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Abstract

Wheat is consumed as a staple food by more than 36% of world population. Wheat pro-
vides nearly 55% of the carbohydrates and 20% of the food calories consumed globally. 
The productivity of wheat is often adversely affected by salt stress which is associated 
with decreased germination percentage, reduced growth, altered reproductive behavior, 
altered enzymatic activity, disrupted photosynthesis, damage of ultrastructure of cellular 
components, hormonal imbalance, and oxidative stress. Different approaches have been 
adopted to improve plant performance under salt stress: introduction of genes, screening 
of better performing genotypes, and crop improvement through conventional breeding 
methods which are often not so successful and suitable due to time-consuming or reduc-
tion of plant vigor with the succession of time. Uses of exogenous phytoprotectants, seed 
priming, nutrient management, and application of plant hormone are convenient for 
improving plant performances. This chapter reviews the mechanism of damage of wheat 
plants under salt stress and also the recent approaches to improve growth and productiv-
ity of salt-affected wheat plants emphasizing the use of exogenous phytoprotectants from 
the available literature.
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phytohormones
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1. Introduction

Worldwide, more than 20% of the cultivable land is affected by salinity. Due to climate change 
and anthropogenic activities, the salt affected area is tended to increase day by day [1]. Abiotic 

stresses (including salinity) are accountable for more than 50% yield reduction [2]. In con-

trary, due to rapid increase of global population, food production should be increased by 

more than 70% by 2050 [3]. Wheat (Triticum spp.) ranks first in the world's grain production. 
Wheat is consumed as staple food by more than 36% of world population. Wheat provides 

nearly 55% of the carbohydrates and 20% of the food calories consumed globally [4, 5]. The 

productivity of wheat is often adversely affected by salt stress. The yield of wheat starts to 
decline at 6–8 dS m−1 [6]. Under salt stress, hyperosmotic and hyperionic (ion toxicity) stresses 

occur due to low water potential of soil and excess sodium ion accumulation within the plant. 

Ionic stress is also associated with nutritional imbalance [7, 8]. Decreased germination per-

centage, reduced growth, altered reproductive behavior, and reduced yield are general effects 
on plants under salt stress [9]. Altered enzymatic activity, disrupted photosynthesis, oxida-

tive stress, disrupted biomembrane structure and function, damage of ultrastructural cellular 

components, and hormonal imbalance are some reasons for decreasing overall growth and 

development of plants under salt stress [10–12].

Salt stress tolerance is a polygenic trait regulated by multiple factors/genes. Exclusion of 

Na+, cytosolic K+ retention and maintenance of K+/Na+ homeostasis, osmotic adjustment, 

transpiration efficiency, and enhanced antioxidant defense system are vital for better plant 
performance under salt stress [13–15]. Different approaches have been adopted to improve 
plant performance under salt stress; introduction of genes, screening of better performing 
genotypes, and crop improvement through conventional breeding methods which are often 

not so successful and not suitable due to time consuming or reduction of plant vigor with 

the succession of time. Uses of exogenous phytoprotectants, seed priming, nutrient man-

agement, and application of plant hormones are convenient for improving plant perfor-

mances. These approaches are being also popular for stress management practices including 

the salt stress [16–25]. In this chapter, we will review the recent research works on differ-

ent approaches of salt stress tolerance in wheat plants emphasizing the use of exogenous 

phytoprotectants.

2. Wheat responses to salt stress

Salinity is one of the most devastating abiotic stresses having enormous negative effects 
on morphological, physiological, and biochemical attributes of plant including germina-

tion, growth, water uptake, photosynthesis, nutrient uptake, enzymatic activities, and yield. 

A number of studies revealing the effects of salt stress on different wheat cultivars, among 
which some are tolerant and some susceptible to salt stress. Higher salinity causes lower 

germination rate, photosynthesis, transpiration, and higher accumulation of Na+ and Cl− ions 

which disturb the normal metabolic processes of wheat plants (Table 1; Figure 1).
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Cultivars Salinity level Effects Reference

MH-97 and 

AUQAB-2000

15 dS m−1 • Decreased DW and FW of root and shoot

• Increased activities of catalase (CAT) and super-

oxide dismutase (SOD)

• Increased protein and AsA contents

Afzal et al. [43]

KRL-19 and WH-542 100 mM NaCl, 6 d • Decreased leaf relative water content (RWC) 

and leaf osmotic potential

• Increased H
2
O

2
, malondialdehyde (MDA) con-

tents and electrolyte leakage

• Increased activities of CAT, glutathione reduc-

tase (GR), SOD, ascorbate peroxidase (APX), 

and peroxidase (POD)

• Increased Na+ accumulation, decreased K+ ac-

cumulation, and increased K+/Na+ ratio

Mandhania et al. 

[37]

S-24 and MH-97 150 mM NaCl, 7 d • Decreased shoot and root FW

• Decreased grain yield, 1000 grain weight and 

transpiration rate

• Increased Na+ and Cl− contents and decreased K+ 

and Ca2+ contents in both leaf and root

Arfan et al. [19]

MH-97 150 mM NaCl • Increased mean germination time

• Decreased FW and DW of shoot and leaf area

• Increased Na+ and Cl− contents, and decreased 

K+ and Ca2+ contents and K+/Na+ ratio

• Decreased NO
3

− and PO
4

3− contents

Wahid et al. [35]

Inqlab-91 and 

SARC-1

125 mM NaCl, 7 d • Increased Na+ and Cl− contents, and decreased 

K+ and Ca2+ contents

• Decreased FW and DW

Afzal et al. [28]

Banysoif 1 320 mM NaCl, 

155 d

• Decreased contents of photosynthetic pigments 

and rate of transpiration

• Increased Pro content and decreased amino acid 

content

• Higher accumulation of Na+ in root, shoot, and 

spike

Tammam et al. [36]

Hirmand, Chamran, 

Hamoon, Bolani, 

Sorkhtokhm, and 

Kavir

12.5 dS m−1 • Delayed and decreased seed germination

• Increased Na+ accumulation and decreased K+ 

content in both shoot and root

Akbarimoghaddam 

et al. [30]

Tatara-96, 

Ghaznavi-98, 

Fakhri Sarhad, 

Bakhtawar-92, 

Pirsabaq-2004, and 

AUQAB-2000

120 mM NaCl • Decreased shoot FW and DW

• Increased Na+ and K+ contents, and decreased 

K+/Na+ ratio

Jamal et al. [32]
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2.1. Germination

Germination is one of the most important and vital processes of plant life cycle. It is the 

determinant of the subsequent growth and yield characteristics of plants. Available literature 

showed that wheat seeds tended to germinate at a lower rate and consumed longer time when 

exposed to salt stress. The reasons underlying this fact are higher concentrations of salt cre-

ate lower osmotic potential of germination media which hampers the imbibition of water by 

seed, creates an imbalance in the normal activities of enzymes responsible for nucleic acid and 

protein metabolism, causes hormonal imbalance, and deteriorates the food reserves of seed 

[26]. But, there are many other factors related to the plant and environment which also have 

effects on germination process. These include age of seed, seed dormancy, seed coat hard-

ness, seed polymorphism, vigority of seedling, moisture, temperature, gasses, and light, etc. 

[27]. Germination also varies with different cultivars considering whether tolerant or suscep-

tible type. Afzal et al. [28] reported that under saline condition (125 mM NaCl), wheat seeds 

required longer time for germination than seeds under nonsaline condition. Similar results 

were presented by Ghiyasi et al. [29] with upto 16 dS m−1 salinity levels. Mean  germination 

Cultivars Salinity level Effects Reference

Tajan, Rasoul, Atrak, 

and Kouhdasht

16 dS m−1 • Decreased grain yield and 1000-grain weight

• Increased Na+ and Cl− contents, and decreased 

K+ and Ca2+ contents

Asgari et al. [40]

Caxton 200 mM NaCl, 8 d • Decreased germination percentage Fuller et al. [31]

MH-97 and 

Inqlab-91

15 dS m−1 • Decreased net CO
2
 assimilation rate, stomatal 

conductance, and transpiration rate

• Decreased shoot FW

Iqbal and Ashraf 

[44]

Dan-4589 80 mM (NaCl and 

Na
2
SO

4
 at a molar 

ratio of 9:1)

• Increased Na+ content and decreased K+ content

• Decreased rate of photosynthesis and 

transpiration

• Decreased chl content and intercellular CO
2
 

concentration

Guo et al. [33]

HD 2329 and 

Kharchia-65

200 mM NaCl, 9 d • Decreased activity of SOD and increased activi-

ties of POD, APX, CAT, and GR

Singh et al. [45]

Transgenic lines: T1, 

T4, and T6

200 mM NaCl, 4 d • Decreased net photosynthetic rate, stomatal con-

ductance, and increased intercellular CO
2
 concen-

tration in leaves

• Decreased chl and carotenoid contents

Tian et al. [46]

Yangmai 16 0.75% NaCl • Higher accumulation of Na+ and decreased K+/

Na+ ratio

Zhang et al. [47]

Jimai 22 100 mM NaCl, 

10d

• Increased MDA content

• Increased activities of SOD, POD, CAT, GR, 

APX, and dehydroascorbate reductase (DHAR)

Zou et al. [34]

Table 1. Responses of T. aestivum plants to salt stress.
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time increased and germination rate and germination index decreased with increasing levels 

of salinity. Akbarimoghaddam et al. [30] reported delayed and decreased wheat seed ger-

mination at 12.5 dS m−1 salinity. Fuller et al. [31] also showed a distinct relationship of the 

decreasing germination percentage with increasing salinity levels (upto 200 mM NaCl).

2.2. Growth

Salt stress affects the growth of wheat seedlings remarkably. Root and shoot length, plant 
height, leaf area, number of effective tillers, and number of spike, etc. are considered to be 
growth parameters. There are many reports that show the evidence of hampering these char-

acters under saline condition. Moreover, in the seedling stage, plants are more sensitive to 

adverse environmental conditions. So, in this stage, high salinity may even cause death of 

seedlings. Fresh and dry mass of shoot, leaf area, etc. of both sensitive and tolerant cultivars 

declined under salt stress in wheat seedlings [19]. Length, fresh weight (FW), and dry weight 

(DW) of both root and shoot of wheat seedlings were negatively affected by different levels 

Figure 1. General scheme of salt stress responses and adaptation in plants.
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of salinity as 150 mM NaCl [20]; 125 mM NaCl [28], 16 dS m−1 salinity [29], and 120 mM NaCl 

[32]. Guo et al. [33] showed decreased growth of leaves of wheat seedlings and roots under 

salt stress, compared to the nonstressed control. Similarly, reduced shoot length, root length, 

wet weight, and DW after 10 d with 100 mM NaCl treatment were observed by Zou et al. [34].

2.3. Photosynthesis

Photosynthesis is the major physiological process for plant survival and greatly influenced by 
environmental factors. As salinity reduces water potential and increases accumulation of Na+ 

and Cl− ions in the chloroplast, the rate of photosynthesis gets inhibited [26]. According to the 

experiment conducted by Arfan et al. [19], exposure to salt stress reduced the transpiration 

rate, net CO
2
 assimilation rate, stomatal conductance, and substomatal CO

2
 concentration of 

both cultivars. Similarly, net photosynthetic rate, transpiration rate, stomatal conductance, 

and substomatal CO
2
 concentration were decreased significantly at 150 mM NaCl stress [35]. 

Tammam et al. [36] reported that amount of photosynthetic pigments were significantly 
deceased in seedlings under 320 mM NaCl stress. Reduction of stomatal conductance and 

transpiration rate were also reported by Guo et al. [33]. Significant decrease of chlorophyll 
(chl) content was recorded in wheat seedlings at 100 mM NaCl, for 10 d [34].

2.4. Water relation

Availability of moisture in plants is a crucial factor for all physiological and metabolic pro-

cesses of plants. Higher salt concentrations induce osmotic stress to plants, which ultimately 

causes low water potential. Relative water content (RWC) declined by 3.5 and 6.7%, com-

pared to their controls in the salt-tolerant and salt-sensitive cultivars, respectively, after 6 d of 

100 mM NaCl exposure [37]. They also reported lowering of osmotic potential with increasing 

salt concentrations. Arfan et al. [19] showed reduced water use efficiency (WUE) of both sensi-
tive and tolerant cultivars under saline condition. Leaf water potential also decreased under 

salt stress of 150 mM NaCl [35] and 16 dS m−1 [38]. Percentage of water content decreased 

in root, but increased in shoot and spike of Banysoif 1 cultivar of wheat [36]. Lv et al. [39] 

recorded lower RWC in leaves of T. monococcum seedlings exposed to salt stress of 320 mM 

NaCl.

