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Abstract

Relation between the phase dynamics of the waves sounding thin biological object and
the dynamics of the speckles in the object image plane was theoretically detected using a
model dealing with interference of multiple waves with random phases. Formulas

determining the dependence of time-average intensity ~I and temporal autocorrelation
function η ¼ ηðtÞ of this intensity at a point of the image plane with mean value 〈x〉,
mean square deviation σu, and correlation time τ0 of the difference between the optical
paths ∆u of the wave pairs in the neighborhood of a conjugate point of the object plane
were obtained. A relation between a normalized temporal spectral function of stationary
process ∆uðtÞ and a temporal spectral radiation intensity fluctuation function was sub-
stantiated. An optical device relevant to the model used in the theory was developed.
Good quantitative coincidence between the theory and the experiment was shown by
means of dosed random variation of path difference ∆u. The calibration procedure for
the device determining σu was developed; errors and the sensitivity limit of the tech-
nique were assessed. Application of value σu as a cell activity parameter on biological
objects, namely, a monolayer of live cells on a transparent substrate in a thin cuvette
with the nutrient solution was substantiated. It was demonstrated that the technique
allows determination of herpes virus in the cells as early as 10 min from the experiment
start. A necessity to continue upgrading of the technique was pointed out as well as its
prospects for studying the cell reaction to toxic substances, bacteria, and viruses consid-
ered.

Keywords: interference, speckle, speckle dynamics, phase object, live cells, cell activity,
viruses
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1. Introduction

If a rough object is illuminated at some angle or a transparent object is illuminated by

coherent radiation via matte glass, an inhomogeneous or a speckle is generated in the

image plane. Speckles of random brightness and size are generated as a result of mutual

interference of multiple waves with random amplitudes and phases. A random radiation

intensity value at any point of the image plane can be regarded as resulting from super-

position of multiple waves arriving from the area in the neighborhood of the conjugate

point in the object plane. Minimum transverse speckle size 2bs is related to the linear

resolution of the lens 2as, with formula as ¼ bs=m, where m is magnification generated by

the lens.

At present, the statistic properties of stationary speckles have been well studied, and they can

be checked for in various publications [1–4].

If the phases of sounding waves vary due to the processes occurring on the surface of the

reflecting object or inside a transparent body, the speckle pattern will vary. Speckle dynamics

manifests itself as a speckle shift and (or) a change of their structure. At present, there are

numerous papers on application of this phenomenon and interference of speckle fields during

studies of solid, liquid, or gaseous mediums [5–10].

The speckles generated by biological objects have been called biospeckles in the literature.

Some researchers mean that biospeckles are speckle dynamics due to the processes occurring

in biological objects. Below, we are going to regard biospeckles as speckles generated by

biological objects.

There is vast literature on the properties of biospeckles generated by various objects: seeds,

fruit, vegetables, plant leaves, bacteria, skin, patients’ extremities, etc. Numerous examples of

such studies can, for example, be found in a monograph [11]. Despite a large number of

publications on biospeckles, there is just one technique implemented in clinical practice. This

technique was originally proposed in Ref. [12], and it permits determination of the blood flow

velocity in the blood vessels of the patients’ retinas or extremities. The latest publications

aiming at upgrading of the technique can be checked for in Ref. [13]. Successful application of

this technique might be related to the fact that authors developed its theory at a certain stage of

the research [14].

When live cells are sounded by coherent waves, the intracellular processes can alter the

amplitudes and phases of the waves, thus changing the speckle image of an object. This

provides an opportunity to study intracellular processes by the features of biospeckle dynam-

ics in principle so that, for example, the problem of therapeutic drug management could be

solved. That is why establishing of the relation between the physical-chemical intracellular

processes and the biospeckle dynamics is a task vital both from the scientific and practical

point of view. The authors explain absence of notable progress in solution of this problem by

absence of a theory establishing a relation between the parameters that characterize the phys-

ical-chemical processes influencing the variation of the cell-sounding wave phases and the

parameters characterizing speckle dynamics. Recently, one of the authors of this paper devel-

oped a similar theory for thin biological object so that this paper aims at familiarizing the
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readers with the adopted model, the results of the theory test on the model objects, and with

some perspectives of its application.

