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Abstract

Angiotensin II (Ang II), the major effector of the renin-angiotensin-aldosterone system
(RAAS), stimulates the production of reactive oxygen species (ROS) which are critically
involved in Ang II-induced effects. Noteworthy, accumulating evidence indicates that
ROS also regulate the activation of RAAS, contributing to the fine-tuning of this system
under physiological conditions or to the amplification of the deleterious signaling in
several pathologies. This chapter aims at giving an overview of the role of ROS in the
regulation of expression, secretion and/or activity of several RAAS components.

Keywords: reactive oxygen species, superoxide, hydrogen peroxide, angiotensinogen,
renin, pro(renin) receptor, angiotensin converting enzyme, angiotensin converting
enzyme-2, angiotensin II, angiotensin 1–7, aldosterone, angiotensin II type 1 (AT1)
receptor, angiotensin II type 2 (AT2) receptor, MAS receptor, regulation of expression,
secretion or activity

1. Introduction

In the last two decades, reactive oxygen species (ROS) have emerged as downstream media-

tors of angiotensin II (Ang II) effects. The Ang II-induced activation of nicotinamide adenine

dinucleotide phosphate (NADPH) oxidases within the cardiovascular system, the kidney and

the brain result in increased generation of ROS, such as superoxide radical (O2
•−) and hydro-

gen peroxide (H2O2), which are involved in diverse signaling functions. Interestingly, increas-

ing evidence suggests that ROS also act as upstream regulators of the renin-angiotensin-

aldosterone system (RAAS) in various cells and tissues. In several pathological conditions,

ROS have been shown to increase RAAS activation, thus creating a vicious cycle that amplifies

the deleterious signaling pathways orchestrated by this endocrine system. This chapter aims at
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giving an overview of the interactions between ROS and RAAS, focusing on the effects of ROS

on the expression, secretion and/or activity of RAAS components that may contribute to the

development and progression of cardiometabolic and renal diseases.

2. ROS as regulators of the RAAS

2.1. ROS and angiotensinogen (AGT)

AGT is a 60-kDa α2-globulin glycoprotein with 452 amino acids in humans (453 in rodents)

that is mainly secreted by hepatocytes and constitutes the precursor of the RAAS [1]. AGT is a

specific human substrate for renin which catalyzes the conversion of intact AGT into angioten-

sin I (Ang I), by releasing this decapeptide from the 63-residue NH2-terminus.

The exact dynamics of AGT cleavage by renin has been a question of debate. In 2010, Zhou

et al. suggested that the renin-cleavage site is normally in a buried position and that access and

binding of renin to intact AGT would imply a conformational change that results from a

disulfide bridge between two cysteines residues (Cys 18-138 in humans, Cys 18-137 in mouse)

[2]—the only two conserved in all species [3, 4]. This disulfide bridge seems to be quite labile

and both reduced and oxidized forms of AGT circulate in human plasma with a consistent

reduced-to-oxidized ratio of 40:60 [2]. Furthermore, the study of Zhou et al. showed (although

with no statistical analysis) that the affinity for renin is higher for the oxidized form of AGT

when compared with the reduced form and that the affinity was even further increased in the

presence of the (pro)renin receptor (PRR) [2]. These results suggest that prooxidant conditions

might favor the oxidized conformation of AGT and, subsequently, activation of the RAAS.

However, a very recent study of Wu et al. [5] challenged these data. They used AGT floxed

mice which are almost depleted of liver-derived plasma AGT and, through the use of viral

vectors specifically targeting hepatocytes, injected either wild-type AGT or AGT containing

Cys18Ser and Cys137Ser mutants that were unable to form the disulfide bridge. The study

showed that in mice most of the AGT exists in the oxidized bridged form and intriguingly, it

was not possible to distinguish its effects on plasma renin and Ang II concentrations, in renal

Ang II concentration or Ang II-dependent effects (increase in systolic blood pressure and pro-

atherosclerotic effect in low-density lipoprotein (LDL) receptor−/− mice) [5]. So, it seems that at

least in mice, the disulfide bridge is not relevant for the cleavage of AGT by renin in both the

plasma and the kidney. However, species differences certainly exist and might be worth

studying in the near future. In this context, it has recently been published a suggested protocol

in order to modify commercially available enzyme-linked immunosorbent assay (ELISA) kits

so that accurate measurements of intact AGT, in both oxidized and reduced forms, can be

performed [6]. This will enable researchers to expand their studies and push forward the state-

of-the-art on this field.

The evidence that ROS regulate the expression of AGT is mostly characterized in the kidney.

The original study was performed in 2002, by Hsieh et al., who suggested that the mechanism

through which high glucose induces AGT expression in immortalized renal proximal tubule

cells (IRPTCs) was ROS generation [7]. They found that cultured IRPTCs stimulated with
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high-glucose medium increased the accumulation of AGT mRNA and its secretion into the

culture medium. This effect was blocked by taurine (an antioxidant), tiron (an O2
•− scavenger),

MnTBAP (a manganese-dependent superoxide dismutase (SOD) mimetic) and catalase (a

H2O2 neutralizing enzyme), thus suggesting the involvement of ROS, namely O2
•− and H2O2.

Indeed, the increase in AGT mRNA accumulation and secretion was also observed when

IRPTCs were directly stimulated with H2O2 in high-glucose but not in normal-glucose condi-

tions. The stimulatory effect of high glucose on AGT expression via ROS has been further

confirmed to occur in IRPTCs by the same group [8] and suggested to occur through mito-

gen-activated protein kinase (MAPK) activation [7] and also protein kinase C (PKC) and

hexosamine biosynthesis pathway signaling [8]. ROS also mediate the effect of TGFβ1 on

AGT expression. Again in IRPTCs, it was observed that TGFβ1 induced the expression of

AGT mRNA and that this effect was blocked by tiron and diphenylene iodonium (DPI, an

NADPH oxidase inhibitor) pointing to a ROS-mediated effect [9]. Once more, MAPK signaling

seemed to be involved since the effect was blocked by SB203580, an inhibitor of p38 MAPK [9].

The role for ROS in mediating AGT expression has also been studied through a different

approach that is the use of transgenic mice overexpressing catalase, therefore reducing the

levels of endogenous H2O2. Using this approach, it was observed that overexpression of

catalase specifically in the renal proximal tubule cells (RPTCs) decreased the renal expression

of AGT (evaluated by immunohistochemistry, Western Blot (WB) and polymerase chain reac-

tion (PCR)) compared to that found in wild-type (WT) control mice. Although this was not

confirmed in another study using the same approach [10], it suggests that the regulatory effect

of H2O2 over AGT expression might be physiological, at least in the RPTCs of the mice kidney.

Brezniceanu et al. expanded this view and reported that ex vivo exposure of RPTCs from WT

mice to high glucose or to Ang II increased the generation of ROS or AGT (mRNA or protein)

but this increase was not observed in cells from transgenic mice overexpressing catalase in

their RPTCs [11], suggesting that ROS-mediated AGT expression might also occur in high-

glucose conditions. In line with this, induction of diabetes in mice with streptozotocin (STZ, an

experimental model of type I diabetes) increased the expression of AGT (mRNA and protein),

plasminogen activator inhibitor-1 (a marker of ROS-inducible gene), p53 and Bax mRNA

(proapoptotic markers) in RPTCs but these effects were absent when STZ-diabetes was

induced in transgenic mice overexpressing catalase in their RPTCs [11]. Also, the negative

impact of catalase on AGT expression was also observed when overexpression of catalase was

induced in RPTCs of Akita mice (a spontaneous genetic model of type 1 diabetes), which per se

showed increased AGT expression compared with WT controls [12]. This was further con-

firmed in another study in which overexpression of catalase markedly attenuated the increase

in the urinary excretion of AGT and Ang II [10]. Even though, catalase overexpression attenu-

ated but did not prevent the alterations seen in the diabetic kidney [11, 12]. It was suggested

that endogenous H2O2 stimulates nuclear, but not cytoplasmatic, Nrf2 (Nuclear factor ery-

throid 2-related factor 2, a master regulator of redox balance in cellular cytoprotective

responses) levels that, in turn, stimulate intrarenal AGT expression and RAAS activation,

possibly contributing to hypertension and development of nephropathy in the Akita model of

diabetes [10]. This was suggested to be a tissue-specific regulatory mechanism since in vivo

treatment with oltipraz, an Nrf2 activator, stimulates the expression of Nrf2 and AGT in
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RPTCs but not the expression of AGT mRNA in the liver [10]. Taken together, these results

highlight H2O2 as a key element in the regulatory effect of ROS over AGT expression.

Regulation of AGT expression by ROS has also been studied in kidney structures other than

the RPTCs. The Zucker diabetic fatty (ZDF) rat is an experimental model of type II diabetes

that develops diabetes by 17 weeks of age with renal injury starting between 18 and 20 weeks

of age and being associated with oxidative stress [13]. Ohashi et al. observed that in 18-week-

old ZDF rats, the immunoreactivity against AGT was increased in the glomeruli compared

with that of the lean rat and that the majority of glomerular AGT staining was found in

mesangial cells, although it was also found in podocytes [13]. Moreover, in primary cultures

of rat mesangial cells from ZDF rats, H2O2 increased the expression of AGT mRNA and

protein via phosphorylation of extracellular signal-regulated kinase (ERK), Jun kinase (JNK)

but not p38 MAPK and these effects were suppressed by catalase treatment [13]. Also, cultur-

ing the rat glomerular mesangial cell line HBZY-1 in high-glucose conditions increased AGT

mRNA levels and increased Ang II concentration in the culture media through activation of

NADPH oxidase, since the inhibitor DPI abolished these effects in high-glucose but not under

normal-glucose conditions [14]. The ROS-associated stimulation of AGT expression seems to

be crucial for the pathophysiology of renal damage, at least in the ZDF rat, since increased

urinary excretion of 8-isoprostanes (a marker of oxidative stress) and increased kidney AGT

levels precede the development of renal damage [15, 16]. More generally in the kidney, we

have also previously reported that in Ang II-induced hypertension there is an associated

increase in the renal medullary (not cortical) production of H2O2 which induces the transloca-

tion of nuclear factor kappa B (NF-κB) p50/p50 homodimer and, subsequently, increases the

renal production of AGT [17]. This was shown by direct measurements of H2O2 production

and by the urinary excretion of AGT on Ang II-hypertensive animals and corroborated by the

results from PEG-catalase-treated Ang II-hypertensive rats. Interestingly, this study from our

group [17] raised the possibility for H2O2 to be a key element in the fine-tuning processes of

AGT regulation. Indeed, we have also observed that both in normotensive Wistar and sponta-

neously hypertensive rats (SHR), STZ-induced diabetes was associated with an increase in the

medullary production and urinary excretion of H2O2 and an increased AGT urinary excretion

but a decreased plasma AGT concentration [18]. Of note, Ang II-hypertensive rats had also

decreased plasma AGT concentration on day 14 of Ang II infusion, while PEG-catalase-treated

Ang II-infused rats exhibited a marked increase in plasma AGT concentration [17].