2.5. Cellular damage

Inconsistent growth and improper uptake of water and nutrients ultimately result in deterio-

ration of cell membrane properties of plants. Lipid peroxidation, accumulation of hydrogen 

peroxide (H
2
O

2
), and increased membrane permeability are some common phenomenon of 

wheat seedlings under salt stress. Mandhania et al. [37] reported higher damage of cellular 

membranes of salt-sensitive cultivar due to higher H
2
O

2
 accumulation and lipid peroxidation 

which enhanced the electrolyte leakage compared to the tolerant one. Higher accumulation of 

H
2
O

2
 in salt-stressed wheat seedlings was also proved by Wahid et al. [35] which was respon-

sible for the increased relative membrane permeability. Lipid peroxidation increased by 68% 

under NaCl treatment of 100 mM for 10 d compared to control [34].
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2.6. Ion uptake

Higher accumulation of Na+ and Cl− ions interferes with the uptake of other necessary ions 

which disturbs plant processes. Salt-sensitive cultivars tend to uptake more Na+ compared 

to the tolerant one and this uptake rate increases with increasing concentration of salt [37]. 

Lower accumulation of NO
3

− and PO
4

3− ions were recorded by Wahid et al. [35]. They also 

reported higher uptake of Na+ and Cl−, and reduced uptake of K+ and Ca2+ by salt stressed 

wheat seedlings. Similar results were published by Afzal et al. [28] in wheat seedlings 

exposed to 125 mM of NaCl stress for 7 d. But, Jamal et al. [32] reported increased uptake of 

Na+ and K+ both ions, and decreased K+/Na+ ratio in wheat shoots when exposed to 120 mM 

of NaCl. On the other hand, both Asgari et al. [40] and Afzal et al. [41] recorded significant 
decrease of K+ uptake under saline condition (15–16 dS m−1). Under medium salinity, higher 

accumulation of both Na+ and Cl−, and lower uptake of K+, Ca2+, and Zn2+ ions were reported 

by Guo et al. [33].

2.7. Yield

All the above mentioned factors are responsible directly or indirectly for the subsequent yield 

reduction of wheat plants. Yield of almost all crops, except some halophytes, is reduced under 

salt stress. The amount of yield reduction may vary upon the sensitivity and tolerance of the 

wheat cultivars. Chinnusamy et al. [42] indicated that above the threshold level of salinity of 

6 dS m−1, wheat yield can reduce at a rate of 7.1% per dS m−1 increase of salinity. Asgari et al. 

[40] reported that the spikes number per plant, spike length, number of spikelets per spike, 

straw weight, grain yield, 1000-grain weight, and harvest index declined with the increasing 

level of salinity, which ultimately caused yield loss. A significant decrease in number of grains 
per spike, 1000-grain weight, and grain yield were reported in both tolerant and sensitive 

cultivars of wheat seedlings under 15 dS m−1 salinity [41].

3. Salt-induced oxidative stress in wheat

Salt stress can lead to stomatal closure, which reduces CO
2
 availability in the leaves and 

inhibits carbon fixation, exposing chloroplasts to excessive excitation energy which in turn 
increase the generation of reactive oxygen species (ROS) such as superoxide (O

2
•–), H

2
O

2
, 

hydroxyl radical (OH•), and singlet oxygen (1O
2
) [26, 48, 49] (Figure 2). Since, salt stress is 

complex and imposes a water deficit because of osmotic effects on a wide variety of meta-

bolic activities [50]; this water deficit leads to the formation of ROS that are highly reactive 
and may cause cellular damage through oxidation of lipids, proteins, and nucleic acids [51]. 

If there is a serious imbalance in any cellular compartment between the production of ROS 

and antioxidant defense, oxidative stress and damage occur [52] (Figure 2). Enhanced pro-

duction of ROS under salinity stress induces phytotoxic reactions such as lipid peroxida-

tion, protein degradation, and DNA mutation [53]. When a plant faces harsh conditions, 

ROS production overcomes scavenging systems and oxidative stress will burst. In many 

plant studies, it was observed that production of ROS increased under saline conditions [54] 
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and ROS-mediated membrane damage has been demonstrated to be a major cause of the 

cellular toxicity by salinity in different crop plants ([49]; Table 2). Long-term salinity treat-

ments (5.4 and 10.6 dS m−1, 60 d) caused significant increase in H
2
O

2
 and lipid peroxidation 

in wheat seedlings, which were higher in salt-sensitive cultivar than salt-tolerant cultivar 

[55]. Increased lipid peroxidation and H
2
O

2
 levels with increased salinity stress in T. aesti-

vum were observed in our study [24]. Wheat seedlings exposed to 300 mM NaCl resulted 

in 60 and 73% increase in H
2
O

2
 and MDA contents. Salt stress also decreased ascorbic acid 

(AsA) content by 52%. According to Zou et al. [34], T. aestivum leaves showed 35% increase 

in MDA content upon 100 mM NaCl treatment for 5 d which further increased by 68% after 

10 d of treatments. Rao et al. [56] observed dose dependent increase in lipid peroxidation 

in wheat exposed to salt (2, 4, 8, and 16 EC) and these effects were variable among the cul-
tivars. They found increased MDA content in cultivars, ZARDANA (55.9%), ROHTAS-90 

(42.26%), SAUGHAT-90 (51%), and SHAHEEN-94 (52%), and hence they were designated 

as salt sensitive, whereas PUNJAB-85 (33%), BHAKAR 2002 (35%), PIRSBAK-05 (31%), and 

AUQAB (28%) showed decreased levels of lipid peroxidation and were categorized as salt 

tolerant [57].

 Figure 2. Generalized scheme of salt-induced oxidative stress in plants.
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Plants have antioxidative mechanism to fight against stress under adverse conditions. 
So, they naturally produce higher amount of antioxidant enzymes, e.g., CAT, GR, SOD, 

APX, POD, and DHAR, etc. to minimize the damage due to stress. Mandhania et al. [37] 

reported that the activities of CAT, GR, SOD, APX, and POD enzymes increased with the 

increasing concentration of salt irrespective to tolerance or sensitivity of the cultivar. In 

another experiment with sensitive and tolerant type of cultivars, ascorbic acid (AsA) con-

tent and activities of SOD, CAT, and POD also increased in both under salt stress [20]. 

But, in another experiment by Singh et al. [45], SOD activity was recorded to decrease 

with the increasing concentration of salt in a salt-sensitive cultivar named HD2329; while 

activities of POD, APX, CAT, and GR increased with the same treatments. Significantly, 
higher activities of SOD and POD were presented by Zou et al. [34] with NaCl treatment 

of 100 mM for 10d, but they showed insignificant increase of CAT and APX activities, and 
significant decrease of GR and DHAR activities under same treatment. The activities of 
SOD and POD were increased with increasing the levels of salt concentrations in T. mono-

coccum seedlings [39].

Name of cultivars Dose and duration of salt Level of oxidative stress References

Pradip 300 mM NaCl, 4 d • Increased H
2
O

2
 and MDA content by 60 

and 73%, respectively

Hasanuzzaman et 

al. [24]

Kharchia-65 6.85 dS m−1 NaCl • Enhanced lipid peroxidation (TBARS) 

and H
2
O

2
 content by 21 and 38%, 

respectively

Sairam and 

Srivastava [58]

Jimai 22 100 mM NaCl, 10 d • MDA content increased by 68.3% in 

leaves

Zou et al. [34]

ZARDANA 

BAKHAR-2002, 

SAUGHAT-90, and 

AUQAB-2000

16 dS m−1 NaCl • Lipid peroxidation enhanced by 56, 35, 

and 51% in ZARDANA BAKHAR-2002, 

and SAUGHAT-90 cultivars, respectively

• DPPH radical scavenging activity de-

creased by 47% in AUQAB-2000

Rao et al. [56]

Kızıltan-91 100 mM NaCl, 5 d • Increased lipid peroxidation level by 

53%

Seckin et al. [59]

Yongliang 4 150 mM NaCl, 16 h • Increased MDA content in leaves by 50% Zhang et al. [60]

Altındane 100 mM NaCl, 3 d • Elevated MDA, O
2
•−, and H

2
O

2
 contents 

by 26, 43, and 53%, respectively

Gorcek and Erdal 

[61]

Waha 150 mM NaCl, 14 d • MDA content increased by 10% and 

fourfold increase of H
2
O

2
 content

Fercha [62]

WenmaiNo.6 150 mM NaCl, 4 d • Increased MDA, O
2
•−, and H

2
O

2
 contents 

by 47, 38, and 33%, respectively

Qiu et al. [63]

150 mM NaCl, 72 h • Increased MDA and H
2
O

2
 contents by 52 

and 47%, respectively

Genișel and Erdal 
[64]

Table 2. Salt-induced oxidative stress in T. aestivum compared to control.

Approaches to Enhance Salt Stress Tolerance in Wheat
http://dx.doi.org/10.5772/67247

159



4. Salt tolerance approaches

Considering the adverse effects of salt stress in wheat plant, biologists are trying to find out 
the salt-tolerant strategies in plants by different approaches. Many researchers found positive 
effect in using exogenous phytoprotectants in alleviating salt-induced damages in wheat. In 
this section, some of the evidences are discussed.

4.1. Use of osmoprotectants

To prevent the adverse effects of various environmental stresses including salt stress, plants 
demonstrate a variety of adaptive mechanisms both at the cellular and organismal levels. 

Under salt stress conditions, to cope with the salt-induced osmotic, ionic as well as oxida-

tive stresses, plant synthesizes and accumulates organic compatible solutes or osmolytes [48, 

65, 66]. Accumulation of these compatible solutes is one of the most important physiologi-

cal strategies employed by plants under salt stress conditions. Osmoprotectants or osmolytes 

are small, highly soluble, uncharged, and nontoxic organic molecules which help to survive 

organisms in extreme osmotic stresses. Osmoprotectants comprise of (i) α-amino acids such as 
proline (Pro) and ectoine; (ii) ammonium compounds such as glycine betaine (GB), β-alanine 
betaine, dimethylsulfoniopropionate (DMSP), and choline; and (iii) polyols, sugars, and sugar 

alcohols such as trehalose (Tre), sorbitol, and mannitol, etc. These osmoprotectants perform 

vital functions in osmotic adjustment, stabilizing proteins and membranes. Thus, enhanced 

salt stress tolerance is observed in plants overexpressing the osmoprotectants biosynthetic 

and metabolic genes. Enhanced salt exposure causes increased biosynthesis of osmoprotec-

tants (Pro, GB, Tre, ecotine, and sorbitol, etc.) which provides enhanced osmotic stress tol-

erance generated from salt stresses [67, 68] (Table 3). For mitigating salt-induced damages, 

in recent decades, the use of exogenous osmoprotectants has been found effective [12, 69]. 

Several research findings demonstrated that the use of osmoprotectants provided significant 
protection against adverse effects of salt stresses in T. aestivum seedlings (Table 3). At the same 

time, several research studies proved Pro as a potent protectant against the adverse effects of 
salt. Proline acts not only in osmotic adjustment as a compatible solute, but also in scavenging 

ROS, chelating metal, activating detoxification pathways, balancing cells redox status, buffer-

ing cytosolic pH, storing energy (carbon and nitrogen), stabilizing subcellular membranes and 

structures including photosystem II (PS II), and as signaling molecule [70–74]. Raza et al. [75] 

demonstrated the effect of exogenous GB (50 mM and 100 mM) in moderately salt-sensitive 
(MH-97) and salt-tolerant (S-24) wheat cultivars grown under salt stress (15 dS m−1 NaCl). 

Glycine betaine treatment ameliorated the salt-induced photosynthetic reduction as well as 

increased the photosynthetic capacity, water use efficiency, and osmotic adjustment where 
salt-tolerant (S-24) cultivar showed better performance against salt stress compared to moder-

ately salt-sensitive (MH-97) cultivar. Later, with the same experimental procedure, they again 

suggested that the exogenous GB modulated the activities of antioxidant enzymes such as 

SOD, CAT, and POD which contributed significantly to salt stress tolerance in T. aestivum [76]. 

It has been reported that accumulation of Pro protects T. aestivum from the salt-induced dam-

ages by maintaining a higher K+/Na+ ratio and reducing ionic toxicity [38], increasing the major 

antioxidant enzymes (CAT, APX, SOD, and POD) activities [77]. In T. aestivum, GB (10 mM and 
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30 mM) supplementation with salt stress (150 mM NaCl) increased the germination percent-

age, shoot Ca content, total chl content, and thus confer salt stress tolerance [78]. Khan et al. 

[79] reported that increased grain yield in T. aestivum associated with the increased Pro, chl 

content and K+/Na+ ratio. Overexpression of GB in transgenic T. aestivum lines T1, T4, T6, and 

Shi 4185 (wild type line) caused enhanced salt stress (200 mM NaCl) tolerance by enhanc-

ing ROS scavenging, osmotic adjustment and regulating ion homeostasis [80]. Salt stresses 

(10 dS m−1 NaCl) were imposed in two wheat cultivars (cv. Seher and Lasani). In both wheat 

cultivars, salt stresses caused significant reduction in the germination percentage, chl contents 
and growth. Exogenous Pro (50 and 100 mM) application alleviated the adverse effects of salt 
stress by improving the germination percentage, seedling growth and chl contents of wheat 

plants but 100 mM Pro was found more effective compared to 50 mM Pro [81]. Mahboob et al. 