2. Interference of two and multiple waves

2.1. Complex amplitude of light wave and radiation intensity

The electromagnetic nature of the light waves was theoretically substantiated by British phys-

icist Maxwell in his paper [15]. Ruling out the currents from his equation system, he obtained

an equation that describes the propagation of electromagnetic disturbances:

∆ f
!
−

1
c2 d

2 f
!

dt2
¼ 0, (1)

where f
!
is the electric E

!
or magnetic H

!
field vector tension, and с is light velocity.

Note that this equation exactly coincides with the equation of disturbance motion in elastic no

compressive medium.

Further, let us target on plane monochrome waves that are a special case of a solution to

Eq. (1). These are the waves wherein the electric and magnetic field vary according to the

cosine law and vector f
!
is a function of a single coordinate and time. Let us restrict ourselves to

discussing the tension of the electric-filed vector. In a form independent from the origin

selection for a plane monochrome wave, we have [16]:

E
!
¼ Re

n

E
!

0e
þið k

!
r
!
−ωtÞ

o

, (2)

where E
!

0 is some constant complex vector, k
!
is a wave vector equaling ðω=cÞ n

!
¼ ð2π=λÞ n

!
, r
!

is a radius vector of a point of space, ω is the wave frequency, λ is the wavelength, and n
!
is a

single vector coinciding with the direction of the light wave propagation.

Let us further accept that all the waves have the same direction of the electric field vectors,

then, when the waves impose their amplitudes, they can be added as scalar values. Besides,

further in Eq. (2), we shall omit symbol Re and operate exponents instead of cosines. It is

possible because in the problems that we are discussing below the final result will differ by an

insufficient factor. Instead of Eq. (2), we have:

Eðx, y, z, tÞ ¼ Aðx, y, zÞ exp ð−iωtÞ, (3)

where expression Aðx, y, zÞ ¼ jAðx, y, zÞjexp½iθðx, y, zÞ�was named complex amplitude in optics,

jAðx, y, zÞj is the module of the complex amplitude, and θðx, y, zÞ is the wave phase at the

observation point.

Now let us introduce the notion of light intensity as a value proportionate to volumetric

density of radiation energy averaged by the time interval substantially exceeding the wave

oscillation period:
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Iðx, y, zÞ ¼ lim
T!∞

1

T

ð

T=2

−T=2

jEðx,y,z, tÞj2dt ¼ jAðx,y,zÞj2: (4)

Thus, the radiation intensity at a point of space equals the squared complex amplitude module.

2.2. Interference of two waves

Let us discuss the light intensity distribution in superposition of two monochrome waves.

Suppose that two waves of the same length λ were emitted by one point source in various

directions, then two plane waves 1 and 2 crossing at angle θ were shaped by the optical

systems. Let us take some point in the area of beam superposition. For certainty, let the wave

amplitudes be the same equaling A0, but their initial phases ϕ differ. In compliance with

Eq. (4), we have:

I ¼ A×A� ¼
h

A0e
ið k
!

1 r
!
þϕ1Þ þ A0e

ið k
!

2 r
!
þϕ2Þ

i

×
h

A0e
−ið k

!

1 r
!
þϕ1Þ þ A0e

−ið k
!

2 r
!
þϕ2Þ

i

¼ 2I0 þ 2I0 cos
h

ð k
!

1− k
!

2Þ r
!
þ ϕ1 þ ϕ2

i

, (5)

where I0 ¼ A2
0. Eq. (5) describes periodic light intensity distribution in the neighborhood of

point r
!
, which was called light interference by T. Jung. Elementary calculations can demon-

strate [17, 18] that minimum distance ∆ between neighboring intensity maximums or mini-

mums called bandwidth or period of the interference fringes is determined by formula

(Eq. (6)):

∆ ¼
λ

2 sin θ
2

: (6)

It follows from Eq. (6) that if θ tends to zero, ∆ tends to infinity, which corresponds to tuning of

the interferometer to “endless” band. If angle θ between vectors k
!