The highly reactive O2
•− has also been implicated in the regulation of AGT expression by ROS

in the kidney. Feeding Dahl salt-sensitive rats with a high-salt diet increased blood pressure,

urinary excretion of thiobarbituric reactive substances (TBARS) and kidney AGT protein levels

while decreased plasma AGT levels [19]. In vivo treatment of these rats with tempol (a SOD

mimetic) totally prevented the increase in the urinary excretion of TBARS, attenuated the

hypertension and although it did not affect the plasma levels of AGT, it prevented the increase

in kidney AGT levels and, subsequently decreased kidney Ang II levels [19]. On the other

hand, in vivo treatment with hydralazine was associated with similar reduction of blood

pressure and no change in plasma levels of AGT, but only partially attenuated the urinary

excretion of TBARS, did not prevent the increase in kidney AGT levels and actually increased

kidney Ang II levels [19]. So, attenuation of ROS, namely of O2
•−, more than controlling
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hemodynamic-mediated renal injury, it attenuates the tissue-specific increase in renal RAAS

activity seen in Dahl salt-sensitive rats on a high-salt diet [19]. In endothelial nitric oxide

synthase (eNOS)−/− mice, a high-salt diet also elevates blood pressure and causes progressive

renal injury associated with increased glomerular O2
•− production and urinary AGT excretion

and renal AGT expression (mRNA and protein) [20]. This was observed mostly in the glomer-

uli (endothelial and mesangial cells) although also in the renal tubules [20]. Interestingly, the

increase in O2
•− production was seen immediately since the beginning of the high-salt diet,

while the increase in AGT production started only 3 days after the beginning of the high-salt

diet [20]. Once more, tempol prevented these effects [20]. Besides, tempol prevented the

increased expression of AGT, renin and angiotensin-converting enzyme (ACE) mRNA and

increased the levels of systemic and renal ROS observed in SHR rats on a high-fat diet [21].

Although, as previously said, evidence for ROS-mediated regulation of AGT expression comes

mostly from studies concerning the kidney, other tissues have recently started to be analyzed.

For instance, in primary cultures of cardiac fibroblasts, H2O2 induced a fivefold increase in

AGT mRNA expression [22] and this effect might be relevant for the development of cardiac

fibrosis since it was associated with increased collagen expression [22]. Also, human placenta

explants subjected to experimental hypoxia-reperfusion for 24 h or treatment with H2O2 under

normoxia increased AGT protein expression without affecting the expression of the other

RAAS components [23]. Surprisingly, in the adipose tissue, ROS seem to downregulate the

expression of AGT. Indeed, during adipocyte hypertrophy, ROS production increased along

with inflammatory markers such as monocyte chemoattractant protein 1 (MCP-1) and inter-

leukin 6 but AGT mRNA and secretion into the culture medium was decreased [24]. This was

observed in differentiated 3T3-L1 adipocytes and in primary adipocytes. Inversely, treatment

with the antioxidant N-acetylcysteine (NAC) suppressed the ROS production, inhibited the

increase of the MCP-1 expression of hypertrophied adipocytes and increased AGT mRNA

level [24]. Similar results were obtained in the obese db/db mice. In fact, compared with their

lean littermates, the obese db/db mice showed decreased AGT mRNA in epididymal adipose

tissue, but increased systemic and local tumor necrosis factor α (TNF-α) and oxidative stress

[24]. Again, treatment with NAC reduced oxidative stress, interleukin 6 and TNF-α, but

increased the AGT mRNA level in the epididymal adipose tissue, while liver AGT mRNA

levels were not altered [24]. In this study, Okada et al. raised the hypothesis that tissue-specific

decrease of AGT in obese adipose tissue may serve as a defense against further exacerbation of

adiposity [24]. In line with this, we just recently observed (Morato et al., unpublished observa-

tions) that in obese prepubertal children, the duration of obesity seems to trigger a systemic

H2O2/AGT pathway (eventually originated from the adipose tissue) that might help to control

plasma AGT levels and, subsequently, Ang II-mediated increase in renal AGT expression and,

thus, renal RAAS activation. Moreover, this interplay seems to be implicated in renal tissue

remodeling since urinary excretion of AGT was associated with the urinary excretion of

profibrotic cytokines endothelin 1 (ET-1) and transforming growth factor β (TGF-β) [25]. So,

further studies are needed to expand the knowledge concerning the regulation of AGT expres-

sion by ROS in different tissues and experimental models of disease so that the big picture can

be taken.

Figure 1 summarizes the role of ROS in the regulation of AGT.
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2.2. ROS, renin and the prorenin receptor

Renin is the enzyme responsible for the initiation of the RAAS pathway. It is an aspartyl

protease with high specificity toward AGT which is its only known substrate [26, 27]. Renin

catalyzes the rate-limiting step of Ang II formation, cleaving 10 amino acids from the NH2-

terminus of AGT with resulting production of Ang I which is subsequently transformed into

Ang II by ACE [28, 29]. Circulating active renin is predominantly derived from the

juxtaglomerular (JG) cells in the renal afferent arterioles [26, 27, 30]. In the kidney, renin can

also be synthesized, although to a lesser extent, in the renal proximal and connecting tubules

and in the collecting duct [26, 31]. There are also extrarenal sources of renin where renin is

generated as part of the tissue-specific RAAS, but in much lower levels than in the kidney [26].

Renin is initially produced as a preprorenin protein that is further cleaved originating

prorenin. This renin precursor is either directed to dense-core secretory granules for controlled

exocytosis or constitutively secreted [26, 32]. Directly released prorenin accounts for 80–90% of

the total renin in human circulation [26, 30, 32]. Therefore, questions have arisen regarding the

physiological role of prorenin, namely if circulating prorenin can be activated into renin, or if it

acts independently of the formation of active renin, for example by binding to a specific

receptor [26, 33]. This receptor has been identified and named PRR and can bind both prorenin

and renin [26, 33, 34]. The catalytic activity of renin is fourfold increased when renin is bound

to PRR [26]. The binding of prorenin to PRR also confers enzymatic activity to prorenin which

then becomes able to convert AGT into Ang I, without proteolytic removal of the prosegment

Figure 1. Regulation of AGT by ROS. AGT, angiotensinogen; Ang II, angiotensin II; eNOS, endothelial nitric oxide

synthase; HF, high-fat; HS, high-salt; NG, normal glucose; TGFβ, transforming growth factor beta; ROS, reactive oxygen

species; SHR, spontaneously hypertensive rats; UAGT, urinary AGT.
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[26, 33, 34]. Binding of prorenin and renin to PRR also triggers a range of intracellular events in

the receptor-expressing cells, contributing to the upregulation of profibrotic genes [26, 33, 34].

Activation of renin occurs by proteolytic cleavage of prorenin within the secretory granules

[26, 32]. It is currently not known if prorenin can be activated in the extracellular space, but it

has been reported that it can be taken up by some tissues and contribute to the local produc-

tion of angiotensin peptides [32, 35].

The initial evidence of the involvement of ROS in the regulation of renin came from the studies

of Galle et al. [36–38]. The existence of ROS-producing cells in the close vicinity to JG cells led

these authors to question if ROS modulate renin release [37]. In these studies, performed in

primary cultured mouse JG cells, renin activity was measured by radioimmunoassay both in

cells and supernatants and the renin release rates were expressed as the percentage of extra-

cellular renin activity compared to the total renin activity [36–38]. The viability of cells after the

incubation periods was tested and shown to be preserved [36–38]. It was found that the

prolonged exposure (20 h) of JG cells to the O2
•−-generating xanthine/xanthine oxidase (XOD)

reaction had a stimulatory effect on renin release. This increase was only modestly inhibited by

the O2
•−-removing enzyme, SOD, but was eliminated by catalase, an H2O2-neutralizing enzy-

matic defense [37]. Furthermore, H2O2 applied exogenously for 20 h dose-dependently stimu-

lated renin release and this effect was also prevented by catalase. Therefore, it was concluded

that H2O2 or a subsequently formed reaction product, such as the hydroxyl radical (•OH),

promotes renin release [37]. In subsequent studies, these authors investigated the effects of the

treatment for 20 h with native and oxidized LDL and lipoprotein A (LpA) on renin release in

JG cells, as well as the contribution of ROS to the putative lipoprotein-stimulated renin release

[36, 38]. They observed that although renin release was not affected by native LDL or LpA, it

was markedly stimulated by oxidized LDL and LpA, with oxidized LpA being about 30-fold

more potent than oxidized LDL [36, 38]. SOD further enhanced the oxidized LpA-stimulated

renin release but partly inhibited the renin release induced by oxidized LDL [38]. Catalase

abolished the stimulatory effect of oxidized LpA on renin release, both in the absence and

presence of SOD. The oxidized LDL-induced renin release was strongly inhibited by catalase

and completely prevented in the presence of both catalase and SOD [38]. These findings

indicate that oxidized LDL and LpA are stimulants of renin release by a mechanism that

involves the formation of ROS [36, 38]. This conclusion was further reinforced by the observa-

tion that high-density lipoprotein (HDL) prevents the stimulatory effect of oxidized lipopro-

teins on renin release and O2
•− in JG cells [36], which is in accordance to the now well-

established antioxidant activity of HDL [39].

