LSW) only, and calculates the worst-case response
time with a resolution of one EC. At the end of each complete run of the inner
for loop in line 4, lsw(n) contains the effective duration of the synchronous
window in the n'® EC. The vector r, = 1..Ns(n) indicates the messages with
transmission requests pending in the n'* EC. After having determined the
worst-case response times for all messages, a trivial schedulability test can
be carried out by comparing this time with the respective deadline. As long

as both conditions referred above hold, the test supports a necessary and
sufficient condition (ETI9).

SRT is schedulable
Rwe; < D;,Vi=1..Ny & withworst — case (4.19)
phasing
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In case assumptions Al or A2 do not hold, the values of Rwe; obtained
from the Algorithm 4.1 may not be exact but upper bounds to the effective
worst-case values, and thus the schedulability test results in a sufficient but
not necessary condition.

This method has a computational complexity O(m x n), where m is the
deadline range, in ECs, and n the number of synchronous messages that fit
on the EC. Moreover, the computational demand of each of the elementary
steps in the algorithm (line 5-10) is also considerably more costly than in the
case of utilization-based tests, which consists in just a sum for each message.
Since the decision on accepting or rejecting change requests to the message
set only can be taken after the completion of the schedulability analysis, it
must be assessed if the increased computational complexity and accuracy
of this method when compared with the utilization based method (Section
E32) pays off, specially in targets having constrained computational power,

as frequently found in embedded applications.

4.4 Asynchronous traffic analysis

The asynchronous traffic carried on a fieldbus may have different properties
and requirements. For instance, messages related with critical alarms must
be schedulable even in worst-case scenario, and transmitted within bounded
and known delay. However, messages related to data logging or system
management usually can be delayed without compromising the system. Also,
messages due to the Human-Machine Interface (HMI) can suffer a delay in
the order of one second, without noticeable impact in the overall system
performance.

Asynchronous messages are scheduled strictly according to fixed-priority
policies. Whenever this feature is not natively supported by the underline
communication network, the FTT AMS must override the respective MAC
and enforce this behavior.

The Asynchronous Messaging System of FTT is deemed to guarantee
the schedulability of all the hard real-time critical messages, even in worst-
case conditions, and provide good average response time for soft and non
real-time messages. For messages with deadline greater than the respective
minimum inter-arrival time, the FTT AMS provides local queuing.

Three classes of messages are supported by the FTT AMS:
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AT1. hard real-time sporadic messages with deadlines less or equal to

the respective minimum inter-arrival time;

AT2. hard-real time sporadic messages with deadlines greater than the
period, or that despite not having strict deadlines require guar-

anteed delivery (queuing required);
ATS3. soft and non-real-time sporadic messages.

Hard real-time messages (classes AT1 and AT2) must be timely handled in
any workload conditions, therefore pre-runtime analysis must be provided.
Messages belonging to class AT3 are handled under a best-effort policy, and

therefore no timeliness guarantees are provided.

4.4.1 Worst-case response time for AT1 asynchronous mes-
sage class

The FTT asynchronous messaging system provides schedulability guaran-
tees for hard sporadic messages, i.e., messages with a defined minimum
inter-arrival time and hard deadlines. As referred in Section EE22 asyn-
chronous messages are transmitted in a period of time called asynchronous
window. Only asynchronous messages that fit completely within that win-
dow are transmitted, therefore the temporal isolation of both synchronous
and asynchronous phases of the EC is guaranteed.

The set of real-time asynchronous communication requirements is kept
in the Asynchronous Requirements Table, characterized by Definition E21
Let the subset of the ART composed by the asynchronous messages having
hard real-time requirements be denoted by ARTFT (Definition EZ2I).

ART > ART®T = {AMFT(DLC;, C;, mit;, D;, Pry), i = 1.N§T}  (4.20)

Each entry in this table describes one asynchronous message stream,
which must always be of a sporadic nature, i.e. there is a minimum inter-
arrival time (mit) that must elapse between consecutive messages of the same
stream. Notice that in the ART there may exist soft or non-real-time asyn-
chronous messages which, for the sake of flexibility, are not constrained ex-
cept by the assignment of a lower priority than hard real-time asynchronous

messages.
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Figure 4.8: Maximum dead-interval (o;) and level-i busy window (wj)

The maximum time that may elapse from a transmission request for real-
time asynchronous message i (AMFT) to complete message transmission is

called the worst-case response time (Rwc;) and is given by Equation EE2T1

The parameter o; corresponds to the time lapse between the request and
the instant in which the message can enter in arbitration. It is a blocking
term, denoted as dead interval. The parameter w; allows to account for
the interference caused by higher priority messages in the arbitration process
until message AMPT starts its transmission. This is known as level-i busy
window. The critical instant for each message is defined as the instant that
maximizes both o; and w;.

Figure shows the conditions that maximize the dead interval o;. This

happens when, cumulatively:

e The transmission request occurs within the asynchronous window but

there is already on the bus the longest lower priority message (AMy);

e When the transmission of the lower priority message completes there is
not enough time left in the asynchronous window for the transmission

of message AMI™T| leading to insertion of idle-time (a);

The transmission time of message AMj,, can be upper bounded by
considering the maximum transmission time among all lower priority asyn-
chronous and non-real-time messages (Ca = maxz(C;,C;) : C; € ART;C; €
NRT). On the other hand, the inserted idle-time («) can be upper bounded
by the transmission time of the message whose response time is being com-
puted (C;). However, if Cla is used instead of Cj, the value of o; will be

slightly more pessimistic but it will become a constant, thus considerably
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easier to use within calculations. Hence, an upper bound to the dead inter-
val (¢?) can be derived through Equation 222

o =2xCa (4.22)

The level-i busy window (w;) starts just after the dead interval. Tts

maximum duration occurs when, cumulatively:

CL All higher priority asynchronous messages were synchronously
requested as soon as possible after the beginning of the dead-
interval oy, i.e., synchronously with the request for AMZRT. This
maximizes the number of multiple instances of each higher pri-

ority message that may occur during the busy window;

C II. The EC that follows the start of the busy window is also the
critical instant for the synchronous traffic. This means that the
sequence of ECs starting in the busy window contains the highest

cumulative load demanded by the synchronous traffic.

To compute w; it is important to determine the duration of the asynchronous
windows within the ECs that follow the critical instant up to the one where
message AMl-RT can be effectively transmitted. This is achieved indirectly
by determining the duration of the synchronous windows, which, in turn,
can be obtained by inspection of the Synchronous Requirements Table. A
vector (Isw) can then be built containing those values for the respective
ECs. The number of ECs contained in the vector must cover w;. Since
this is unknown in the beginning, the vector is calculated iteratively, EC
by EC, simultaneously with w;. A method that can be used to generate
the vector lsw based on the SRT is presented in [AIm99]. Equation
shows the conversion of the [sw into the law vector that contains, in the
k" position, the length of the asynchronous window of the k** EC after the
critical instant.

When a given synchronous message does not fit within the synchronous
phase of an EC, it is successively postponed until one with enough room is
found. Since neither the length of the EC nor the length of the synchronous
phase are correlated with the length of the synchronous messages, idle-time

can be inserted in the synchronous phase. This effect can lead to a situation
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where the initial ECs after the critical instant do not have the highest syn-
chronous load, because they may be affected by an higher inserted idle-time,
thus lower load, than other ECs. To account for this effect on the analysis,
the lower branch of Equation maximizes the length of the synchronous

window whenever inserted idle time may have been included.

law(k) E—LTM —lsw(k) , lsw(k)+ Cs < LSW
aw(k) =
E—LTM — LSW | lsw(k) + Cy > LSW (4.23)
k=1.. [%—‘ 3 Cs = MaX;=1...N, (CZ) : Cl € SRT

The analysis that follows cannot directly use the results available for
fixed priority task scheduling (e.g [ITHW94]), because of the variable length
synchronous window and inserted idle-time. However, such results can be
easily adapted as shown below. Generically speaking, the main difference is
that the cumulative demand for bus time by the asynchronous messages with
priority higher than Pr; (i.e. H;(t)) cannot be compared against linear time
t. Instead, it must be compared against a function of ¢t (A(t)) that returns
the cumulative bus time available for asynchronous messages. This function
must account for both effects referred above, i.e. variable synchronous win-
dows and inserted idle-time. The value of w; corresponds to the value of ¢
that makes H;(t) = A(t), i.e. demand equal to availability (Figure EZ3)).

The demand function H;(t) can be obtained by the usual way as in pro-
cessor scheduling theory using Equation EZ4] It accounts for the maximum
bus time demanded by the set of asynchronous messages with higher priority
than that of message AMT (hp;). The addition of 6" to ¢ is required by
condition (C I) above. Since C; represents the worst-case message transmis-
sion time, including all possible protocol overheads, and ¢ is used instead of

o, the result will also be an upper bound to the effective maximum demand.

t+ O.ub
H;(t) z;} [ s w % O} (4.24)

Function A(t) can be obtained by using the vector law as in Equation
23 Figure shows how it is built. Notice that a; stands for the inserted
idle-time in the j** EC. However, since the exact values for aj are unknown
unless the exact order by which messages are transmitted is taken into ac-

count (which is not the case with Equation EE24)), the upper bound Ca can
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be used instead, resulting in a lower bound for A(t).

Y501 (law(j) —ay),
t: (k—1)«E<t<kxE— (law(k)+ o)

>k %(law<>—aj>+t—<k—1>*E,
t:k+xE—(law(k)+ o) <t<kxE—aq (4.25)
Sk (taw(j) - ay).
t:kxE—oap,<t<kxE
L withk —1= | %]

By using an upper bound for H;(t) and a lower bound forA(t), the re-

sulting value ofw; will also be an upper bound. Its calculation is reduced to
solving Equation (EZH]).

ub—t: Hy(t) = A(t) (4.26)

This equation can be solved iteratively by using ¢! = H;(07) and t"*! =
t: A(t) = H;(t"). The process stops when t"*1 = " (and w = t"*1) or
t"*tl > D; — C; — o™, and thus the deadline cannot be guaranteed. One
or the other situation will occur in a bounded number of iterations, since
the increment in each iteration is lower bounded by the transmission time
of the smallest real-time asynchronous message. An upper bound to the
worst-case response time for message AMT (R¥) can be obtained through
expression 211 replacing w; by w;fb obtained from Equation 226l and o; by
" obtained from Equation

4.4.2 Worst-case response time for AT2 asynchronous mes-
sage class

Some systems convey messages with deadlines greater than the minimum
inter-arrival time or even not having strict deadlines at all, but for which
the delivery should be guaranteed. For example, consider an assembly line
in which whenever an item passes a given processing step an event message
is sent to the inventory database. Usually there are no strict deadlines con-

cerning the database update, therefore the transmission of these messages
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Figure 4.9: Calculating the level-i busy window

can be delayed if more urgent ones, for instance related with alarms, are
ready. Nevertheless, it is important to guarantee that all the messages will
be eventually transmitted. In this situation each station must queue the
events until they can be transmitted. The message queuing could be per-
formed by the user application. However it is safer and more efficient if
this service is delivered by the communication system itself, because it has
complete knowledge about the communication requirements, therefore can
assess in advance whether it is possible to guarantee the message delivery,
and also compute the queue length required.

Results from queuing theory allow obtaining statistic guarantees, know-
ing some key properties on the demand side. However, the methodology here
proposed is based on worst-case analysis, thus, in any anticipated workload
conditions the message delivery is guaranteed.

The analysis presented in Section EEZ Tl can be extended to accommodate
the situation where messages have deadlines greater than the period. For
this situation, the demand function (Equation EE2Z4]) must include the max-
imum load due previous requests of the asynchronous message stream that
are queued for transmission. In this scenario, the demand function (H}(t))

becomes:

H() =S F*“ﬂ £ Cj+ P”ﬂ e (4.27)

- mitj miti
Jehpi

Note that Equation E2Zincludes also the demand of hard real-time asyn-
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chronous messages belonging to class AT1, since these ones have the higher

priority among all asynchronous messages.

The value of the upper bound for the level-i busy window (w?) is given
by Equation
wi =t HI(t) = A(t) (4.28)

This equation can be solved used the same methodology used for solving
Equation in the previous section. However, recall that both of these
equations only converge if the availability function (A(t)) grows at a faster
rate that the demand function (H;(¢)). When solving Equation itera-
tively, the stop condition concerning the message deadline ensures that the
iteration always stops in a finite amount of time. However, since here we are
considering also the possibility of messages without deadlines, it is necessary
to use some other stop condition, ensuring that the computation stops in a
finite amount of time even if the demand and availability functions do not
converge. For practical reasons, one such criteria can be placing a limit on
the maximum length of the queue, since in real implementations the amount
of memory is always limited, and so must be the amount of memory reserved

for queues.

Equation can be used to provide at any time an upper bound on
the maximum number of buffers required to queue the pending requests con-
cerning a particular message 4, simply substituting w?b by the time instant

in which this evaluation is performed.

The demand function HJ that appears in Equation returns the
worst-case amount of time required to dispatch all instances of message
i. Therefore an upper bound on the number of transmission buffers (N B)
that must be reserved for message ¢ can be computed simply by calculating
the maximum number of instances that can occur during that time interval
(Equation EE29). This method is simple since it requires only a short addi-
tional calculation performed after the computation of the dead interval and
level-i busy window, but it is also pessimistic, since it does not consider that
during this time interval some instances of the message can be transmitted,
thus releasing buffers in the queue. A less pessimistic upper bound could be
obtained by determining the time instants of all events, both transmission

requests and transmissions, during the time interval starting from the critical
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instant until the transmission of the last queued instance of the message, and
compute the balance between the requests and transmissions. However this
method is considerably more costly concerning the amount of computations

required, when compared to the results given by Equation

(4.29)

ub ub
NB; = {u-‘

mit;

Experimental results using this analysis are presented further on, con-
cerning the FTT-CAN protocol (Section B3)). It should be also referred
that these analysis are not easily implemented on-line, not only due to the
computation cost but also because of the interference with the synchronous
requirements. Nevertheless, this analysis can be performed off-line. For sys-
tems with fixed synchronous requirements, its use is straightforward. For
systems with dynamic synchronous communication requirements it is still
possible to perform the analysis off-line, but in this case based in worst-case

synchronous load scenarios.

4.5 Conclusion

This chapter starts by a discussion about the requirement for flexibility that
is becoming increasingly important in distributed computer-controlled ap-
plications, either motivated by the need to reduce the costs of set-up, config-
uration changes and maintenance or by the appearance of applications such
as agile manufacturing, real-time database, automotive, mobile robotics and
machine vision, that must deal with environments that are inherently dy-
namic.

Since current protocols do not cope efficiently with these requirements
(Sections and B3), this discussion fosters the proposal of a new com-
munication paradigm, the Flexible Time-Triggered paradigm (FTT), which
has been developed specifically to support such type of flexible applications.
The FTT paradigm supports on-the-fly changes to the message set, arbi-
trary scheduling policies, on-line admission control of real-time traffic, and
support for different types of traffic with temporal isolation.

Schedulability analysis plays a fundamental role in real-time systems,
since it is this tool that enables to assess if the time-critical activities carried

by the system can meet its deadlines. Therefore, after the presentation of the
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FTT architecture, it follows a section addressing the schedulability analysis
issue concerning the synchronous traffic. In particular, are included utiliza-
tion, response times and timeline schedulability tests. All of these methods
are useful, since they provide results with distinct degrees of pessimism but
at the same time have also distinct computational complexities. Therefore, it
becomes possible to trade bus utilization efficiency by computation complex-
ity, and thus to select the solution that better fits the particular application
being developed.

Many real-time activities are asynchronously triggered by unforeseen
events, for instance, messages related with alarms. Despite its common
asynchronous nature, these events are heterogeneous concerning its time-
liness requirements. Some, like the case of the alarms referred above, must
be transmitted within bounded and pre-defined time intervals; others exhibit
soft real-time requirements, and thus failing their delivery does not seriously
compromise the system behavior; finally, some other events have no timeli-
ness requirements at all. The FTT paradigm supports three different classes
of asynchronous traffic: hard real-time asynchronous messages, with dead-
lines less than or equal to their minimum inter-arrival times (AT1); hard
real-time asynchronous messages with deadlines greater than their minimum
inter-arrival times or without strict deadlines but that require guaranteed
delivery (AT2); soft and non real-time asynchronous messages. This chapter
includes schedulability tests for the hard real-time types (AT1 and AT2),
which allows to know in advance if the system is able to handle timely all
those activities in all anticipated circumstances. Moreover, for AT2 mes-
sages the schedulability test herein presented also provides an upper bound
for the number of buffers required to handle the message instances that may

be queued, waiting for transmission.



Chapter 5

QoS management based on
FTT

Due to continued developments along the last decades in the integration of
processing and communications technology, distributed architectures have
progressively become pervasive in many real-time application domains, rang-
ing from avionics to automotive, adaptive control, robotics, computer vision
and multimedia. In these systems, there has also been a trend towards
higher flexibility in order to support dynamic configuration changes such
as those arising from evolving requirements and on-line Quality-of-Service
(QoS) management [ST96]. These features are generally useful to increase
the efficiency in the utilization of system resources [BLCADNZ] since typically
there is a direct relationship between resource utilization and delivered QoS.
In several applications, assigning higher CPU and network bandwidth to
tasks and messages, respectively, increases the QoS delivered to the applica-
tion. This is true, for example, in control applications [BAN0], at least within
certain ranges [Mar(2], and in multimedia applications [LRM36]. Therefore,
managing the resources assigned to tasks and messages, e.g. by controlling
their execution or transmission rates, allows a dynamic control of the deliv-
ered QoS. Efficiency gains can be achieved in two situations: either max-
imizing the utilization of system resources to achieve a best possible QoS
for different load scenarios or adjusting the resource utilization according to
the application instantaneous QoS requirements, using only the resources re-
quired at each instant and maximizing the bus availability to asynchronous
traffic.
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Both situations referred above require an adequate support from the
computational and communications infrastructure so that relevant parame-
ters of tasks and messages can be dynamically adjusted. In the scope of this
thesis this problem is regarded from the communications perspective only,
considering an autonomous communication system that manages streams
of messages, very much like a processor executes tasks. This approach is
more robust and particularly adapted to distributed real-time systems with
fault-tolerance requirements [Kop97].

Dynamic QoS management implies on-line changes to the traffic char-
acteristics, such as addition, removal and adaptation of message properties.
Moreover, some of the message streams have real-time QoS constraints, aris-
ing for example from control and monitoring requirements, which must be
always fulfilled. Unfortunately, as discussed in Section BTl most of the ex-
isting communication protocols are not well suited to support the flexibility
requirements presented by distributed real-time systems that implement dy-
namic QoS management functionalities. On the other hand, general purpose
protocols such as IBM Token Ring, FDDI and ATM have some level of
support for such QoS requirements, but are not broadly used as fieldbuses

because of outdated technology or high cost.

5.1 Adding a QoS manager

According to the FTT architecture (ChapterH) the scheduling activity is per-
formed on-line, based on the actual message properties stored in the SRDB
(Figure EE3)). This mechanism is the source of the operational flexibility ex-
hibited by the FTT paradigm concerning the synchronous traffic. When the
message set is changed, in its next activation the Scheduler uses the updated
values, and thus the following EC-Schedules include the new communication
requirements.

In its most basic functionality level, the FTT paradigm requires change
requests to be handled by an on-line admission control. The purpose of
this mechanism is to assess, before commitment, if the requests can be ac-
commodated by the system i.e., if the message set that would result of the
incorporation of the requested changes would still be schedulable. In this
case, the changes can be safely committed to the SRDB, and consequently

the request is accepted. Conversely, if the change request would result in an
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unfeasible message set, it is rejected and the SRDB is kept unchanged.