1 and k
!

2 equals 180°, then

∆ ¼ λ=2, which corresponds to the wave interference in colliding beams. For θ = 60° value,

∆ ¼ λ.

Now let us discuss the contrast of the interference fringes γ introduced by Michelson and

determined by formula γ ¼ ðImax−IminÞ=ðImax þ IminÞ, where Imin and I max are the minimum and

the maximum intensity values, respectively. From Eq. (5), it follows that in the case of a point

light source discussed here and constant wavelength λ, contrast γ ¼ 1. Experience shows that

if the light source is not point and (or) it emits light in some wavelength interval, the fringes

contrast is less than 1.

It is commonly believed that case γ ¼ 0 corresponds to completely incoherent light; if

0 < γ < 1, the light is partially coherent, and coherence is the ability of waves to interfere.

Interference of partially coherent light can be studied in Ref. [19]. In the text below, we will

suppose that the light waves discussed here are completely coherent, i.e., two waves of the
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same amplitude generate an interference pattern with the contrast equal to 1. We can suppose

with practical precision that similar waves are generated by laser light sources.

2.3. Interference of multiple waves with random amplitudes and phases

The creation of laser and discovery of the speckle structure of scattered radiation were imme-

diately followed by a number of theoretical papers on statistical properties of speckles in free

space [1] and in the image area of scattering surface [2]. Figure 1 presents a typical speckle

pattern observed in the image plane of a rough surface. The picture was obtained by the

authors of this manuscript during its preparation. In this section, we discuss some main

features of speckle fields obtained by Goodman [3, 4] on a simple model describing interfer-

ence of multiple waves.

According to Goodman's model, the waves that arrived at an arbitrary point of the free

space from elementary areas of surface can be regarded as plane monochrome waves with

random amplitudes aj=
ffiffiffiffi

N
p

and phases ϕj, where j is the wave number, j ¼ 1, 2,… N. It

was supposed that the amplitude and phase of the same wave and the amplitudes and

phases of different waves are independent, and the values of a2j averaged by the object

ensemble are nonzero. It was considered that phases ϕj were homogeneously distributed

in the area from −π to þπ. The presence of the object ensemble means the presence of

numerous macroscopically identical scattering objects, each object generating N plane and

monochrome waves with random amplitudes and phases. Any value averaged by the

object ensemble is found by means of fixation for every object of the ensemble with

subsequent calculation of its mean value. In the text below, we will denote the ensemble-

average with angular parenthesis. Note that mathematically, object ensemble-averaged

value of some function f of random arguments x1, x2,…, xm, is determined in the following

way:

Figure 1. Speckles in the image plane of a rough surface.
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〈f ðx1, x2,…, xmÞ〉 ¼
ð

þ∞

−∞

…

ð

þ∞

−∞

f ðx1, x2,…, xmÞρðx1, x2,…, xmÞdx1dx2…dxm, (7)

where ρð x1, x2,…, xmÞ is joint probability density of random values x1, x2,…, xm. If these values

are independent, ρðx1, x2,…, xmÞ ¼ ρðx1Þρðx2Þ…ρðxmÞ, and the calculation of integral (Eq. (7))

may simplify substantially.

If all the waves are linearly polarized in the same mode, then, according to J. Goodman, the

following ratio holds for total complex amplitude A at some point q
!
of the free space:

A ¼ ae−iθ ¼ Ar þ iAi ¼ 1
ffiffiffiffi

N
p

X

N

j¼1

aje
iϕj , (8)

where Ar and Ai are real and imaginary parts of the total complex amplitude, respectively.