Recent evidence also indicates that ROS promote renin release. In primary cultures of mouse

JG cells, the exposure for 60 min to an O2
•−-generating reaction mixture with hypoxanthine

and XOD significantly increased renin release [40]. Tempol prevented this stimulatory effect

but did not change basal renin release [40]. Furthermore, the incubation with exogenous H2O2

for 60 min enhanced the renin release rate and treatment of JG cells with catalase reduced the

basal renin release rate by 45%. These results indicate that ROS such as O2
•− and H2O2 can

acutely stimulate renin release [40]. Further work by the same group showed that this effect of

H2O2 on renin release is most likely mediated by cyclic adenosine monophosphate (cAMP)

[41]. Moreover, since the NADPH oxidase isoform (Nox) 4 was shown to be expressed in JG

cells and silencing of this isoform resulted in a significant reduction of renin release, it was
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suggested that endogenously Nox4-derived H2O2 in JG cells promotes renin release [42]. In

vivo experiments were also performed in mice to test the hypothesis that the augmentation of

H2O2 in the renal cortex stimulates renin release and increases blood pressure. A subcapsular

renal catheter connected to an osmotic mini pump to achieve a concentration of 1 μM H2O2

was implanted in mice. Two days after the infusion, the systolic blood pressure, measured by

radiotelemetry, was shown to be increased by 22 ± 2 mmHg and there was a twofold increase

in plasma renin concentration [42]. Overall, these results indicate that renal cortical ROS might

contribute to arterial hypertension by increasing renin release [40, 42]. In addition, increased

ROS generation appears to reverse the inhibitory influence of other hormones on renin release

[43]. Leptin, an adipocyte-derived hormone, exhibits natriuretic effects on normotensive,

nonobese animals [43, 44]. However, the natriuretic response to the infusion of leptin appears

to be attenuated in animal models of arterial hypertension or obesity [43–45], which are known

to be associated with oxidative stress [17, 46–49]. Since the infusion of leptin tends to elevate

blood pressure and increased renin levels might contribute to this effect [43, 50], experiments

were performed to evaluate the effects of leptin on renin release, under normal conditions or

during high oxidative stress [43]. It was observed that leptin treatment for 1 hour reduced

renin release in JG cells. However, in cells pretreated with H2O2, leptin significantly promoted

renin release [43]. These results suggest that increased ROS levels change the impact of leptin

on renin release [43] and are in accordance with previous observations that plasma renin

activity is positively correlated with systemic leptin concentration in hypertension [51, 52].

In physiological conditions, renin expression and release are under a negative feedback in

response to Ang II, macula densa sodium chloride concentration and renal perfusion pressure

[26, 53]. The cytokine TNF-αwas shown to mediate the drinking and pressor responses to Ang

II and to markedly inhibit renin expression [54–56]. Since TNF-α can increase ROS generation

and contribute to oxidative stress [57, 58], Itani et al. using an in vitro model of JG cells (As4.1

cells) tested the hypothesis that TNF-α increases the production of ROS which in turn inhibit

renin mRNA expression [54]. They observed that treatment with TNF-α increased the produc-

tion of both O2
•− and H2O2 in these cells and that NAC reduced the H2O2 generation induced

by TNF-α [54]. NAC itself had no effect on renin mRNA expression but prevented its attenu-

ation in cells treated with TNF-α [54]. Moreover, H2O2 was found to negatively regulate renin

mRNA expression and the renin-promoter activity through a mechanism independent of NF-

κB activation [54].

The in vivo effects of antioxidants or inhibitors of ROS production on renin expression and

activity have also been studied in animal models of hypertension. In order to test the hypoth-

esis that in hypertension the increased ROS generation modifies type 1 nitric oxide synthase

(NOS1) and cyclooxygenase-2 (COX-2) expression in the JG apparatus, thereby altering renin

synthesis and secretion, the NADPH oxidase inhibitor apocynin was given for 3–7-week old

Wistar-Kyoto (WKY) and SHR rats [59]. Untreated SHR rats exhibited higher oxidative stress

and NOS1 immunoreactivity and lower COX-2 immunoreactivity, renin mRNA expression,

renin immunoreactivity and plasma renin activity than the untreated WKYrats [59]. Apocynin

treatment reduced oxidative stress and the immunoreactivity of NOS1 and renin in JG appa-

ratus but did not alter COX-2 immunoreactivity, renin mRNA expression, or plasma renin

activity in SHR rats and was devoid of effects on all these parameters in WKY rats [59]. These
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results suggest that the increased ROS generation in SHR is responsible for the induction of

NOS1 expression and augmented nitric oxide (NO) synthesis, thereby increasing local renin

expression. Indeed, NO appears to be involved not only in the stimulation of renin secretion

but also in the recruitment of renin-expressing cells [60, 61]. Another study in SHR rats

evaluated if the antihypertensive response to tempol is related to a decrease in plasma renin

activity and in the urinary excretion of isoprostanes, NO metabolites, ET-1, or catecholamines

[62]. Tempol administered for 12 days reduced the urinary excretion of isoprostanes, doubled

the plasma renin activity and did not alter the urinary excretion of ET-1, NO metabolites, or

catecholamines [62]. Although these authors suggested that the increase in plasma renin

activity with tempol was due to the decrease in blood pressure [62], the putative contribution

of H2O2 to this effect in plasma renin activity should be also considered. As a SOD mimetic,

tempol converts O2
•− into H2O2 and previous studies have shown that increased H2O2 pro-

duction counteracts the putative protective effects of tempol in hypertension [48, 49, 63].

The effects of a lower dose of tempol on renin activity and expression were also investigated in

SHR rats fed a high-fat diet. Tempol was given to 8-week old SHR rats fed a high-fat diet for 12

weeks [21]. The administration of high-fat diet was associated with increased systolic blood

pressure, unaltered plasma renin activity, increased oxidative stress and reduced urinary

excretion of NO metabolites in SHR [21]. Furthermore, these rats also exhibited increases in

the JG renin immunoreactivity and in the renal cortical mRNA and protein expression of renin

[21]. Treatment with tempol reduced oxidative stress, improved the urinary excretion of NO

metabolites, did not alter plasma renin activity, but significantly reduced the impact of the

high-fat diet on the other renin parameters evaluated in that study [21]. Thus, increased O2
•−

production appears to enhance intrarenal renin expression in SHR rats fed a high-fat diet. In

contrast, no changes were observed in renin expression or immunoreactivity in SHR fed a

normal-fat diet or in WKY rats fed a normal or a high-fat diet [21].

In addition to the studies demonstrating a role for ROS in the regulation of renin expression

and release, there is also evidence that PRR is upregulated in conditions of enhanced ROS

generation. In STZ-induced diabetic Sprague-Dawley rats, the renal mRNA and protein

expression of PRR, as well as the PRR immunostaining in glomeruli and tubules, were signif-

icantly increased compared to control rats [64]. Treatment of STZ-diabetic rats with DPI or

with the Ang II type 1 (AT1) receptor blocker valsartan for 1 week prevented the increases in

renal PRR mRNA, protein and immunoreactivity [64]. These results indicate that in diabetes

the upregulation of renal PRR results from the activation of both AT1 receptor and the ROS-

generating NADPH oxidase [64].

The modulation of PRR expression by ROS was also studied in a model of enhanced ROS

generation induced by the deletion of DJ-1, a multifunctional antioxidant protein that scav-

enges ROS and also regulates the expression of several genes by directly interacting with

histone deacetylase [65–69]. DJ-1-knockout mice (DJ-1−/−) had increased renal mRNA, protein

and immunoreactivity of PRR, increased ERK1/2 activation in response to prorenin and

increased fibrotic gene expression compared to the WT animals (DJ-1+/+) [66]. A decreased

histone deacetylase 1 recruitment at the PRR promoter and a reduction of its histone acetylation

were also observed in DJ-1−/− mice [66]. Furthermore, mesangial cells derived from DJ-1−/− mice
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animals exhibited increased H2O2 generation compared with those from DJ-1+/+ mice [66]. The

effects on PRR expression and epigenetic regulation were induced by the treatment with H2O2

and reversed by the addition of the antioxidant NAC in DJ-1+/+ mesangial cells. Furthermore,

silencing of PRR by transfecting mesangial cells with siRNA-PRR markedly reduced the expres-

sion of fibrotic genes [66]. Therefore, it was concluded that the reduction of DJ-1 protein might

hasten renal damage via H2O2-mediated epigenetic regulation of PRR expression [66].

Evidence for the regulation of renin and the (pro)renin receptor by ROS is presented in

Figure 2.

2.3. ROS, ACE and ACE2

ACE is a 1306-amino acid 140 kDa zinc-containing metalloprotease that acts as a dipeptidyl

carboxypeptidase, hydrolyzing the physiologically inactive decapeptide Ang I to the physio-

logically active octapeptide Ang II [70], thus being crucial for the formation of the major

effector of the RAAS. ACE also inactivates the vasodilator bradykinin [70]. ACE has two

catalytic domains: NH2- and COOH-terminus that are highly homologous although the pref-

erential catalytic conditions and the rate of hydrolysis might differ for the same substrate [71]. In

2000, two independent research groups came out with a homologous form of ACE (40–42%

homology)—the angiotensin-converting enzyme 2 (ACE2)—which is also a zinc metalloprotease

Figure 2. Regulation of renin and pro(renin) receptor by ROS. JG, juxtaglomerular; JGA, juxtaglomerular apparatus; LDL,

low-density lipoprotein; LpA, lipoprotein A; PRR, pro (renin) receptor; ROS, reactive oxygen species; SOD, superoxide

dismutase; SHR, spontaneously hypertensive rats; STZ, streptozotocin; TNFα, tumoral necrosis factor alpha; WKY, Wistar

Kyoto.
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with carboxypeptidase activity [72, 73]. However, ACE2 is a mono-carboxypeptidase and so, it

catalyzes the conversion of Ang I or Ang II to the nonapeptide angiotensin (1–9) [Ang (1–9)] or

the heptapeptide angiotensin (1–7) [Ang (1–7)], respectively [72]. As the affinity of ACE2 for Ang

II is 400-fold higher than that for Ang I, the formation of Ang (1–7) predominates [74, 75]. The

ACE2/Ang (1–7)/MAS axis has been highlighted as the counterregulatory arm of the RAAS [76].