From this point of view, the master node can be seen as a QoS server
in the sense that when a message is admitted or changed, the master node
verifies if its associated requirements ( memory, network bandwidth, message
deadline and jitter, etc.) can be fulfilled, and in this case also reserves these
resources in a way that they will be strictly available in the future, assuring

that all the accepted messages will receive the requested QoS.

Particularly concerning QoS requirements, some applications benefit or
even require the definition of ranges of acceptable QoS levels. This is the case
when system activities vary their requirements during the system lifetime, in
response to environment changes. To handle these requirements efficiently,
the communication protocol should not only guarantee that the minimum
requirements will be fulfilled in all anticipated conditions, but also grant in
all instants the higher QoS possible to all the activities. Moreover, it can also
be required to support different levels of importance for these activities, im-
plying that some of them can be favored with respect to the others, according
to some well defined policy. The FTT paradigm can provide support for such
advanced QoS management methodologies by aggregating a QoS manager to
the on-line admission control block. With this architecture, the on-line ad-
mission control still decides about the acceptance of change requests based
on the minimum requirements of the existing message streams. This will
eventually generate some spare resources, e.g. spare bandwidth, that will be

distributed by the QoS manager according to a pre-defined policy.

As described in Section EZ3] the master node holds in the Synchronous
Requirements Table the properties of the synchronous message set. The SRT,
besides the basic message properties (e.g. Period, Deadline) also provides
room for extended data via the X f field (Definition EETl). The QoS manager
can use this field to store the relevant properties for each of the synchronous
messages. Examples of such properties are the specification of the admissible
QoS ranges, relative importance and criticalness.

The FTT paradigm is based on a modular design, with well defined inter-
faces between the system components. The Scheduler bases its decisions on
the actual contents of the SRT, so the QoS manager must map the commu-
nication requirements into standard message properties, such as periods (for
an RM scheduler) and deadlines (for an EDF or DM scheduler). Moreover,

SRT updates cannot be performed while the Scheduler is reading its contents
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Figure 5.1: Adding QoS management to FTT

for building the following EC, therefore it is necessary to enforce atomic ac-
cess to the SRT. If both of these properties are enforced, the operation of
the Scheduler becomes completely independent not only of the existence of
a QoS manager but also from the particular QoS management policy used.
With respect to the Application Interface, the aggregated on-line admission
control and QoS manager must implement the standard SRDB management
functions (add, remove and change message properties), but can also extend
the API to provide QoS management user-level functions specific to a partic-
ular QoS management policy, allowing for instance the application to request

a given QoS for a specific message in response to environment changes.

5.2 Examples of QoS management policies

5.2.1 Priority-based QoS management

Many real-time systems are composed by sets of activities with distinct levels
of importance concerning the behavior of the system. In these cases, QoS
should be granted strictly according to the relative importance of these ac-
tivities, with the more important ones receiving the highest QoS possible. A
possible methodology to deal with this situation consists in assigning a QoS
priority parameter to each of the activities. Then the QoS manager sorts the
activities according to the QoS priority and distributes the required QoS to
each one, when possible.

In the scope of real-time communications, a common QoS parameter
consists in the bandwidth required my the message stream. In this case, the
SRT (Definition BTl should be extended as follows:

Xfi= Vi, Tiins Ti

,i=1.Ng (5.1)

max )
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where V; specifies the relative message importance and the minimum
(T;

each message stream.

periods bound the bandwidth required by

) and maximum (75,,,.)

min

5.2.2 Elastic Task Model based QoS management

One of the characteristics of the priority-based QoS manager above presented
is that the spare resources are distributed among the messages in a strict
priority order. This might be restrictive when, for example, it is desirable
to do a more equitable distribution of the spare resources. In this case, the
Elastic Task Model QoS manager is more adequate since it allows a tighter
control over the way the spare resources are distributed.

According to the elastic model proposed in [BLASS], the utilization of
a task is treated as an elastic parameter, whose value can be modified by
changing the period within a specified range. Each task is characterized by
five parameters: a worst-case computation time Cj, a nominal period T, a
minimum period T; a maximum period 7; and an elastic coefficient

min’ max?

FE;. Thus an elastic task can be denoted by:

TZ(Cl) TiO’ Timaz Y zq’i'ma,z Y El)

The elastic coefficient specifies the flexibility of the task to vary its uti-
lization for adapting the system to a new feasible rate configuration: the
greater F;, the more elastic the task. Thus, from a design perspective, elas-
tic coefficients can be set equal to values which are inversely proportional to
task’s importance.

Admission of new tasks or requests of variations in the properties of
existing ones are always subject to an elastic guarantee and are accepted
only if there exists a feasible schedule in which all the other periods are
within their range. In [BLASS]| it is proposed to scheduled tasks by the
Earliest Deadline First algorithm [LL73], hence, if > TiCZ < 1 the task set

maz

is schedulable.
Whenever a feasible schedule exists, if > T,C“' < 1, all tasks can be

‘min

created at the minimum period T;,_, , otherwise the elastic algorithm is used
to adapt the task’s periods to 7T; such that > % = Uy < 1, where U, is some
desired utilization factor. The elastic algorithm consists first in computing by

how much the task set must be compressed (Uy — Uy) and then to determine
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how much each task must contribute to this value, according to its elastic

coefficient, as follows:

E;

ViTi =T, z,

— (Uo — Ua) (5.2)

min

where Up is sum of nominal task utilizations and E, = ;" | E;.
<T<T,

of finding the values T} can require an iterative solution, since during com-

the problem

maac)

However, due to the period constraints (75,
pression one or more tasks may reach their maximum period. In this case the
additional compression has to affect only the remaining tasks. In [BLCAN2)
it is shown that, in the worst case, the compression algorithm converges to a
solution (if there exists one) in O(n?) steps, where n is the number of tasks.

To cope with this framework the SRT (Definition ETl) should be extended
to incorporate the above referred parameters.

max?

5.2.3 Applying the Elastic Task Model to message scheduling

The Elastic Task Model was originally developed for task scheduling in sin-
gle microprocessors. Under this framework, tasks are preemptive. However,
in the context of message scheduling, message transmissions cannot be sus-
pended and resumed later, therefore preemption is not allowed. Another
difference refers to the resolution used to express periods, initial phasings
and deadlines. The FTT paradigm uses a coarse resolution equal to the EC
duration while in the original elastic task model the resolution can be arbi-
trarily small. Moreover, the transmission time of messages in FTT is always
much smaller than the EC duration while in the elastic task model the task
execution times are not constrained beyond a limited utilization factor.
Despite these differences, the elastic task model can be easily applied
to the FTT framework. However, the periods resulting from Equation
are not necessarily multiples of the EC duration (E) and thus, they must
be rounded up (Figure B2 to the next integer multiple of E (77), as in
(BE3). The rounding must be done in excess, in order to guarantee that the
resulting message set does not have a greater utilization factor than desired
(Ug). After rounding up the periods, each message utilization U] is given by
(E3) and the overall effective utilization Uéff is obtained by summing U] for
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Figure 5.3: Increasing the effective utilization factor in FTT-Ethernet.

all 7. Due to the rounding ups of the periods, Ucfff < Uy (Figure B3).

To avoid this situation and improve the efficiency on the FTT implemen-
tation, the elastic task model was extended with an additional optimization
step, performed after the initial compression algorithm, in which the spare
utilization factor is better distributed among the messages. This redistribu-
tion is carried out coherently with the philosophy of the elastic model, i.e.
guaranteeing that the resulting effective utilization factor does not exceed
U, (Figure B3).

The optimization step allows calculating a succession of effective utiliza-
tion values Uéff(n) starting from Uéff defined as above. Firstly, the process
computes a vector with utilization values Uii for every message i that can
be decompressed (I',) and has utilization lower than the one resulting from
Equation B2 using Equation Each of these values corresponds to the
increased overall utilization that would result if the utilization of message ¢

was enlarged as in Equation 28], due to reducing the respective period to the
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nearest integer multiple of E. The vector {UL} is sorted in ascending order
and for each i, if U, ,(n) + AU; < Uy then Ug,p(n + 1) = Ugpp(n) + AU;
and the period of message i is reduced by F, the duration of one EC. Af-
ter scanning the whole vector, the final message periods impose an overall
bandwidth utilization factor that is potentially closer to the desired value
Ug.

Cﬂ
. - 7 — ¢ > T
vr,el, T!=IT;] (Ui*EW*E T; (5.4)
C.
U == 5.5
C.
+ _ (2
U' = T-F (5.6)
AU; = U - U] (5.7)
+ + Ly
V1, € I, Ud,i =Uy+ (Uz — UZ)— (58)

E;

5.3 QoS management case study: a mobile robot

5.3.1 Communication requirements

To illustrate the use of the FTT paradigm in providing dynamic QoS manage-
ment, this section presents an hypothetical case study based on the require-
ments of a mobile robot that uses a distributed embedded control system.
The robot should navigate autonomously within a delimited geographical
area, and must exhibit the following behaviors: obstacle avoidance, path fol-
lowing and beacon tracking. The desired global robot behavior is determined
by a subsumption architecture that arbitrates among the existing behaviors,
deciding which is the active one. The behavior arbitration is carried out as

follows:

1. whenever an obstacle is detected, avoid it;

2. in the absence of obstacle, follow a path indicated by a line on the

floor;
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Figure 5.4: Robot components

3. in the absence of obstacle and line, track a beacon and move towards
it;

4. otherwise move randomly.

To support the desired behaviors the robot is equipped with two independent
motors, a set of three proximity sensors to detect nearby objects, a beacon
detector, a line sensor made of an array of 10 individual sensors and a main
CPU to execute the high level control and planning software (Figure B2).
These elements are interconnected by a shared broadcast bus over which the
FTT paradigm has been implemented. The FTT master is implemented
in the main CPU, jointly with application tasks. The sensor readings are
produced by the respective sensors and consumed by the main CPU. On the
other hand, the main CPU produces the speed set-points that are consumed
by the motor controllers, which execute closed-loop speed control. These
controllers also produce displacement measures that are consumed by the
main CPU to support trajectory control.

Table B characterizes the communication requirements, i.e. the mes-
sage set and respective properties. Basically, each sensor will produce a
1-byte message with the respective reading except for the motor controllers
that will produce a 2-byte message with the displacement information. The
QoS requirements are expressed in terms of admissible ranges for the pro-
duction rates of each message. Since specified periods are integer multiples
of 10ms, this value has been used to define the EC duration. Moreover,
the synchronous window share was restricted to 80% of the EC duration.
The remaining 20% were left for the trigger message as well as for possible
asynchronous traffic, not defined here.

In order to derive tangible values, we assume an implementation over
CAN [Rob91]], operating of 100Kbps. Table EZshows the resulting minimum
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Source Signal Data # of Period(ms)
name Bytes Mesgs Min | Max
Obstacle sensors OBST 1 3 1 3 10 50
Line sensors LINE 1 19 1 10 10 1000
Beacon BCN_INT 1 1 200 2000
sensor BCN_ ANG 1 1 50 200
Main CPU SPEED 4 o 1 2 10 150
Motors DISP 1 5 2 2 20 500
Table 5.1: Message set and properties
Signal Tx # of Period(EC) Utilization (%)
name time (us) | mesgs | Min | Max | Min | Max
OBST 1.3 650 3 1 5 3.90 19.50
LINE 1 10 650 10 1 100 0.65 65.00
BCN _INT 650 1 20 200 0.03 0.33
BCN _ANG 650 1 5 20 0.33 1.30
SPEED 1.2 650 2 1 15 0.87 13.00
DISP ;. » 750 2 2 50 0.26 6.50
Total utilization (%) 6.07 | 106.63

Table 5.2: Message set network utilization

and maximum network utilizations when the minimum and maximum QoS

requirements are used, respectively.

Considering that an EDF scheduler is used, and applying the analysis
presented in Section EE3] the upper bound for guaranteed traffic schedulabil-
ity is 73.5%. Recall that only 80% of the network bandwidth is available for
synchronous traffic. This upper bound is well above the minimum required
utilization but also well below the respective maximum requirement. This
means that it is not possible to transmit all the messages at the respective
highest rates but, on the other hand, if the lowest rates are used, there is a
significant spare bandwidth. This gives room for QoS management in order
to assign the spare bandwidth to specific message streams, increasing the
respective QoS delivered to the application.

To better understand the use of dynamic QoS management, notice that
the robot needs permanently updated information from all sensors but it exe-

cutes only one behavior at a time (subsumption architecture). Therefore, the
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communication system should deliver the highest QoS to the active behav-
ior, increasing the rate of the respective messages. Conversely, inhibited or
latent behaviors, may be given lower QoS levels assigning lower transmission
rates for the respective messages.

For instance, whenever the robot is following a line on the ground, line
sensors should be sampled at the highest rate for accurate control. Obstacle
detection must still be monitored in order to avoid possible obstacles near the
line but, if no near obstacles are detected, lower sampling (transmission) rates
can be used. Beacon detection is not relevant in this case. If a near obstacle
is detected, the robot must switch the active behavior to obstacle avoidance,
assigning highest QoS to this behavior and changing the transmission rates
of the respective messages accordingly.

In the following sections we will show how the QoS management policies

referred before can be applied to this case.

5.3.2 Using the priority-based QoS manager

In the case of priority-based QoS management, spare resources that remain
after fulfilling the minimum resource requirements are distributed among
the messages following an order of decreasing QoS priority. These priorities
are message parameters that reflect the respective importance in the current
robot state. In this dynamic situation, the QoS priorities must also be dy-
namic, deduced from the actual sensor readings and taking into consideration
the referred hierarchy of behaviors as referred above.

In this particular case, a specific task running in the main CPU analyzes
the received sensor readings, runs the behavior arbitration to define the
active behavior and generates the QoS priorities. Whenever the relative
priorities change, they are supplied to the QoS manager that calculates new
effective message periods and applies them to the SRT in the FTT master
structure. The rules to generate these QoS priorities are straight forward: the
active behavior has highest one, the remaining behaviors are given priorities
proportional to the excitation level of the respective sensors. Tablda3l shows
the QoS priorities that were obtained in three different situations with three
different active behaviors. The table also shows the results generated by the
QoS manager, i.e. the granted transmission periods for each message, as
well as the total bandwidth utilization. This utilization is always close to

the maximum allowed (73.5% as referred before), meaning that the system
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Active behavior

Obstacle Path Beacon

Signal avoidance following tracking
o o R O O N

Priority Priority Priority
OBST ; 3 1 1 3 5 5 1
LINE 1 10 4 3 1 1 6 3
BCN _INT 4 20 5 20 4 20
BCN ANG 4 5 5 9 1 5
SPEED ;- 2 1 2 4 2 1
DISP 4 o 3 2 4 50 3 2
Utilization || 63.29% | 73.50% | 63.29% |

Table 5.3: Message set utilization: priority-based QoS manager

is efficiently exploring its resources, i.e. network bandwidth in this case.
The fact that the maximum utilization is not attained is due to the coarse
time granularity used in the FTT paradigm (EC length), which causes step

variations in the total utilization.

5.3.3 Using the Elastic Task Model QoS manager

The Elastic Task Model uses two independent parameters per message [BLLAGS],
the nominal period and the elastic coefficient. The former ones allow to de-
fine the optimum periods within the allowable range. The latter ones define
the flexibility given to the QoS manager to change the effective periods in
the vicinity of the nominal ones. Again, in our case study we would like to
adjust these parameters according to the instantaneous application needs or,
in other words, according to the current sensor readings.

Therefore, a task running on the main CPU is also used to analyze the
sensor readings, determine the active behavior and generate the QoS param-
eters. In this case, the generation of the parameters is done in the following
way: for the active behavior, the nominal period of the respective messages
is set to the minimum values, or close, and the elastic coefficient to one, or
slightly higher, forcing a high QoS; for the remaining behaviors, the respec-
tive messages get a nominal period equal to the maximum values and the
elastic coefficient is set proportionally to the respective sensor readings. In

this latter case, when the excitation level of the sensors increases, the coef-
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Obstacle avoidance Path following Beacon tracking
Signal
Name T; E; T, T, E; T; T;, E; T;
OBST;. 3 1 1 1 5 10 1 5 5 1
LINE:. .10 100 8 3 1 1 2 50 20 2
BCN_INT 100 20 20 200 20 20 30 10 50
BCN_ANG 10 20 5 20 20 10 5 1 8
SPEED; > 1 1 1 2 1 1 1 1 1
DISP;. 5 4 5 2 10 10 2 2 5 2
Utilization || 63.29% | 73.48% | 73.44%

Table 5.4: Message set network utilization: ETM QoS manager

ficients become larger thus increasing the chance of the respective behavior
receiving higher QoS.

The QoS manager is invoked whenever an elastic coefficient changes.
However, to reduce the number of invocations and keep the run-time over-
head under adequate levels, the mapping between sensor readings and elastic
coefficients should be coarse, using large quantization steps. Moreover, it is
important to use some level of hysteresis in order to prevent undesired oscil-
lations in changing from step to step.

Table 24 also shows three situations in which the active behavior is dif-
ferent. The respective QoS parameters are shown together with the effective
message periods generated by the QoS manager. The overall network utiliza-
tion in all three situations is close but below the maximum possible (73.5%
in this case). The reason is the same as explained in the case of the priority-
based QoS manager, i.e. it is due to the coarse time resolution within the
FTT paradigm.

5.4 Conclusion

This chapter discusses the benefits and implications of supporting dynamic
QoS management in distributed real-time systems, particularly in what con-
cerns the communication network. Supporting dynamic QoS management
requires a degree of flexibility that is not efficiently supported by existing
real-time communication protocols.

Resulting from its operational flexibility, the FTT paradigm found one
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of its main applications in supporting systems that benefit from, or even
require, dynamic QoS management. Another strong point of the the FTT
paradigm in this domain it is their ability to support arbitrary QoS manage-
ment policies, as long as the QoS attributes can be mapped onto standard
properties (periods, priorities or deadlines).

To illustrate how the FTT paradigm supports dynamic QoS management,
this chapter also presents a simplified case study using a mobile autonomous
robot. Two possible QoS management policies are briefly presented, one
that is priority-based and the other based on the elastic task model, and
it is shown how they can be used in the scope of the FTT paradigm. The
results obtained confirm that using the FTT paradigm in distributed real-
time applications can lead to efficiency gains in network bandwidth that arise

from the support to dynamic QoS management policies.



Chapter 6

Contributions to FTT-CAN

The FTT-CAN protocol aims mainly real-time applications based on low
processing-power micro-controllers, typically found in distributed embed-
ded systems [ZPS99]. Due to the constraints presented by this framework,
namely concerning the limited resources available (network bandwidth, CPU
processing power, memory), the implementation of the FTT-CAN protocol
was biased towards simplicity and resource economy. Moreover, some tech-
niques have been specifically developed to reduce the protocol overhead, like
the use of a planning scheduler [AFQS] in the master node. Nevertheless,
both the system architecture, functionality and application interface of the

FTT paradigm have been preserved.