[82] reported that the supplementation of Pro (50 and 100 mM) ameliorated the salt (60 and 

120 mM NaCl) induced reduction of plant growth, photosynthetic pigments and ionic balance 

by increasing shoot and root length, chl a, b contents, FW and DW of seedlings and endogenous 

Pro, GB, and K+/Na+ ratio in T. aestivum seedlings. Exogenous Pro (60 ppm) upregulated the 

endogenous hormones (gibberelic acid (GA
3
) and indole acetic acid (IAA)), ammonium com-

pounds (GB and choline) and downregulated the MDA content and growth inhibitor abscisic 

acid (ABA) in salt stressed T. aestivum [83]. Salt (50, 150, and 300 mM) induced disruption 

of photosynthetic pigments and protein polypeptide synthesis in T. aestivum were prevented 

by the exogenously applied Pro (50 ppm) and at the same time by protecting the turnover 

machinery of proteins [84]. Besides osmotic adjustment, GB is also involved in ROS scaveng-

ing, stabilizing macromolecules (nucleic acids, proteins, and lipids) and various components 

of photosynthetic machinery such as PS II complexes and RuBisCO and acts as reservoir of 

carbon and nitrogen sources [85–87]. Upon salt exposure (150 mM NaCl), reduced lipid per-

oxidation, increased glutathione (GSH) and GB concentrations, enhanced plasma membrane 

protection, increased cell solute potential and improved ion homeostasis were observed when 

caryopsis of T. aestivum were primed with GB (25, 50, 100 mM) [88]. Increasing the K+/Na+ 

and Ca+/Na+ ratios, reducing MDA content, protecting photosynthetic apparatus, improving 

plasma membrane integrity and stabilizing macromolecules (proteins, PS II and transporters) 

GB (20 mM) imparted in salt stress tolerance in T. aestivum [83]. Exogenous GB (5 mM) appli-

cation improved chl a, total chl and K+ content of roots, increased root length, plant height, 

FW and DW of T. aestivum under salt stresses (100 and 200 mM NaCl) [89]. Rao et al. [57] sug-

gested that the enhanced production of Pro and GB in six salt-tolerant cultivars (T. aestivum 

cv. AUQAB-2000, PUNJAB-85, PIRSABAK-05, BAKHAR-2002, FARKHARE-SARHAD and 

KAGHAN-94) alleviated the damaging effects of salt stress by activating their antioxidant 
enzymes. Endogenous Pro and GB mediated salt stress (8 EC, 16 EC) mitigation in fifteen T. 

aestivum cultivars were further reported by Rao et al. [57]. They suggested that the five cul-
tivars of wheat (SEHAR-2006, LU26-CTR, NARC-2009, BARS-2009, PIRSABAK-09) showed 

obvious salt stress tolerance by increasing the production of Pro and GB. Yan and Zheng [90] 

demonstrated that pretreatment with Tre (2, 20, and 40 mM) alleviated the adverse effects of 
salt stress (3 g L−1 NaCl) in T. aestivum cv. Yangmai-19. Various beneficial effects were observed 
in different physiological parameters. Increased relative growth rate, relative chl content, N 
content, DW and biomass plant-1 were observed with Trehalose supplementation. Trehalose 

application also improved Pro accumulation, K+ accumulation and K+/Na+ ratio. In addition, 
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Tre has functions in stabilizing the biomolecules and structures like membrane lipids, pro-

teins under salt stress [91–93]. Salt-sensitive wheat cultivar (T. aestivum cv. Kızıltan-91) under 
salt stress (100 mM NaCl) showed physiological alteration. However, pretreatment with 

exogenous mannitol (100 mM) reversed the deleterious salt effects by increasing antioxidant 
enzymes (such as SOD, POD, CAT, APX, and GR) activities, appearance of SOD and POD 

isozyme activity bands and reducing lipid peroxidation [59].

Cultivars Salinity doses 

and duration

Doses of 

osmolytes

Protective effects References

ESW-9525 

and kherman

60 and 

120 mM 

NaCl, 7 d

50 and 100 mM 

Pro, foliar spray

• Increased shoot and root length

• Increased FW and DW of seedlings

• Increased chl a, b contents

• Improved Pro, GB, K+ contents, and K+/Na+ ratio

Mahboob et 

al. [82]

Seher and 

Lasani

10 dS m−1 

NaCl, 6 d

50 mM and 

100 mM Pro, 

foliar spray

• Improved gaseous exchange parameters (net 

CO
2
 assimilation rate, stomatal conductance, 

substomatal CO
2
 concentration, and transpira-

tion rate)

• Increased chl a, b, and total chl contents

Talat et al. [81]

MH-97 and 

S-24

15 dS m−1 

NaCl

50 mM and 

100 mM GB, 

foliar spray

• Improved WUE

• Increased photosynthetic capacity

• Increased stomatal conductance

Raza et al. [75]

Kızıltan-91 100 mM 

NaCl, 5 d

100 mM 

mannitol, 

pretreatment, 

24 h

• Increase activities of SOD, POD, CAT, APX, 

and GR

• Reduced lipid peroxidation and membrane 

damage

Seckin et al. 

[59]

Gomeza 7 150 mM 

NaCl, 38 d

25, 50, and 

100 mM GB, 

caryopsis 

priming, 24 h

• Reduced lipid peroxidation

• Increased the GSH and GB concentrations

• Enhanced plasma membrane (PM) protection

• Increased the cell solute potential

• Improved ion homeostasis

Salama et al. 

[88]

Sakha 93 and 

Gimmeza7

10.04 dS m−1 

(soil), 35–65 d

7.33 dS m−1 

(irrigation 

water), 

35–65 d

60 ppm Pro, 

foliar spray

• Increased chl a and b

• Increased endogenous hormones (GA and IAA)

• Increased GB and choline

• Decreased MDA content and ABA

Hendawey et 

al. [83]

Sakha 93 and 

Gimmeza7

10.04 dS m−1 

(soil)

7.33 dS m−1 

(irrigation 

water), 35 to 

65 d

20 mM GB, 

foliar spray

• Increased K+/Na+ and Ca+/Na+ ratios

• Improved K, Ca, and Zn contents

• Reduced MDA content

• Protected photosynthetic apparatus

• Improved PM integrity and stabilization of mac-

romolecules (proteins, PS II, and transporters)

Hendawey et 

al. [83]
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Priming of T. aestivum seeds with choline (5 and 10 mM) reduced the damaging effects of NaCl 
(150 mM) by increasing the K+, Ca2+, GB accumulation, improved ion homeostasis and decreased 

Na+ and Cl− in both shoot and root, mitigated PM permeability and reduced lipid peroxidation 

of leaf [94]. Expression of mtlD gene encoding mannitol-1-phosphate dehydrogenase resulted in 

enhanced salt stress tolerance in T. aestivum due to defensive roles of mannitol against salt stress 

[95]. The mtlD gene encoding mannitol-1-phosphate dehydrogenase transformation in T. aesti-

vum cv. Giza 163 conferred salt stress tolerance by inducing mannitol and reducing sugars in tis-

sues of plant [96]. Kerepesi et al. [97] demonstrated that increased fructan contents in salt resistant 

(Sa) and moderately salt-tolerant (Ch) varieties of T. aestivum showed increased tolerance against 

salt stress (200 mM NaCl). Sharbatkhari et al. [98] investigated the role of fructan in salt-tolerant 

(Bam) and salt-sensitive (Ghods) cultivars of T. aestivum. They found higher fructan accumulation 

and remobilization in salt-tolerant Bam cultivar, which contributed to the higher salt stress toler-

ance by increasing the photosynthetic capacity and decreasing the salt induced severe yield loss.

4.2. Plant hormone

Plant hormones are chemicals produced within the plants at low concentration involved 

in regulation of plant development and tolerance towards various stresses including salin-

ity [99]. Now-a-days, various kinds of plant hormones such as ABA, auxin, cytokinins (CK), 

Cultivars Salinity doses 

and duration

Doses of 

osmolytes

Protective effects References

Yangmai-19 3 g L−1 NaCl 2, 20, and 

40 mM Tre, 

seed soaking

• Increased relative growth rate, relative chl con-

tent, N content, DW, and biomass per plant

• Increased Pro accumulation

• Increased K+ accumulation and K+/Na+ ratio, 

and decreased Na+ content

Yan and 

Zheng [90]

S-24 and 

MH-97

150 mmol L−1 

NaCl, 15 d

10 and 

30 mM of GB, 

presoaking

• Increased germination percentage

• Increased shoot Ca content

• Increased total chl content

Akhter et al. 

[78]

Gomeza 150 mM 

NaCl, 21 d

5 and 10 mM 

choline, 

caryopsis 

priming

• Increased K+, Ca2+, and decreased Na+ and Cl− 

in both shoot and root

• Improved PM permeability

• Remarkably reduced lipid peroxidation

• Increased GB accumulation and improved ion 

homeostasis

Salama et al. 

[94]

S-24 and 

MH-97

15 dS m−1 

NaCl, 47 d

50 and 

100 mM GB, 

foliar spray

• Modulated activities SOD, CAT, and POD

• Significantly increased K+/Na+ ratio in leaves 

and roots, and Ca2+/Na+ ratio in leaves

• Enhanced endogenous GB and K+

Raza et al. [76]

Table 3. Protective effects of various exogenously applied osmoprotectants under salt stress in T. aestivum.
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 brassinosteroids and GA
3
 are externally used for alleviating various kinds of abiotic stresses 

including salinity (Table 4). The plant growth hormone auxin increased the germination per-

centage, shoots DW and maintained ion homeostasis under salt stress condition [100]. Iqbal 

and Ashraf [101] reported that seed priming with different auxins alleviated salt stress (15 
dS m–1) by maintaining hormonal balance and assimilation rate and improved growth and 

yield of both tolerant and sensitive cultivars under salt stress condition. Seed priming with 

GA
3
 alleviates the drastic effect of salinity and increases grain weight and grain quality by 

improving photosynthetic pigments, leaf area and plant growth [102]. Foliar application of 

GA
3
 also confers salt stress tolerance by increasing germination percentage, plant growth and 

upregulating antioxidant enzyme [103]. Seed priming with cytokinin such as kinetin and ben-

zylaminopurine (BAP) increase germination percentage and grain yield by increasing plant 

growth, productive tiller and 1000-grain weight under salt stress condition [104, 105]. Gurmani 

et al. [106] noted that, seed priming with ABA improved salt stress tolerance by increasing net 

assimilation rate, chl content and decreasing Na uptake. It is also evident that phytohormone 

brassinosteroid plays role in alleviating salt stress. Ali et al. [107] reported that brassinosteroid 

increased grain yield by improving photosynthetic attribute, assimilation rate and transpira-

tion rate under salt stress condition (150 mM NaCl). Eleiwa et al. [22] also showed brassino-

steroid-induced positive response in wheat seedlings under salt stress conditions (Table 4).

Cultivars Salinity dose and 

duration

Dose of phytohormones Protective effects References

MH-97 (salt 

intolerant), 

Inqlab-91 (salt 

tolerant)

(15 ds m−1)

150 mM NaCl, entire 

growth period

Auxin (Tryptopan)

4.89 × 10−4 mM, 12 h 

seed priming

• Increased CO
2
 assimilation rate

• Increased net assimilation rate

• Increased growth

• Increased productive tiller and 

grain yield

Iqbal and 

Ashraf [44]

MH-97 (salt 

intolerant), 

Inqlab-91 (salt 

tolerant)

150 mM NaCl, entire 

growth period

4.89 × 10−1 mM auxin 

(tryptophan), 12 h seed 

priming

• Increased germination 

percentage

• Improved ion homeostasis

• Increased shoot DW

Iqbal and 

Ashraf 

[100]

Sohag 3 

(sensitive), 

Giza 168 

(tolerant)

50, 100, 150, and 

200 mM NaCl),entire 

life cycle

150 mg L−1 GA
3
, foliar 

spray

• Improved leaf area, photosyn-

thetic pigment, carobohydrate, 

protein, amino acid and Pro 

content, grain weight

Shaddad et 

al. [102]

MH-97, 

Inqlab-91

15 dS m−1, 8 d 100, 150 and 200 mg L−1 

cytokinins (kinetin and 

BAP), 12 h seed priming

• Increased germination rate

• Increased early seedlings 

growth such as shoot DW and 

root DW

Iqbal et al. 

[105]

MH-97, 

Inqlab-91

15 dS m−1, entire life 

cycle

100, 150 and 200 mg L–1 

cytokinins (kinetin and 

BAP), 12 h seed priming

• Increased plant height, shoot 

dry biomass

• Increased fertile tiller, 

1000-grain weight, grain yield

Iqbal and 

Ashraf 

[104]
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4.3. Plant nutrient

Along with other physiological and biochemical functions, plant nutrients play posi-

tive roles in alleviating damage effects of abiotic stresses including salinity (Table 5). 

Exogenous application of K enhanced salt stress tolerance in wheat seedlings by improv-

ing photosynthetic pigments, antioxidant enzyme activity, K uptake and decreasing Na 

uptake [109, 110]. Foliar application of phosphorus (P) also alleviated salt-induced dam-

age by increasing plant biomass, leaf area and decreasing Na uptake [111]. Application of 

CaSO
4
 increased plant growth, water status and K and Ca uptake under salt stress con-

dition [112]. Later on, Tian et al. [113] noted that application of Ca(NO
3
)

2
 reduced salt-

induced oxidative damage by decreasing lipid peroxidation and electrolyte leakage in 

wheat seedlings.