The balance between the activities of ACE and ACE2 will determine, respectively, the relative

levels of Ang II and Ang (1–7) at the surface of the correspondent receptors and, thus, the net

effect of the RAAS.

The first evidence concerning a putative role of ROS on ACE activity comes from a study of

Tominaga et al., in 1988, who observed that the thiol-oxidizing agent diamide markedly

increased the activity of ACE in crude extracts of rat renal cortex, heart and brain while

causing a moderate increase in ACE activity in the lung and aorta and no alteration in plasma

ACE activity [77]. By that time, no particular ROS was identified as being responsible for the

reported effect. However, in 1993 Chen and Catravas [78] reported that in vitro H2O2 or the

ROS-generating system XOD decreased the activity of ACE in cultured bovine pulmonary

endothelial cells, contrary to what was expected from the results of the pioneering study.

Moreover, Chen and Catravas observed that H2O2 was also responsible for the decrease in

ACE activity when neutrophils were activated with phorbol 12-myristate 13-acetate (PMA)

[78]. Indeed, they characterized the effect as being the result of the production of H2O2 and its

intracellular conversion into •OH through the iron-catalyzed Haber-Weiss reaction since the

inhibitory effect of activated neutrophils on ACE activity was prevented by catalase and by a

cell-permeable scavenger of •OH, an iron-chelator and a thiol reducing agent [78]. These

results were confirmed in another study using purified ACE from bovine lungs, which showed

that H2O2 decreased ACE activity at least in part through the generation of •OH from H2O2

since an iron chelator attenuated the effect [79]. When tested directly, •OH decreased ACE

activity at high concentrations and this effect was prevented by scavengers of •OH and by

thiol-reducing agents, thus suggesting oxidation of the thiol groups of ACE [79]. Interestingly,

this study revealed that the inhibitory effect was more marked on the COOH-domain than on

the NH2-domain of ACE [79]. Another in vitro study showed that neither O2
•− nor H2O2 or

•OH altered the activity of purified ACE [80]. In contrast to these studies but in line with the

study of Tominaga et al. [77], recently it has been reported that in human umbilical vein

endothelial cells, H2O2 increased the expression of ACE via the cAMP/protein kinase A

(PKA)/cAMP response-element binding pathway, although there was also decreased cell via-

bility due to increased apoptosis [81]. These apparent contradictory results have not raised

discussion in the literature. Eventually, they might represent an example of species-dependent

effect since the only two studies that reported decreased ROS-mediated ACE activity used

bovine or rabbit cells while all the others, concerning mostly rats and mice, reported ROS-

mediated increases in ACE expression and activity, as already referred above and will be

further presented below. Indeed, NADPH oxidase, SOD, or H2O2 have been associated with

increased ACE expression and/or activity. Alternatively but less probably, it might be that the
•OH would have the opposite effect on ACE than the other ROS, putatively reflecting a fine-

tuning regulatory network. The fact that some studies evaluatedACE activity while others quanti-

fied ACE expression might also contribute to the apparent controversial data. Unfortunately, not

Regulation of the Renin-Angiotensin-Aldosterone System by Reactive Oxygen Species
http://dx.doi.org/10.5772/67016

129



so many studies have addressed this question and so, further studies are needed in order to fully

characterize the role of ROS in regulating ACE expression and/or activity.

A role for NADPH oxidase was evident from a study using rats subjected to unilateral

nephrectomy (UNX) subjected to an albumin overload, which show overt proteinuria [82].

These rats have serum ACE activity similar to that found in controls but they show increased

expression of ACE (mRNA and protein) in the renal cortex, especially in RPTCs; treatment

with apocynin had no effect on serum ACE activity but attenuated the increase in renal ACE

expression [82]. In another model of renal damage, it was characterized that kidney cells (the

NRK52E line) exposed to albumin activated by advanced oxidation protein products (AOPPs)

(usually generated by the reaction of proteins with hypochlorous acid) show increased expres-

sion (mRNA and protein) and activity of ACE via activation of cluster of differentiation 36

(CD36) and the receptor for advanced glycation end products and the PKCα-NADPH oxidase

pathway [83]. Consistently, in Sprague-Dawley rats with UNX and daily intravenous injections

of albumin activated by AOPPs for 3 weeks, renal ACE expression (mRNA and protein) and

activity increased, mainly in PTCs, although plasma levels and activity of ACE did not change

[83]. Treatment with apocynin attenuated the increase in renal ACE expression and activity

[83]. Also, DPI prevented the increase in ACE mRNA levels induced by high glucose in the

glomerular mesangial cell line HBZY-1 [14].

The above referred study of Chen and Catravas [78] excluded a role of O2
•−, hypochlorous

acid, peroxynitrite, or proteases in the decrease of ACE activity found in PMA-activated

neutrophils from New Zealand rabbits since the effect was not altered by SOD, an MPO

inhibitor, hypochlorous acid scavengers, an inhibitor of NO synthesis and proteinases inhibi-

tors. However, tempol abolished the increase in renal ACE mRNA levels observed in SHR rats

fed with a high-fat diet in comparison with those in a normal-fat diet [21]. Interestingly,

normotensive WKY rats fed a high-fat diet showed the same renal ACE mRNA levels as those

normotensive rats on a normal-fat diet [21]. Similarly, obese Zucker rats show higher expres-

sion of ACE (mRNA and protein) than lean controls and tempol treatment normalized the

differences found in obese Zucker rats [84]. Furthermore, O2
•− has also been implicated in the

increased expression of ACE protein in the hypothalamic paraventricular nucleus (PVN) of the

Sprague-Dawley rat intravenous infused with Ang II since the effect was attenuated by bilat-

eral microinjections of tempol [85].

The increased expression of ACE protein was also found in the PVN of Sprague-Dawley rats

fed a high-salt diet compared with the normal-salt fed rats [86]. Interestingly, bilateral micro-

injections of PEG-catalase into the PVN attenuated this increase while microinjections of

aminotriazole (a catalase inhibitor) augmented it, thus suggesting a role for endogenous

H2O2 in the regulation of ACE expression [86]. H2O2-mediated increase in ACE expression

was also reported to occur in the diabetic Akita mice, in which the higher renal ACE expres-

sion (mRNA and protein) was normalized by overexpression of catalase in the RPTCs [12].

If a regulatory effect of ROS on ACE expression and/or activity has been the aim of some studies,

evidence for an impact of ROS on ACE2 expression and/or activity is still quite scarce. The above

referred study on the diabetic Akita mice showed a decrease in the renal ACE2 expression

(mRNA and protein) that was normalized by overexpression of catalase specifically in the RPTCs

[12]. Curiously, the obese Zucker rats show lower expression of ACE2 (mRNA and protein)
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besides higher expression of ACE than the lean controls and these differences were normalized

by tempol treatment [84]. Interestingly, overexpression of catalase in the RPTCs [12] or tempol

treatment in Zucker lean rats [84] did not alter the expression of either ACE or ACE2. Taken

together, these results suggest that endogenous SOD and H2O2 might be crucial for the regula-

tion of ACE and ACE2 expression in the context of diabetes although not in the physiological

context. Another very recent study focused on the vascular activity of ACE2 through the charac-

terization of the relaxant effect mediated by Ang II on rat carotid rings [87]. In this setup, Ang II

caused a biphasic response over a precontraction induced by phenylephrine: a contraction (for

nM range Ang II) followed by a relaxation that came to the previous phenylephrine-induced

tone and even further to a tension that was below that of the phenylephrine-induced contraction

(for μM range Ang II). This second part of the Ang II-mediated relaxation reflects ACE2 activity

since it was the only part of the response to Ang II that was blocked by a MAS receptor

antagonist and considering that ACE2 is the only enzyme responsible for the conversion of Ang

II in Ang (1–7) (the endogenous agonist of the MAS receptor). The authors observed that in

control rats, this Ang II-mediated vasorelaxation (reflecting ACE2 activity) was not altered by

apocynin, tiron, or PEG-catalase. However, in STZ-diabetic rats, the ACE2/Ang (1–7)/MAS-

mediated vasorelaxant effect was usually absent but it was restored by apocynin, tiron and

PEG-catalase, suggesting that NADPH oxidase-O2
•−-H2O2 play a significant role in this effect,

namely through ROS-mediated inhibition of ACE2 activity [87].

Figures 3 and 4 summarize the role of ROS in the regulation of ACE and ACE2, respectively.

Figure 3. Regulation of ACE by ROS. ACE, angiotensin converting enzyme; AngII, angiotensin II; AOPPs, advanced

oxidation protein products; HF, high fat; HG, high glucose; HS, high salt; HUVEC, human umbilical vein endothelial cells;

NS, normal salt; PMA, phorbol myristate acetate; PMN, polymorphonuclear neutrophils; ROS, reactive oxygen species;

SHR, Spontaneously Hypertensive Rats.
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2.4. ROS, Ang II, Ang (1–7) and aldosterone

Ang II, the most important peptide of the RAAS, is mainly formed from the precursor AGT by

the sequential action of renin and ACE. Other angiotensin-derived peptides also exhibit biolog-

ical activity, including angiotensin 2–8 (Ang III), angiotensin 3–8 (Ang IV) and Ang (1–7). Ang III

and Ang IVare products from the catabolism of Ang II at the NH2-terminus by aminopeptidases

A and N. In human tissues there are several alternative ACE-independent pathways for Ang II

formation, including proteinases such as chymase, kallikrein, cathepsin G and elastase-2 whose

clinical significance is not yet explored [88, 89]. Ang II binds to two receptor subtypes, the AT1

and Ang II type 2 (AT2) receptors, that belong to the G-protein-coupled receptor (GPCR) family

but differ in terms of tissue distribution and cell signaling pathways. Most of the known

vasoactive, mitogenic, proinflammatory and profibrotic effects of Ang II are mediated by the

activation of AT1 receptor, but it can also bind to the AT2 receptor thereby triggering opposite

effects to those elicited by the AT1 receptor [90–92]. Importantly, Ang II-AT1 receptor interaction

stimulates the activation of NADPH oxidase, a major source of ROS in the heart, vasculature,

kidneys and central nervous system [93]. Under pathological conditions, characterized by RAAS

activation, such as arterial hypertension, diabetes, atherosclerosis and heart failure, there is an

Ang II-induced increase in the expression and/or activity of several Nox, leading to higher ROS

generation and oxidative stress [93–100]. Ang (1–7), an active peptide of this system that typi-

cally opposes the effects of Ang II in the cardiovascular system, is formed primarily from Ang II

through the action of ACE2 at the COOH-terminus but may also be formed by the cleavage of

Ang I by neutral endopeptidases [28, 101, 102]. Many of Ang (1–7) counteracting actions on AT1

receptor-mediated effects occur via the MAS receptor. However, this peptide may also interact

with AT2 and AT1 receptors. Ang (1–7) seems to play a protective role in cardiometabolic and

renal diseases due to its antihypertensive, antiproliferative, antifibrotic, antiarrhytmic,

antithrombotic, antidiabetic, natriuretic and diuretic effects [28, 101–105]. Moreover, it also has

antioxidant and anti-inflammatory actions [106–108].