6.1 The FTT-CAN Elementary Cycle

The FTT-CAN elementary cycle structure is similar to the generic EC struc-
ture described in Section EZZ] except that the asynchronous window pre-
cedes the synchronous one (Figure E)). The reason that has motivated
this decision is related with the need to decode the EC-Schedule carried by
the trigger message before nodes can start to transmit their respective syn-
chronous messages. Decoding the EC-Schedule and scanning the local tables
to identify what synchronous messages should be produced in the respective
EC takes an amount of time that strongly depends on the node processor
capacity, and can be as large as the transmission time of one or more mes-
sages when simple 8-bit micro-controllers are used [AIm99, [PAQO0]. Thus, if
the synchronous window was defined right after the TM, the gap between

119
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Figure 6.1: FTT-CAN Elementary Cycle

this message and the first synchronous message would be hardware depen-
dent and the corresponding bus time would be wasted. On the other hand,
asynchronous traffic transmission is considerably less demanding, since just
consists in getting data from a queue. Moreover, this process can be started
during the transmission of the TM, because the EC-Schedule is relevant only
for the synchronous messages, resulting in a synchronized start of transmis-
sion of all the pending asynchronous messages. This aspect is particularly
important, since in this case the arbitration of the pending asynchronous
messages is performed in strict priority order, which is a fundamental re-

quirement of the schedulability analysis presented in Section EE4l

6.1.1 Message Arbitration

The FTT-CAN protocol relies heavily on the deterministic CAN arbitration
mechanism (Section BZZT]) to reduce the overhead required by its operation.
Concerning the synchronous traffic, the trigger message only needs to convey
the identification of the synchronous messages that should be produced in the
EC and the duration of the synchronous window (Figure E1]). Using this in-
formation, each node identifies which messages it should produce and starts
their transmission at the beginning of the synchronous window. Several
nodes can submit messages for transmission at the same time and the CAN
MAC automatically serializes their transmission. The same situation occurs
in the asynchronous window; nodes having asynchronous messages queued
enable their transmission at the beginning of the asynchronous window (ac-
tually during the transmission of the TM), and the CAN MAC serializes

i

them in strict priority order as specified by the message’s identifiers.
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Figure 6.2: Preventing synchronous window overrun

6.1.2 Enforcing temporal isolation

In order to maintain the temporal properties of the traffic, both synchronous
and asynchronous messages should be confined within their respective win-
dows, enforcing a strict temporal isolation between both phases. This is
achieved by preventing the start of message transmissions that could not
complete within their respective window.

With respect to the synchronous traffic, under normal circumstances the
synchronous messages scheduled for transmission should fit within their re-
spective window. However, in case of errors CAN controllers automatically
retransmit the affected messages, and thus if no further actions are taken
transmissions may extend over the duration of the synchronous window. To
avoid this phenomenon, upon reception the TM all nodes set a timer with
the latest instant where a message can start to be transmitted and still fin-
ish within the synchronous window (tpore = F — LT M — C;), as depicted in
Figure B2

When this timer expires, nodes check the transmit status register of the
CAN controller, and, if the message is still waiting for transmission issue an
abort command, thus preventing the start of the transmission of the message
that otherwise would extend over the following EC. With this mechanism
synchronous messages are confined to the synchronous window, even in the
presence of errors.

When nodes are producers of several messages, maintaining a timer per
message can result in a considerable overhead. To overcome this situation,
nodes can use a single timer, set with the time associated with the transmis-
sion time of the longest synchronous message produced by the node itself.

The schedulability is reduced, but the overhead can become significantly
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lower.

Concerning the asynchronous traffic, nodes having asynchronous mes-
sages queued try to transmit them without any knowledge about the state
of the remaining nodes. Therefore there is no guarantees that the set of
ready messages among all system nodes will fit within one asynchronous win-
dow. Under these circumstances it becomes mandatory to confine the asyn-
chronous messages into the asynchronous window, suspending their trans-
mission outside those periods of time. This is achieved by removing from the
network controller transmission buffer any pending request that cannot be
served up to completion within that interval, keeping it in the transmission
queue. When nodes queue an asynchronous message for transmission they
also set a timer with the latest allowed start instant. Since the asynchronous
window length is deduced from the synchronous window, and the length of
the synchronous window is carried in the trigger message, the abort instant
for message AM; can be computed as toport = £ — LTM — lsw — C;. As for
the case of the synchronous traffic, to reduce the overhead associated with
the timer management, nodes can use a single timer, set in this case with

the size of the longest asynchronous message originated in the node.

6.1.3 FTT-CAN message types

The FTT-CAN protocol defines the following message types:

e EC Trigger Message [TM_MESG _ID]J;
e Synchronous Data Messages [DATA MESG _ID|;
e Asynchronous Data Messages [AM_DATA MESG _IDJ;

e Control Messages [CONTROL MESG _ID];

The four most significant bits of the CAN ID field [ID.b10...ID.b7| are used
to define the particular message type, as depicted in Table

The contents of the TM is depicted in Table

The Type field contains the MST MESG 1D, identifying the TM. The
Master ID field allows the existence of up to 8 different masters in the net-
work. In case of failure of the active master, an election mechanism protocol
(Section X)) selects one of the backup masters to become the new active

master. The New Plan field is used to signal the start of a new plan when
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0 00 TM_ MESG_ID
0 [Master]|
[Synch] 1 10 DATA MESG ID
[Slave]

000 CONTROL_MESG_ID (HP)

1 100 AM_DATA MESG_ID (RT)
[Asynch] 110 CONTROL_MESG_ID (LP)
111 AM_DATA MESG_ID (NRT)

Table 6.1: Message type identification

Type Master | New | Sequence | Synchronous EC
ID Plan | Number | Window Len. | Schedule
CAN ID field CAN Data field
[b10..b7] [b6.b4] [ b3 [ [b2..b0] MSB 1to 7 bytes
TM_ MESG ID | 0to 7 | {0,1} Oto7 0 to 255 Bitmap

Table 6.2: EC Trigger Message structure

a planning scheduler is used (Section 4. The Sequence Number field
is incremented by the active master in each EC and allows the detection of
up to 8 consecutive trigger message omissions. The Synchronous Win-
dow Length field contains the duration of the synchronous window in the
current EC, with a resolution of LstIéV Finally, the EC-Schedule field indi-
cates which synchronous messages should be produced in the EC, encoded
in a bitmap. Each synchronous data message is associated with a particular
bit. The mapping of message ID in the bitmap field if performed in ascend-
ing order, right to left (SMy < bitg; SMy < bity...SMyg < bitng), for all

Ng synchronous messages.

Recalling that CAN frames are subject to bit-stuffing, Equation can
be adapted to compute the maximum number of bits required by the trigger

message, as follows (Equation G1I):

Ng—1

LT Mys = (2 + { J)*8+47+
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TX rate LTM LTM | E E
(Mbps) | (byte / #mesgs) | ps | (ms) | (%)
0.125 5/32 854 10 8.54
0.125 8/56 1098 10 | 10.98
1.000 5/32 105 5) 2.10
1.000 8/56 135 5) 2.70

Table 6.3: Communication overhead imposed by the EC Trigger Message

‘ Type ‘ TX ND ‘ Message 1D ‘ Message Data ‘
CAN ID field CAN Data field
[b10..b7] b6 [b5..b0] 0 to 8 bytes
DATA MESG 1D {0,1} 0 to 64 Application specific

Table 6.4: Synchronous Data Message structure

34+ 2+ | M) s

+ 1 )

1<Ng<56  (6.1)

By knowing the maximum number of synchronous messages allowed in
a particular system (Ng) and the transmission speed (T Xpgrarg), the the

worst-case time required to transmit the TM is given by:

LT My
TXRraTE

LTM = (6.2)

As stated in Section L2 the use of the master/multi-slave transmis-
sion control, in which one single TM triggers the transmission of several data
messages in distinct nodes, allows to considerably reduce the protocol over-
head when compared with a pure master-slave transmission control. Table
presents the overhead due to the transmission of the TM in FTT-CAN
in four typical scenarios. Note that this overhead can be further reduced by
using a higher value for the EC length or by reducing the data length of the
TM whenever the applications require fewer synchronous messages.

Synchronous Data Messages are used to periodically distribute state
data among the network nodes, and are always transmitted within the syn-
chronous window, when indicated in the EC-Schedule carried by the TM.
The synchronous data message structure is depicted in Table 41
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‘ Type ‘ Not used ‘ Message ID ‘ Message Data ‘
CAN 1D field CAN Data field
[b10..b7] b6 [b5..b0] 0 to 8 bytes
AM DATA MESG_ID — 0 to 64 Application
({RT,NRT}) specific

Table 6.5: Asynchronous Data Message structure

The Type field contains the DATA MESG _ID constant indicating that
the frame is a synchronous data frame. The transmit new data flag (TX ND)
allows to implement a lighter version of the temporal validity information
described in Section EZ4l The TX ND flag, if set, indicates that the
source node has updated its local image of the respective real-time entity
after the last transmission. Conversely, if this bit is not set, it means that
the application had not updated the local image, and thus the contents of
the message is the same as the one in its last instance. A full description of
this mechanism can be found in [AIm99) [APE02]. The Message ID field
allows to identify each of the messages. Finally, the Message Data field
contains up to 8 bytes of payload data.

Asynchronous Data Messages are used to convey event information, are
sent after application explicit request, and are transmitted within the asyn-

chronous window. The structure of a these frames is depicted in Table B0l

The structure of this frame is similar to the synchronous data message
frame, except that in this case there is no transmit new data flag, due to the

event nature of these messages.

There are two levels of priority associated with asynchronous data mes-
sages (Table 1)) which map into two different traffic classes. Higher priority
(RT) asynchronous messages are subject to real-time constraints, and thus
appropriate analysis (Section Bl can be performed in order to compute in
advance if its timeliness requirements can be met, thus they pertain to the
asynchronous real-time traffic class. However such analysis does not involve
the low priority (NRT) asynchronous messages, which are handled accord-
ing to a best-effort policy (Section EEZl). Thus, low priority asynchronous

messages fall into the non-real-time asynchronous traffic class.

Asynchronous Control messages are used to perform system manage-

ment (e.g master synchronization data, software download, requests for SRT
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‘ Type ‘ Not used ‘ Message 1D ‘ Message Data ‘
CAN ID field CAN Data field
[b10..b7] b6 [b5..b0] 0 to 8 bytes
CONTROL_MESG 1D — 0 to 64 Application
({HP,LP}) specific

Table 6.6: Control Message structure

changes, non-real-time message polling,etc.). The internal structure of this
type of frame is similar to the structure of asynchronous data messages and
is depicted in Table B8

There are two priority levels assigned to control messages. The high-
priority messages (HP) have the highest priority among all the asynchronous
messages (Table B) and are used for time-critical management operations,
such as urgent SRT change requests. The lower priority (LP) control mes-
sages have the lower priority among all the asynchronous messages. These
are used to carry operations that are not time constrained, such as remote
diagnosis or software updates.

The maximum number of bits required by both synchronous, asynchronous
and control messages is given directly by Equation and their respective

transmission time computed as in Equation

6.2 Synchronous traffic

The generic schedulability analysis for the FTT message model has been
introduced in Sections and 4l concerning respectively synchronous and
asynchronous traffic. This section addresses the adaptations concerning the

synchronous traffic.

6.2.1 Schedulability analysis

The schedulability tests presented in Section can be directly applied
to the FTT-CAN protocol. It should be recall that the analysis requires
the use of worst-case transmission times. Therefore, in the definition of
the synchronous requirements table (Equation ET]) the message transmission
time (C;) must be derived from the number of data bytes (DLCj;) using

Equation to compute the maximum number of bits and then Equation
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to compute the corresponding worst-case transmission time.

6.2.2 Experimental results

The FTT-CAN protocol inherits from the FTT paradigm the possibility of
using of arbitrary scheduling policies (Section EEZTl). The scheduling is car-
ried out based on the SRT independently of the message identifiers. Thus,
any scheduling policy can be easily implemented, e.g. Rate-Monotonic (RM),
Deadline-Monotonic (DM), Earliest-Deadline First (EDF), Least-Laxity First
(LLF), overriding the identifier-based traffic scheduling embedded in the
MAC of CAN.

The possibility of implementing more efficient scheduling policies can be
particularly relevant for heavily loaded systems, because different scheduling
paradigms allow obtaining different temporal behaviors and different bus
utilization factors. For example, in the work of Liu & Layland [LL73] it is
shown that EDF allows full CPU utilization with independent preemptive
tasks, whilst for RM the upper bound for guaranteed timeliness can be as
low as 69%. While the previous limit represents the worst-case for RM,
a simulation study carried out by Lehoczky, Sha and Ding [LSD89] with
random task sets showed that RM is able to achieve on average an utilization
as high as 88%.

In the specific context of message scheduling certain constraints must
be accounted for, resulting in lower utilization bounds. For example, in the
particular case of fieldbuses, such as the CAN bus, messages are transmitted
without interruption and consequently must be scheduled non-preemptively.
Nevertheless, the relative difference between the schedulability levels of EDF
and RM scheduling still holds. Particularly for the CAN bus, some com-
parative results between RM and EDF using realistic loads [ZS97] show a
difference around 20% in network utilization in favor of EDF.

To assess the advantages of using EDF in the scope of FTT-CAN with re-
spect to the level of schedulability and system overhead, a set of simulations
and experiments were carried out. The target hardware test platform is a
CANivete system [FT98] based on the Philips 80C592 clocked at 11.059MHz
with the CAN interface configured to run at 123Kb/s. The system architec-
ture is depicted in Figure

As discussed in Section the decoding of the EC-Schedule and SRT

scanning requires an amount of time that is strongly dependent on the pro-
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Figure 6.3: Experimental set-up

cessing power within the nodes. For the hardware platform described above
this overhead (POV RHEAD) has been experimentally measured, and an
upper bound of 1ms (roughly 120 bits at 123Kb/s) was found. This bus time
cannot be used by synchronous traffic, thus the maximum duration of the

synchronous window (LSW) can be computed by Equation

LSW = LEC — (LTM + POVRHEAD + LAW) (6.3)

In order to assess the actual difference in scheduling capability between
RM and EDF in FTT-CAN, a simulation with 10.000 random messages
sets was performed. Each set contains 32 messages respecting the following

constraints:

e 5 messages with period 1 EC;

e 10 messages with period between 3 and 6 ECs uniformly distributed;
e 17 messages with period between 10 and 16 ECs uniformly distributed;
e Data length: 1..8 bytes uniformly distributed;

e IDs are ordered by increasing period.

The purpose of using this pattern is to obtain sets with high network utiliza-
tion and with messages of three different categories concerning the respective
transmission periods: short, medium and long.

Considering the maximum number of 32 synchronous messages (Ng =
32) used in the simulations, the maximum number of bits required by the
TM and its corresponding worst-case transmission-time ( Equations and

E2) become respectively:
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LT My, — 105 bit (6.4)
LTM = 0.854ms (6.5)

Considering that no further bandwidth is reserved for asynchronous traf-
fic except the one due to the processing overheads (i.e. LAW=0, POVR-
HEAD=1ms), an EC duration of 8.9ms and a transmission rate of 123Kb/s,

the maximum length of the synchronous window is:

LSW = 8.9 — (0.854 + 1+ 0) = 7.046ms (6.6)

For the message set herein considered, an absolute upper bound for the
inserted idle-time (X = max,(X,)) results from a message with eight data

bytes, resulting in:

Xyire = 135 bit (6.7)
X =1.098ms (6.8)

The least upper bound of bus utilization for RM (U gar) and EDF
(Ulub_EDF) scheduling policies can now be computed using Conditions
and EEIR

Ulub_RM = 46.8% (6.9)
Ulub_EDF = 66.8% (6.10)

These values are lower than the typical values for preemptive task schedul-
ing as presented in [LL73]. This is expected since such values do not consider
the impact of inserted idle-time neither any kind of protocol or processing
overhead. For the values above it can be observed a difference in scheduling
capability under guaranteed timeliness of near 20% in favor of EDF.

However, as it can be observed in Figure @l the percentage of schedulable
sets obtained in the simulation is substantially higher than the least-upper
bounds derived above, both for RM and EDF. In fact, all sets in the simula-
tion with utilization factor up to 71% are schedulable both by RM and EDF,
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Figure 6.4: Schedulability versus bus utilization under RM and EDF

and those with utilization up to 77% are schedulable by EDF, only. These
results also show that the least upper bound for RM stated in Condition
TT6 is more pessimistic than the one for EDF presented in Condition EET8
This situation is also expected since the original bound for RM preemptive
scheduling is also more pessimistic than the one for EDF. It is also impor-
tant to recall that, due to the transmission of the EC trigger message and
to the processing overhead specific of the infrastructure used, only 80% of
the bus bandwidth is available for the synchronous messages. Notice that,
as expected, EDF practically allows fully utilization of this bandwidth.

To have a measure of the relative performance of FTT-CAN in the sup-
port of EDF scheduling, it was carried a brief review of the related work.
Other methodologies for implementing EDF scheduling on CAN [ZS95, [Naf00l,
[CKO8] relied exclusively in the native MAC of the protocol. Since the prior-
ity of the messages depends on the identifier bits and priorities in EDF are
dynamic, this approach implies dividing the identifier in at least two fields,
one to encode the priority (variable) and another to identify the message
itself (fixed). In [ZS95, Naf((, [LK98] several techniques for managing the
priority field are discussed, which consider the restriction of using a limited
number of identifier bits as well as the need to keep the processor overhead
in acceptable levels.

In [ZS93)] it is proposed a solution based on the encoding of absolute dead-

lines relative to a periodically increasing time reference designated epoch.
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However, this solution has difficulties in dealing with message sets contain-
ing periods orders of magnitude apart. In this case either it is used a coarse
time granularity, leading to a large number of priority inversions, or the
number of bits used to encode the deadline is increased, reducing the num-
ber of distinct messages that can be scheduled. A particular technique is
presented, named Mixed Traffic Scheduling, according to which the traffic is
first scheduled by EDF, using the priority field, and then by fixed priorities
using the message identifier field. Nevertheless, this leads to a reduction in
the benefits of using EDF.

In [Naf00] the author proposes to encode the time to the absolute dead-
line (therein referred to as slack) in a logarithmic time scale, increasing the
temporal resolution as deadlines are approached and thus, reducing the num-
ber of possible priority inversions for early deadlines. A consequence of this
technique is that the identifier bits, used to encode the priority of the mes-
sages waiting for transmission, must be updated each time messages compete
for the bus access after it becomes idle (referred to as arbitration round).

In [LK9§] the authors encode the time to the absolute deadline in a linear
time scale, but using extended frames (ID field with 29 bits, CAN 2.0 B).
In this approach, the IDs of the messages waiting for transmission must also
be updated before each arbitration round. Although this technique allows
for larger ranges of periods and deadlines, the additional number of bits
required by the ID field (20 bits, including stuffing) spoils a significant part
of the additional bandwidth that is made available by using EDF, since the
increased ID field length in CAN 2.0B [Rob91] requires between 13% to 40%
more bandwidth than version A.

Major drawbacks shared by all these approaches can be summarized as

follows:

e Reduction on the number of supported messages due to the use of some

identification bits to encode the priority;

e All nodes must periodically update the priority field, resulting in a

non-negligible processing overhead;

e Priority inversions induced by the limited resolution available to ex-

press deadlines;

e Global clock synchronization required, further consuming CPU and
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network bandwidth.