Cultivars Salinity dose and 

duration

Dose of phytohormones Protective effects References

Mehran-89 0.13 M NaCl, 8 d 10−6 M ABA, 8 d • Increased germination per-

centage, and shoot and root 

biomass

Naqvi et al. 

[108]

Kharchia-65, 

PUNJAB-85

100 mM NaCl 16 d 10 mM ABA, seed 

priming 24 h

• Increased plant height, root 

length

• Improved root and shoot dry 

weight

• Increased chl content

• Increased net assimilation rate

• Decreased Na uptake

Gurmani et 

al. [106]

Giza 164 2000–6000 ppm 

NaCl, irrigation 

water entire life cycle

0, 50, 100 and 200 mg L–1 

28-homobrassinoloide, 

foliar application,

• Increased chl, carotenoids and 

total pigments

• Increased plant height, leaf area

• Improved tiller number, weight 

of 1000 grain, grain yield and 

biological yield

Eleiwa et 

al. [22]

S-24, MH-97 150 mM NaCl, 45 d 0, 0.052,

0.104, 0.156 μM 

24-epibrassinolide

• Increased photosynthetic at-

tribute and chl content

• Increased net CO
2
 assimilation 

rate, stomatal conductance and 

transpiration rate

• Increased root and shoot weight 

and length

• Increased number of grain 

plant-1 and grain yield

Ali et al. 

[107]

Table 4. Protective effects of various exogenously applied phytohormones under salt stress in T. aestivum.
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4.4. Antioxidant

Antioxidants are important for plants to maintain the ROS level lower. Plant possesses vari-

ous non-enzymatic antioxidants in their cellular components to protect themselves from 

oxidative stress. The major antioxidant includes AsA, GSH, tocopherol and some phenolic 

compounds. Some of these antioxidants showed advanced protection against salt-induced 

oxidative stress when they were applied exogenously (Table 6). However, these are mostly 

dose dependent. A number of studies have been reported the positive effects of AsA in 
mitigating salt stress in wheat. Athar et al. [20] studied the effect of AsA on wheat plants 
subjected to salt stress. Salt stress (150 mM NaCl) caused reduction in growth and pho-

tosynthesis which were associated with decrease in tissue K+/Na+ ratio in both sensitive 

and moderately tolerant varieties. However, root applied AsA (100 mg L−1) counteracted 

the adverse effects of salt stress on the growth of tolerant variety which was due to the 

Cultivars Salinity dose and 

duration

Plant nutrients Protective effects References

NAYAB-11 and 

MILLAT-11

150 mM NaCl, 

113 d

50, 100, 150 and 

200 mM K
2
SO

4
, 

106 d

• Increased root length and biomass

• Increased plant height and biomass

• Increased K+ uptake and decreased 

Na+ uptake

Kausar and Gull 

[110]

Gemiza 9, 

Sakha 93

40, 80, and 120 mM 

NaCl, 90 d

25 and 150 mg 

K
2
O kg–1 soil, 

110 d

• Increased plant height and biomass

• Increased chl a, chl b and carotenoid 

content

• Increased SOD and POD activity

El-Lethy et al. 

[109]

150 mM NaCl 400 and 800 mg 

P L–1, foliar 

application

• Increased plant height, root length, 

root and shoot biomass

• Increased leaf number, leaf area and 

chl content

• Decreased Na uptake and increase 

K uptake

Khan et al. [111]

PUNJAB-85 50 mM NaCl, 34 d 3 and 6 mM 

CaSO
4

• Increased root and shoot biomass

• Increased root and leaf RWC

• Increase K and Ca uptake

Zaman et al. 

[112]

Jimai 22 100 mM NaCl, 15 d 17.5 mM 

Ca(NO
3
)

2,
 15 d

• Decreased O
2
•– and H

2
O

2
 contents

• Decreased lipid peroxidation, electro-

lyte leakage

• Increased SOD, POD, and CAT 

activities

Tian et al. [113]

Table 5. Protective effects of plant nutrients under salt stress in T. aestivum.
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enhanced endogenous AsA level and CAT activity, and higher photosynthetic capacity, 

and accumulation of K+ and Ca2+ in the leaves. Their study supports the notion that exog-

enous AsA counteracts the adverse effects of salt stress on growth of wheat by improving 
photosynthetic capacity of wheat plants against salt-induced oxidative stress and main-

taining ion homeostasis, however, these effects were cultivar specific [20]. Ascobin (com-

pound composed of ascorbic acid and citric acid) was found to be effective in mitigating 
salt-induced damages in wheat as reported by Elhamid et al. [114]. Salt stress markedly 

increased the lipid peroxidation while the activities of antioxidant enzymes (SOD, CAT, 

POD, APX and GR) dramatically increased. However, foliar treatment of wheat cultivars 

with ascobin could partially alleviate the harmful effect of salinity especially at the lower 
levels of salinity imposed in the two cultivars of wheat at most of the studied parameters 

[114]. Apart from the dose, mode of application is also a factor to initiate the protective 

effect by exogenous AsA. In their study Athar et al. [115] found differential effects when 
AsA was applied through the rooting medium, or as seed soaking or as foliar spray to salt 

stressed (120 mM NaCl) wheat plants. Exogenous AsA mitigated the adverse effect, e.g. 
improved leaf ascorbic acid, activities of CAT, POD, and SOD. Root applied AsA caused 

more enhancements in photosynthetic capacity and more reduction in leaf sodium (Na+) 

compared with AsA applied as seed soaking or foliar spray. However, the effects were 
also cultivar specific [115]. In a hydroponic experiment Khan et al. [116] showed that foliar 

applied AsA (50 and 100 mg L−1) could not alleviate the adverse effects of salt stress on 
plants, but it improved the growth of nonstressed plants. Since AsA failed to enhance the 

antioxidant defense, it enhanced the Na+ accumulation in the leaves but did not change 

the K+ accumulation in the salt-stressed plants. Azzedine et al. [21] observed that the exog-

enous AsA improved the plant growth under salt stress condition which was partly due 

to the increased leaf area, improved chl and carotenoid contents, enhanced Pro accumula-

tion, and decreased H
2
O

2
 content. Melatonin (N-acetyl-5-methoxytryptamine) is also con-

sidered a potential antioxidant in plants which is distributed in many parts of the plant. 

Due to its universal hydrophilic and hydrophobic nature and solubility in both water and 

lipid, it can cross cell membranes easily and enter subcellular compartments and hence, 

considered as an antioxidant and a modulator in multiple plant developmental processes 

and various stress responses [117]. In their pot experiment, Sadak et al. [117] observed that 

wheat seeds presoaked with melatonin (100 and 500 μM) provided better growth, pho-

tosynthetic pigments, yield, and quality in wheat under salinity (3.85 and 7.69 dS m−1). 

Melatonin treatments at different levels caused significant increase in yield and yield 
attributes, carbohydrate, protein, N, P, K, flavonoids, phenolic contents, and antioxidant 
activity either in nonstressed and salinity-stressed plants relative to their corresponding 

controls. Importantly, 500 μM melatonin was more effective than 100 μM. Farouk [118] 

reported that both AsA and α-tocopherol minimized salt-induced senescence of flag leaves 
of wheat. This was due to enhanced activities of antioxidant enzymes which led to the 

lower lipid peroxidation and H
2
O

2
 accumulation. Exogenous antioxidants also decreased 

membrane permeability, Na and Cl content. These higher levels of antioxidants and lower 

level of H
2
O

2
 in flag leaf might be the prerequisite for delayed leaf senescence in antioxi-

dants-sprayed plants [118].
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Cultivars Dose and duration 

of stress

Antioxidants Major effects References

S-24 and MH-97 150 mM NaCl, 58 d 50, or 150 mg L−1 

AsA

• Decreased Na+ content, and 

increased K+ and Ca2+ content

• Improved photosynthesis

• Increased AsA content and 

CAT activities

• Improved growth

Athar et al. [20]

Sids 1 and Giza 

168

3000 and 

6000 mg L−1 NaCl, 

75 d

200-600 mg L−1 

ascorbin (ascorbic 

acid and citric 

acid 2:1)

• Decreased MDA content

• Decreased activities of antioxi-

dant enzymes

Elhamid et al. [114]

S-24 and MH-97 120 mM NaCl, 

throughout the 

growth duration

100 mg L−1 AsA • Increased activities of CAT, 

POD, and SOD

• Improved photosynthesis

• Decreased Na+ content

Athar et al. [115]

S-24 and MH-97 150 mM NaCl, 

4 weeks

50 and 100 mg L−1 

AsA

• Lower Na+ accumulation

• Protection of photosynthesis 

machineries

Khan et al. [116]

Waha 150 mM NaCl, 

2 weeks

0.7 mM AsA • Increased leaf area

• Improved chl and carotenoid 

contents

• Enhanced Pro accumulation

• Decreased H
2
O

2
 content

Azzedine et al. [21]

Giza 168 0.23, 3.85, and 7.69 

dS m−1 salinity, 

75 d

500 μM melatonin • Improved shoot height, number 

of leaves per plant, FW and DW 

of shoot

• Increased photosynthetic 

pigments

• Increased carbohydrate, 

protein, N, P, K, flavonoids, 
phenolic contents, and antioxi-

dant activity

Sadak et al. [117]

Giza 168 0.8, 7.5, and 11.5 dS 

m−1 salinity, 65 d

100 mg L−1 AsA or 

α-tocopherol
• Enhanced antioxidant enzymes 

activities

• Reduced H
2
O

2
 accumulation, 

lipid peroxidation, and mem-

brane permeability

• Decreased Na+ and Cl− contents

Farouk [118]

Huaimai 17 300 mM NaCl, 7 d 100 μM SNP 

(sodium 

nitroprusside, a 

nitric oxide/NO 

donor)

• Improved germination

• Deceased Na content and 

increased K content

• Enhanced CAT and SOD 

activities

Zheng et al. [119]
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4.5. Signaling molecules

Although there are specific signaling roles of phytohormones and antioxidants present in 
plants, which have been discussed in previous sections, this part will discuss the role of exog-

enously applied signaling molecules. Among the signaling molecules, nitric oxide (NO) has 

been widely studied in recent decades, due to its diverse role in tolerance to several abiotic 

stresses including salinity. Nitric oxide exerts its signaling role through various pathways and 

through interaction with other molecules (Figure 3) [26]. In the last decade, exogenous appli-

cation of NO through different donors was found to enhance crop growth and productivity 
under stressful conditions [26]. Zheng et al. [119] observed great improvement in seed ger-

mination of wheat under high salinity (300 mM NaCl). Wheat seeds soaked in SNP solution 

provided better germination under salinity which was associated with decreased Na+ concen-

Cultivars Dose and duration 

of stress

Antioxidants Major effects References

S-24 150 mM NaCl, 

2 weeks

0–150 μM SNP • Increased FW

• Increased leaf area

• Increased photosynthetic 

parameters

Kausar and 

Shahbaz [120]

Pradip 100–200 mM NaCl, 

48 h

1 mM SNP • Decreased MDA and H
2
O

2
 

content

• Increased AsA and GSH 

content

• Enhanced activities of antioxi-

dant enzymes

• Increased activities of glyoxa-

lase enzymes

Hasanuzzaman et 

al. [24]

Sakha 2000–8000 ppm 

NaCl, 75 d

1.25–5.0 mM Arg 

(arginine)

• Decreased growth

• Decreased yield components

• Decreased grain and straw yield

• Lower amount of Pro, secondary 

metabolites and mineral contents

Qados et al. [121]

Sepahan and 

Neyshabour

100 and 200 mM 

NaCl, 41 d

0.5 and 1.0 mM 

Spm

• Increased chl content

• Enhanced antioxidant enzymes’ 

activities

Saeidnejad et al. 

[122]

Zhengmai No. 

004

150 mM NaCl, 48 h 0.05 μM H
2
O

2
• Increased activities of SOD, 

CAT, APX, and POD

• Increased AsA and GSH level

• Decreased MDA and O
2

•− level

• Improved plant height and 

biomass

Li et al. [123]

Table 6. Protective effects of various exogenously applied antioxidants under salt stress in T. aestivum.
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tration and increased K+ concentration in the seeds. Exogenous SNP also helped in increasing 

starch and amylase content in seeds which increased the weights of coleoptile and radical. 

Moreover, exogenous NO enhanced the activities of SOD and CAT which decreased the oxi-

dative damages evident with lower level of lipid peroxidation, O
2
•−, and H

2
O

2
 [119]. Kausar 

and Shahbaz [120] found the positive effect of foliar applied NO in mitigating salt stress in 
wheat. Wheat seedlings grown under 100 mM NaCl exhibited reduced growth and photosyn-

thetic rate. However, NO spray ameliorated the effect by enhancing FW of plants, leaf area, 
stomatal conductance, and internal CO

2
 concentration. However, NO could not take part role 

in enhancing PS II activity [120]. In our laboratory, we examined the effect of exogenous NO 
in conferring salt stress tolerance in wheat [24]. Wheat plant exposed to any level of salt (150 

and 300 mM NaCl) caused significant increase in oxidative stress (as indicated by MDA and 
H

2
O

2
 content). Salt stress-induced oxidative stress was due to the disruption of antioxidant 

defense. However, the seedlings which were pretreated with NO donor (1 mM SNP) showed 

enhanced tolerance which was due to increased nonenzymatic antioxidants (AsA and GSH 

pool) and the activities of monodehydroascorbate reductase (MDHAR), DHAR, GR, glutathi-

one S-transferase (GST), GPX, glyoxalase (Gly) I, and Gly II. Therefore, we concluded that both 

antioxidant defense and glyoxalase systems worked together in enhancing salt stress tolerance 

as induced by NO [24]. As shown in Figure 3 Arg is one of the precursors of NO production. 