Figure 4. Regulation of ACE2 by ROS. ACE2, angiotensin converting enzyme 2; ROS, reactive oxygen species; STZ,

streptozotocin.

Renin-Angiotensin System - Past, Present and Future132



Interestingly, both Ang II and Ang (1–7) content appear to be modulated by ROS. In cardiac

fibroblasts from young adult male Sprague Dawley rats, treatment with H2O2 for 3 hours caused

a threefold increase in secreted Ang II levels [22]. Oxidative stress induced by in vitro or in vivo

treatment with high concentrations of albumin or with AOPP-modified albumin also resulted in

increased Ang II levels in cultured RPTCs or in the renal cortex of UNX rats [82, 83]. Noteworthy,

treatment with apocynin reduced the Ang II content in the renal cortex of UNX rats subjected to

high concentrations of albumin or AOPP-modified albumin [82, 83]. In SHR fed a high-fat diet

for 12 weeks there was also an increase in renal immunoreactivity and concentration of Ang II

which was counteracted by tempol treatment but no changes were observed in SHR fed a

normal-fat diet or in WKY fed a normal- or a high-fat diet [21]. Obese Zucker rats exhibited a

similar concentration of Ang II and reduced Ang (1–7) content in the renal cortex, as compared to

lean Zucker rats. Obese rats had also increased diuretic and natriuretic responses to AT1 receptor

blockade and decreased natriuretic response to Ang (1–7). In obese Zucker rats, but not in lean

controls, treatment with tempol significantly decreased renal cortical Ang II content, augmented

Ang (1–7) concentration and reverted the increase in AT1 receptor-mediated effect and the

decrease in the natriuretic response to Ang (1–7) [84]. Moreover, the enhanced Ang II

immunostaining observed in proximal convoluted tubules and cortical collecting ducts of

Sprague Dawley rats subjected to acute sodium overload was also normalized by tempol treat-

ment. The concomitant decrease of hypoxia-inducible factor 1α and increase of eNOS expression

induced by tempol administration to these rats suggest oxidative stress inhibition [109]. Type 1

diabetic Akita mice had unchanged serumAng II concentration, higher urinary Ang II levels and

lower urinary content of Ang (1–7) compared to nonAkita WT mice. Renal mRNA and protein

expression of ACE and ACE2 in Akita mice followed a similar pattern to that observed for

urinary Ang II and urinary Ang (1–7), respectively. The overexpression of catalase in RPTCs of

Akita mice did not alter serum Ang II levels but reduced the renal ACE expression and urinary

Ang II content and normalized renal expression of ACE2 and urinary Ang (1–7) levels [12].

Additionally, in cultured rat mesangial cells, treatment with high glucose induced an increase in

ROS generation, as well as an elevation in the mRNA expression of AGT, ACE and AT1 receptor

and in Ang II concentration in the media. Incubation with DPI reduced ROS generation and the

mRNA expression of RAAS components in these cells [14]. The exposure of cultured vascular

smooth muscle cells (VSMCs) to high-glucose media significantly decreased Ang (1–7) concen-

tration in cell lysates compared to that observed under normal-glucose conditions. High glucose

also induced an upregulation of Nox1 mRNA and protein expression, while decreasing the

expression of Nox4. Treatment with DPI, apocynin, or catalase reverted the lowering effect of

high-glucose on Ang (1–7) content but caused a significant reduction of Ang (1–7) in cells

exposed to normal-glucose media. These results suggest that high glucose stimulates the pro-

duction of Nox1-derived ROS that causes a reduction in Ang 1–7 content. In contrast, under

normal glucose conditions, Nox1- or Nox4-derived ROS appear to contribute to maintain the

physiological concentrations of Ang (1–7) [110]. The changes in Ang II or Ang (1–7) content

observed in these studies probably result from the ROS modulation of renin, AGT, ACE, or

ACE2, although for Ang II we cannot exclude an effect of ROS on other alternative pathways

responsible for its production.

Aldosterone is a steroid hormone primarily produced and secreted by zona glomerulosa in the

adrenal cortex in response to Ang II stimulation through the AT1 receptor [111]. Its synthesis
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from cholesterol involves a series of hydroxylation and oxidation reactions by members of the

cytochrome P450 super family such as aldosterone synthase (CYP11B2), the key enzyme that

catalyzes the final step of aldosterone synthesis and is excessively produced in the type 1 form

of familial primary aldosteronism (PA) [112]. Patients with PA exhibit an increased suscepti-

bility to cardiovascular complications, including left ventricular hypertrophy, stroke, nonfatal

myocardial infarction, atrial fibrillation, as well as higher levels of oxidative stress markers

than essential hypertensive patients, which decrease after specific treatment of PA [113, 114].

Noteworthy, ROS seem to be upstream regulators of aldosterone synthesis. In a study

performed in human and rat adrenal cortical cells, Ang II increased CYP11B2 activity, mRNA

and protein with simultaneous elevation of oxidative stress by-products, NADPH oxidase

activity and H2O2 levels. These Ang II-induced effects were abolished or attenuated by

pretreatment of cells with either the AT1 receptor antagonist losartan, the antioxidants PEG-

catalase and NAC, the Nox inhibitor VAS-2870, siRNA silencing of Nox1, 2 and 4, or inhibitors

of phospholipase C (PLC) and PKC. Importantly, treatment with H2O2 mimicked the facilita-

tory effects of Ang II on CYP11B2 activity, mRNA and protein expression and these changes

were absent or attenuated in PEG-catalase pretreated cells, suggesting that H2O2 is a key

regulator of aldosterone production [115].

Plasma aldosterone levels were also shown to be modulated by the induction of heme

oxygenase-1 (HO-1), an important antioxidant pathway [116–118]. In a rat model of renovas-

cular hypertension treatment with cobalt protoporphyrin markedly increased the expression

and activity of HO-1 and these effects were accompanied by a marked attenuation of the

development of hypertension, decreased oxidative stress and reduced plasma aldosterone

concentration [116]. Although the mechanisms contributing to a lower aldosterone synthesis

by HO-1 induction remain to be clarified, the authors speculated that HO-1 might inhibit the

CYP450 enzymes required for aldosterone formation, by limiting the availability of heme or

by increasing the production of carbon monoxide [116]. Of note, heme is a prooxidant

molecule that has been shown to contribute to increased generation of ROS and lipid

peroxidation, while the HO-1 product carbon monoxide appears to possess antioxidant

properties [116, 118].

Secretory products derived from visceral adipocytes have also been shown to upregulate aldo-

sterone synthase expression and stimulate adrenal aldosterone synthesis thus suggesting a direct

link between obesity and hypertension [119–122]. In fact, several clinical studies have already

observed elevated plasma aldosterone levels in obese patients [121, 122]. In an experimental

model of obesity, it was also shown that the enhanced blood pressure response to Ang II was

associated with an increase in circulating aldosterone. Ang II infusion induced a more prominent

increase in plasma aldosterone levels and blood pressure in obese Zucker rats that in lean

controls. These results corroborate the hypothesis that aldosterone contributes to obesity-related

hypertension [123]. Furthermore, even though the basal circulating aldosterone concentration

was similar in lean and obese Zucker rats [84, 123], treatment with tempol significantly reduced

serum aldosterone levels, in addition to its antioxidant and blood pressure lowering effects, in

obese but not in lean Zucker rats [84]. Of note, although the link between obesity and increased

systemic aldosterone concentration has not been consistently evidenced, it has been reported that
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in obesity-induced hypertension an intrarenal RAAS might operate independently of the sys-

temic RAAS, contributing to increased aldosterone action [21, 124]. Chung et al. demonstrated

that SHR fed a high-fat diet for 12 weeks exhibited increased renal cortical expression of several

RAAS components and augmented 24-h urinary excretion of aldosterone, despite the absence of

changes in plasma renin activity or plasma aldosterone concentration. These SHR rats had also

higher blood pressure and renal oxidative stress, as well as lower fractional excretion of sodium,

than those maintained on a normal-fat diet. Importantly, tempol significantly attenuated the

high-fat diet-induced increases in the renal expression of RAAS components and in urinary

aldosterone excretion and blunted or attenuated the changes in oxidative stress, blood pressure

and sodium reabsorption [21]. These findings emphasize the importance of ROS as regulators of

renal RAAS components, including aldosterone and suggest that the use of a SOD mimetic

might be an effective therapy to prevent the progression of hypertension in obese subjects.

Indeed, in the remnant kidney rat model, an experimental model of progressive nephropathy,

treatment with NAC had a protective effect also attributable to a decrease in oxidative stress and

plasma aldosterone levels [125]. The beneficial effect that NAC had on glomerular filtration rate

was more impressive than the modest reduction in proteinuria and was independent of blood

pressure reduction [125]. Additionally, the combination of NAC and spironolactone was found

to confer additive protection in the same model, improving blood pressure control and renal

function more than did NAC or spironolactone alone, thus suggesting that antioxidant/antihy-

pertensive combinations could be important therapeutic strategies to attenuate the aggravation

of chronic renal disease [125].