As opposed to these approaches to EDF message scheduling on CAN, in
the FTT-CAN protocol all the scheduling decisions are performed in the
Master node. Consequently, most of the drawbacks presented above do not
hold. Firstly, in FTT-CAN the priority, i.e. time to the deadline in the
case of EDF, is held in a variable within a data structure and no identifier
bits are used to encode it. Thus, no reduction is imposed on the number
of messages, besides the field reserved for message type definition (Section
ET3). Secondly, the scheduling activity is confined to the Master. The EC
trigger message identifies the synchronous messages that must be produced
in each EC. All other nodes follow a slave-like operation that is completely
independent from the scheduling technique used by the Master. Thus, the
use of EDF does not impose any extra computational activity in any node
beyond the Master. Thirdly, the SRT is maintained in an adequate structure
in the Master memory. Message parameters, such as periods and deadlines,
are held within variables which type can be adequately chosen to support
the required range of values. Thus, the range of periods that can be han-
dled within FTT-CAN is virtually unlimited, beyond the constraint of being
integer multiples of the EC duration, although there is a clear impact in
memory requirements and processing overhead. Finally, all nodes are syn-
chronized by the EC trigger message and there is no need for global clock
synchronization.

To assess the performance of the FTT-CAN approach compared with
the other methodologies above referred, it was carried a simulation study
in similar conditions. The simulation results presented in [ZS95] are not
very interesting because they are based on 10Mbps CAN network, which is
not realistic. On the other hand, the methodology presented in [LK98] uses
CAN 2.0 B and thus a direct comparison would not be possible. Therefore
the comparison was carried only with respect to the methodology presented
in [Naf(()]. The workload consists in:

e Random message sets with 30 messages grouped in 3 distinct categories
according to their periods (ms), [3,12], [30,120] and [250,1000];

e Deadline to period ratio is in the range [0.8,1.0] uniformly distributed;

e CAN bus at 250Kbps.
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Figure 6.5: Percentage of schedulable message set using EDF scheduling on
CAN

The results obtained are plotted in Figure [E8 For each point in the plot
5000 random sets were generated, giving a total of 60000 message sets. To
allow an easier comparison with [Nat((], the x-axis shows the effective data
utilization, i.e. equivalent transmission time of data bits only, over message
period.

The results in Figure[EO are roughly similar to those presented in [Nat(0),
but the curve is more abrupt with FTT-CAN, presenting a larger level of
schedulability for a wide range of data utilization values. Hence, the FTT-
CAN based EDF implementation is able to achieve a comparable or even
better data throughput despite the use of a centralized approach and simple
micro-controllers in the nodes beyond the Master.

The advantages of using FTT-CAN to support EDF scheduling on CAN

are summarized below:

1. Simplicity of scheduler implementation in the Master node. Further-
more, the scheduling policy can easily be changed on-line, e.g. during

transient overloads.

2. Message scheduling separated from the MAC arbitration, avoiding the
undesirable compromise between dynamic priorities and message iden-

tifiers.
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3. CPU load required by EDF scheduling confined to the Master. Re-
maining nodes require a constant CPU load to decode the EC trigger

message, whichever is the scheduling policy being used.

4. Support for virtually unlimited range of message’s periods and dead-

lines simply by using appropriate types for the respective variables.

5. Explicit global clock synchronization is not required, thus further sav-

ing network and CPU load in all nodes.

On other hand, in FTT-CAN there is also a limitation imposed on the tem-
poral resolution. In fact, in FTT-CAN all periods and deadlines are ex-
pressed as integer multiples of the EC duration and a sub-EC resolution is
not supported. Within the EC, messages are scheduled according to the fixed
priority that corresponds to the respective CAN identifiers. This limitation,
nevertheless, does not seem to be particularly relevant since for typical ap-
plications (e.g. automotive, machine tool control) the shortest deadlines and
periods lie in the range from 1ms to 10ms, which is the same magnitude of
the envisaged EC duration in FTT-CAN systems. On other hand, FTT-
CAN is able to schedule with EDF only the synchronous traffic, while the

other approaches above referred can handle asynchronous (event) traffic.

6.3 Asynchronous traffic

6.3.1 Schedulability analysis

The asynchronous traffic schedulability analysis presented in Section B4 for
the generic FTT paradigm is applicable to the FTT-CAN implementation.
The only modification that must be performed concerns the swap in the rel-
ative positions between the synchronous and asynchronous windows, which
implies and adaptation of the time intervals in Equation EE20 resulting in
Equation Moreover, the analysis also requires the message schedul-
ing to be performed in strict priority order. This is automatically provided
by the CAN MAC, since the message IDs are set according to the desired

message priority.



6.3. ASYNCHRONOUS TRAFFIC 135

i (law(j) — o)
t: (k—1)«E<t<(k—1)xE+LTM

Yot (law(j) — ag) +t— (k= 1)+ E,
t: (k—1)«E+LTM <t<kxE— (law(k) + ) (6.11)

Z?:l (law(j) — o),
t: kxE— (law(k)
withk —1=|%

+C¥k)§t<k*E

6.3.2 Experimental results

This section presents the results of two experiments conducted with the
purpose of testing and assessing the behavior of the FTT-CAN Asynchronous
Messaging System, concerning both AT1 and AT2 classes of asynchronous
real-time messages presented in Section B4l

The experiences were performed on the CANivete system [FEF98] de-
scribed in Section BEZ2 The CAN bus transmission rate used in the ex-
periments is approximately 123Kbps, and the EC duration is set to 8.9ms.
The time measurements were carried using one of the processor’s internal
timers, which supplies a resolution about 1us.

The sets of messages used are derived from "PSA Peugeot Citroen" CAN
message set, with some customization in the message properties (length and
period/minimum inter-arrival time) to generate an adequate bus utilization.
The synchronous load is the same in both experiments and is described in
Table 7 The asynchronous message set for each of the experiments is
described in Table

In the experimental set-up, all the asynchronous messages are produced
at their maximum rate, and their transmission is requested just after the
end of the asynchronous window of the EC, in an effort to achieve a scenario
close to the worst-case one used in the analysis. One thousand transmis-
sion/reception events have been recorded for each message.

The first set of messages produced the results presented in Table
Concerning the analysis data (two rightmost columns on Table B3, it can

be observed that messages with ID 7 and 8 are guaranteed to be schedulable
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Message ID | Number of Data Bytes | Period (ECs) |

1 1 1
2 3 1
3 3 2
4 2 1
5 2 2
6 2 4

Table 6.7: Synchronous communication requirements

Message ID | Number of mit (ECs) mit (ECs)
Data Bytes | [Experiment 1| | [Experiment 2]
7 4 1 1
8 5 1 1
9 4 1 1
10 7 1 2
11 D 1 2
12 1 1 2

Table 6.8: Asynchronous communication requirements

within their minimum inter-arrival time. Message 9 starts to be transmit-
ted before the arrival of its next instance, but finishes its transmission after,
therefore, only one transmission buffer is required to handle it. All instances
of message 10 can be transmitted if at least three transmit buffers are pro-
vided. Messages 11 and 12 are not guaranteed to be schedulable.

Since the analysis is based in worst-case assumptions, it can be expected
that experimental results are in some extent better than analytic ones. Com-
paring the response time (columns 4 and 6 of Table E3) it can be observed
that the maximum measured response time is always lower than the one
computed. Also, in practice only one buffer for message 10 is used, and all
instances of message 11 are schedulable if two transmission buffers are pro-
vided. The differences between analytical and experimental results are due to
difficulties in reproducing worst-case conditions in the experimental set-up.

Two factors are particularly relevant to explain the differences observed:

e variable amount of stuff bits, which can lead to messages being about

20% shorter than the worst-case length considered in the analysis;
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Mesg Experimental Data Analytic results
ID Response time (ps) # Resp. time (*¥*%) #
Min || Avg || Max | buffers (us) buffers
7 3714 5073 6997 1 7884 1
8 3976 2668 7490 1 8684 1
9 5367 || 6388 8063 1 9444 1
10 5962 6971 8641 1 27684 3
11 6720 || 10381 || 15843 2 ok ok
12 * * * * %k Xk

(*) Cannot be computed due to lost messages
(**) Cannot be computed since the analysis does not guarantee schedulability

(***) Time to transmit all queued instances of the message

Table 6.9: Results from experiment 1

e inserted idle-time shorter than the worst-case value considered in the
analysis, which was used to simplify it. The impact of this factor would

be reduced by using a longer EC with a longer asynchronous window.

Table shows the results obtained with the second set of asynchronous
messages.

It can be observed in Table [E10 that the analysis guarantees the schedu-
lability within the minimum inter-arrival time of messages seven, eight and

nine. All instances of messages 10,11 and 12 are also guaranteed to be

Message Experimental Data Analytic results
ID Response time (us) # Resp. time (***) #
Min | Avg | Max | buffers (us) buffers
7 4142 | 5199 | 7465 1 7844 1
8 4139 | 5752 | 7256 1 8684 1
9 5263 | 6504 | 8058 1 9444 1
10 6135 | 7081 | 8422 1 26648 2
11 7727 | 8718 | 9611 1 38180 4
12 8709 | 9228 | 10800 1 71348 4

(***) Time to transmit all queued instances of the message

Table 6.10: Results from experiment 2
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schedulable if enough transmit buffers are provided (2, 4 and 4 respectively).
In the experiment it was verified that all the messages were scheduled within
the respective minimum inter-arrival time, therefore there was no lost mes-
sages, and only one transmission buffer was used. As stated before, this fact
can be explained by the worst-case assumptions made in the analysis.
From the comparison between the experimental and analytical results
it can be concluded that, on one hand, the measured values were always
within the range predicted by the analysis, and, on the other hand, analytic
response time bounds derived for the real-time asynchronous messages are,
as expected, pessimistic. A more exact bound for the inserted idle-time
could reduce the degree of pessimism of the analysis, but would require an
higher computational overhead (Section EEZTl). However, the major source
of pessimism in the analysis is due to the CAN bit-stuffing and cannot be
avoided, because the message length depends on the data to be transmitted,

which of course cannot be foreseen.

6.4 Using a Planning Scheduler

As described in Section EEZJl during run-time an on-line scheduler builds
the EC-Schedules for each EC, based on the actual requirements of the syn-
chronous traffic, specified in the SRT. These schedules are then inserted in
the data area of the respective EC trigger message and broadcast with it.
Due to the on-line nature of the scheduling function, changes performed in
the SRT at run-time will be reflected in the bus traffic within a bounded
delay.

However, scheduling is on one hand a costly activity in terms of pro-
cessing requirements and on the other hand a critical activity, since failing
to build an EC-Schedule in time (i.e., before the beginning of the following
EC) results in an interruption on all the communication activities. For sys-
tems based on low computational capacity nodes (e.g., based on simple 8 bit
micro-controllers) the processing demand required by the scheduler can be
beyond the capacity of the master’s CPU.

To overcome this situation, two different solutions have been developed to
implement the scheduler. One is the planning scheduler [APF99, [ATm99], a
software-based implementation that allows reducing the processing overhead

of on-line scheduling. This technique consists on building a static schedule
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table for a given period of time into the future, called plan, and rebuilding
that table on-line at the end of each plan. The plan duration is not corre-
lated with the number of synchronous messages or its periods, therefore the
memory resources used by this structure are bounded and can be set-up a
priori. Previous work [AIm99] on this subject has shown that for the case
of Rate Monotonic, the scheduler overhead is inversely proportional to the
plan length. Therefore, managing the plan length allows to, up to a certain
extent, trading memory by CPU usage.

The second solution that has been developed to implement the scheduling
function in FTT-CAN makes use of FPGA-based scheduling co-processors.
This solution provides, at a higher hardware cost, the extra computational
capacity required to execute both the scheduling and schedulability analysis
on-line. For example, the co-processor described in [MEQ(I] scans the SRT
and creates a new EC-Schedule every EC. Moreover, it is also capable of
executing several schedulability tests in that interval. The result of this
solution is a high degree of flexibility and responsiveness, plus a residual
computational overhead, only, in the master processor, which allows the use
of less powerful, and thus more economic, micro-controllers.

Although the use of a scheduling co-processor seems more interesting, it
implies a cost penalty, particularly when dependability issues call for the use
of master replication (Section [EX). Therefore, from the economic point of
view, the use of a software-based solution seems more adequate. However,
the use of a planning scheduler limits in some extent the system flexibility,
due to the static nature of the plans. Changes on the synchronous commu-
nication requirements are considered by the scheduler in a per plan basis
instead of a per EC basis. Thus, the time required by a change request to
take effect on the communication network takes more time, situation that
raises a conflict between the need to use longer plans, to reduce the schedul-
ing overhead, and the need to use shorter plans, to have shorter response

times to changes to the communication requirements.

6.4.1 Responsiveness limits

Once a change request is made concerning the current synchronous message
set, a certain period of time elapses until that request takes effect at the bus

level. This time interval is referred to as the synchronous transient response
time (STRT).
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Figure 6.6: SMS Responsiveness bounds

The STRT can be decomposed in three parts (Figure E8):

e the time from the request to the end of the current plan;

e the plan in which the scheduler takes into account the new require-

ments;

e the initial phase () of the message stream relative to the beginning of

the plan where changes are already reflected. Note that Vi, ¢; < P;.

The minimum value (marker A in Figure 0l occurs when cumulatively
the request is made just before the end of one plan, and ¢ is zero. The
maximum value occurs if the request is issued just after the beginning of one
plan (marker B in Figure [0l), and the initial phase has its maximum value.
Therefore, the absolute bound for the synchronous transient response time,
when using the SMS alone (STRTsas), varies between one and two plans
plus the initial phase (as defined above).

LPlan < STRTsys < 2% LPlan + ¢ (6.12)

Since the ST RTss is a direct function of the plan duration, the respon-
siveness can be improved by shortening the plan. However, the reduction of
the plan duration increases the CPU load [AFE99, [ATm99]. Below a given
value, the scheduler might not have enough time to build next plan in time,
that is, before the dispatcher processes the current one. Moreover, some
interesting properties of the planning scheduler, like the look-ahead feature
[AIm99], are negatively affected by the reduction of the plan length. As
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Figure 6.7: Using the AMS to temporarily convey a new synchronous mes-
sage

a consequence, there is a lower bound to the plan duration, limiting the
responsiveness that can be achieved this way.

Another way to improve the responsiveness is to start the scheduler
as late as possible. Since the worst case execution time of the scheduler
(wcetSch) can be estimated on-line [AIm399|, using this approach the syn-
chronous transient response time can be bounded to the interval indicated
in Equation T3l

weetSch < STRTsys < LPlan 4+ weetSch + ¢ (6.13)
LPlan : Plan duration

6.4.2 Improving the responsiveness

As seen above, the responsiveness of the SMS, when a Planning Scheduler
is used, is upper bounded by the plan duration plus the scheduler execution
time. Since these cannot be made arbitrarily short, further improvement to
the responsiveness of SMS in FTT-CAN requires that change requests should
be handled even during the current plan, bypassing the planning scheduler
for a short period of time, but without disturbing the other synchronous
messages already scheduled.

To achieve this purpose the asynchronous messaging system (AMS) can
be used to produce the required message(s) until the requested changes are
handled by the SMS, as described in the previous section and depicted in
Figure After the dispatcher starts processing the plan in which the
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new message parameters are reflected (Plan ¢ in Figure B1), the system
resumes normal operation, that is, as the message is included in the SMS
it is removed from the AMS. The period of time during which the AMS
is used to support the transmission of synchronous messages is referred to
as synchronous support period (SSP). The Master station, by means of a
specific control message (CM in Figure B1), establishes the beginning and
duration of the SSP for each change request.

The following relationship can be established between the ST RT with
and without the AMS support:

STRT s = STRT sy — SSP (6.14)

If the change to the message set consists only in the addition of a new
message, the process above described is adequate. However, if the change
request is performed over a message stream already present in the SRT (e.g.,
to change the stream’s period), the existing instances of the message in the
SMS during the synchronous support period (SSP) must be suppressed.
Those instances still use to the older parameters (before the change) while
the updated instances are transmitted by the asynchronous system. The
suppression is achieved by applying a filter to the TM which resets the bit
that corresponds to that message. Therefore, removing one stream present
in one plan already built only requires a change in one bit of that filter.

Depending on the type of the change request that is made, one or several

of the following actions may be necessary:

1. A change of one bit in the filter;

2. The production of a control message to signal the start and duration

of the SSP (synchronous support period);

3. A set of data messages produced in the AMS, during the SSP.

If the change request consists in the elimination of one message stream, only
action 1 is required. However, if the change request consists in adding a new
message, control and data messages will be produced in the AMS during
the SSP (actions 2 and 3). If the change request concerns a modification in
the parameters of an existing message (e.g. period), actions 1,2 and 3 are

required.
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Change_Request
(Type,ID,Period[,Phase,RV_ID])

| | Check Schedulability | |

| Update SRT | < Exit(CR_REFUSED) >

Exit(CR_OK)

Figure 6.8: Operational flowchart

6.4.3 Implementation issues

From the operational point of view, several steps must be performed in order
to process the request for a change to the synchronous message set. Figure
presents a flowchart describing the proposed methodology for improving

the responsiveness of the planning scheduler for change requests.

After a request to a change on a synchronous message, a schedulabil-
ity analysis is executed, which rejects changes that would result in a non-
schedulable message set. However, in the remainder of this section we will
consider that any requested change has already been analyzed and it does
not compromise the message set schedulability. In case the on-line analysis
is performed, its execution time must be included in the STRT.

If the change request is accepted, the change is made to the SRT, and then
it is evaluated if their admissible delay to take effect on the bus allows the
use of the SMS alone (Response deadline > ST RTgsrs). If so, no further
handling is necessary. Otherwise, two more steps must be performed. In first

place it is verified if the request is made over a message already present in the
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SMS (change of period or elimination), and, if so, a request is made to the
dispatcher to remove the message from the synchronous message area during
the ST RT. Next, it is evaluated if the request implies to add a message; if
so, a request is made to the AMS to start its production in asynchronous
mode.

The start and duration of the temporary production of synchronous mes-
sages using the AMS, if required, is commanded by the master node via a
control message. During this period of time (SSP as defined before) the pro-
ducers transmit the required messages autonomously. The communication
overhead of this control protocol is thus one control message per change re-
quest. The start of production message (SP_SSP) must convey the ID of
the message to be produced, its period (expressed in ECs), a release delay
(also in ECs) that must be applied between the reception of this message and
the effective start of stream production, and the number of instances that
must be produced using the AMS. Seven data bytes are used, one for variable

ID, and two for message period, release delay and number of instances.

6.4.4 Performance analysis

During the synchronous support period (SSP), the control and synchronous
messages corresponding to a change request are handled by the AMS, and
will compete for the bus jointly with other asynchronous messages. For time-
critical message streams it is necessary to guarantee in advance that the AMS
has enough capacity to timely support the transmission of the control and
data messages respectively during the ST RT 4prs and SSP. For this reason,
it was derived a set of sufficient conditions, which allow to guarantee that a

set of change requests is handled within specific time bounds.

Bus demand and responsiveness

As explained in Section 42l during the SSP any new and modified messages
are produced using the AMS. However, if the request is accepted by the
schedulability test it means that the SMS has enough leeway to hold the
message. As the AMS holds the remaining bandwidth, it can be concluded
that the production of data messages during the SSP will use space borrowed
by the AMS from the SMS. However, this argument requires that the start
of synchronous support period (SSP) takes into account the phase of the
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Figure 6.9: Transition from SSP to SMS

variable. This is necessary to maintain the same relative phasing in both
production periods, SSP and SMS, resulting in a smooth transition from one
to the other.

Consider for instance the example illustrated in Figure [, where a mes-
sage is added with period of 2 ECs and phase of 1EC relative to a reference
message v. The SP_SSP message is sent by the Master Station, informing
the respective producer node that it should start producing the new stream
using the AMS with period of 2 ECs and starting in the 2"¢ EC after the
reception of the control message. This way, the release of the first message
in the stream is appropriately delayed (RD in Figure [£3) so that the relative
phasing is the same in SSP as in SMS.