Eqs. (9)–(11) obtained by Goodman on the basis of the discussed model that characterize the

statistical properties of speckles are cited as follows:

〈Ar〉 ¼ 〈Ai〉 ¼ 〈ArAi〉 ¼ 0, (9)

〈ArAr〉 ¼ 〈AiAi〉 ¼ 1

2N

X

N

j¼1

〈a2j 〉, (10)

ρðArAiÞ ¼ 1

2πσ2
e−

ðAr Þ2þðAiÞ2
2σ2 , (11)

ρðI,θÞ ¼ ρðIÞ×ρðθÞ ¼ 1

〈I〉
e−

I
〈I〉×

1

2π
, I≥0 , −π ≤θ ≤π , 2σ2 ¼ 〈I〉, (12)

〈In〉 ¼ n!〈I〉n: (13)

From Eqs. (9)–(13), it follows that at an arbitrary point of a free field, the real and imaginary

parts of total complex amplitudes are independent, uncorrelated, and distributed according to

the Gauss’ law. Radiation intensity I and resulting phase θ are independent, value θ is homo-

geneously distributed in the range from −π to þπ. From Eq. (12), it follows that probability PI

exceeding some threshold equal to I by the light intensity that is given by Eq. (14):

PI ¼ e−
I

〈I〉 (14)

Thus, in a speckle field, the most probable intensity value is value I equal to zero. With

increasing intensity, the probability of its detection decreases exponentially. From Eq. (13), it

also follows that speckle contrast С equal to the ratio of mean square deviation intensity to the

mean intensity equals 1.

Experience shows that experimental dependence PIðIÞ agrees well with theoretical dependence

Eq. (14) for scattering surfaces that lack the mirror constituent of scattered radiation, and

whose height of heterogeneity of the surface relief is comparable with wavelength λ. The
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statistical properties of the speckles corresponding to other models of rough surface can be

studied, for example, in Refs. [20, 21].

The model proposed by Goodman was further developed in Ref. [22] to obtain the formula

allowing determination of three-dimensional speckle sizes. It was supposed that point scatter-

ing centers were located in some three-dimensional area transparent for radiation. A formula

was obtained that allowed determination of three-dimensional speckle sizes for an area of an

arbitrary shape with random location of the radiation source, the object, and the observation

site by the width of a spatial autocorrelation function of intensity of scattered radiation. The

formulas determining the transverse and longitudinal speckle sizes for two objects of a simple

shape are given below. Let us examine a transparent area shaped like a right-angle parallele-

piped of size 2X and 2Y on ох and оу axes, respectively, and of size 2Z on oz axis. Point

scatterers are located within the area. Let the coordinate origin be located in the center of the

area. Then, if the direction of illumination is arbitrary at distance ρq on oz axis, speckles with

minimum sizes ∆~qx, ∆~qy, ∆~qz are generated as xd, yd, and zd, respectively:

∆~qx ¼
λρq

2X
, ∆~qy ¼

λρq

2Y
, ∆~qz ¼

5λρ2q

πðX4 þ Y4Þ1=2
: (15)

If the object is cylindrical, axis oz coincides with the axis of the cylinder, and the coordinate

origin is located in the center of the object, then in similar observation and illuminating

conditions

∆~r ¼ 1:22
λρq

D
, ∆~qz ¼ 2

λρ2q

R2
, ∆r ¼ ð∆q2x þ ∆q

2
yÞ

1=2 , (16)

where R is the radius of the cylinder, D =2R. In the literature [5, 23], it was shown that the mean

xd, yd, and zd speckle sizes are threefold compared with the minimum.

In the preceding text above, we confined ourselves to the main features of speckle fields in a

free field. The speckles generated in the scattering image plane have very similar properties.

For the speckles in the area of the object images in Eqs. (15) and (16), values 2X, 2Y, and R equal

the size of a diaphragm of the relevant shape located near the lens.