The classical genomic pathway whereby aldosterone exerts its effects involves the binding to the

cytosolic mineralocorticoid receptor (MR) within the renal cortical collecting duct cells and

subsequent translocation of this aldosterone-MR complex to the nucleus, thereby promoting the

transcription of genes that regulate electrolyte and fluid balance resulting in sodium

reabsorption, water retention and potassium and magnesium loss, with consequent volume

expansion and blood pressure rise [102]. It is well known now that inappropriate regulation of

the aldosterone/MR system contributes to sodium retention and hypertension and to the devel-

opment of renal injury [126]. These adverse actions of aldosterone in the kidney appear to involve

the production of ROS that activate the MAPK pathway in renal cortical tissues, which in turn

causes renal injury [127, 128]. Interestingly, MR activation and subsequent renal injury may be

triggered by other ligands and/or pathological conditions besides aldosterone [129]. In Dahl salt-

sensitive rats, glomerular MR was activated by high-salt-feeding-induced oxidative stress and

this effect was suppressed by tempol. In vitro luciferase assays also confirmed that oxidative

stress can accelerate MR transcriptional activity in the glomeruli cells [129]. Moreover, MR

activation was sustained by high ROS production even after reducing salt intake. Therefore,

oxidative stress appears to limit the therapeutic effects of salt restriction, an important therapeutic

strategy for salt-sensitive hypertensive patients [129]. Since previous studies also demonstrated

that ROS stimulate aldosterone production [21, 115, 125], the use of antioxidants might be an

effective strategy to protect the kidney from the overactivation of the aldosterone/MR system.

The main effects of ROS on AngII, Ang (1–7) and aldosterone are depicted in Figures 5 and 6,

respectively.
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Figure 5. Regulation of AngII and Ang (1–7) by ROS. Ang (1–7), angiotensin 1–7; Ang II, angiotensin II; HF, high-fat; HG,

high-glucose; NF, normal-fat; ROS, reactive oxygen species; SHR, Spontaneously Hypertensive Rats; UNX,

uninephrectomized; WKY, Wistar Kyoto.

Figure 6. Regulation of aldosterone by ROS. Ang II, angiotensin II; HF, high-fat; HO-1, heme oxygenase-1; HS, high-salt;

MR, mineralocorticoid receptor; NF, normal-fat; NS, normal-salt; ROS, reactive oxygen species; SHR, Spontaneously

Hypertensive Rats; WKY, Wistar Kyoto.
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2.5. ROS and Ang receptors

Ang II, the major effector of the RAAS, elicits its actions by binding to the AT1 or to the AT2

receptor, which belong to the GPCR superfamily [91]. The AT1 receptor actually comprises two

isoforms, the AT1A receptor and AT1B receptor subtypes that share 95% amino acid sequence

homology. Although they have been considered pharmacologically identical, there appears to

be differences in their tissue distribution and transcriptional regulation [91]. Furthermore,

several studies have suggested that in vascular tissues, AT1 receptors are AT1B prejunctionally

and AT1A postjunctionally [130–133]. AT1 receptor activation initiates several signaling path-

ways, including those associated with heterotrimeric G-proteins, G-protein independent β-

arrestin, nonreceptor and receptor tyrosine kinases, ROS and small guanosine triphosphate

(GTP) binding proteins, which contribute for the wide range of responses to Ang II [91]. One

important feature of the AT1 receptor is the rapid phosphorylation and internalization that

occur following stimulation by Ang II [91, 134]. This physiological mechanism limits the

functional availability of AT1 receptors on the cell surface, thus avoiding exaggerated respon-

siveness to Ang II [134]. Several physiological and pathological factors, including Ang II, ROS,

cytokines, growth factors and hormones, regulate AT1 receptors in all organs [91, 134, 135].

The AT2 receptor shares only 34% amino acid sequence homology with the AT1 receptor and

exhibits obvious differences in its tissue-specific expression, signaling pathways, pharmaco-

logical features and regulation of receptor function [91]. Signal transduction mechanisms

initiated by AT2 receptor activation are unusual for a GPCR and markedly different from those

driven by AT1 receptor. Of note, the AT2 receptor does not undergo desensitization and

internalization on stimulation by Ang II [91]. The AT2 receptor signaling involves Gi/Go

activation, protein phosphatases, scaffold proteins, NO/cyclic guanosine monophosphate

(cGMP), ion channel protein and constitutive activity (ligand-independent actions). The AT2

receptor is expressed in low levels in normal nongrowing cells [91].

There is evidence that AT1 and AT2 receptors mediate opposite actions in response to Ang II. AT1

receptor activation induces several effects such as vasoconstriction, enhancement of sympathetic

outflow, aldosterone release, sodium reabsorption, ROS generation, inflammation, cell prolifera-

tion and extracellular matrix formation that contribute to cardiovascular and renal dysfunction

under conditions of enhanced AT1 receptor stimulation [90, 91]. In contrast, AT2 receptor appears

to play a beneficial role in cardiovascular disease due to its vasodilatory, natriuretic, apoptotic,

anti-proliferative, antifibrotic and anti-inflammatory effects [90, 91, 136]. Of note, some of these

AT2 receptor actions appear to be best detected under partial AT1 receptor blockade [91, 102].

Given the protective effects of AT2 receptor activation, research is being conducted in order to

develop specific agonists of AT2 receptors [102]. The compound 21 is one of these drugs, but

unexpectedly it had no effect or even increased blood pressure, an effect that may be related to

the fact that in SHR the AT2 receptors may present an AT1 receptor-like profile [102, 137].

Nevertheless, AT2 receptor agonists may be useful to protect against tissue injury [102, 136].

ACE2 transforms Ang II into Ang (1–7), which has been shown to exert vasodilatory, antiproli-

ferative, natriuretic, antithrombotic and antiarrhytmic actions. The MAS receptor, an orphan

GPCR, appears to mediate many of these effects and has therefore been proposed as a candi-

date receptor for this RAAS peptide [91]. Indeed, MAS-knockout mice exhibit changes in heart

rate and blood pressure variability, impaired cardiac and renal function accompanied by
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profibrotic changes, increased expression of proinflammatory molecules and several metabolic

changes such as augmented abdominal fat mass, dyslipidemia, increased insulin and leptin

concentration and altered response of adipocytes to insulin [91]. Nevertheless, deletion of the

MAS gene may confer protection against salt-induced hypertension and cardiac or renal

ischemia-reperfusion injury [91]. Activation of MAS receptor by Ang (1–7) is thought to

involve the production of arachidonic acid and nitric oxide synthase (NOS) activation. The

potential protective effects of MAS activation by Ang (1–7) make this receptor an attractive

drug target [91].

The majority of studies evaluating the regulation of AT1 receptors by ROS has been performed in

the kidney and has demonstrated a stimulating effect of these species on AT1 receptors [14, 17,

21, 82–84, 138–141]. In adult male Sprague Dawley rats treated for 2 or 3 weeks with L-

buthionine sulfoximine (BSO), a prooxidant agent that inhibits the synthesis of glutathione

(GSH) [142], the increase in oxidative stress and blood pressure was accompanied by the

upregulation of the mRNA, protein and ligand binding of the AT1 receptor in renal proximal

tubules when compared to normotensive controls [138, 139]. Furthermore, incubation with Ang

II had a markedly higher impact on AT1 receptor signaling and on the activation of the sodium

transporters Na+/K+-ATPase andNa+/H+ exchanger 3 in renal proximal tubules from BSO-treated

rats than in those from control rats [138, 139]. Treatment for 2 or 3 weeks with tempol decreased

oxidative stress and normalized AT1 receptor mRNA, protein and ligand binding [138, 139].

Furthermore, tempol also reduced AT1 receptor signaling and activation of sodium transporters

in response to Ang II [138, 139]. Overall, the restoration of AT1 expression and signaling with the

antioxidant tempol might have contributed to the normalization of blood pressure in BSO-

treated rats [138, 139]. The protective effects of tempol on AT1 receptor regulation were also

evidenced in obese Zucker rats and in SHR fed a high-fat diet [21, 84]. Obese Zucker rats showed

higher basal blood pressure values than age-matched lean Zucker rats, as well as an age-

dependent increase in blood pressure that was not observed in lean rats [84]. Obese rats also

exhibited increased systemic and renal cortical oxidative stress, augmented AT1-receptor-medi-

ated effects on sodium and water excretion and increased renal cortical mRNA and protein

expression of the AT1 receptor [84]. Tempol treatment for 4 weeks prevented the age-dependent

increase in blood pressure in obese Zucker rats, although their blood pressure values remained

higher than in lean Zucker rats [84]. Tempol also ameliorated oxidative stress, reversed the AT1-

receptor-mediated actions on sodium and water excretion and decreased the renal cortical

mRNA and protein expression of AT1 receptor in obese Zucker rats but did not alter these

parameters in lean Zucker rats [84]. Data from in vitro assays were also in agreement with the

in vivo findings. RPTCs from 14-week-old obese Zucker rats, compared to those from lean

Zucker rats, showed a higher protein expression of the AT1 receptor which was normalized by

the in vitro treatment with tempol for 24 hours [84]. A significantly higher renal cortical protein

expression of AT1 receptor was also observed in SHR fed a high-fat diet for 12 weeks, starting at

the age of 8 weeks. This effect was not verified in SHR fed a normal-fat diet or in WKYrats fed a

normal- or a high-fat diet for the same period of time [21]. Furthermore, in SHR fed a high-fat

diet and simultaneously treated with tempol, there was a significant reduction in renal cortical

AT1 receptor protein expression [21]. Beneficial effects of tempol have also been demonstrated in

a rat aging model [140]. Aged (21 months old) Fischer 344 Brown Norway F1 (FBN) rats

exhibited increased oxidative stress, evidenced by the augmented plasma isoprostanes
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concentration, decreased urinary antioxidant capacity and increased expression of NADPH

oxidase-gp91phox in renal proximal tubular homogenate, when compared to adult (3 months

old) FBN rats [140]. These effects were accompanied by exaggerated AT1 receptor-mediated

actions on urine flow and urinary sodium excretion [140]. Tempol treatment for 3 or 4 weeks

reduced oxidative stress and normalized the AT1 receptor-mediated effects on diuresis and

urinary sodium excretion in aged but not in adult FBN rats [140].