Few studies have indicated the role of exogenous Arg in salt stress tolerance in wheat. Qados 

et al. [121] observed that Arg could alleviate the salt-induced adverse effects in wheat. When 
wheat plants were exposed to different levels of salinity (2000–8000 ppm NaCl), plant mass, 
relative water content, yield components (spike length, spike weight, and spikelets per spike), 

grain yield, straw yield, biological yield, and harvest index decreased in dose dependent man-

ners. Salt stress also deteriorated the chemical constituents of the grains. However, when the 

grains were presoaked with Arg, they provided better growth, yield components, yield as well 
as the quality aspects (nutrient content) at harvest [121]. Polyamines are often considered as 

signaling molecules which interact with NO and also exert direct beneficial effects [124–126]. 

Saeidnejad et al. [122] found the positive effect of spermine (Spm) in mitigating salt stress (100 
and 200 mM NaCl) effect in wheat. In general, although seed priming with Spm showed a 
slight effect on germination process on both susceptible and tolerant cultivars, Spm application 
was an effective approach in salinity tolerance induction of wheat cultivars mostly through the 
activation of enzymatic antioxidants and increasing osmolytes production [122]. H

2
O

2
, which 

was previously thought to be a toxic substance and a major ROS recently been considered as 

signaling molecules. The double role of H
2
O

2
 is now an interesting topic of research of many 

plant scientists. However, as exogenous application, most of the experiments were conducted 

using H
2
O

2
 as priming agents or pretreatments rather than using as cotreatment. Signaling 

cross talk of H
2
O

2
 with NO is also well established since last two decades [127]. Exogenous 

H
2
O

2
 protected wheat plants from salt-induced damages by enhancing antioxidant defense 

as reported by Li et al. [123]. The seedlings supplemented with H
2
O

2
 (0.05 μM) decreased 

the levels of MDA and O
2
•−, which was associated with the increased activities of SOD, POD, 

CAT and APX and the concentration of GSH and carotenoid under salt stress (150 mM NaCl). 

Exogenous H
2
O

2
 also increased plant height, shoot length, root length, and biomass under 

saline condition. The results were reversed when H
2
O

2
 scavenger was used that indicated a 

clear role of H
2
O

2
 in initiating its signaling role when applied at lower concentration [123].
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4.6. Seed priming

Seed priming is one of the easiest and cheapest techniques for successful crop produc-

tion under various abiotic stress conditions including salinity [128, 129]. Seed priming is 

a presowing, controlled hydration technique that regulates and increases pregermination 

metabolic activity during early germination stage, but before radical projection [130, 131]. 

Seed priming has been effectively affirmed to improve germination percentage and seed-

ling establishment in many crops such as wheat, rice, maize, soybean, canola, sunflower, 
sugarbeet, etc. [29, 132, 133]. Positive effects of seed priming might originate from de novo 
synthesis of certain germination-promoting substances, enhancing pregermination metab-

olites [131], early DNA replication, greater ATP availability, enzyme activation, osmotic 

adjustments [134], and membrane reorganization through restoring their original struc-

tures and reducing leakage of metabolites. Along with synchronous and fast emergence, 

primed seeds show reduced photo and thermodormancy, a wider range of germination 

temperatures and better capacity to compete with weeds and pathogens [135, 136]. Seed 

priming can be an easy solution for crops to overcome adverse environmental situations; 

it is reliable, simple, low cost, and also low risk technique [128, 137]. Various priming tech-

niques such as hydropriming (soaking seed in water), osmopriming (soaking seed in nutri-

ent, hormone, or chemicals), and halopriming (soaking seed in salt solution) have been 

developed to increase speed of germination, uniform seedling establishment, and crop 

production [138].

 Figure 3. Interaction with PA, H
2
O

2
, and Arg during NO biosynthesis.
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Seed priming has been effectively shown to increase germination and emergence of seeds 
of many crops in the tropical and subtropical areas, especially under salt stress conditions 

[139]. Increased germination rates and better seedling establishment resulted in higher 
levels of salt stress tolerance and crop yields when seeds were primed. Seed priming has 

recently been applied to overcome the salt stress problem on agricultural land [137]. Several 

research findings evidenced the role of seed priming to improve salt stress tolerance in 
wheat (Table 7). Hydropriming for 12 h on six Indian wheat cultivars showed 50% reduc-

tion of mean germination time under saline condition [140]. Effect of hydropriming was 
studied in salt-sensitive (MH-97) and salt-tolerant (AUQAB-2000) cultivars of wheat under 

salt stress (15 dS m−1) condition [16]. It is well documented that seed osmopriming helps to 

improve salt stress tolerance in wheat seedlings. Seed osmopriming with PEG-8000 solu-

tion showed increased germination percentage, germination index, root and shoot length, 

and seedling FW and DW than salt-affected wheat seedlings at different salinity levels 
(4, 8, 12, and 16 dS m−1). It has been reported that seed osmopriming with AsA helped to 

increase the endogenous AsA content and CAT activity which increased the salt stress 

tolerances in wheat [141]. Increased germination percentage, early seedling establishment, 

accumulation of ABA and Pro, and plant growth were featured due to seed osmopriming 

with 0.05 mM SA in wheat under salt stress condition [142]. Seed halopriming improves 

plant salt-tolerance by maintaining ion homeostasis mechanism. Salt stress increases the 

accumulation of Na+ concentrations in the roots and shoots of wheat plants and decreases 

the uptake of beneficiary nutrients. However, seed halopriming helps to maintain the ion 
homeostasis by decreasing Na+ concentration and increasing K+, Ca2+ concentration, and 

K+/Na+ ratio in roots and shoots. Increasing K+ and Ca2+ absorption, K+/Na+ ratio due to 

seed halopriming under salt stress was connected with vigorous seedling growth and 

crop production, increased photosynthetic activity, and reduced electrolyte leakage. Seed 

halopriming with CaCl
2
 helps in the maintenance of ionic balance by reducing the Na+ and 

increasing the K+ absorption consequently improves salt stress tolerances [143]. Salt stress 

also induced oxidative damage by producing ROS. Seed halopriming detoxifies the ROS 
by increasing the activity of enzymatic antioxidant such as SOD and CAT [43]. Iqbal and 

Ashraf [100] demonstrated that halopriming with 100 mM KCl, NaCl, and CaCl
2
 reduced 

the salt stress affect on growth and grain production of two wheat cultivars. Priming with 
phytohormone increased germination with better seedling establishment and tolerance 
to various stresses including salinity. Seed priming of wheat with IAA increased germi-

nation percentage by improving amylase activity [144] and mitigated the growth inhibi-

tory effect of salinity [16]. Seed priming of three wheat cultivars with auxin (0, 1, and 

2 mg L−1) increased germination percentage, root and shoot length, seedling FW and DW, 

and yield under salt stress condition [18]. Priming with SA (100 mg L−1) solution for 24 h 

enhanced growth, photosynthetic pigments such as chl a, chl b and also increased total 

soluble and reducing sugar for maintaining osmotic adjustment during salt stress [145]. 

Iqbal and Ashraf [101] reported that seed priming with GA (150 mg L−1) played a poten-

tial role in alleviating salt stress damages by reducing Na+ and Cl− concentrations, Na+/

K+ ratio, and increasing K+ and Ca2+ contents. Moreover, seed priming with GA increased 

germination percentage, seedling growth and yield contributing components under salt 

stress condition.
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Cultivar Priming agent Duration of 

priming

Salinity doses 

and duration

Major responses References

AUQAB-2000, 

MH-97

Hydropriming, 

50.0 mM 

CaCl
2
. 2H

2
O, 

50 mg L−1 AsA

Seeds 

soaked for 

12 h

15 dS m−1, 

12 d

• Increased germination percentage

• Reduced mean germination time

• Increased root and shoot FW and DW

• Enhanced activities of CAT, SOD, 

and POD

Afzal et al. 

[43]

Gomeza 7 25, 50, and 

100 mM GB

Seed soaked 

for 24 h

150 mM 

NaCl, 38 d

• Decreased lipid peroxidation

• Increased PM stability and eventu-

ally ion homeostasis

Salama et 

al. [88]

MH-97 1, 40, 80, and 

120 μM H
2
O

2

Seed soaked 

for 8 h

150 mM 

NaCl

• Increased photosynthetic capacity

• Enhanced the leaf gas exchange

• Increased K+/Na+ ratio

Wahid et 

al. [35]

0.6 mM AsA 

and sodium 

salicylate, 

0.3 mM 

thiamine

Seed soaked 

for 6 h

40, 80, 120, 

and 160 mM 

NaCl, 30 d

• Stimulated starch accumulation

• Inhibited production of soluble 

protein

• Reduced water soluble Pro 

accumulation

Al-hakimi 

and 

Hamada 

[141]

Gomeza 7 5 and 10 mM 

choline 

chloride

Seed soaked 

for 24 h

150 mM 

NaCl, 21 d

• Increased stigmasterol

• Decreased cholesterol and 

campesterol

• Increased the plasma membrane 

stability

Salama et 

al. [146]

AUQAB-2000 10 ppm ABA, 

50 ppm SA, 50 

and 100 ppm 

AsA

Seed soaked 

for 12 h

15 dS cm−1 • Increased seed germination time

• Decreased electrolyte leakage by 

modulating antioxidant enzymes

Afzal et al. 

[147]

AUQAB-2000 25 ppm IAA, 

50 ppm GA
3,
 

100 ppm 

kinetin, and 

1% prostart

Seed soaked 

in IAA, GA
3
, 

and kinetin 

for 12 h; and 

in prostart 

for 2 h

15 dS cm−1, 

21d

• Decreased electrolyte leakage

• Increased invertase, α-amylase and 
starch synthetase activities which 

helped in better seedling growth

Afzal et al. 

[16]

PUNJAB-11 10, 20, 30, 40, 

and 50 mM 

Na
2
SiO

3

Seed soaked 

for 12 h

15 dS cm−1 • Reduced accumulation of Na+

• Increased Ca2+ content

• Increased germination percentage, 

and root and shoot length

• Vigorous seedling establishment

Azeem et 

al. [148]

DK961 0.06 mM SNP Seed soaked 

for 24 h

100 mM 

NaCl

• Increased germination percentage 

by increasing α-amylase, β-amylase 
isoenzymes activities

• Decreased MDA content, Na+ content

• Increased SOD, CAT, APX activities

Duan et al. 

[149]

Approaches to Enhance Salt Stress Tolerance in Wheat
http://dx.doi.org/10.5772/67247

173



Cultivar Priming agent Duration of 

priming

Salinity doses 

and duration

Major responses References

Kakaba and 

Paven-76

1 and 2% CaCl
2
 

and KNO
3

Seed soaked 

for 12 h

5.97, 9.62, 

13.28, and 

16.9 dS m−1

• Increased germination with uniform 

seedlings

• Increased tillers per plant

• Shortened the physiological maturity 

period

Dugasa et 

al. [150]

Tatara-96, 

Ghaznavi-98, 

Fakhri 

Sarhad, 

Bakhtawar-92, 

Pirsabaq-2004 

and 

AUQAB-2000

30 mM NaCl Seed soaked 0, 40, 80, 

and 120 mM 

NaCl, 55 d

• Enhanced the activities of enzymatic 

antioxidants

• Maintained ionic balance by increas-

ing K+ and Ca2+ accumulation

• Increased tillers per plant and grain 

yield

Jamal et al. 

[32]

MH-97, 

Inqlab-91

100, 150, and 

200 mg L−1 

kinetin and 

BAP

Seed soaked 

for 12 h

15 dS m−1 • Increased germination and early 

seedling establishment

• Increased shoot dry weight and grain 

yield

• Enhanced the endogenous growth 

hormones

• Maintained hormonal  

homeostasis

Iqbal et al. 

[105]

MH-97, 

Inqlab-91

100, 150, and 

200 mg L−1 GA
3

Seeds 

primed for 

12 h

15 dS m−1 • Maintained ionic balance by decreas-

ing Na+ and Cl− ions in roots and 

shoots

• Increased Ca2+ and K+ in roots and 

shoot

• Increased leaf salicylic acid 

concentration

• Increased fertile tiller per plant and 

grain yield

Iqbal and 

Ashraf 

[101]

MH-97, 

Inqlab-91

2.5 mM Spd 

and 5 mM Spm

Seeds 

soaked for 

12 h

15 dS m−1 • Increased shoot growth and grain 

yield

• Enhanced beneficial mineral 
nutrient uptake by maintaining ion 

homeostasis

• Increased biomass production and 

photosynthesis rate

Iqbal [151]

Inqlab-91 and 

SARC-1

50 mM NaCl, 

CaCl
2
, and 

CaSO
4

Seeds 

soaked for 

12 h

125 mM 

NaCl

• Increased germination percentage by 

increasing total soluble and reducing 

sugar

• Increased shoot and root length 

under CaCl
2
 and CaSO

4
 priming

• Increased biomass production

• Improved K+ and Ca2+ accumulation, 

and reduced Na+ concentration

Afzal et al. 