In order to evaluate where the SSP should start, the Master node must
calculate which will be the initial phase relative to the start of the plan of
the first instance of the message produced in the SMS. Notice that this plan
(i+2 in Figure B3 is not yet built at the request instant. However, knowing
the initial phase of a variable v on plan i, its initial phase in plan (i+1) is
given by Equation I8 where W is the length of the plan (in ECs) and P,
is the period of variable v (also in ECs).

= [ - o ) (6.15)

When the request for a change is performed, the current scheduler in-
stance (i+1 in Figure EX) can be either terminated or still in execution. In
the former case, the next plan (i+1) is already built and ¢4 is known.
Thus, Equation is applied once, only, to determine %2, In the latter
case, plan i+1 is not built yet and thus, Equation T8 must be applied twice
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to evaluate ¢,’ + 2 based on ¢,’. Knowing the relative phase of a message u
with respect to a reference message v (Phl), and the initial phase of this one
(pu* + 1) the number of ECs between the SP_SSP and the first instance
of the message stream produced in the SMS (¢,% + 1) is given by Equation
BEI6 where W is the length of the plan, cur EC" is the EC where the request
is handled within plan i (1 < curEC < W) and Ph}, is the phase of the

message being added (u) relatively to message v.

Lrpissp, =W — curEC" + W + "2 + Ph? (6.16)

Finally, the number of instances that must be produced during the SSP
(NIgsp,) is given by Equation 11

L
Nlssp, = {7RD;SSP“J (6.17)

The release delay of the first instance relative to the reception of the

control message (RD) is given by Equation

RDgssp, = Lrp+ssp, — N1ssp, * P, (6.18)

When using the AMS support to increase the responsiveness to changes
in the synchronous message set, the synchronous transient response time
(STRTAns) is substantially reduced (Figure ). In fact, its worst-case
value occurs when the request is done before the beginning of the synchronous
window of one EC and the respective control message (SP_SSP) can only
be transmitted in the asynchronous window of the following EC. Unless
the accumulated number of control messages, due to the queuing of several
requests, is greater than the available space in the asynchronous window,
the ST RTAprs will be less than 2 ECs, plus the release delay RD. Since
0< RD < P, —1, the worst-case value of the responsiveness achieved by
this method, expressed in ECs, is given by Equation 19, where P, is the

period of variable u, measured in ECs.

STRT 4ps, < Py +1 (6.19)
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Pre-run-time analysis

The SP_SSP control messages are transmitted in the asynchronous win-
dows, competing for the bus together with other asynchronous messages.
Thus, to guarantee that the bound in Equation is respected, it is nec-
essary to perform a pre-run-time evaluation. As discussed above, during
the SSP the production of the synchronous messages is made in space bor-
rowed from the SMS by the AMS. However, the same assumption cannot
be made concerning the control messages. For these, it must be evalu-
ated if the minimum bandwidth reserved to the AMS at configuration time
(LAW = E — LTM — LSW) is enough to handle them in a timely way.
As discussed in Sections EE4] and [E3T], due to a possible idle-time insertion
(), the minimum guaranteed effective bus time available in each EC for
asynchronous transactions is less than LAW and it can be computed using
Equation

LAWyr = LAW — a (6.20)

The inserted idle-time term («) is bounded by the transmission time of

the longest asynchronous message (Ca), which is given by Equation E2T1

Ca=maz{C;},i=1..Ny (6.21)

In a worst-case situation, when using either higher transmission rates or
low processing power micro-controllers, the Master may take more time to
handle a change request (i.e. perform the previous calculations) than to send
the respective SP_SSP message. In this situation, the Master must release
the bus between any consecutive SP_SSP messages. Consequently, in the
meanwhile, the bus can be taken by another asynchronous message which will
cause a blocking to the following SP_SSP message. The maximum duration
of such blocking is also given by Ca. This same blocking can happen every
time the Master tries to send an SP_SSP message. Therefore, if there
are Ncop change requests pending, in order to guarantee that the respective
SP_SSP messages can be sent in one EC so that the bound in Equation
is respected, the following condition must be verified:

Ner * (Len(SPssp) + Ca) < LAWyr (6.22)
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This expression establishes a relationship between LAW and the maxi-
mum number of simultaneous change requests that the system is expected to
handle so that the STRT of each request is still bounded by Equation G194

6.5 Dependability issues

As stated is Section B distributed real-time systems carry real-time activities
that, to be correctly accomplished, require both timely execution of tasks
within processing units and timely data exchanges between network nodes.
Failures on any of these aspects can lead to disruption of the services provided
to the application. When dealing with safety-critical applications, in which
system failures can lead to catastrophic results (concerning either equipment,
materials or human lives), specific fault-tolerance techniques must be used
to limit the impact of such failures or even avoid their occurrence, at least
within specific fault models.

Since the FTT paradigm aims also at safety-critical applications, within
our work group there is an active line of research in fault-tolerance and
dependability issues. This section presents a contribution to such research,
a master replica synchronization mechanism, which was jointly specified and

developed in the scope of this thesis.

6.5.1 FTT-CAN Master replication

The whole FTT-CAN distributed system is synchronized by the reception
of the EC trigger message. If the master stops working, the TM is omitted
leading to a complete communication disruption. To overcome such situation
backup masters can be used. During normal operation these masters monitor
the network looking for EC trigger messages. Whenever a TM is delayed
more than a given tolerance an election mechanism is triggered and one of
the backup masters takes the control and starts transmitting the missing EC
trigger messages, becoming from that instant on the primary master. In a
FTT-CAN network there can be up to 8 masters, each one having a unique
identifier (Table E2).

At node level, master nodes use internal replication of the scheduler and
the SRT to achieve fail-silence in the value domain. Whenever the EC sched-
ule built by the replica does not match the one built by the primary one,

the generation of trigger messages is autonomously stopped. At the system
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level, fault tolerance is implemented by the replication of the master node

itself (spatial redundancy).

6.5.2 Master replica synchronization protocol

A fundamental aspect is the synchronization between primary and backup
masters. It must be guaranteed that in each EC all the masters generate
similar schedules at the same time. In every EC all backup masters compare
their own schedules with the schedule conveyed in the trigger message and
also compare a short cyclic sequence number (3-bit) that is also encoded
in the trigger message. Whenever an inconsistency is detected the backup
master issues a synchronization request, causing the current primary master
to download the SRT as well as the relative phasing information necessary
to resume scheduling synchronously. The synchronization process below de-
scribed was developed for systems implementing a planning scheduler (Sec-
tion B4)). Ongoing work is being performed concerning systems scheduled
on a per-EC basis.

The synchronization process (Figure [LI0) may take a few ECs, depend-
ing on the size of the SRT and on the current network utilization. It is a
time critical task since during its execution the backup master cannot replace
the active master in case of failure. Furthermore the overhead introduced
by the synchronization protocol also affects the performance of the asyn-
chronous messaging system, since it relies in asynchronous control messages
to transmit the information required.

The quantity and nature of the data that has to be received by a backup
master to enable its synchronization with the active master depends on the
adopted scheduling algorithm. However, this data can usually be divided in
two groups, one containing message properties that are independent of the
scheduling activity and other containing scheduling dependent properties.
Considering, as an example, either Rate Monotonic (RM) or Earliest Dead-
line First (EDF) scheduling policies, the scheduling independent properties
consist in the data size, period and relative deadline. On the other hand,
scheduling dependent data consists in the messages phases at the beginning
of each plan or EC for RM and the absolute deadlines of pending message
instances for EDF.

The message identifier is always sent with the pertinent data. The time-

line of the synchronization process is depicted in Figure LT Once the active
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Figure 6.10: Timeline of the scheduling synchronization process
master receives the synchronization request (MST DATA QRY), it starts
to download the SRT table and the relative phasing data in two rounds.
In the first round, the SRT is split and conveyed into several messages
(MST DATA MSGPROP). These messages carry only the scheduling inde-
pendent data. Once the first state transfer round is complete, the scheduling
dependent data is also split into several messages (MST DATA SCHINF).
The transmission of this last state transfer round must be enclosed within
a single plan and only after the scheduling of the next plan is completed in
order to assure the consistence of the time dependent scheduling data. Once
the scheduling dependent data is fully received by the backup master, this
one waits for the beginning of the next plan to start the scheduler.

After completing the scheduling of the next plan, the backup master is
ready to monitor the trigger messages produced by the active master and
replace it in case of failure, as soon as a new plan begins. The start of a new

plan is encoded in control part of the trigger message (Table G2).

6.5.3 Computing the worst-case synchronization time

The resynchronization of an FTT master requires the proper reception of
a set of data from the currently active Master. During this process the

backup master is unable to replace the current active master, since it does
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not have enough information either in the time or value domain, to build
schedules in parallel. Therefore, to calculate the system failure probability
it is important to compute an upper bound for the time required by the
synchronization process.

The transmission of the scheduling independent data can spawn along
more than one plan, since these values do not change due to the scheduling
activity. However, scheduling dependent data must be completely transmit-
ted between the end of the activity of the scheduler and the end of the plan,
since in each instance the scheduler updates it. If for some reason this could
not be accomplished in a particular plan the whole set of scheduling depen-
dent data must be then sent again after the next instance of the scheduler.

The number of CAN frames required to download the data from the
active master depends both on the quantity of messages (Nrr) and on the
amount of data required to represent the respective set of properties for each
one. Knowing that the maximum number of data bytes that can be carried
in a single CAN frame is 8, Equation gives the number and size of the
CAN data frames needed to transmit both static and scheduling dependent
data of the whole set of synchronous messages. The M Prpy parameter

defines the number of bytes required to carry the properties of each message.

(Npr + MPLen)/SJDLclzs + 1DLCZ:(NRT*MPL6TL)*I_(NRT*I\/IPLen)/SJ*S
Lif DLCo # 0
\_(NRT * MPLG'I'L)/SJDL01:S

Lif DLCy =0

(6.23)

Besides the data frames, the synchronization process also requires two

more control frames:

e MST DATA QRY : sent at the beginning of the synchronization

process, requesting data from the active master;

e MST DATA OK | MST DATA SCHINF REFRESH : to
signal the successful end of the transaction or the need to update the

state-dependent data frames, respectively.

None of these messages carry any data bytes.
The FTT-CAN protocol supports real-time asynchronous messages, with
guaranteed response time, as described in Section Providing the en-
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semble of asynchronous messages exchanged on the system, the minimum
bandwidth reserved for the asynchronous window and the relative priority
given to the asynchronous messages used to convey synchronization data, it
is possible to obtain an upper bound for the transmission time required to
send the complete set of messages, using Equation EEZT] (Section EEZT]).
The worst-case situation occurs when a new plan starts just before the
transmission of the last message containing scheduling dependent data. In
this case the whole set of messages carrying this type of data must be trans-
mitted again, starting after the end of the current scheduler instance (Figure
[ET0). After receiving the updated data, the out-of-sync backup master needs
to wait for the beginning of the next plan to start the scheduler with same
data as the active master. After having built the schedule, the beginning
of a new plan sets the instant from which the backup master becomes fully
synchronized and able of acting as a master if necessary (Figure E10).
Therefore, an upper-bound to the time required (ST ) for a master
to become fully synchronized can be computed by calculating the set of

messages required by the process (Mgp) and applying Equation 24}

STwe = Rs +2x PLANy (6.24)

where Rgp is the response-time of the last message in Mgp counting
from the synchronization request instant and PLANy is the plan duration

1s ms.

6.5.4 Active master replacement

The replacement of the active master by a backup master, in case of fail-
ure, is based on a timer and on the normal CAN transmission and receive
interrupts. The takeover process is depicted in Figure ETIl At the backup
master, upon the reception of a trigger message, a timer is programmed
to generate an interrupt during the reception of the next trigger message.
During the interrupt service routine (ISR) associated with the reception of
a trigger message the backup master writes on the transmission buffer its
own trigger message, orders its transmission and immediately after issues a
transmission abort command. If the active master is already transmitting a
trigger message in the bus, then the abort operation is successful, otherwise

the abort operation fails and the trigger message produced by the backup



6.5. DEPENDABILITY ISSUES 153

Active Master

Timer Timer H
interrupt interrupt Failure
Active h T
Master 4 ¥
' Master replacementBackup master
H delay becomes active o
: Laag 4 »
Y ™ |TM|
CAN Bus_:_} ] >
HE E e E Timdr t
H interrypt
' ™ RX T™ RX
H interrupt interrupt
Backup " "
Master — { } { >
:\/ ' t
Timer Timer
activation activation

1-Tx ™M 1-Tx TM
2-Abort TM (OK) 2-Abort T™M (Fail)

Figure 6.11: Master replacement process

master is effectively transmitted. In the latter situation the backups master
becomes the system active master. This situation can be detected because
a transmit interrupt will be raised in this latter case.

If there are several backup masters present in the network the situation
is similar, since possible backup master contention is handled by the native
CAN arbitration. This implementation is quite efficient since the master
replacement delay is a fraction of the trigger message duration, and so the

perturbation due to master replication is low.

6.5.5 Experimental results

To assess the feasibility and correctness of the proposed synchronization pro-
cess, some experiments were carried out using a 5-node network based on
CANivete [ESMFE98] boards. The EC duration was set to 8.9ms, the trigger
message used 2 data bytes, supporting a maximum of 8 synchronous mes-
sages, and the maximum duration of the synchronous window was set to
4.5ms. The plan duration was 30 ECs. The network workload also included
asynchronous data messages, with up to 8 data bytes. The synchronous
message set used in this experimental set up is represented in Table
The synchronous messages were scheduled according to the Rate Monotonic
policy. In this case the scheduling independent data consists of the message

identifier, data size, period and absolute deadline, while the scheduling de-
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‘ 1D ‘ Period ‘ Deadline ‘ Init phase ‘ Size ‘

1 1 1 0 1
2 1 1 0 3
3 2 2 0 3
4 3 3 0 2
) 4 4 0 2
6 4 4 0 2

Table 6.11: Synchronous message properties.

(Period, Deadline and Init phase in ECs; Size in bytes)

pendent data consists only in the relative phasing of the messages at the
beginning of the next plan. All these properties are encoded in one byte
each.

Using Equation E23] the total number of messages needed by master
synchronization protocol is three 8 byte messages for the scheduling inde-
pendent data and one 8 byte plus one 4 byte messages to send the scheduling
dependent data. The response time calculated from Equation EEZI (Section
2T is 23.062ms, resulting in an upper bound for the synchronization time
(Equation B24)) ST, = 557.062ms.

The experiment was repeated several times in different conditions and,
on average, the time to fully synchronize was around 385ms, which is less
than one and a half plans. However, in a small fraction of the experiments
this value was considerably higher (550ms), although below the computed
worst-case value above referred. The low average synchronization time, when
compared to the worst-case bound, can be explained by the use of a large
plan, leading to a high probability of the synchronization requests being com-
pletely served before the end of the plan. Notice that due to low processing
power of the micro-controllers used in the test platform, the use of such a

large plan is a requirement.

6.6 Conclusion

This chapter presents the contributions to the FTT-CAN protocol developed
during the scope of this thesis.
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Concerning the synchronous traffic, it is explored the possibility of using
distinct scheduling policies, namely RM and EDF. Simulation and experi-
mental results show that the use of EDF instead of RM allows to increase the
network utilization efficiency, with the increased scheduling overhead being
reflected on the master node only. Moreover, it is performed a comparison
with other techniques to perform EDF message scheduling on CAN. The re-
sults show that the FTT-CAN protocol achieves similar levels of schedulabil-
ity, but without incurring in some important drawbacks of those approaches,
like high overhead in all network nodes, constrained addressing scheme and

difficulties in handling wide ranges of deadlines.

Previous implementations of the FTT-CAN protocol relied on a planning
scheduler to reduce the scheduling overhead in the master node. However,
such methodology also leads to a reduction in the responsiveness to changes
to the synchronous message properties. In the scope of this thesis it was
developed a method to overcome such effect, by using the asynchronous
window to convey temporarily the synchronous messages during the period
that the SMS is unable to reflect those changes in the bus traffic. The
method proposed allows to have response times upper bounded by 2 ECs
plus the message period. Moreover, this response time becomes completely
independent of the plan length, which can thus be freely managed to suit

the processing power of the platform.

Other relevant contribution to the FTT-CAN protocol consists in the
development of the asynchronous messaging system. This chapter includes
the adaptation of the generic analysis (Section EE4) to the FTT-CAN im-
plementation. Moreover, it is also presented a set of experimental results
that show the validity of the implementation. These results show that the
FTT-CAN protocol is able to carry real-time event-triggered traffic under

guaranteed timeliness.

The final contribution to the FTT-CAN protocol is the development of
synchronization and election protocols for fault-tolerant FTT-CAN systems.
The synchronization protocol allows first the backup masters to acquire the
current message set properties, and then to synchronize the internal activities
(scheduler and dispatcher) with the active master. The election protocol
defines the process of master replacement upon failure of the active master.
Although this is on-going work, the first approach herein presented shows a

possible way to deal with the existence of a single point of failure, which is
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one of the main problems pointed out to centralized architectures, such as
the FTT-CAN.



Chapter 7

The FTT-Ethernet protocol

Intelligent nodes, integrating microprocessors with communication capabil-
ities, are extensively used in the lower layers of process and manufacturing
industries, as well as in the control of complex machinery [T'ho99]. In these
environments, applications range from embedded command and control sys-
tems to computer vision, robotics and process supervision. The amount of
information exchanged in these system has increased dramatically over the
last years and it is now reaching the limits that are achievable using tradi-
tional fieldbuses, such as CAN, WorldFIP and ProfiBus [Son(1l DecO1].

On other hand, modern process and manufacturing plants have layered
network architectures allowing a separation between the different functional
levels [BMQOT) INOT]. A typical taxonomy of such architectures consists in
3 levels, as depicted in Figure [[1l Backbone level networks span the entire
production facility and interconnect a broad range of computer systems, sup-
porting office, engineering, production and management applications. Cell
level networks typically interconnect a small number of control devices within
a limited area (e.g. robots, conveyors, machine tools), which usually are re-
sponsible by some specific process or manufacturing tasks within the plant.
Finally, the Fieldbus layer interconnects the set of sensors, actuators and
controllers employed to perform specific tasks within specific machines or
processes.

Concerning the traffic characteristics, at the backbone level usually there
are large amounts of traffic exchanged, with no real-time constraints. This
traffic results frequently from the access to remote resources, like databases,

and thus is bursty, with data packets carrying several hundreds of bytes.

157
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Response times in the range of seconds are usually acceptable [INOT]. At
the Cell layer there are both real-time and non real-time data exchanges,
and typically the data packets carry less data but occur more often when
compared to the Backbone level. Finally, at the Fieldbus level it is typically
found real-time traffic, usually generated by sensors and control devices,
consisting of short data packets associated either with particular environment
variables or actuation signals . These messages usually carry a few bytes at
most, and occur regularly and frequently, demanding response times that

can as low as a few milliseconds.

To fulfill both timeliness and throughput requirements, several protocols
have been extensively analyzed for both hard and soft real-time commu-
nication systems, but Ethernet is emerging as one of the technologies of
choice. Besides being a cheap, mature and well specified technology, with
wide availability of both hardware equipment and technicians familiar with
the protocol, two major factors are behind this interest in Ethernet: band-
width and compatibility. In fact, steady increases on the transmission speed
have happened in the past and are expected to continue occurring in the near
future, and thus it can be expected that Ethernet should be able to support
current and future demands in this type of applications. With respect to
the compatibility issue, TCP/IP stacks over Ethernet are widely available,
allowing the use of application layer protocols such as FTP, HTTP, SOAP,
etc. The support of such protocols leads to an inherent compatibility with
the communication protocols used at higher plant levels, easing the informa-

tion exchange between plant levels, which in this case can be accomplished
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without the need for communication gateways [[IN(1]]. This framework facil-
itates ubiquitous access to devices in the plant, allowing for instance equip-
ment controllers to communicate directly with each other, with information
system servers and with field devices.