The impact of ROS on AT1 receptor regulation has also been studied in in vivo or in vitro models

of diabetes [14, 141]. In STZ-induced diabetic male Sprague Dawley rats, treatment with recom-

binant human extracellular SOD for 4 weeks, beginning 2 weeks after STZ, prevented the

decrease in renal SOD activity and the increase in protein expression of the renal AT1 receptor

induced by STZ intraperitoneal injection [141]. In the rat glomerular mesangial cell line HBZY-1

exposed to a high-glucose medium, ROS generation and the AT1 receptor mRNA levels were

significantly augmented when compared to the effects observed in cells cultured in the normal-

glucose medium [14]. These effects were abolished by DPI or by application of NaHS, a donor of

the gas transmitter hydrogen sulfide which is also known to exhibit antioxidative properties [14,

143]. Intriguingly, in the same study these authors observed a downregulation, instead of an

upregulation, of the AT1 receptor mRNA expression in the kidney of diabetic male Sprague

Dawley rats, 3 weeks after STZ injection [14]. Treatment with NaHS during the 3rd week

abolished the decrease in mRNA levels of the AT1 receptor in STZ-induced diabetic rats, but

did not alter the AT1 receptor expression in nondiabetic rats [14].

A study of our group in a model of arterial hypertension induced by the infusion of Ang II in

male Sprague Dawley rats showed that Ang II increased H2O2 production and the protein

expression of Nox4 and AT1 receptor in the renal medulla, but not in the renal cortex [17].

Noteworthy, treatment of Ang II-infused rats with PEG-catalase from day 7 to day 14 signifi-

cantly reduced H2O2 production and the expression of Nox4 and AT1 receptors in the renal

medulla, thus suggesting that Ang II-derived H2O2 in the renal medulla stimulates the expres-

sion of Nox4 and AT1 receptors[17].

The upregulation of intrarenal AT1 receptor has also been evidenced in models of renal

disease. Female WKY rats subjected to UNX and treated with bovine serum albumin for 4

weeks had increased O2
•− generation and upregulation of AT1 receptor mRNA and protein in

the renal cortex [82]. Treatment of protein-overload UNX rats with apocynin for 3 weeks

reduced renal cortical O2
•− production and AT1 receptor mRNA and protein levels [82].

Similar effects were also observed in male Sprague Dawley rats subjected to UNX and treated

with AOPP-modified albumin [83]. These UNX rats treated with AOPP-modified albumin also

showed increased renal cortical O2
•− generation, as well as an augmented expression of the

mRNA and protein of AT1 receptor [83]. As previously observed in protein-overload UNX rats,

treatment with apocynin also reduced the production of O2
•− and the mRNA and protein

levels of the AT1 receptor in the renal cortex of AOPP-albumin-challenged rats [83]. The effects

observed for the in vivo treatment with high levels of albumin or with AOPP-modified albumin

on ROS production and AT1 receptor expression were also reproduced in in vitro assays using

cultured RPTCs (NRK52E) [82, 83].

In the heart, the mechanisms linking oxidative stress to altered AT1 expression were investi-

gated in fibroblasts prepared from young adult (2–3 months old) male Sprague Dawley rats
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[22]. Treatment of cardiac fibroblasts with H2O2 caused a sixfold increase in AT1 receptor

mRNA levels in 3 hours, which were reduced to twofold at the end of 12 hours. AT1 receptor

protein expression was also significantly increased with maximum values reached at 6 and 12

hours of H2O2 treatment [22]. The preincubation of cardiac fibroblasts with the NADPH

inhibitors DPI or VAS2870 abolished the H2O2-induced increase in AT1 receptor mRNA and

protein levels. Treatment with DPI also inhibited the H2O2-induced increase in intracellular

ROS in cardiac fibroblasts [22]. Further experiments also showed that H2O2 induced the

activation of NF-κB and activator protein 1 (AP-1) in cardiac fibroblasts and that preincubation

of these cells for 60 min with the NF-κB inhibitor BAY-11-7085 or with the AP-1 inhibitor

SR11302 prior to H2O2 treatment attenuated the AT1 mRNA and protein expression. These

data demonstrate that the H2O2-induced increase of AT1 receptor mRNA and protein expres-

sion in cardiac fibroblasts involves the activation of NF-κB and AP-1 [22]. In subsequent

experiments, H2O2 was also shown to increase by threefold the local secretion of Ang II. In

addition, treatment with Ang II augmented the AT1 receptor mRNA and protein expression in

cardiac fibroblasts and these effects were significantly reduced by pretreatment with VAS2870.

Therefore, it was concluded that Ang II increases the AT1 receptor mRNA and protein expres-

sion in cardiac fibroblasts via NADPH oxidase-dependent ROS [22]. Moreover, H2O2 treat-

ment significantly increased collagen mRNA and protein expression in these cells and the AT1

receptor antagonist candesartan decreased these effects [22]. Overall, these findings suggest

the existence of a positive feedback loop involving the reciprocal regulation of ROS, Ang II and

the AT1 receptor, which sustains the Ang II pathological signaling in the heart [22].

There have been contradictory reports regarding the effects of ROS on the AT1 receptor

regulation in the vasculature [135, 144]. In a study aimed at characterizing the second messen-

gers used by Ang II in the regulation of AT1 receptor gene expression, Nickenig et al. showed

that treatment with Ang II caused a significant release of ROS in VSMCs and a

downregulation in AT1 receptor mRNA and density in cultured VSMCs isolated from the

thoracic aorta of 6–10-week old female WKY rats. Coincubation with DPI significantly

inhibited the Ang II-induced ROS release and the downregulation in AT1 receptor mRNA

[135]. VSMCs were also incubated with a mixture of H2O2 and ferric nitrilotriacetate or with

xanthine oxidase plus purine in order to evaluate if ROS have direct effects on AT1 receptor

expression. Both H2O2 and xanthine oxidase induced a dose-dependent downregulation in

AT1 receptor mRNA. H2O2 also decreased the AT1 receptor protein expression [135]. Further

experiments demonstrated that although H2O2 did not alter the AT1 receptor mRNA transcrip-

tion rate it caused a marked decrease in the AT1 receptor mRNA half-life, thus suggesting that

ROS destabilize the AT1 receptor mRNA [135]. These findings identify ROS as possible medi-

ators of Ang II-induced downregulation of the AT1 receptor and suggest that ROS-mediated

negative feedback regulation of AT1 receptor is a cellular self-protecting mechanism that limits

the potential pathological effects of the exposure of VSMCs to high concentrations of ROS

generated in response to prolonged AT1 receptor activation [135]. In contrast to these results,

Bhatt et al. demonstrated that augmented vascular oxidative stress caused an upregulation of

the AT1 receptor in human aortic smooth muscle cells and in arteries from 11 to 12 weeks old

SHR [144]. Treatment of these cells for 24 hours with BSO or with H2O2 for 3 hours failed to

induce a significant increase in AT1 receptor mRNA. However, the combination of these

oxidants elicited a twofold increase in the AT1 receptor mRNA, as well as an increase in
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oxidative stress. These effects were prevented by the simultaneous treatment with catalase.

Moreover, in the presence of p65 siRNA, the oxidant treatment did not increase the AT1

receptor mRNA [144]. In SHR, but not in WKY rats, vascular oxidative stress was also

increased, as evidenced by augmented H2O2 levels and was associated with increased vascular

protein expression of NF-κB and AT1 receptor and enhanced vasoconstriction in response to

Ang II. Treatment with the antioxidant and NF-κB inhibitor pyrrolidine dithiocarbamate

(PDTC) for 6–7 weeks reduced blood pressure, vascular H2O2 levels, p65 overexpression, AT1

receptor expression and Ang II-induced vasoconstriction [144]. Together, these results indicate

that under conditions of enhanced oxidative stress there is an upregulation of vascular AT1

receptor that possibly involves ROS-induced NF-κB activation. Furthermore, the blood pres-

sure lowering the effect of PDTC might have resulted from the normalization of vascular AT1

receptor expression and prevention of exaggerated vasoconstriction to Ang II [144]. In addition

to the stimulation of vascular AT1 receptor expression, ROS may also enhance the vascular

response to Ang II by increasing the functional availability of AT1 receptors [134]. Under

physiological conditions, AT1 receptors are rapidly desensitized and internalized on stimula-

tion by Ang II, thus avoiding an excessive responsiveness to Ang II [91, 134]. However, in

pathological conditions such as arterial hypertension this mechanism might be compromised

thus resulting in sustained activation of AT1 receptors [134]. Bagi et al. tested the hypothesis

that the acute exposure of resistance arteries to high intraluminal pressure increases the

constriction to Ang II via a ROS-mediated improvement in the functional availability of AT1

receptors [134]. In this study, performed in gracilis arterioles isolated from male Wistar rats,

they observed that the transient exposure of the vessels to high intraluminal pressure

(160 mmHg) significantly increased the constrictions to the second application of Ang II. This

response was reduced by the AT1 receptor antagonist telmisartan but not by the selective AT2

receptor blocker PD123,319. In addition, preincubation of the arterioles with tiron or with

PEG-catalase prevented the high intraluminal pressure-induced increase of arteriolar constric-

tions to the second application of Ang II [134]. Furthermore, the transient exposure to H2O2

resulted in augmented vessel constriction in response to the second application of Ang II.

Overall, these findings indicate that ROS, especially H2O2, contribute to the high pressure-

induced increase of the vasoconstriction to Ang II. This pathological feedforward mechanism

may therefore lead to increased vascular resistance and amplify the hypertensive state [134].