[28]
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5. Conclusions and future perspectives

Wheat is the most popular and widely consumed cereal crops in the world due to its diverse 

uses. Most of the cultivated wheat is hexaploid which has some acquired tolerance to salt stress. 

However, increasing levels of salinity in irrigated lands make wheat production difficult because 
plant growth and productivity of wheat are severely affected by high salinity. Salt stress adversely 

Cultivar Priming agent Duration of 

priming

Salinity doses 

and duration

Major responses References

SARC-1 and 

MH-97

50 mg L−1 AsA, 

CaCl
2
, kinetin, 

and SA

Immersed 

seed in 

solutions 

for 12 h

20 dS m−1 • Decreased emergence time by 

inducing biochemical changes and 

antioxidant enzymes activity

• Reduced Na+ absorption, and in-

creased K+ and Ca2+ absorption

• Improved protease and α-amylase 
activities

• Enhanced all agronomic and yield 

characteristics such as plant height, 

number of tillers, number of spike-

lets, grain yield, biological yield, and 

harvest index

Jafar et al. 

[143]

Caxton 22% PEG-6000 Seed soaked 

for 6 h

50, 100, 150, 

and 200 mM 

of NaCl

• Improved germination related meta-

bolic activity such as synthesis of 

nucleic acids, proteins, and enzymes, 

and enhanced respiratory activity 

upto 150 mM level of salt stress but 

at 200 mM salt stress priming effect 
becomes reduced

Fuller et al. 

[31]

Sakha-93, 

Gemmiza-9

0.2 mM SNP, 

9% diluted 

sea water, 

diluted sea 

water + SNP

Seeds 

soaked for 

10 h

9 dS m−1 • Increased leaf pigment concentration

• Enhanced membrane stability by 

decreasing lipid peroxidation

• Increased total soluble sugar, K+ and 

Ca2+ concentration which decreased 

Na+ uptake

Maswada 

and Abd 

El-Kader 

[152]

Inqlab and 

S-24

100 mg L−1 SA Seeds 

soaked for 

24 h

50 or 

100 mM 

NaCl; 14 d

• Increased root and shoot length, root 

and shoot dry weight, total soluble 

sugar, and carbohydrate metabolism

• Increased chl a and b content

Hamid et 

al. [145]

Azar 2 3% NaCl, 5% 

mannitol, 25% 

sugar beet 

extract and 

hydropriming

Seeds 

soaked for 

4, 8, and 

10 h

3.6 dS m−1 • Increased hypocotyle length, root 

number and leaf length, shoot and 

root fresh weight

• Increased photosynthesis rate

• Enhanced biomass production

Amoghein  

et al. [153]

Table 7. Beneficial effects of seed priming in improving salt stress tolerance in T. aestivum.
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affects seed germination, plant growth, photosynthesis, water relations, nutrient uptake, and 
yield. Oxidative stress is one of the most common effects of salt stress in wheat. However, salt 
stress effects depend on the dose and duration of stress, and mostly on genotypes. Considering 
the importance of wheat and the adverse effects of salt stress, plant biologists are trying to develop 
strategies to improve salt tolerance in wheat. Some of the strategies are related to the genetic 

manipulation of salt-tolerant traits. Physiologists are also trying to find the adaptive mechanisms 
to cope with the salt stress. However, the actual physiological mechanism of salt stress tolerance is 

yet to be revealed. Therefore, coordinated attempts by plant physiologists, breeders, and agrono-

mists are essential to find out a sustainable strategy to enhance salt tolerance in wheat.

Acknowledgements

The first author acknowledges Japan Society for the Promotion of Science (JSPS) for fund-

ing in his research. We are also highly thankful to Mr. Md. Rumainul Islam, Environment 

Engineering Program, Chongqing University and Md. Mosfeq-Ul-Hasan, Zhejiang University, 

Hangzhou, China for providing us several supporting articles. As page limitation precluded 

us from citing a large number of studies, we apologize to those whose original publications 

are therefore not directly referenced in this chapter.

Author details

Mirza Hasanuzzaman1,2, Kamrun Nahar3,4, Anisur Rahman1,3, Taufika Islam Anee1,3, Mazhar 

Ul Alam3,5, Tasnim Farha Bhuiyan3,4, Hirosuke Oku2 and Masayuki Fujita3*

*Address all correspondence to: fujita@ag.kagawa-u.ac.jp

1 Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, 

Dhaka, Bangladesh

2 Molecular Biotechnology Group, Center of Molecular Biosciences (COMB), Tropical 

Biosphere Research Center, University of the Ryukyus, Okinawa, Japan

3 Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Kagawa, 

Japan

4 Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural 

University, Dhaka, Bangladesh

5 Institute of Seed Technology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh

References

[1] Munns R, Tester M. Mechanism of salinity tolerance. Annual Reviews and Plant Biology 

2008; 59:651–681.

Wheat Improvement, Management and Utilization176



[2] Acquaah G. Principles of Plant Genetics and Breeding. Blackwell, Oxford; 2007. p. 385.

[3] FAO. High Level Expert Forum—How to Feed the World in 2050. Economic and Social 

Development, Food and Agricultural Organization of the United Nations, Rome, Italy; 2009.

[4] Wiese MV. Compendium of Wheat Diseases. American Phytopathological Society, USA; 

1977.

[5] Breiman A, Graur D. Wheat evolution. Israel Journal of Plant Sciences 1995; 43:85–98.

[6] Royo A, Abió D. Salt tolerance in durum wheat cultivars. Spanish Journal of Agricultural 

Research 2003; 1:27–35.

[7] Hajihashemi S, Kiarostami K, Enteshari S, Saboora A. Effect of paclobutrazol on wheat 
salt tolerance at pollination stage. Russian Journal of Plant Physiology 2009; 56:251–257.

[8] Huang Y, Bie Z, He S, Hua B, Zhen A, Liu Z. Improving cucumber tolerance to major nutri-

ents induced salinity by grafting onto Cucurbita ficifolia. Environmental and Experimental 

Botany 2010; 69:32–38.

[9] Turan MA, Elkarim AHA, Taban N, Taban S. Effect of salt stress on growth, stomatal 
resistance, proline and chlorophyll concentrations on maize plant. African Journal of 

Agricultural Research 2009; 4:893–897.

[10] Çelik Ö, Atak Ç. The effect of salt stress on antioxidative enzymes and proline content of 
two Turkish tobacco varieties. Turkish Journal of Biology 2012; 36:339–356.

[11] Hasanuzzaman M, Alam MM, Nahar K, Al-Mahmud A, Ahamed KU, Fujita M. 

Exogenous salicylic acid alleviates salt stress-induced oxidative damage in Brassica 

napus by enhancing the antioxidant defense and glyoxalase systems. Australian Journal 

of Crop Science 2014; 8:631–639.

[12] Hasanuzzaman M, Alam MM, Rahman A, Hasanuzzaman M, Nahar K, Fujita M. 

Exogenous proline and glycine betaine mediated upregulation of antioxidant defense 

and glyoxalase systems provides better protection against salt-induced oxida-

tive stress in two rice (Oryza sativa L.) varieties. Biomed Research International 2014; 

doi:10.1155/2014/757219

[13] Munns R. Genes and salt tolerance: bringing them together. The New Phytologist 2005; 

167:645–663.

[14] Shabala S, Munns R. Salinity stress: physiological constraints and adaptive mechanisms. 

In: Shabala S (ed) Plant Stress Physiology. Oxford: CAB International; 2012. pp. 59–93.

[15] Rahman A, Nahar K, Hasanuzzaman M, Fujita M. Calcium supplementation improves 

Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. 

Frontiers in Plant Science 2016; doi:10.3389/fpls.2016.00609

[16] Afzal I, Basra MAS, Iqbal A. The effects of seed soaking with plant growth regula-

tors on seedling vigor of wheat under salinity stress. Journal of Stress Physiology and 

Biochemistry 2005; 1:6–14.

Approaches to Enhance Salt Stress Tolerance in Wheat
http://dx.doi.org/10.5772/67247

177



[17] Akhiyarova GR, Sabirzhanova IB, Veselov DS, Frike V. Participation of plant hormones 

in growth resumption of wheat shoots following short-term NaCl treatment. Russian 

Journal of Plant Physiology 2005; 52:788–792.

[18] Akbari G, Sanavy SA, Yousefzadeh S. Effect of auxin and salt stress (NaCl) on seed ger-

mination of wheat cultivars (Triticum aestivum L.). Pakistan Journal of Biological Scinces 

2007; 10:2557–2561.

[19] Arfan M, Athar HR, Ashraf M. Does exogenous application of salicylic acid through 

the rooting medium modulate growth and photosynthetic capacity in differently 
adapted spring wheat cultivated under salt stress? Journal of Plant Physiology 2007; 

6:685–694.

[20] Athar HUR, Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced 

oxidative stress in wheat. Environmental and Experimental Botany 2007; 63:224–231.

[21] Azzedine F, Gherroucha H, Baka M. Improvement of salt tolerance in durum wheat by 

ascorbic acid application. Journal of Stress Physiology & Biochemistry 2011; 7:27–37.

[22] Eleiwa ME, Bafeel SO, Ibrahim SO. Influence of Brassinosteroids on wheat plant (Triticum 

aestivum L.) production under salinity stress conditions I—growth parameters and pho-

tosynthetic pigments. Australian Journal of Basic and Applied Sciences 2011; 5:58–65.

[23] Erdal S, Aydın M, Genisel M, Taspınar MS, Dumlupinar R, Kaya O, Gorcek Z. Effects of sal-
icylic acid on wheat salt sensitivity. African Journal of Biotechnology 2011; 10:5713–5718.

[24] Hasanuzzaman M, Hossain MA, Fujita M. Nitric oxide modulates antioxidant defense 

and the methylglyoxal detoxification system and reduces salinity-induced damage of 
wheat seedlings. Plant Biotechnology Reports 2011; 5:353–365.

[25] Hasanuzzaman M, Hossain MA, Fujita M. Selenium-induced up-regulation of the 

antioxidant defense and methylglyoxal detoxification system reduces salinity-
induced damage in rapeseed seedlings. Biological Trace Element Research 2011; 

143:1704–1721.

[26] Hasanuzzaman M, Nahar K, Fujita M. Plant responses to salt stress and role of exogenous 

protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, Prasad MNV 

(eds) Ecophysiology and Responses of Plants under Salt Stress. New York: Springer; 

2013. pp. 25–87.

[27] Wahid A, Farooq M, Basra SMA, Rasul E, Siddique KHM. Germination of seeds and 

propagules under salt stress. In: Pessarakli M (ed) Handbook of Plant and Crop Stress, 

3rd edn. Boca Raton: CRC Press; 2011. pp. 321–337.

[28] Afzal I, Rauf S, Basra SMA, Murtaza G. Halopriming improves vigor, metabolism 

of reserves and ionic contents in wheat seedlings under salt stress. Plant Soil and 

Environment 2008; 54:382–388.

[29] Ghiyasi M, Seyahjani AA, Tajbakhsh M, Amirnia R, Salehzadeh H. Effect of osmoprim-

ing with polyethylene glycol (8000) on germination and seedling growth of wheat 

(Triticum aestivum L.) seeds under salt stress. Research Journal of Biological Sciences 

2008; 3:1249–1251.

Wheat Improvement, Management and Utilization178



[30] Akbarimoghaddam H, Galavi M, Ghanbari A, Panjehkeh N. Salinity effects on seed ger-

mination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences 2011; 

9:43–50.

[31] Fuller MP, Hamza JH, Rihan HZ, Al-Issawi M. Germination of primed seed under NaCl 

stress in wheat. ISRN Botany 2012; 167801. doi:10.5402/2012/167804

[32] Jamal Y, Shafi M, Bakht J, Arif M. Seed priming improves salinity tolerance of wheat 
varieties. Pakistan Journal of Botany 2011; 43:2683–2686.

[33] Guo R, Yang Z, Li F, Yan C, Zhong X, Liu Q, Xia X, Li H, Zhao L. Comparative metabolic 

responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. 

BMC Plant Biology 2015; 15:170. doi:10.1186/s12870-015-0546-x

[34] Zou P, Li K, Liu S, He X, Zhang X, Xing R, Li P. Effect of sulfated chitooligosaccharides 
on wheat seedlings (Triticum aestivum L.) under salt stress. Journal of Agricultural and 

Food Chemistry 2016; 64:2815–2821.

[35] Wahid A, Perveen M, Gelani S, Basra SMA. Pretreatment of seed with H
2
O

2
 improves 

salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of 

stress proteins. Journal of Plant Physiology 2007; 164:283–294.