As discussed in Section B3], the destructive and non-deterministic arbi-
tration mechanism employed by the Ethernet protocol prevents its direct use
to convey real-time traffic. This situation led to the development of several
protocols meant to bring such capabilities to Ethernet, the most representa-
tives of which have been briefly described in Section B3l However, none of
these proposals completely fulfills the requirements described in Section BTl

which are summarized bellow.

e Time-triggered communication with operational flexibility;

e Support for on-the-fly changes both on the message set and the schedul-
ing policy used;

e On-line admission control to guarantee timeliness to the real-time traf-

fic;
e Indication of temporal accuracy of real-time messages;

e Support of different types of traffic: event-triggered, time-triggered,

hard real-time, soft real-time and non-real-time;

e Temporal isolation: the distinct types of traffic must not disturb each

other;
e Efficient use of network bandwidth;

e Efficient support of multicast messages;

This observation fostered the interest in applying the FTT paradigm to
Ethernet, leading to the FTT-Ethernet protocol, which will be presented in

the reminder of this chapter.

7.1 The FTT-Ethernet Elementary Cycle

The FTT-Ethernet elementary cycle structure follows closely the FTT paradigm
EC structure described in Section and it is depicted in Figure The
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Figure 7.2: FTT-Ethernet Elementary Cycle

EC starts with the trigger message, which in this case conveys the quantity,
identification and length of the synchronous messages that should be pro-
duced in the respective synchronous window. With this information nodes
can compute the transmission instants of each of the synchronous messages

as well as the length of the synchronous window.

7.1.1 Message Arbitration

As discussed in Section B33l the CSMA /CD arbitration technique employed
by Ethernet turns it inadequate to carry real-time traffic, since the message
transmission times are non-deterministic. To overcome this situation, the
FTT-Ethernet protocol adds a transmission control layer above the Ethernet
MAC, to achieve predictable transmission times.

Concerning the synchronous traffic, the TM conveys not only the identi-
fication of the messages but also their transmission time (Figure [L2). More-
over, the messages must be transmitted in the same order indicated in the
TM. This way, nodes having synchronous messages scheduled for transmis-
sion can compute the time required by other synchronous messages that
must be transmitted before and start the transmission at that instant. If
all the nodes follow this strategy the transmission instants become disjoint
in the time domain and thus no collisions occur, resulting in predictable
transmission times.

With respect to the asynchronous traffic, a different arbitration scheme
must be used. Contrarily to the synchronous traffic, in this case there is
no global knowledge about which nodes in the system have messages to
transmit. The only way that nodes have to gather information about the
system status is by monitoring the communication medium state. To achieve

collision-free transmissions, the FTT-Ethernet protocol adopts a distributed
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arbitration scheme based on mini-slotting, which uses the communication
medium status to assign the right to transmit to the highest priority ready
message. Asynchronous messages have a unique identifier (Section EZZ3]),
and to each identifier it is associated an also unique priority and a corre-
sponding transmission slot.

The asynchronous window is divided in time slots, each one assigned to a
specific message ID (Figure[3). After the start of the asynchronous window,
all the nodes in the network that are senders of asynchronous messages set
an internal ID counter to a predefined value (e.g. 1), which corresponds to
the highest possible priority. If the asynchronous message with priority 1 is
ready, its sender node starts its transmission. If not, the bus will remain idle.
After a pre-defined amount of time (SLOT _IDLE), all the nodes check the
bus state. If there is an ongoing transmission, the nodes wait for the end
of the transmission and then increment the internal ID counter. If there is
no ongoing transmission, the nodes infer that the message was not ready
for transmission and increment the internal ID counter immediately. This
process is repeated until the end of the asynchronous window and provides

a collision free arbitration mechanism for event messages.

7.1.2 Enforcing temporal isolation

To maintain the temporal properties of the traffic, both synchronous and
asynchronous messages should be confined within their respective windows,
enforcing a strict temporal isolation between both phases. As in the case of
FTT-CAN, this is achieved by preventing the start of message transmissions
that could not complete within their respective window.

Concerning the synchronous traffic, messages scheduled to be transmitted

should fit within their respective window, unless some abnormal event or
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perturbation, such as an error, has prevented them to be transmitted at the
scheduled instants. To avoid that in this situation the messages could extend
beyond the synchronous windows, each node that transmits a message is
also responsible for verifying if the message has been completely transmitted
within the specified time interval (Figure [[4]). To perform this operation,
whenever a node is allowed to transmit a message it also sets a timer that
expires at the expected end of transmission instant plus a small tolerance
factor (9 in Figure [[4]). When this timer expires the status of the Ethernet
controller is verified and, if due to some abnormal condition the message had
not yet be transmitted, its transmission is aborted.

Concerning the asynchronous traffic, nodes having ready asynchronous
messages have no knowledge about the state of the remaining nodes. There-
fore there are no guarantees that the set of ready messages among all system
nodes will fit within the asynchronous window. Thus, when a node having
asynchronous messages to transmit wins the arbitration process (as described
in Section [CTT) it must verify if the time remaining until the end of the asyn-
chronous window in enough to transmit the message. If so, it transmits the
message (Messages 2,4 and 7 in Figure [[3)). If not, the transmission is not
started and the message is kept in the transmission queue until the following
EC (Message 6 in Figure [[3)). As for the case of the synchronous traffic,
sender nodes must verify if at the expected end of transmission instant the
message was in fact completely transmitted, and issue an abort transmission

command if due to some perturbation the transmission was delayed.

7.1.3 FTT-Ethernet message types

The FTT-Ethernet protocol defines the following message types:

e EC Trigger Message [TM_MESG _ID]J;
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[Broadcast] [FTT_TYPE]
Destin. Source Type 4 Padding FCS
Preamble | SFD Address Address FTT-Ethernet PDU
I 7Bytes 1 IByte 23 Bytes 6 Blyles 2 Bylles I[46,1500] Bytes 4 Bytes
SFD: Start of Frame Delimiter
( FCS: Frame Check Sequence J
Figure 7.5: FTT-Ethernet frame
T TM F1 Num. T
ype ags um D X
TM Type | Master 1D Reserv. | Seq. Num. Synch. Mesgs Time
2 Bytes 2 Bytes 2 Bytes 2 Bytes 1 Byte
[b15..b12] [b11..b0] Undef. [b7..b0] [b15..b0] [b15..b0] [b7..b0]
TM_MESG_ID 0 to 4096 Undef. 0 to 256 0 to 65535 0 to 65535 0 to 256

Table 7.1: EC Trigger Message structure

Synchronous Data Messages [SM_DATA MESG _IDJ;

Asynchronous Data Messages [AM_DATA MESG _IDJ;

Control Messages [CONTROL MESG _ID];

Foreign protocol messages;

The structure of native FTT-Ethernet messages (Trigger Message, Syn-
chronous and Asynchronous data messages and Control Messages) is de-
picted in Figure [l These messages use the Ethernet broadcast address
(destination address of the Ethernet frame set to all 1’s), required by the
producer-consumer co-operation model, and use the Ethernet frame Type
field set to a constant value (FTT_TY PE), in order to allow the identi-
fication of the protocol specific frames. Foreign protocol messages are not
modified by the FTT-Ethernet protocol and thus its contents and address

scheme is not changed.

Trigger message

The contents of the TM is depicted in Table [Tl

The Type field contains two sub-fields, the TM Type which conveys
a constant value (M ST MESG _ID) identifying the frame as a TM, and
the Master ID sub-field that contains a unique identifier for each one of
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Type SDM Flags Time to Message
SDM Type | SDM ID | Reserved | Seq. Num. Deadline Data
2 Bytes 2 Bytes 2 Bytes up to
[b15..b12] [b11..b0] Undef. [b7..b0] [b15..b0] 1494
DATA MESG_ID | 0 to 4096 Undef. 0 to 256 0 to 65535 Bytes

Table 7.2: Synchronous Data Message structure

the masters in the network. This field is expected to be used in the imple-
mentation of a master redundancy protocol, similar to the one presented in
Section for the FTT-CAN protocol. The TM Flags field also contains
two sub-fields: a Reserved sub-field that is not used in the current ver-
sion, and a Sequence Number sub-field that is incremented by the active
master in each EC, facilitating the detection of missing trigger messages.
The Number of Synchronous Messages field indicates how many syn-
chronous messages are scheduled for the current EC. Finally, it follows a set
of (ID 4+ Tx Time) that identify each of the synchronous messages that
should be produced in the EC as well as their respective transmission time,

in ps.

Synchronous data messages

Synchronous Data Messages are used to periodically distribute state data
among the network nodes, and are always transmitted within the synchronous
window, when indicated in the EC-Schedule conveyed in the TM. The syn-
chronous data message structure is depicted in Table

The Type and SDM Flags fields are equivalent to their counterparts in
the TM above described. The SM  DATA MESG _ID constant it is used
in the SDM Type sub-field, tagging the message synchronous. The Time
to Deadline is used to convey information about the “age” of the data,
as described in Section [EZAl Finally, if follows the Message Data field,
which conveys the data itself. Since Ethernet’s data field is constrained
to a maximum of 1500 Bytes and the overhead due to the FTT-Ethernet
protocol (Type, SDM Flags and Time to Deadline fields) is 6 bytes, each
FTT-Ethernet synchronous data message can carry up to 1494 data bytes.
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Type SDM Flags Time to Message
ADM Type | ADM ID | Reserv. | Seq. Num. Deadline Data
2 Bytes 2 Bytes 2 Bytes up to
[b15..b12] [b11..b0] | Undef. [b7..b0] [b15..b0] 1494
AM_DATA MESG_ID | 0 to 4096 | Undef. 0 to 256 0 to 65535 Bytes

Table 7.3: Asynchronous Data Message structure

Asynchronous data messages

Asynchronous Data Messages are used to convey event information, and
are sent after explicit application request. Asynchronous data messages are
always transmitted within the asynchronous window. The structure of a
these frames is depicted in Table

The structure of this frame is similar to the synchronous data message
frame, except that in this case the AM DATA MESG _ID constant it is
used in the ADM Type sub-field, tagging the message as asynchronous.

As in the case of FTT-CAN, there are two levels of priorities associ-
ated with asynchronous data messages which map into two different traffic
classes. Higher priority (RT) asynchronous messages are subject to real-time
guarantees, and thus appropriate analysis (Section EE4]) can be performed in
order to know in advance if its timeliness requirements can be met. However,
such analysis does not involve the low priority (NRT) asynchronous mes-
sages, which are thus handled according to a best-effort policy. Low priority
asynchronous messages fall into the non-real-time asynchronous traffic class.
Asynchronous RT messages are assigned to higher priorities than NRT ones,
thus are always transmitted first during the asynchronous window (Section
[LTT). By this reason it is safe to ignore the presence of the NRT asyn-

chronous messages in the schedulability analysis.

Asynchronous control messages

Asynchronous Control messages are used to perform system management (e.g
master synchronization data, software download, requests for SRT changes,
etc.). The internal structure of this type of frame is similar to the structure
of both synchronous and asynchronous data messages, as can be observed in
Table [L4] with the only difference in the Type field, where it is indicated in

this case that the message is an asynchronous control message (CM Type
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Type SDM Flags Time to Message
CM Type | CM ID Reserv. | Seq. Num. Deadline Data
2 Bytes 2 Bytes 2 Bytes up to
[b15..b12] [b11..b0] | Undef. [b7..b0] [b15..b0] 1494
CONTROL_MESG_ID | 0 to 4096 | Undef. 0 to 256 0 to 65535 Bytes

Table 7.4: Control Message structure

field set to CONTROL MESG _ID).

As for asynchronous data messages, there are also two priority levels
assigned to control messages. The high-priority messages (HP) have the
highest priority among all the asynchronous messages and are used for time-
critical management operations, such as alarms. The lower priority (LP)
control messages have the lower priority among all the asynchronous mes-
sages and are used to carry operations that are not time constrained, such

as remote diagnosis and data logging.

7.2 Schedulability analysis

7.2.1 Message’s transmission time computation

Schedulability analysis requires the precise knowledge of the time necessary
to perform the transmission of each message carried in the system, which is

computed as follows.

Trigger Message

The FTT-Ethernet TM length can vary from EC to EC, depending on the
number of synchronous messages scheduled for transmission on each EC.
However the use of varying values for the length of the TM in simpler schedu-
lability tests is not desired since it would require a significant computation
overhead (in fact it would be necessary to build the schedules to know how
many messages would be scheduled for each EC). Thus it is defined a max-
imum value for the number of messages that can be scheduled in each EC
(EC_MAX SMESG) that is used to compute a worst-case (maximum)
transmission time for the TM (LT M). The TM requires an overhead of 6
Bytes (Type, TM Flags and Number of Synchronous Messages fields) plus 3
bytes (ID + TX Time fields) for each synchronous message scheduled for the



7.2. SCHEDULABILITY ANALYSIS 167

LTM EC usage
(Maz mesgs by EC | LTM pus (%)

/ Bytes) | EC(ms) | 5 10 | 50 | 100
10/72 57.6 1.15 | 0.58 | 0.12 | 0.06
20/92 73.6 1.47 | 0.74 | 0.15 | 0.07
50/182 145.6 291 | 146 | 0.29 | 0.15
100/332 265.6 5.31 | 2.66 | 0.53 | 0.27

Table 7.5: Communication overhead imposed by the EC Trigger Message

respective EC. Therefore, considering the length restrictions (Section BZ3I),
the worst-case length (in bytes) for the TM is given by Equation [[11

72 ,EC_MAX_SMESG < 14
32+43% EC_MAX SMESG ,EC_MAX_ SMESG > 14

LT Myyie = {
Ethernet devices must allow a minimum idle period between transmission

of frames [[EEd|, commonly known as inter-frame gap (I F'G) or inter-packet
gap (IPG). This time period is meant to provide a minimum recovery time
between frames to allow devices to prepare for reception of the following
frames. The minimum inter-frame gap is 96 bit times, which corresponds to
9.6us for 10 Mbps Ethernet and 960ns for 100 Mbps Ethernet. Knowing the
transmission speed (T’ XgrarE), the worst-case time required to transmit the

trigger message can now be computed (Equation [2]).

LT Myye # 8 + 96
TXRraTE

LTM =

(7.2)

As stated in Section EEZT] the use of the master/multi-slave transmis-
sion control, in which one single TM triggers the transmission of several data
messages in distinct nodes, allows to considerably reduce the protocol over-
head when compared with a pure master-slave transmission control. Table
presents the worst-case overhead due to the transmission of the TM in
FTT-Ethernet in four exemplificative scenarios, referred to 10Mbps Ether-
net ([IEEM]). Recall that this overhead depends on the EC length and the

maximum number of synchronous messages allowed in each EC.
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Figure 7.6: Ethernet propagation delay

Control and data messages

Noting that the FTT-Ethernet protocol overhead required by both syn-
chronous, asynchronous and control messages is equal, its respective byte
length and transmission times can be computed using Equations and [C4]
respectively, where DLC represents the data payload of the message.

72 DLC <40
MLen = ’ - (73)
%+ 6+ DLC , DLC > 40
Mijen %8+ 96
MTX_time = I;Z(RAT—E (74)

7.2.2 Synchronous traffic

The schedulability analysis presented in Section can be directly applied
to the FTT-Ethernet protocol with just a small adaptation.

Due to the relation between the transmission speed and the bus length,
in Ethernet distinct receiver nodes can be receiving different bits in the same
time instant, as depicted in Figure [C8

This transmission methodology results in some unpleasant effects. On
one hand, unless the “copper distance” of the distinct network nodes is known
in advance, there is no easy way to make the distinct nodes to agree in a
common time value for the reception instant of the trigger message. On the
other hand, it must be ensured that messages have enough time to propagate

through all the network before other message can start to be transmitted.
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Figure 7.7: Unwanted collision between synchronous messages

An exact computation of this value would require a precise knowledge about
the network length and the position of each node within the network. If
both these effects are not properly considered, frame collisions can occur,
compromising the fulfillment of the traffic timeliness requirements. Figure
[ depicts a scenario with a master node and two slaves, one near the master
and the other in the farther end of the network. If the propagation delay (4)
is ignored in the scheduling, a collision between synchronous messages M4

and M5 happens.

Computing accurately the message propagation delays would require a
complete characterization of the network, namely the propagation speed in
the physical medium, delays due to the presence of hubs and the relative po-
sition of the nodes. Gathering all this information not only is complex but
also would imply that any change on the network topology, such as adding
or removing nodes or even connect a node to a different hub port, would
impact on the scheduling parameters. Moreover, the inclusion of this infor-
mation would strongly increase the scheduling complexity. Therefore, for
the FTT-Ethernet implementation it was decided to use a single worst-case
value, FTH DFELAY UB, which depends only on the worst-case propa-
gation delay that can occur between any two points of the network. This
value is then added to the transmission time of all messages. Although this
approach is less efficient, concerning network utilization, than the exact com-
putation of the values for each message, it does not imply any increase in the
scheduling overhead. Moreover in many applications the fieldbus networks
span over limited geographical regions and thus the propagation delays are
considerably shorter that the 464 bit times values allowed by the Ethernet
protocol ([BMKSRR|). The ETH DELAY UB value can be easily com-
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Figure 7.8: Including the propagation delays in the schedule

puted by knowing the maximum cable length of the Ethernet segment and,
when present, by adding the delays due to hubs, which is a parameter that
is usually available from theirs respective data-sheets. Figure illustrates
the same set-up depicted in Figure [L7 but with the message transmission

times inflated as described above.

7.2.3 Asynchronous traffic

The asynchronous traffic schedulability analysis presented in Section IL4] was

based on the following assumptions:

1. When two or more asynchronous messages contend for bus access, they

are transmitted strictly according to their relative priorities;

2. The transmission time of all message instances of the same message

stream are the same;

3. The arbitration process does not consume bandwidth.

With the mini-slotting arbitration mechanism used by the FTT-Ethernet
protocol (Section [LTTl) assumption 1 is met. Moreover, in Ethernet the
packet size does not depend on the particular data value, thus assumption 2
is also met. However, the mini-slotting scheme uses waiting times to assess
the bus state and thus assumption 3 is violated.

According to the mini-slotting scheme described in Section [Tl there
is a disjoint time interval assigned to each asynchronous message. When

a node has a message to transmit it must wait for the right slot and then



7.2. SCHEDULABILITY ANALYSIS 171

Asynchronous Window

1 . "

savej |1 M| | - S
' I - t

Slave k i i AM2 i .
H H t

Slave | : : : : ais >
T D LD LD n

-—r - >

Asynchronous Window o

4 >

Slave j >
R t

Slave k >
t

Slave | ol >
AL AL A t

A =SLOT_IDLE

Figure 7.9: Asynchronous arbitration overhead

start the transmission. The transmission must start within a specific time
interval since the other network nodes will assess the bus state after that same
time interval to infer if the message was ready or not. Although the nodes
should start the transmission right after the beginning of the respective slot,
due to the processing overhead required to trigger a message transmission
and also due to the propagation delay in the physical medium, the start
of the message can be received at any time during the pre-defined time
slot duration. Due to this uncertainty a conservative approach should be
used, that is, each arbitration step is considered as requiring the maximum
possible time (SLOT IDLE). If this conservative approach is used the
arbitration process can be easily modeled, since the total arbitration time felt
by a particular message becomes independent of the higher priority messages
being ready or not. This is illustrated by Figure [Cd, where asynchronous
message AM3 observes 3 time slots used by the arbitration process, despite
higher priority messages AM1 and AM?2 being ready for transmission (on
top) or not (on bottom).