The effects of oxidative stress on AT1 receptor expression were also studied in macrophages,

since Ang II is a proatherogenic molecule and both oxidative stress and AT1 receptor expres-

sion are increased in hypercholesterolaemia [145–147]. In mouse peritoneal macrophages

(MPMs) harvested from the E0 mice, an animal model of severe hypercholesterolemia and

atherosclerosis caused by apolipoprotein E deficiency, there was an age-dependent increase in

lipid peroxide content accompanied by an age-dependent increase in the AT1 receptor mRNA

and protein expression [146]. MPMs obtained from 3.5 months old E0 mice treated for 6 weeks

with the potent antioxidant vitamin E had lower lipid peroxides concentration and reduced

AT1 receptor mRNA expression, compared to MPMs harvested from untreated E0 mice [146].

To further demonstrate the role of oxidative stress in the regulation of macrophage AT1

receptor, the GSH content was manipulated by the supplementation for 5 weeks with BSO or

with L-2-oxothiazolidine-4-carboxylic acid (OTC), a precursor of GSH synthesis. It was

observed that the reduction in macrophage GSH content was associated with increased AT1
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receptor mRNA expression, whereas the elevation of macrophage GSH levels caused a lower

expression of AT1 receptor mRNA. Similar effects of BSO and OTC on the AT1 receptor mRNA

expression were shown in MPMs obtained from control BALB/c mice [146]. Moreover, oxi-

dized LDL, but not native LDL, caused a significant dose-dependent increase in AT1 receptor

mRNA and protein levels in MPMs from BALB/c mice [146]. These results suggest that

oxidative stress enhances the proatherogenic effects of Ang II by inducing the overexpression

of AT1 receptors in arterial macrophages [146].

The regulation of AT1 receptor by oxidative stress was also investigated in the central nervous

system of male New Zealand white rabbits with chronic heart failure (CHF) [148]. It is well

known that activation of the RAAS and of the sympathetic nervous system in CHF critically

contributes to the development and progression of this pathological syndrome [148–151]. Previ-

ous studies have shown that CHF animals exhibit an upregulation of central AT1 receptor and

that the stimulation of sympathetic outflow by central Ang II treatment is mediated by oxidative

stress via stimulation of NADPH oxidase-derived ROS production [148, 152–154]. Furthermore,

NADPH oxidase-derived ROS in the rostral ventrolateral medulla (RVLM) are involved in the

Ang II-induced pressor responses [155]. Therefore, Liu et al. evaluated the relationship between

oxidative stress, antioxidant treatment and AT1 receptor regulation in a neuronal cell line and in

the RVLM of CHF rabbits. They observed that treatment of CATH.a cells with Ang II markedly

increased the AT1 receptor mRNA expression, NADPH oxidase activity and O2
•− generation

[148]. These effects on the AT1 receptor expression and oxidative stress were inhibited by the AT1

receptor antagonist losartan, apocynin and tempol, thus suggesting that there is a positive

feedback mechanism whereby Ang II upregulates the AT1 receptor expression via increased

ROS production [148]. In the RVLM of CHF rabbits that received an intracerebroventricular

infusion of tempol for 7 days AT1 receptor mRNA and protein expression was significantly

reduced when compared to vehicle-infused CHF rabbits. Furthermore, they also verified that

the RVLM AP-1 binding activity that was previously shown to be increased in CHF rabbits,

compared to sham rabbits, was decreased by the intracerebroventricular administration of

tempol to CHF rabbits [148]. Collectively, these findings indicate that ROS play a major role in

the central upregulation of AT1 receptor expression in CHF.

Currently, there is a lack of studies regarding the regulation of AT2 andMAS receptors by ROS.

To our knowledge, only one study explored the impact of oxidative stress on AT2 and MAS

receptor expression. The evaluation of mRNA and protein expression of RAAS components in

the renal cortex of 10-week-old male obese Zucker rats revealed that there was an increase in

the AT1 receptor accompanied by augmented AT2 receptor expression and lower expression of

MAS receptor, compared to lean Zucker rats [84]. In addition, obese rats also exhibited a

greater diuretic and natriuretic response to the AT2 receptor agonist CGP-42112A and a lower

Ang (1–7)-mediated natriuresis than lean rats [84]. Treatment with tempol for 4 weeks further

increased AT2 receptor expression, as well as the AT2 receptor-mediated diuretic and natriuretic

responses in obese, but not lean rats. It also decreased AT1 receptor expression and increased

MAS receptor expression and the diuretic effect of Ang (1–7) in obese rats but not in lean Zucker

rats [84]. In agreement with the in vivo data, cultured RPTCs obtained from 14-week-old obese

Zucker rats showed higher protein expressions of AT1 and AT2 receptors, but decreased protein

expression of MAS receptor when compared with cells from lean Zucker rats [84]. In vitro

treatment with tempol for 24 hours reduced AT1 receptor expression, increased the expression
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of MAS receptor and further increased the expression of AT2 receptor expression [84]. These

results suggest that in obesity the supplementation with antioxidants may correct the balance

between natriuretic and antinatriuretic components of the renal RAAS [84].

Figures 7 and 8 summarize the effects of ROS on Ang receptors.

Figure 7. Regulation of AT1 receptor by ROS. Ang II, angiotensin II; AOPP, advanced oxidation protein products; BSO, L-

buthionine sulfoximine; CHF, chronic heart failure; GSH, glutathione (reduced form) HASMCs, human aortic smooth

muscle cells; HF, high-fat; HG, high-glucose; NF, normal-fat; NG, normal-glucose; ROS, reactive oxygen species; RVLM,

rostral ventrolateral medulla; SHR, Spontaneously Hypertensive Rat; STZ, streptozotocin; UNX, uninephrectomized;

VSMCs, vascular smooth muscle cells; WKY, Wistar Kyoto.

Figure 8. Regulation of AT2 receptor and MAS receptor by ROS.
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3. Conclusions

A plethora of experimental evidence indicates that ROS are important upstream regulators of the

expression, secretion and/or activity of RAAS components. The majority of the referred studies

suggests that under conditions of increased ROS availability there is an enhanced RAAS activa-

tion that is attenuated or abolished by treatment with antioxidants or inhibitors of ROS produc-

tion. Nevertheless, there are also some reports of negative regulation of RAAS constituents by

oxidant species that might serve as physiological protective mechanisms limiting the

overactivation of this system and consequent deleterious effects on cell and organ functions.

Importantly, in experimental pathological conditions associated with increased oxidative stress,

such as arterial hypertension, obesity, diabetes, heart failure and renal disease, ROS have been

shown to promote RAAS upregulation, thereby inducing a positive feedback loop that aggravates

the cardiometabolic and/or renal injury. Currently, there is a lack of clinical studies evaluating the

impact of the manipulation of ROS levels by antioxidants or inhibitors of ROS production on the

expression, secretion and activity of RAAS components. The elucidation of the role of ROS in the

regulation of RAAS in human physiological and pathological conditions, as well as the develop-

ment of dual antioxidant-cardiovascular acting drugs and comparison of their clinical efficacy

over currently used agents, would be important to improve the therapeutic strategies for many

pathologies for which the blockade of RAAS appears to be insufficient to prevent disease-associ-

ated morbidity and mortality due to the existence of escape mechanisms.
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Abbreviations

AP-1 activator protein 1

AOPPs advanced oxidation protein products

CYP11B2 aldosterone synthase

AT1 Ang II type 1

AT2 Ang II type 2

Ang (1–7) angiotensin (1–7)

Ang (1–9) angiotensin (1–9)

Ang III angiotensin 2–8

Ang IV angiotensin 3–8

ACE angiotensin-converting enzyme

Ang I angiotensin I

Ang II angiotensin II

ACE2 angiotensin-converting enzyme 2

AGT angiotensinogen

CHF chronic heart failure

CD36 cluster of differentiation 36
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cAMP cyclic adenosine monophosphate

cGMP cyclic guanosine monophosphate

COX-2 cyclooxygenase-2

DPI diphenylene iodonium

DJ-1−/− DJ-1-knockout mice

eNOS endothelial nitric oxide synthase

ET-1 endothelin 1

ELISA enzyme-linked immunosorbent assay

ERK extracellular signal-regulated kinase

FBN Fischer 344 Brown Norway F1

GSH glutathione

GPCR G-protein-coupled receptor

GTP guanosine triphosphate

HO-1 heme oxygenase-1

HDL high-density lipoprotein

H2O2 hydrogen peroxide
•OH hydroxyl radical

PVN hypothalamic paraventricular nucleus

IRPTCs immortalized renal proximal tubule cells

JNK Jun Kinase

JG juxtaglomerular

OTC L-2-oxothiazolidine-4-carboxylic acid

BSO L-buthionine sulfoximine

LpA lipoprotein A

LDL low-density lipoprotein

MR mineralorticoid receptor

MAPK mitogen activated protein kinase

MCP-1 monocyte chemoattractant protein 1

MPMs mouse peritoneal macrophages

NAC N-acetylcysteine

Nox NADPH oxidase isoform

NADPH nicotinamide adenine dinucleotide phosphate

NO nitric oxide

NOS nitric oxide synthase

Nrf2 Nuclear factor erythroid 2-related factor 2

NF-κB nuclear factor kappa B

PMA phorbol 12-myristate 13-acetate

PLC phospholipase C

PCR polymerase chain reaction

PA primary aldosteronism

PRR (pro)renin receptor (PRR)

PKA protein kinase A

PKC protein kinase C

PDTC pyrrolidine dithiocarbamate

ROS reactive oxygen species
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RPTCs renal proximal tubule cells

RAAS renin-angiotensin-aldosterone system

RVLM rostral ventrolateral medulla

SHR spontaneously hypertensive rats

STZ streptozotocin

SOD superoxide dismutase

O2
•− superoxide radical

TBARS thiobarbituric reactive substances

TGFβ transforming growth factor β

TNFα tumor necrosis factor α

NOS1 type 1 nitric oxide synthase

UNX unilateral nephrectomy

VSMCs vascular smooth muscle cells

WB Western Blot

WT wild-type

WKY Wistar-Kyoto

XOD xanthine/xanthine oxidase

ZDF Zucker Diabetic Fatty
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