[36] Tammam AA, Alhamd MFA, Hemeda MM. Study of salt tolerance in wheat (Triticum 

aestium L.) cultivar Banysoif 1. Australian Journal of Crop Science 2008; 1:115–125.

[37] Mandhania S, Madan S, Sawhney V. Antioxidant defense mechanism under salt stress in 

wheat seedlings. Biologia Plantarum 2006; 50:227–231.

[38] Poustini K, Siosemardeh A, Ranjbar M. Proline accumulation as a response to salt stress 

in 30 wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Genetic Resources 
and Crop Evolution 2007; 54:925–934.

[39] Lv DW, Zhu GR, Zhu D, Bian YW, Liang XN, Cheng ZW, Deng X, Yan YM. Proteomic 

and phosphoproteomic analysis reveals the response and defense mechanism in leaves 

of diploid wheat T. monococcum under salt stress and recovery. Journal of Proteomics 

2016; 143:93–105.

[40] Asgari HR, Cornelis W, Damme PV. Salt stress effect on wheat (Triticum aestivum L.) growth 

and leaf ion concentrations. International Journal of Plant Production 2012; 6:195–208.

[41] Afzal I, Basra SMA, Cheema MA, Farooq M, Jafar MZ, Shahid M, Yasmeen A. Seed prim-

ing: a shotgun approach for alleviation of salt stress in wheat. International Journal of 

Agriculture and Biology 2013; 15:1199–1203.

[42] Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in 

plants. Crop Science 2005; 45:437–448.

[43] Afzal I, Basra SMA, Hameed A, Farooq M. Physiological enhancements for alleviation of 

salt stress in wheat. Pakistan Journal of Botany 2006; 38:1649–1659.

[44] Iqbal M, Ashraf M. Salt tolerance and regulation of gas exchange and hormonal 

homeostasis by auxin-priming in wheat. Pesquisa Agropecuária Brasileira 2013; 

48:1210–1219.

Approaches to Enhance Salt Stress Tolerance in Wheat
http://dx.doi.org/10.5772/67247

179



[45] Singh A, Bhushan B, Gaikwad K, Yadav OP, Kumar S, Rai RD. Induced defence responses 

of contrasting bread wheat genotypes under differential salt stress imposition. Indian 
Journal of Biochemistry Biophysics 2015; 52:75–85.

[46] Tian F, Wang W, Liang C, Wang X, Wang G, Wang W. Overaccumulation of glycine 

betaine makes the function of the thylakoid membrane better in wheat under salt stress. 
The Crop Journal 2016; 00174:1–10.

[47] Zhang S, Gan Y, Xu B. Application of plant-growth-promoting fungi Trichoderma lon-

gibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of 

antioxidative defense system and gene expression. Frontiers in Plant Sciences 2016; 7. 

doi:10.3389/fpls.2016.01405

[48] Parida AK, Das AB. Salt tolerance and salinity effect on plants: a review. Ecotoxicology 
and Environmental Safety 2005; 60:324–349.

[49] Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, Prasad MNV, Ozturk M. 

Enhancing plant productivity under salt stress—relevance of poly-omics. In: Ahmad P, 

Azooz MM, Prasad MNV (eds) Salt Stress in Plants: Omics, Signaling and Responses. 

Berlin: Springer; 2013. pp. 113–156.

[50] Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annual Review 

of Plant Physiology 1980; 31:149–190.

[51] Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M. Plant responses and tolerance 

to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, 

Shanker C, Mandapaka M (eds) Crop Stress and Its Management: Perspectives and 

Strategies. Berlin: Springer; 2012. pp 261–316

[52] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 2002; 
7:405–410.

[53] Tanou G, Molassiotis A, Diamantidis G. Induction of reactive oxygen species and 

necrotic death-like destruction in strawberry leaves by salinity. Environmental and 

Experimental Botany 2009; 65:270–281.

[54] Hasegawa P, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high 

salinity. Annual Review of Plant Physiology and Plant Molecular Biology 2000; 51:463–499.

[55] Sairam RK, Roa KV, Srivastava GC. Differential response of wheat genotypes to long 
term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte con-

centration. Plant Science 2002; 163:1037–1046.

[56] Rao A, Ahmad SD, Sabir SM, Awan S, Shah AH, Khan MF, Shafique S, Arif S, Abbas 
SR. Potential biochemical indicators improve salt tolerance in fifteen cultivars of wheat 
(Triticum aestivum L.) from Pakistan. International Journal of Scientific and Engineering 
Research 2013; 4:389–406.

[57] Rao A, Ahmad SD, Sabir SM, Awan SI, Hameed A, Abbas SR, Shehzad M, Khan MF, 

Shafique F, Ahmad Z. Detection of saline tolerant wheat cultivars (Triticum aestivum L.) 

using lipid peroxidation, antioxidant defense system, glycinebetaine and proline con-

tents. Journal of Animal and Plant Sciences 2013; 23:1742–1748.

Wheat Improvement, Management and Utilization180



[58] Sairam RK, Srivastava GC. Changes in antioxidant activity in sub-cellular fractions of 

tolerant and susceptible wheat genotypes in response to long term salt stress. Plant 

Science 2002; 162:897–904.

[59] Seckin B, Sekmen AH, Turkan I. An enhancing effect of exogenous mannitol on the anti-
oxidant enzyme activities in roots of wheat under salt stress. Journal of Plant Growth 

Regulation 2009; 28:12–20.

[60] Zhang X, Shi Z, Tian Y, Zhou Q, Cai J, Dai T, Cao W, Pu H, Jiang D. Salt stress increases 

content and size of glutenin macropolymers in wheat grain. Food Chemistry 2016; 

197:516–521.

[61] Gorcek Z, Erdal S. Lipoic acid mitigates oxidative stress and recovers metabolic dis-

tortions in salt-stressed wheat seedlings by modulating ion homeostasis, the osmo-reg-

ulator level and antioxidant system. Journal of Science of Food and Agriculture 2015; 

95:2811–2817.

[62] Fercha A. Some physiological and biochemical effects of NaCl salinity on durum wheat 
(Triticum durum Desf.). Advances in Biological Research 2011; 5:315–322.

[63] Qiu Z, Guo J, Zhu A, Zhang L, Zhang M. Exogenous jasmonic acid can enhance toler-

ance of wheat seedlings to salt stress. Ecotoxicology and Environmental Safety 2014; 

104:202–208.

[64] Genișel M, Erdal S. Alleviation of salt-induced oxidative damage by 5-aminolev-

ulinic acid in wheat seedlings. AIP Conference Proceedings 2016; 1726:020025. 

doi:10.1063/1.4945851

[65] Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic 

stress resistance. Environmental and Experimental Botany 2007; 59:206–216.

[66] Ahmad P, Jeleel CA, Azooz MM, Nabi G. Generation of ROS and non-enzymatic anti-

oxidants during abiotic stress in plants. Botanical Research International 2009; 2:11–20.

[67] Chen H, Jiang JG. Osmotic adjustment and plant adaptation to environmental changes 

related to drought and salinity. Environmental Reviews 2010; 18:309–319.

[68] Gill SS, Tuteja N. Polyamines and abiotic stress tolerance in plants. Plant Signaling & 

Behavior 2010; 51:26–33.

[69] Alam MM, Nahar K, Hasanuzzaman M, Fujita M. Trehalose-induced drought stress tol-

erance: a comparative study among different Brassica species. Plant Omics Journal 2014; 

7:271–283.

[70] Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids 2008; 

35:753–759.

[71] Sharma SS, Dietz KJ. The relationship between metal toxicity and cellular redox imbal-
ance. Trends in Plant Science 2009; 14:43–50.

[72] Mattioli R, Costantino P, Trovato M. Proline accumulation in plants: not only stress. 
Plant Signaling & Behavior 2009; 4:1016–1018.

Approaches to Enhance Salt Stress Tolerance in Wheat
http://dx.doi.org/10.5772/67247

181



[73] Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends in Plant Science 

2010; 15:89–97.

[74] Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under 

changing environments: a review. Plant Signaling & Behavior 2012; 7:1456–1466.

[75] Raza SH, Athar H, Ashraf M. Influence of exogenously applied glycinebetaine on the 
photosynthetic capacity of two differently adapted wheat cultivars under salt stress. 
Pakistan Journal of Botany 2006; 38:241–251.

[76] Raza SH, Athar HR, Ashraf M, Hameed A. Glycinebetaine-induced modulation of anti-

oxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt 
tolerance. Environmental and Experimental Botany 2007; 60:368–376.

[77] Ashraf MA, Ashraf M, Shahbaz M. Growth stage-based modulation in antioxidant 

defense system and proline accumulation in two hexaploid wheat (Triticum aestivum L.) 

cultivars differing in salinity tolerance. Flora—Morphology, Distribution, Functional 
Ecology of Plants 2012; 207:388–397.

[78] Akhter N, Akram NA, Shahbaz M. Presowing seed treatments with glycinebetaine 

and mineral nutrients of wheat (Triticum aestivum L.) under saline conditions. Pakistan 

Journal of Agricultural Sciences 2007; 44:236–241.

[79] Khan MA, Shirazi MU, Alikhan M, Mujtraba SM, Islam E, Mumtaz S, Shereen A, 

Anasari RU, Ashraf MY. Role of proline, K/Na ratio and chlorophyll content in salt 

tolerance of wheat (Triticum aestivum L.). Pakistan Journal of Botany 2009; 41:633–638.

[80] Liang C, Zhan XY, Wang GP, Zou Q, Wang W. Overaccumulation of glycine betaine 

alleviates the negative effects of salt stress in wheat. Russian Journal of Plant Physiology 
2009; 56:370–376.

[81] Talat A, Nawaz K, Hussian K, Bhatti KH, Siddiqi EH, Khalid A, Anwer S, Sharif MU. 
Foliar application of proline for salt tolerance of two wheat (Triticum aestivum L.) culti-

vars. World Applied Sciences Journal 2013; 22:547–554.

[82] Mahboob W, Khan MA, Shirazi MU. Induction of salt tolerance in wheat (Triticum aesti-

vum L.) seedlings through exogenous application of proline. Pakistan Journal of Botany 

2016; 48:861–867.

[83] Hendawey MH. Biochemical changes associated with induction of salt tolerance in 

wheat. Global Science and Research Journal 2015; 10:84–99.

[84] Ismail MA. Exogenous proline induced changes in SDS-PAGE protein profile for salt 
tolerance in wheat (Triticum aestivum L.) seedlings. Research Journal of Pharmaceutical, 

Biological and Chemical Science 2014; 5:749–755.

[85] Chen TH, Murata N. Glycinebetaine protects plants against abiotic stress: mechanisms 

and biotechnological applications. Plant, Cell and Environment 2011; 34:1–20.

[86] Giri J. Glycinebetaine and abiotic stress tolerance in plants. Plant Signaling & Behavior 

2011; 6:1746–1751.

Wheat Improvement, Management and Utilization182



[87] Ahmad R, Lim CJ, Kwon SK. Glycine betaine: a versatile compound with great poten-

tial for gene pyramiding to improve crop plant performance against environmental 

stresses. Plant Biotechnology Reports 2013; 7:49–57.

[88] Salama KHA, Mansour MM, Al-Malawi HA. Glycinebetaine priming improves salt tol-

erance of wheat. Biologia. 2015; 70:1334–1339.

[89] Silini A, Cherif-Silini H, Yahiaoui B. Growing varieties durum wheat (Triticum durum) 

in response to the effect of osmolytes and inoculation by Azotobacter chroococcum under 

salt stress. African Journal of Microbiology Research 2016; 10:387–399.

[90] Yan D, Zheng B. Effects of soaking seeds in trehalose on physiological characteris-

tics of wheat Yangmai-19 under salt stress. Acta Agriculturae Zhejiangensis 2016; 

28:1271–1276.

[91] Aghdasi M, Smeekens S, Schluepman H. Microarray analysis of gene expression 

patterns in Arabidopsis seedlings under trehalose, sucrose and sorbitol treatment. 

International Journal of Plant Production 2008; 2:309–320.

[92] Duman F, Aksoy A, Aydin Z, Temizgul R. Effects of exogenous glycinebetaine and tre-

halose on cadmium accumulation and biological responses of an aquatic plant (Lemna 

gibba L.). Water, Air & Soil Pollution 2010; 217:545–556.

[93] Luo Y, Li F, Wang GP, Yang XH, Wang W. Exogenously-supplied trehalose protects 

thylakoid membranes of winter wheat from heat-induced damage. Biologia Plantarum 

2010; 54:495–501.

[94] Salama KHA, Mansour MMF, Hassan NS. Choline priming improves salt tolerance 

in wheat (Triticum aestivum L.) Australian Journal of Basic and Applied Sciences 2011; 

5:126–132.

[95] Abebe T, Guenzi AC, Martin B, Cushman JC. Tolerance of mannitol-accumulating 

transgenic wheat to water stress and salinity. Plant Physiology 2003; 131:1748–1755.

[96] Ramadan AM, Eissa HF, Hassanein SE, Azeiz AZA, Saleh OM, Mahfouz HT, 

El-Domyati FM, Madkour MA, Bahieldin A. Increased salt stress tolerance and modi-

fied sugar content of bread wheat stably expressing the mtlD gene. Life Science Journal 

2013; 10:2348–2362.