Therefore Equation EE24] requires only a small modification to account for
the overhead due to the mini-slotting arbitration scheme. Noting that the
arbitration process is started in the beginning of each asynchronous window,
in each new EC the mini-slot ID counter is preset to 1 and the arbitration
process is restarted. Thus, an asynchronous message ¢ suffers two types of

interferences from higher priority messages:
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e An arbitration interference, occurring once by each higher priority mes-

sage (ready or not), in every EC;

e The transmission time of the ready instances;

The arbitration overhead is independent of the properties of the higher pri-
ority messages. It is only important to know how many higher priority levels
exist (Npp,) and the length of the arbitration slot. Equation L3 models both

these factors.

t+oub t
Hit)= ) [ it w *Cj + H * SLOT _IDLE % Ny, (7.5)
Jj€hp;

7.3 FTT-Ethernet implementation

The implementation of the FTT-Ethernet protocol requires an adequate
management of its components and of the interactions among these and
the application software, in order to obtain a correct behavior of the com-
munication system. The most sensitive protocol components, such as the
Dispatcher and the Scheduler in the master and the FTT-Ethernet Interface
Layer in the slaves, present tight temporal constraints that must be met. To
fulfill these temporal constraints and support a higher abstraction level in the
applications development, the FTT-Ethernet implementation was performed
over a real-time kernel. The real-time kernel should support multitasking,
real-time scheduling, expression of diverse task constraints (e.g. temporal,
precedence and resource), inter-task communication and synchronization,
and device drivers to isolate hardware dependent code. The real-time kernel
used was S.Ha.R.K. (Soft and Hard Real-time Kernel) [GGABQOI], devel-
oped in the ReTiS Lab of Scuola Superiore di Studi e Perfezionamento S.
Anna, in Pisa, Italy.

7.3.1 S.Ha.R.K. brief overview

S.Ha.R.K. is a dynamic configurable kernel designed for supporting hard,
soft, and non real-time applications with interchangeable scheduling algo-
rithms. The kernel is fully modular in terms of scheduling policies, aperi-

odic servers, and concurrency control protocols. Modularity is achieved by
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partitioning the system activities between a generic kernel and a set of mod-
ules, which can be registered at initialization time to configure the kernel
according to specific application requirements. The kernel supports device
scheduling, thus allowing to extend scheduling algorithms used for the CPU
to other hardware resources. Tasks are owned by Scheduling Modules; each
scheduling module behaves like a multi-level scheduler, in the sense that
tasks registered on high priority modules are scheduled in foreground with
respect to tasks registered on lower priority modules. The system is com-
pliant with almost all the POSIX 1003.13 PSE52 specifications to simplify
porting of application code developed for other POSIX compliant kernels.
In addition to the standard features of the previously referred specifications,

S.Ha.R.K. provides various other services, such as:

e Temporal isolation and task execution time control;

e Cyclic Asynchronous Buffers and other mechanisms for non-blocking

communications;

e Interrupt and hardware port handling.

7.3.2 Implementing FTT-Ethernet on top of Shark

As referred above, the FTT-Ethernet protocol includes components that are
time-critical as well as other components with more relaxed time-constraints.
Moreover, it is important to reduce to a minimum the potential interference
of the application software in the timeliness of the protocol components.
These different timeliness requirements are easily managed by S.Ha.R.K.,
through its explicit support to tasks with distinct QoS requirements. In
particular, the implementation of the Master node and of the Slave nodes
inserts the set of important tasks in a higher priority scheduling module than

the other non-critical tasks.

Master node

The time critical tasks performed inside the master node are the Scheduler
and Dispatcher tasks. The Master node also may carry other non-critical
activities such as the keyboard and display handling. The order of execution
of the time-critical tasks related to communication activities is shown in

Figure [LT10
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Figure 7.10: Master node: time-critical activities

The Dispatcher task is responsible for transmitting the EC trigger mes-
sage, which carries the EC-Schedule for an elementary cycle. Since the cor-
rect behavior of the communication system is linked to the regularity of the
EC duration, this task receives the highest priority and it is autonomously
and periodically activated using the appropriate kernel services for hard
tasks. The transmission of the EC trigger message is achieved by a call
to the S.Ha.R.K. network API that directly sends a packet to the Ethernet
layer.

The Scheduler also has strict time constraints because it must deliver a
new EC schedule before the start of the next EC. For that reason its execu-
tion is enabled as soon as the Dispatcher reads the current EC schedule from
the EC Schedule Register. It is thus precedence constrained with respect to
the Dispatcher, and therefore it is registered as a hard aperiodic task. Un-
like the Scheduler, which has only a deadline constraint, the Dispatcher is
highly sensitive to jitter. Therefore, it is assigned to a scheduling module on

a higher priority level than the Scheduler task.

Slave nodes

The internal critical tasks executed inside the slave nodes are related to
the correct transmission and reception of the Ethernet messages. Other
non-time-critical activities are carried out by the system, such as the local
requirements database (NRDB) management, the update of the local buffers,
the interface to higher protocol layers, and finally user tasks with keyboard
and operator console handling. The message transmission and reception
group includes two tasks, executed in the order depicted in Figure [LT11
Notice that slave nodes must wait for an TM before initiating any commu-
nication activity. Then, every time an Ethernet packet arrives, an interrupt
is raised. To limit the interference of that interrupt on the currently running

task, the network interrupt handler queues the packet and activates a task
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Figure 7.11: Slave node: time-critical activities

(Network RX in Figure [CTIl). This task is scheduled with all the other
tasks, and it is responsible for parsing the packet header and separating the
EC trigger messages from real-time and non-real-time ones. Since the acti-
vations of the Network RX task follow an unknown pattern, the respective
task model is soft. The nodes become aware of the reception of messages
only after the execution of the Network RX task. Therefore, this task must
be inserted into the highest priority scheduling module.

The reception of an EC trigger message activates a task, Msg Prod. This
task identifies which local synchronous messages must be transmitted in the
current EC and sets a number of timed-events, managed by the kernel, which
will cause the transmission of the messages to occur at appropriate instants
in time. Unbounded delays in the execution of this task lead to delays in
the predetermined transmission instants and, consequently, to collisions on
the bus. Therefore, this is the most time-critical and jitter-sensitive task on
the slave node and for that reason it is also inserted into the highest priority

scheduling module.

7.4 Experimental results

The FTT-Ethernet protocol inherits the properties of the FTT paradigm,
namely on-line changes to the message set, distinct classes of messages (syn-
chronous and asynchronous) with different timeliness requirements (hard,
soft and non-real-time) and arbitrary scheduling policies. Some experi-
ments concerning the implementation of RM and EDF scheduling policies
have been performed [PAGN?], yielding results similar to the ones obtained
for its FTT-CAN counterparts (Section EEZZ). However, due to its high
bandwidth capacity, FTT-Ethernet is particularly well suited to support de-

manding real-time applications comprising activities such as multimedia and
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computer-vision. Many of these applications have highly variable resource
requirements, and thus high efficiency gains can result from the implemen-
tation of adequate QoS policies, which has motivated a special emphasis on
the study and implementation of QoS management in the FTT-Ethernet
protocol.

The issue of QoS management as been introduced in Section [ concerning
the FTT paradigm. This section presents the implementation of the Elastic
Task Model [BLAGS| over FTT-Ethernet.

7.4.1 FExperiment characterization

The Elastic Task Model has been implemented on the top of the S.Ha.R.K.
kernel [GGABOT] with the FTT-Ethernet as the real-time communication
protocol. A set of experiments on a multimedia application were performed.
The same set of experiments was carried out also with Hub and Switch based
Ethernet to assess the benefits of the presence of a deterministic communi-
cation layer.

The developed application consisted in the simulation of a video surveil-
lance security system, containing a set of physically distant video cameras
and a central console. Each camera can be served by distinct QoS, accord-
ing to the current bandwidth availability and the relevance of the data being
sent. Change requests submitted to the Synchronous Messaging System are
firstly submitted to the elastic guarantee mechanism. If the requests result
in an unfeasible message sets, they are rejected. Conversely, if the resulting
message set is schedulable, the QoS manager calculates the new periods and
updates the Synchronous Requirements Table accordingly. Since the SRT is
used both by the QoS manager and the Scheduler, it was used a mutex to
enforce atomic updates.

The experimental set-up consists on 6 PC’s, one acting as FTT Master,
four as slaves, each producing a message stream associated to one camera,
and finally one PC dedicated to collecting network traffic data. The com-
munication infrastructure was Ethernet at 10Mbps.

The simulated cameras have a resolution of 384*288 pixels and a color
depth of 8 bits, yielding a frame size of 884.7 Kbit. The camera data frames
are sent without any kind of compression. Since the image frame size is larger
that the maximum Ethernet packet size, each image frame is split in 1000

Byte packets. A header containing the camera ID, frame and packet number,



7.4. EXPERIMENTAL RESULTS 177

| Cam. | CG(FTT/ET) | Ty, | T | Tinaw | Ei |
1 089/084 [10] 5 30 |1
2 089/084 [10 ] 5 30 | 2
3 089/084 [10 ] 5 30 | 4
4 089/084 [10] 5 30 |6

Table 7.6: Task set parameters used in the experiments. (Periods and trans-
mission times in milliseconds)

‘C’amera‘tﬁQs‘25<t§55‘t>55‘

1 10 2 10
2 10 10 10
3 10 15 10
4 10 20 10

Table 7.7: Periods of each message (ms) during the experiments.

and packet data size is added to each packet, yielding a total Ethernet packet
data size of 1010 Bytes.

The task set parameters used in the experiment are shown in Table [
where C; represents the message transmission time (at 10Mbps) both for the
FTT and Ethernet case, T;,,T;, ., and T;

maximum periods respectively and FE; is the message’s elastic coefficient.

im mapar€ the nominal, minimum and

At the beginning of the experiment all cameras send data at the nominal
rate. At time ¢ = 2s camera 1 requests an increase in its QoS. This request is
found to be feasible by the elastic guarantee mechanism as long as cameras
3 and 4 decrease their QoS. The elastic task model finds a feasible set with
{Th =5ms; Ty = 10ms; T5 = 15ms; Ty = 20ms}. At time ¢ = 5s, the QoS
requirement of camera 1 is reset to its nominal value, causing all the cameras

to return to their nominal QoS.

The resulting message periods during the experiments are summarized
in Table 7

Practical experiments with this traffic pattern were made using both
FTT-Ethernet as well as Hub and Switch based Ethernet.
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Figure 7.12: Packets sent using F'TT-Ethernet.

7.4.2 Results with FTT-Ethernet

In the FTT-Ethernet setup the EC duration was set to 5ms (E=5ms) and the
synchronous window was upper bounded to 37% of the EC (LSW=1.85ms),
representing a maximum bandwidth of 3.7Mbps available for the synchronous
traffic (SMS). This type of traffic was scheduled according to the EDF policy.

As referred in Section B3l it is important to characterize and bound the
communication overheads per message transmission/reception and include
them in each message transmission time, for admission control and schedul-
ing purposes. These overheads depend on both network properties, such as
length and number of hubs, as well as on variable latencies imposed by the
node’s hardware and operating system in the transmission and reception of
messages. The combined effect of these aspects was experimentally mea-
sured and upper bounded to 50us. Furthermore, each synchronous message
also includes a specific FTT-Ethernet header (Section [[I3]) with additional
control bytes. The resulting packet size, for 1000 data bytes, is 8896 bits
resulting in a transmission time of approximately 0.890ms at 10 Mbps.

Figure presents the number of packets transmitted by each of the
nodes as a function of time, during the experiment. Initially, all cameras
send packets at the same rate. However, at time t = 2s, the accumulated
number of packets sent by each camera starts to diverge as a consequence

of a request from camera 1 to increase its QoS. The elastic mechanism finds
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‘ CameralD ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘
Rel. release jitter (avg) (%) | 0.53 | 0.45 | 1.85 | 2.83
Absolute release jitter(%) | 8.66 | 7.80 | 9.79 | 21.39

Table 7.8: Message jitter with FTT-Ethernet.

a feasible set, which results in an increase of the bandwidth assigned to
this camera and a decrease in the bandwidth assigned to cameras 3 and 4.
At t = 5s, camera 1 requests a QoS reduction to its nominal value. This
implicitly causes the QoS of the remaining cameras to be increased to their
nominal value, too. Consequently, from that moment on, all cameras start
sending packets at the same rate again.

Table summarizes the figures concerning the jitter suffered by the
messages sent by each of the cameras. The values are presented in percentage
and normalized to the respective message period. Despite the occurrence of
changes in the message set, these values are relatively small due to the control

of transmission instants, preventing the occurrence of message collisions.

7.4.3 Results with hub-based Ethernet

A second experiment was carried out using the same communication infras-
tructure as in the previous section, but without the use of the FTT-Ethernet
layer. In each node a task was configured to reproduce the same data rate
described above, at approximately the same instants, but without synchro-
nization.

In this scenario, the Ethernet packet is composed of the data bytes plus a
header, 10 bytes long, conveying information required to allow the consumers
to identify and reassemble the data. The total packet size amounted to 8384
bits, corresponding to a transmission time of approximately 0.84 ms.

The number of packets sent by each node during the experiment follows
a pattern very similar to the one obtained with FTT-Ethernet (fig. [[12).
However, as can it be observed in Table [C9 there are, now, lost packets and
an absolute release jitter that is considerably greater than the one experi-
enced in the previous case.

It is interesting to observe that, despite using a relatively light load
(around 35%), the event-triggered nature used in this approach leads to

situations where, at some instants, several messages become ready simul-
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‘ CameraID ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘

Rel. release jitter (avg) (%) | 0.66 | 1.71 | 1.13 | 0.69

Absolute release jitter(%) | 66.44 | 91.65 | 90.33 | 90.81
Lost packets (%) 1.65%

Table 7.9: Message jitter (shared Ethernet).

‘ CameraID ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘
Rel. release jitter (avg) (%) | 6.13 | 0.32 | 11.00 | 17.01
Absolute release jitter (%) | 66.61 | 74.61 | 83.30 | 126.41

Table 7.10: Message jitter (switched Ethernet).

taneously, originating collisions. In turn, these collisions result in a strong

increase in the jitter figures and sometimes in lost packets.

7.4.4 Results with switched Ethernet

In this case, the experimental setup is similar to the one described in the
previous section, except that a switch was used to interconnect the nodes,
instead of a hub. Again, the number of packets sent by each node during
the experiment follows roughly the same pattern as in both previous cases.
However, when comparing with the results obtained in the hub-based exper-
iment, there are no lost packets, now. This result was expected, since the
use of a switch avoids message collisions and the total bandwidth requested
was well below the network maximum throughput.

Concerning the jitter figures, shown in Table [[T0, it can be observed
that the values for camera 4 are the greatest among all the experiments,
with some messages delayed by more than one period. This phenomenon is

explained by the buffering made at the switch ports.

7.4.5 Experimental results analysis

This Section presented the application of the Elastic Task Model to message
scheduling on a communication network using the FTT-Ethernet real-time
communication protocol. The Elastic Task Model was integrated in the
FTT-Ethernet protocol, acting both as QoS and admission control manager,

providing a framework in which periodic messages can be served by distinct
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QoS during system’s normal operation. This model is particularly useful for
distributed systems supporting dynamic environments, in which applications
have to adapt to the varying operational conditions, leading to variations
both in internal computational activities and messages exchanged by the
underlying communication system. The policy for selecting a solution during
run-time is implicitly encoded in elastic coefficients provided by the user at
system configuration time.

The results obtained have shown that the architecture herein presented
is able to handle dynamic sets of periodic messages, without jeopardizing
the systems timeliness. The same set of experiments was carried out also
on hub and switch-based Ethernet, with the same traffic pattern coded in
each node. In both of these methods the real-time performance was worse
than the one provided by FTT-Ethernet, because either large jitter as well

as frame losses.

7.5 Conclusion

This chapter presents the implementation of the FTT paradigm over the
Ethernet network protocol.

The synchronous traffic analysis and scheduling only requires a small
adaptation, which consists in the addition of a fixed time lapse to message’s
transmission times to account for the propagation delay that messages may
suffer in Ethernet networks. With this adaptation, the FTT-Ethernet im-
plementation follows strictly both the model and analysis developed for the
FTT paradigm.

This chapter also presents the asynchronous message system arbitration
scheme, which is implementation dependent. The adopted scheme is based
in mini-slotting. This scheme enforces the transmission of messages strictly
according to their priority, as required by the FTT paradigm. Moreover,
this chapter also includes the adaption of the generic response time analysis.
Thus, FTT-Ethernet is able to support real-time asynchronous messages.

Some experiments have been carried to assess the performance of the
FTT-Ethernet implementation. These experiments were based on the sim-
ulation of a video-surveillance system, with video streams having dynamic
QoS requirements. Besides F'T'T-Ethernet, the same set of experiments was

carried also over shared and switched Ethernet. The results obtained allow
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to conclude that in such conditions F'TT-Ethernet performs better, providing

collision-free message transmission, with low jitter and no lost packets.



Chapter 8

Conclusions and future work

8.1 Contributions

The research presented in this dissertation focuses on the quest for real-
time communication paradigms and protocols able to efficiently support the
requirements of flexible real-time distributed systems used in control appli-

cations. The following requirements have been identified:

e Support for on-line message scheduling of time-triggered messages based

on dynamic requirements;

e Support for on-line message scheduling of time-triggered messages with

different scheduling policies;

e Timeliness guarantees concerning the real-time traffic, based on on-line

admission control;
e Support for time and event-triggered traffic with temporal isolation;
e Low protocol overhead;

e Scalability

None of the existing protocols efficiently fulfills all these requirements, and
thus a new paradigm is proposed, the Flexible Time-Triggered communica-
tion paradigm, which attempts to overcome such limitations. Chapter H
which is the heart of this dissertation, is completely devoted to the study
of the FTT paradigm. The system architecture is specified, including the

183
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software architecture both in master and slave nodes, the required data struc-
tures and the scheduling and arbitration mechanisms. Moreover, schedula-
bility tests for the real-time traffic, both synchronous and asynchronous, are

also presented .

The proposed FTT communication paradigm architecture is based on
on-line centralized scheduling of the synchronous traffic, combined with a
master /multi-slave transmission control technique. The arbitration mecha-
nism used for the asynchronous traffic is network dependent, and thus it is
not specified by the FTT paradigm. However, it is required to be determin-
istic, i.e., messages should be transmitted in a bounded time and strictly

according to their priority.

Having the communication requirements and scheduling centralized in a
single node facilitates changes on the message requirements, since there is no
need to perform complex and resource demanding operations to update dis-
tributed databases and synchronize events. A simple binary mutual exclusion
primitive is used to provide atomic updates on the message set properties
database. On other hand, the transmission control technique is independent
of the particular scheduling algorithm employed, therefore changes to the
message set properties or even to the message scheduling policy are only felt
within the master node. Since slave nodes strictly follow the EC-Schedule
conveyed in the TM, they need not to be explicitly aware of the current

communication requirements or about the scheduling policy being used.

Moreover, having the communication requirements centralized in a single
node also facilitates the integration of on-line admission control, since the
communication requirements are locally available, thus reducing the diffi-

culty of the integration of schedulability tests.

Other important feature of the FTT paradigm is the support for syn-
chronous and asynchronous traffic, with temporal isolation. This framework
allows to reconcile the benefits of the time-triggered and event-triggered
models. This is particularly relevant since in many real-time distributed
systems there are commonly activities that occur at pre-defined instants in
time at a rate determined by the dynamics of the environment under con-
trol, which are more efficiently handled by the time-triggered communication
model, and asynchronous activities that are more efficiently handled by the

event-triggered communication model.
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The FTT paradigm is not tied to any particular medium-access proto-
col. Any communication infrastructure that supports message broadcasts
and bounded message transmission times can be used. Furthermore, if de-
sired, the native MAC arbitration mechanism may be bypassed by the FTT
arbitration mechanism. For instance, the FTT-CAN implementation relies
on the native CAN MAC to perform arbitration within the EC, reducing the
protocol overhead, while in the FTT-Ethernet implementation the native
Ethernet MAC is completely avoided. The possibility of using different com-
munication mediums contributes to the communication system flexibility,
since it allows to choose the communication medium that better serves the
particular application requirements. For instance, CAN, which supports up
to 8 data bytes per frame, can be used in applications that need to exchange
short data packets. On the other hand, Ethernet, which supports up to 1500
data bytes per frame, can be used in applications requiring the exchange of
large blocks of data. The same is true concerning the bandwidth required.
For instance, CAN may be used in applications that require a bandwidth up
to 1 Mbps, while applications requiring higher bandwidths can be supported
by Ethernet.

Finally, the FTT paradigm allows to achieve high bandwidth efficiency

due to the combination of the following factors:

e A master/multi-slave transmission control technique, that allows to re-
duce considerably the protocol overhead associated with the traditional
master-slave technique, since a single control message may trigger sev-

eral synchronous messages;

e The existence of on-line admission control and dynamic traffic schedul-
ing mechanisms, allowing to change on-line the communication require-
ments, an thus to adapt the communication requirements to suit the

effective needs of the system;

e The possibility of using more efficient scheduling policies, such as EDF.

This set of properties exhibited by the FTT paradigm support the thesis,
stated in section [L3 that it is possible to combine in the same communi-
cation system different traffic with hard, soft and non-real-time timeliness

requirements and change its properties and/or the respective scheduling pol-
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icy during system run-time, without relinquishing predictability guarantees

and achieving efficient use of network bandwidth.

Many real-time protocols broadly used at the field level provide limited
bandwidth, frequently up to 1Mbps. The recent expansion on the application
domains of fieldbus technologies (e.g. automotive, machine tools, process and
manufacturing industry) in which there is an increasing number of intercon-
nected devices with increasing level of integration, results in a larger amount
of data to be shared and therefore the available bandwidth becomes scarce.
On other hand, certain applications contain different message streams that
should be handled with similar QoS, a feature that is not supported by the
scheduling schemes of several of such protocols. Scheduling policies have a
particular relevance in this issue, since they impact both on the maximum
bandwidth utilization that can be achieved with timeliness guarantees and
also on the QoS that can be delivered to the distinct message streams, in
terms of either network delay and jitter. The FTT paradigm is not tied
to any particular scheduling policy. To assess the impact of the schedul-
ing policy in the network utilization both fixed priority (RM) and dynamic
priority (EDF) schedulers were implemented. For the FTT-CAN case, the
results obtained, both experimental and simulation, show that it is possible
to achieve significant gains in bandwidth utilization by using EDF instead
of the RM scheduling policy. For example, with a synchronous bandwidth
limited to 80%, simulation results with randomly generated sets of messages
show an utilization gain of 6% when EDF is used instead of of RM for the
scheduling of the synchronous messages. Considering the sufficient schedula-
bility conditions presented in Chapter B, the gain in the respective threshold
is 20% higher for EDF than for RM.

In real-time systems research, schedulability analysis deserves a particu-
lar attention, since the timeliness requirements of real-time activities must
be fulfilled in all anticipated circumstances. Systems that support dynamic
changes to the activity requirements, such as FTT systems, present demand-
ing challenges in what concerns this issue. In fact, such analysis must be
performed on-line, frequently in nodes with constrained resources, neverthe-
less with low latency, in order to not compromise the system response time

to change requests. Concerning the synchronous traffic, a previously pro-
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posed generic task model was adapted to the FTT framework, allowing the
use of well known utilization based analysis which, despite being pessimistic,
have very low computational complexity and thus are well suited for on-line
use. With respect to the asynchronous traffic, a response-time based anal-
ysis was derived for the generic paradigm and then adapted for both CAN
and Ethernet implementations. Moreover, the asynchronous traffic analy-
sis also provides upper bounds to the memory requirements for messages
with no deadlines or deadlines longer than the respective minimum inter-
arrival time, allowing the communication system to reserve in advance the
necessary number of buffers. This feature considerably eases the application
development, since the occurrence of message buffering becomes completely

transparent to the application.

In many application domains there has been a trend towards higher flex-
ibility in order to support dynamic configuration changes arising from evolv-
ing requirements and on-line Quality-of-Service (QoS) management. The
FTT framework provides an adequate support for such requirements since
relevant parameters of messages, such as periods, can be dynamically ad-
justed. This subject has been explored in this thesis, both in conceptual and
implementation terms. It has been shown that arbitrary QoS management
policies can be easily integrated in the FT'T architecture, provided that QoS
parameters can be mapped onto standard properties such as periods and
deadlines. A prototype implementation shows, for the particular case of a
video-based system, the effectiveness of this approach in dynamically assign-
ing specific QoS parameters to specific video streams while automatically

allocating the best QoS possible to the remaining video streams.

The flexibility exhibited by the FTT paradigm also concerns the support
for distinct platforms, with wide ranges of performance capabilities. The
FTT paradigm has been implemented over Controller Area Network and Eth-
ernet, leading respectively to the FTT-CAN and FTT-Ethernet protocols.
The FTT-CAN protocol targets mainly real-time applications based on low
processing-power micro-controllers, typically found in distributed embedded
systems. Due to the constraints presented by this environment, in particular
concerning the limited resources available (network bandwidth, CPU pro-

cessing power, memory), the implementation of the FTT-CAN protocol was
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biased towards simplicity and resource economy. A prototype implementa-
tion made on 11MHz 8051-based boards was successfully performed, showing
that the price to pay for the flexibility of the FTT paradigm is in the range
of current low-end embedded systems. On the other hand, Ethernet is nowa-
days considered as a strong candidate to support demanding applications,
ranging from embedded command and control systems to computer vision,
robotics, process supervision, etc. This observation fostered the implemen-
tation of the FTT-Ethernet protocol. These applications are particularly
demanding concerning the flexibility of the communication subsystem, thus
in the scope of the FTT-Ethernet protocol most of the work addressed QoS
management. A prototype implementation shows the possibility of using
elaborated QoS management mechanisms, such as the Elastic Task Model,
originally developed for task scheduling in single microprocessors, leading to

a system highly dynamic but still capable of providing real-time guarantees.

8.2 Future research

Some promising extensions to the work developed in the scope of this thesis

are:

Implementation of the FTT-Ethernet over switched Ethernet
Although the use of a switch by itself is not enough to support real-time
guarantees on Ethernet, the FTT-Ethernet protocol could take advantage of
it. In first place, in a switch-based network it is not necessary to enforce the
start of message transmissions in disjoint time instants. Thus, in this case
neither it is necessary to include the message lengths in the trigger message
nor it is necessary to set-up timers associated to each message transmission in
sender nodes. Thus, the implementation would consume less network band-
width and less overhead in slave nodes. In second place, the asynchronous
message arbitration is based on mini-slotting, which is a mechanism that
consumes bandwidth. Switches may provide prioritized message transmis-
sion (IEEE 802.1p), but the number of such priorities (eight at most) is not
sufficient to implement an efficient priority-based scheduling mechanisms.
Nevertheless, such possibility could help in enhancing the performance of
the asynchronous message arbitration used in the FTT-Ethernet protocol.

For instance, assigning distinct priority levels to each traffic class (hard, soft
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and non-real-time) can potentially reduce the arbitration overhead.

Wireless implementation of the FTT paradigm

Wireless transmission has been used for years to link mobile devices such
as mobile robots and automated guided vehicles to their respective control
computers. Besides the mobility issue, for which wireless is unquestionably
the most adequate approach, currently this type of technology is also re-
garded as the next logical step in the evolution of the fieldbus in industrial
automation. In fact, one of the main reasons of the success of fieldbuses
in this domain is the drastic reduction of wiring complexity, and thus wire-
less technologies just constitute another advance in the same direction. The
IEEE 802.11 standard for local area networks defines an extension of Eth-
ernet to the wireless medium, and thus it is an interesting challenge to in-
vestigate the possibility to implement the FTT paradigm on this protocol
and to study how the FTT paradigm can tackle with some specific problems
of the wireless technology, deriving from the natural openness concerning
the participating nodes. For instance, wireless networks usually exhibit con-
siderably higher bit-error rates and more frequent and longer inaccessibility

periods than wired networks.

Joint scheduling of synchronous and asynchronous message streams

In real world DCCS applications communication activities that are period-
ically activated (synchronous) and others that result from unforeseen events
(asynchronous), e.g. alarms, are often found. However the nature of the
communication activities does not necessarily constrain their timeliness re-
quirements; critical activities can be either of synchronous or asynchronous
nature. In the FTT paradigm the synchronous and asynchronous traffic
are scheduled independently. Although there is support for hard real-time
asynchronous traffic, it requires the static reservation of a share of the EC
to exclusive use by the asynchronous traffic, performed during system set-
up, which is not an optimum solution since it reduces the schedulability of
synchronous traffic. Therefore an important system schedulability enhance-
ment can potentially be achieved by employing methodologies allowing to
perform the joint scheduling of both of synchronous and asynchronous mes-
sage streams. In particular, the evaluation of the potential of sporadic servers

in this context seems an interesting line of research.
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Routing protocols
Real-time distributed applications are becoming increasingly complex, due
to both an increase in the number of interconnected devices and increased
amount of data to be shared between them. A well-known technique used
to manage such framework consists in decomposing the system in different
functional units, comprising e.g. sets of sensors, actuators and controllers
that cooperate closely to achieve a particular goal. The components of these
functional units are interconnected by independent sub-networks. The whole
system can be modeled by a set of such functional units, hierarchically orga-
nized. The communication between different functional units is performed
by gateway nodes that filter the traffic going inward and outward.
Timeliness requirements can be found either in the communication be-
tween functional units and within the functional units themselves. There-
fore this approach leads to a hierarchical real-time scheduling problem, with
real-time messages found at the different system levels. There is ongoing
research in this field, particularly concerning task scheduling in micropro-
cessors, and it seems an interesting line of research to study the compati-
bility of such results with the FTT architecture. On the other hand, there
are also some recent research work in the scope of general networks (e.g.
IP based) concerning the implementation of the Publisher/Subscriber model
using content-based addressing/routing. It seems also an interesting line of
research to evaluate the suitability of the FT'T architecture to support such

framework.
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List of acronyms

BA Bus Arbitrator

BAT Bus Arbitrator schedule Table

CAN Controller Area Network

CC Communication Cycle

CD Compel Data

CIP Control and Information Protocol
CSMA Carrier-Sense Multiple Access

DCCS Distributed Computer-Control System
DL Data Link

DLL Data-link layer

DM Deadline Monotonic

E Elementary Cycle Duration

EC Elementary Cycle

EDF Earliest Deadline First scheduling policy
ET Event-Triggered

FDL Fieldbus Data Link

209



210 APPENDIX B. LIST OF ACRONYMS

FTT Flexible Time-Triggered protocol

FTT-CAN Flexible Time-Triggered protocol on CAN
FTT-Ethernet Flexible Time-Triggered protocol on Ethernet
LAS Link Active Scheduler

LAW Minimum Length of the Asynchronous Window
law(i) Length of the Asynchronous Window of EC 4
LCM Least Common Multiple

LL Least Laxity

LS Link Scheduling

LSW Upper bound for the Length of the Synchronous Window
Isw(i) Length of the Synchronous Window of ECi
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MC Macro-Cycle

MEDL Message Descriptor List
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TD Time Distribution
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TM Trigger Message

TT Time-Triggered
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Appendix C

FTT-Ethernet sample

application

The sample code presented below shows the code required to generate the
master node program of an application using both synchronous and asyn-
chronous messages. The code is related to the FTT-Ethernet implementa-

tion.

/********************************************************************/

/* FTT-Ethernet; Paulo Pedreiras; Jul/2002 */
/* */
/* Test application 1 (Master): */
/* */
/* This test application configures a set of messages */
/* both peridic and aperiodic. */
/* SET1: Some "slow" messages allow visualisation of its */
/* contents for checking if everything ok. */

[k ok ok ok ok ok ok ok ok sk ok ok K Kok ok ok o Kok ok K Kok ok koK ok ok ok K ok ok ok ok ok Rk ok Kok ok
[ F ks ok ok ok ko ok ok ok ok ok sk Kok sk sk ko kR ko /

/* FTIT related defines and includes */

[ ko ok ok ok ok ook ok ok ok ok ok ok ook ok ok ok ok sk ok ok ok ko sk ok ko /

#define EC_LEN (long)20000 /* EC length (us) */

#define EDF_SCHED /#* Select Earliest Deadline First Scheduler */

#include "fttetml.c"

/K kokok sk ok ok sk skok sk ok o skok sk sk ok ok ok ok ok ok ok /
/* Application related stuff */
/K kokok sk ok ok sk skok sk ok o skok sk sk ok ok ok ok ok ok ok /

#define APP_DEBUG /* Debug information QN */

[ xxkkkokkkkk [
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/* main() */
[ * Rk ok ok kokok /
int main(int argc, char **argv)
{
/* Auxiliary variable used to append messages to the SRT */

SRDB_SRT_mesgtype SRT_aux_var; SRDB_ART_mesgtype ART_aux_var;

/3 3k ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok /
/* Init the ftt system */
/3 3k ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok /

ftt_minit();

%Kk Kok ook kKK kK kKK Kok Kok Kk K

/* Set-up the message set */

%Kk Kok ook kKK kK kKK Kok Kok Kk K

/* This set has a high load, with "quick" messages and one */
/* slow message to allow displaying on the screen */
cprintf("\n Building message set (SMS1)...");
SET_SMESG_PROP (&SRT_aux_var,1,512,1,1,0); /* id,size,period,deadline,init */
SRDB_SRT_addmesg (&SRT_aux_var) ;

SET_SMESG_PROP (&SRT_aux_var,2,1024,1,1,0);
SRDB_SRT_addmesg (&SRT_aux_var) ;

SET_SMESG_PROP (&SRT_aux_var,3,512,2,2,0);
SRDB_SRT_addmesg (&SRT_aux_var) ;

SET_SMESG_PROP (&SRT_aux_var,8,512,5,5,0);
SRDB_SRT_addmesg (&SRT_aux_var) ;

SET_SMESG_PROP (&SRT_aux_var,14,512,7,7,0);
SRDB_SRT_addmesg (&SRT_aux_var) ;

SET_SMESG_PROP (&SRT_aux_var,10,512,10,10,0);
SRDB_SRT_addmesg (&SRT_aux_var) ;

SET_SMESG_PROP (&SRT_aux_var,4,512,9,9,0);
SRDB_SRT_addmesg (&SRT_aux_var) ;

SET_SMESG_PROP (&SRT_aux_var,11,512,11,11,0);
SRDB_SRT_addmesg (&SRT_aux_var) ;

SET_SMESG_PROP (&SRT_aux_var,12,512,12,12,0);
SRDB_SRT_addmesg (&SRT_aux_var) ;

SET_SMESG_PROP (&SRT_aux_var,16,512,16,16,0) ;
SRDB_SRT_addmesg (&SRT_aux_var) ;

SET_SMESG_PROP (&SRT_aux_var,18,512,18,18,0);
SRDB_SRT_addmesg (&SRT_aux_var) ;

/* Slow message (bs period for EC=20ms) */
SET_SMESG_PROP (&SRT_aux_var,19,100,250,250,0) ;
SRDB_SRT_addmesg (&SRT_aux_var) ;

cprintf(" Finished building message set (SMS1)!");

/* Asynchronous messages : Set 1 */

cprintf("\n Building message set (AMS1)..."); /* Add asynch. messages */
SET_AMESG_PROP (%ART_aux_var,2,12,2,2,0); /*id, size, mit, ddln, init */
SRDB_ART_addmesg (&ART_aux_var, ADATA_MESG_ID_DATA_SHORT, TMLN_HARD) ;



215

SET_AMESG_PROP (&ART_aux_var,5,15,5,5,0);

SRDB_ART_addmesg (%ART_aux_var , ADATA_MESG_ID_DATA_SHORT, TMLN_HARD) ;
SET_AMESG_PROP (&ART_aux_var,7,10,250,250,0) ;

SRDB_ART_addmesg (%ART_aux_var , ADATA_MESG_ID_DATA_SHORT, TMLN_HARD) ;
SET_AMESG_PROP (&ART_aux_var,4,14,4,4,0);

SRDB_ART_addmesg (&ART_aux_var ,ADATA_MESG_ID_DATA_SHORT,TMLN_SOFT);
SET_AMESG_PROP (&ART_aux_var,6,14,6,4,0);

SRDB_ART_addmesg (%ART_aux_var , ADATA_MESG_ID_DATA_SHORT,TMLN_SOFT);
SET_AMESG_PROP (%ART_aux_var,10,14,10,4,0);

SRDB_ART_addmesg (%ART_aux_var , ADATA_MESG_ID_DATA_SHORT,TMLN_SOFT);
SET_AMESG_PROP (&ART _aux_var,11,14,11,4,0);
SRDB_ART_addmesg(&ART_aux_var ,ADATA_MESG_ID_DATA_SHORT,TMLN_SOFT);
SET_AMESG_PROP (&ART_aux_var,12,14,12,4,0);

SRDB_ART_addmesg (%ART_aux_var , ADATA_MESG_ID_DATA_SHORT,TMLN_SOFT);
SET_AMESG_PROP (&ART_aux_var,13,14,13,4,0);

SRDB_ART_addmesg (%ART_aux_var , ADATA_MESG_ID_DATA_SHORT,TMLN_SOFT);
SET_AMESG_PROP (&ART_aux_var,14,14,14,4,0);

SRDB_ART_addmesg (&ART_aux_var ,ADATA_MESG_ID_DATA_SHORT,TMLN_SOFT);
SET_AMESG_PROP (&ART _aux_var,15,14,15,4,0);

SRDB_ART_addmesg (%ART_aux_var , ADATA_MESG_ID_DATA_SHORT,TMLN_SOFT) ;
cprintf(" Finish building message set (AMS1)!");

cprintf("Any key to continue");
keyb_getchar();

#ifdef APP_DEBUG
/* Print the initial message set */
/* Synchronous messages */
cprintf("\n Message set:");
SRDB_SRT_printmesg();
cprintf("\n Any key to continue");
keyb_getchar();
/* Asynchronous messages */
SRDB_ART_printmesg();
cprintf("\n Any key to continue");
keyb_getchar();

#endif

[ 3k sk ok sk ok sk ok sk ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ook o ok ok ok ok ok ok Kok ok ok o/

/* Messages configured. Start the system */

[ sk skokskokskokskok sk ok sk sk ok skok sk ok sk ok sk ok sk sk sk ok skok sk ok sk ok sk ok sk ok ok /

ftt_mstart();

/* Main task ends but system does not shutdown since there are active tasks */

return 0;
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