[97] Kerepesi I, Bányai-Stefanovits E, Galiba G. Fructans in wheat under stress conditions. 

Acta Biologica Szegediensis 2002; 46:101–102.

[98] Sharbatkhari M, Shobbar Z, Galeshi S. Wheat stem reserves and salinity tolerance: 

molecular dissection of fructan biosynthesis and remobilization to grains. Planta 2016; 

244:191–202.

[99] Ryu H, Cho Y. Plant hormones in salt stress tolerance. Journal of Plant Biology 2015; 

58:147–155.

[100] Iqbal M and Ashraf M. Seed treatment with auxins modulates growth and ion partition-

ing in salt-stressed wheat plants. Journal of Integrative Plant Biology 2007; 49:1003–1015.

Approaches to Enhance Salt Stress Tolerance in Wheat
http://dx.doi.org/10.5772/67247

183



[101] Iqbal M, Ashraf M. Gibberellic acid mediated induction of salt tolerance in wheat 

plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. 

Environmental and Experimental Botany 2010; 86:76–85.

[102] Shaddad MAK, Abd El-Samad HM, Mostafa D. Role of gibberellic acid (GA3) in 

improving salt stress tolerance of two wheat cultivars. International Journal of Plant 

Physiology and Biochemistry 2013; 5:50–57.

[103] Tabatabei SA. The effect of salicylic acid and gibberellin on enzyme activity and ger-

mination characteristics of wheat seeds under salinity stress conditions. International 

Journal of Agriculture and Crop Sciences 2013; 6:236–240.

[104] Iqbal M, Ashraf M. Presowing seed treatment with cytokinins and its effect on growth, 
photosynthetic rate, ionic levels and yield of two wheat cultivars differing in salt toler-

ance. Journal of Integrative Plant Biology 2005; 47:1315–1325.

[105] Iqbal M, Ashraf M, Jamil A. Seed enhancement with cytokinins: changes in growth and 

grain yield in salt stressed wheat plants. Plant Growth Regulation 2006; 50:29–39.

[106] Gurmani AR, Bano A, Najeeb U, Zhang J, Khan SU, Flowers TJ. Exogenously applied sili-

cate and abscisic acid ameliorates the growth of salinity stressed wheat (Triticum aestivum 

L.) seedlings through Na+ exclusion. Australian Journal of Crop Science 2013; 7:1123–1130.

[107] Ali Q, Athar H, Ashraf M. Modulation of growth, photosynthetic capacity and water 

relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant 

Growth Regulation 2008; 56:107–116.

[108] Naqvi SSM, Mumtaz S, Shereen A, Khan MA, Khan AH. Role of abscisic acid in 

regulation of wheat seedling growth under salinity stress. Biologia Plantarum 1997; 

39:453–456.

[109] El-Lethy SR, Abdel hamid MT, Reda F. Effect of potassium application on wheat (triti-

cum aestivum l.) cultivars grown under salinity stress. World Applied Sciences Journal 

2013; 26:840–850.

[110] Kausar A, Gull M. Effect of potassium sulphate on the growth and uptake of nutrients 
in wheat (Triticum aestivum L.) under salt stressed conditions. Journal of Agricultural 

Science 2014; 6:1–12.

[111] Khan A, Ahmad I, Shah A, Ahmad F, Ghani A, Nawaz M. Amelioration of salinity 

stress in wheat (Triticum aestivum L.) by foliar application of phosphorus. Phyton, 

International Journal of Experimental Botany 2013; 82:281–287.

[112] Zaman B, Niazi BH, Athar M, Ahmad M. Response of wheat plants to sodium and cal-

cium ion interaction under saline environment. International Journal of Environmental 

Science and Technology 2005; 2:7–12.

[113] Tian X, He M, Wang Z, Zhang J, Song Y, He Z, Dong Y. Application of nitric oxide 

and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth 

Regulation 2015; 77: 343–356.

Wheat Improvement, Management and Utilization184



[114] Elhamid EMA, Sadak MS, Tawfik MM. Alleviation of adverse effects of salt stress in 
wheat cultivars by foliar treatment with antioxidant 2—changes in some biochemical 

aspects, lipid peroxidation, antioxidant enzymes and amino acid contents. Agricultural 

Sciences 2014; 5:1269–1280.

[115] Athar HUR, Khan A, Ashraf M. Inducing salt tolerance in wheat by exogenously 

applied ascorbic acid through different modes. Journal of Plant Nutrition 2009; 32:1–19.

[116] Khan A, Ahmad MSA, Athar HUR, Ashraf M. Interactive effect of foliarly applied ascor-

bic acid and salt stress on wheat (Triticum aestivum L.) at the seedling stage. Pakistan 

Journal of Botany 2006; 38:1407–1414.

[117] Sadak MS. Mitigation of salinity adverse effects of on wheat by grain priming with 
melatonin. International Journal of ChemTech Research 2016; 9:85–97.

[118] Farouk S. Ascorbic acid and α-tocopherol minimize salt-induced wheat leaf senescence. 
Journal of Stress Physiology & Biochemistry 2011; 7:58–79.

[119] Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q, Cao W. Exogenous nitric oxide improves 

seed germination in wheat against mitochondrial oxidative damage induced by high 

salinity. Environmental and Experimental Botany 2009; 67:222–227.

[120] Kausar F, Shahbaz M. Interactive effect of foliar application of nitric oxide (NO) and 
salinity on wheat (Triticum aestivum L.). Pakistan Journal of Botany 2013; 45:67–73.

[121] Qados AMSA. Effect of arginine on growth, yield and chemical constituents of wheat 
grown under salinity condition. Academic Journal of Plant Science 2009; 2:267–278.

[122] Saeidnejad AH, Kafi M, Dashti, M. Ameliorative effects of spermine application on 
physiological performance and salinity tolerance induction of susceptible and toler-

ant cultivars of wheat (Triticum aestivum). Archives of Agronomy and Soil Science 2016; 

62:1337–1346.

[123] Li J, Qiu Z, Zhang X, Wang L. Exogenous hydrogen peroxide can enhance tolerance of 

wheat seedlings to salt stress. Acta Physiologiae Plantarum 2011; 33:835–842.

[124] Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M. Polyamine and 

nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants 
through upregulating the metal detoxification, antioxidant defense, and methylglyoxal 
detoxification systems. Ecotoxicology and Environmental Safety 2015; 126:245–255.

[125] Nahar K, Rohman MM, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M. 

Physiological and biochemical mechanism of spermine-induced cadmium stress toler-

ance in mung bean (Vigna radiata L.). Environmental Science and Pollution Research 

2016; 23:21206–18.

[126] Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M. Polyamines 

confer salt tolerance in mung bean by reducing sodium uptake, improving nutrient 

homeostasis, antioxidant defense and methylglyoxal detoxification systems. Frontiers 
in Plant Science 2016; doi:10.3389/fpls.2016.01104

Approaches to Enhance Salt Stress Tolerance in Wheat
http://dx.doi.org/10.5772/67247

185



[127] Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT. Hydrogen peroxide and nitric 

oxide as signalling molecules in plants. Journal of Experimental Botany 2002; 53:1237–47.

[128] Iqbal M, Ashraf M. Changes in growth, photosynthetic capacity and ionic relations in 

spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines. 

Plant Growth Regulation 2005; 46:19–30.

[129] Bakare SO, Ukwungwu MN. On-farm evaluation of seed priming technology in 

Nigeria. African Journal of General Agriculture 2009; 5:93–97.

[130] Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H. Seeds: Physiology of 

Development, Germination and Dormancy, 3rd ed. New York: Springer; 2013; p. 392.

[131] Hussian I, Ahmad R, Farooq M, Rehman A, Amin M. Seed priming improves the per-

formance of poor quality wheat seed under drought stress. Applied Science Reports 

2015; 7:12–18.

[132] Kaya MD, Okcu G, Atak M, Cikili Y, Kolsarici O. Seed treatments to overcome salt 

drought stress during germination in sunflower (Helianthus annuus L.). European 

Journal of Agronomy 2006; 24:291–295.

[133] Salehzade H, Shishvan MI, Ghiyasi M, Forouzin F, Siyahjani AA. Effect of seed priming 
on germination and seedling growth of wheat (Triticum aestivum L.). Research Journal 

of Biological Science 2009; 4:629–631.

[134] Bradford KJ. Water relations in seed germination. In: Kigel J, Galili G (eds) Seed 

Development and Germination. New York: Marcel Dekker, Inc.; 1995; pp. 351–396.

[135] Ellis RH, Butcher PD. The effects of priming and ‘natural’ differences in quality amongst 
onion seed lots on the response of the rate of germination to temperature and the iden-

tification of the characteristics under genotypic control. Journal of Experimental Botany 
1988; 39:935–950.

[136] Hill H, Bradford KJ, Cunningham J, Taylor AG. Primed lettuce seeds exhibit increased 
sensitivity to moisture during aging. Acta Horticulturae 2008; 782:135–141.

[137] Tavili A, Zare S, Moosavi SA, Enayati A. Effects of seed priming on germination char-

acteristics of Bromus species under salt and drought conditions. American-Eurasian 

Journal of Agriculture and Environmental Science 2011; 10:163–168.

[138] Jisha KC, Vjayakumari K, Puthur JT. Seed priming for abiotic stress tolerance: an over-

view. Acta Physiologiae Plantarum 2013; 35:1381–1396.

[139] Yari L, Abbasian A, Oskouei B, Sadeghi H. Effect of seed priming on dry matter, seed 
size and morphological characters in wheat cultivar. Agricultural and Biology Journal 

of North America 2011; 2:232–238.

[140] Saiki TP, Barman B, Ferrara OG. Participatory evaluation by farmers of on-farm seed 

priming in wheat in Assam, India. 2006; 13th Australian Agronomy Conference. Perth, 

WA.

Wheat Improvement, Management and Utilization186



[141] Al-hakimi AMA, Hamada AM. Counteraction of salinity stress on wheat plants by 

grain soaking in ascorbic acid, thiamin or sodium salicylate. Biologia Plantarum 2001; 

44:253–261.

[142] Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova 

DR. Changes in the hormonal status of wheat seedlings induced by salicylic acid and 

salinity. Plant Science 2003; 164:317–322.

[143] Jafar MZ, Farooq M, Cheema MA, Afzal I, Basra SMA, Wahid MA, Aziz T, Shahid M. 

Improving the performance of wheat by seed priming under saline conditions. Journal 

of Agronomy and Crop Science 2012; 198:38–45.

[144] Gulnaz AJ, Iqbal J, Azam F. Seed treatment with growth regulators and crop productiv-

ity. II. Response of critical growth stages of wheat (Triticum aestivum L.) under salinity 

stress. Cereal Research Communications 1999; 27:419–426.

[145] Hamid M, Ashraf MY, Rehman KU, Arashad M. Influence of salicylic acid seed priming 
on growth and some biochemical attributes in wheat grown under saline conditions. 
Pakistan Journal of Botany 2008; 40:361–367.

[146] Salama KHA, Mansour MMF, Al-Malawi HA. Choline priming-induced plasma mem-

brane lipid alterations contributed to improved wheat salt tolerance. Acta Physiologiae 

Plantarum 2015b; 37:1–7.

[147] Afzal I, Basra SMA, Ahmad N, Farooq M. Optimization of hormonal priming techniques 

for alleviation of salinity stress in enhanced wheat (Triticum aestivum L.). Caderno de 

Pesquisa Sér Bio Santa Cruz do Sul 2005; 17:95–109.

[148] Azeem M, Iqbal N, Kausar S, Javed MT, Akram MS, Sajid MA. Efficacy of silicon prim-

ing and fertigation to modulate seedling's vigor and ion homeostasis of wheat (Triticum 

aestivum L.) under saline environment. Environmental Science and Pollution Research 

2015; 22:14367–71.

[149] Duan P, Ding F, Wang F, Wang BS. Priming of seeds with nitric oxide donor sodium 

nitroprusside (SNP) alleviates the inhibition on wheat seed germination by salt stress. 

Journal of Plant Physiology and Molecular Biology 2007; 33:244–50.

[150] Dugasa T, Abebie B, Tomer RPS, Barnabas J. Tolerance of Triticum aestivum L. (Bread 

wheat) varieties for growth yield in high salinity soils of Ethiopia. International Journal 

of Scientific Research 2016; 5:139–153.

[151] Iqbal RM. Effect of salinity on ion partitioning in spring wheat. Pakistan Journal of 
Biological Sciences 2005; 8:302–306.

[152] Maswada HF, Abd El-Kader NIK. Redox halopriming: a promising strategy for inducing 

salt tolerance in bread wheat. Journal of Agronomy and Crop Science 2014; 202:37–50.

[153] Amoghein MB, Amoghein RS, Tobeh A, Jamaati-e-Somarin S. The effect of osmopriming 
and hydropriming on the different index of germination & early growth of wheat under 
salty stress. International Research Journal of Applied Basic Science 2013; 4:1924–1931.

Approaches to Enhance Salt Stress Tolerance in Wheat
http://dx.doi.org/10.5772/67247

187