3. Theory of dynamic speckle interferometry of thin phase objects

To study various properties of transparent objects, a variety of interference, shadow and

speckle techniques are conventionally used [24–26]. As a rule, these techniques are oriented

toward the analysis of macroscopic processes. With that, the logic of advancement in speckle

optics and the practical needs pose the problem of studying microscopic processes occurring at

the structure level. In particular, in biology, the problem of therapeutic drug management

poses the problem of studying the processes in cells and their membranes. As at the structure

level, the properties of biological media are random, when waves pass through various parts

of the cell, their phase randomly varies in time. Therefore, a variation of the radiation intensity
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at the observation point is also a random process. The complexity of theoretical analysis of

similar phenomena is that in the general case, there is necessity for dispersive ratios character-

izing the wave phase variation in space and time.

In practice, there is an option when random values of the wave phases varying in space and

time are independent. In particular, this option may be generated if the area of spatial correla-

tion of a physical value causing the wave phase variations is less than the wavelength of light

λ. In this case, the solution to the problem of establishing a relation between the wave phase

dynamics in a thin transparent (phase) object and the dynamics of the light intensity in its

image plane simplifies considerably. The solutions to this problem attempted for studying the

properties of particular objects are found in the literature [27, 28]. In the para below, we are

giving the general solution to the problem obtained by the authors of this paper.

3.1. Model of the object

At the first stage, the aim of the theoretical analysis is to obtain the expression for radiation

intensity Iðq
!
Þ at some point q

!
of the observation plane, and then for temporal autocorrelation

function of a random process I ¼ IðtÞ. We will obtain the expression for value Iðq
!
Þ using the

model of a three-dimensional diffuser published in the abovementioned paper [22]. Let a point

source of coherent radiation with wavelength λ located at point 1 illuminate point scattering

centers randomly located in thin diffuser 2 near (хоу) plane as is shown in Figure 2. Let the

position of the point source be given by radius vector s
!
. To simplify the transformations, let us

admit that the refraction indexes of the medium inside and outside the diffuser are the same

and equal 1. At distance L0 from (хоу) plane, in plane (βx0βy) there is a thin lens with focal

distance f and diaphragm diameter D. Planes (хоу) and (qх0qу) are conjugate. We consider all

the waves discussed linearly polarized in the same direction. Let us admit that phase ϕj of the

wave scattered by the jth center is random, and the waves from all the scattering centers arrive

at an arbitrary point of (βx0βy) plane.

Figure 2. Optical system taken in the theory: (1) light source, (2) diffuser, (3) thin transparent object, (4) the lens with

diaphragm, (5) the image plane, (6,7) conjugate points.
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Let thin phase object 3 whose refraction index varies in time (Figure 2) be located near the

diffuser to its right. Let us admit that the longitudinal resolution of the lens exceeds the sum of

the diffuser thickness, the object thickness, and the distance from the object to the diffuser. We

also suggest that the point scattering centers are fairly rare, so the random phases of the waves

that have passed through the object are independent.

3.2. Radiation intensity

First, let us obtain the expression for radiation intensity Iðq
!
Þ at some point q

!
of plane (qх0qу) in

the absence of the phase object. We suppose that the optical system does not permit separate

scattering centers, and that the number of the scattering centers is fairly large in the area of the

transverse lens resolution. For total complex amplitude Aðβ
!
Þ at arbitrary point β

!
of plane

(βx0βy) we have:

Aðβ
!
Þ ¼

X

M

j¼1

ajðβ
!
Þ, (17)

where M is the count of scattering centers, ajðβ
!
Þ is the complex amplitude of the jth wave at

point β
!
. We will obtain the complex amplitude of light Aðq

!
Þ at point q

!
adding the amplitudes

of waves that arrived from the points of plane (βx0βy) to point q
!
, taking amplitude Pðβ

!
Þ and

phase exp ikjβ
!
j=2f lens transmission into consideration [7]:

Aðq
!
Þ ¼

ð

þ∞

−∞

ð

Pðβ
!
Þe

ikjβ
!
j

2f eikjL
!

qðβ
!
Þj
X

M

j¼1

ajðβ
!
Þdβxdβy, (18)

where i is an imaginary unit, k ¼ 2π=λ is the wave number, and L
!

qðβ
!
Þ is the vector connecting

points β
!

and q
!
. Henceforward, the inferior index of the vector denotes the position of the

vector head.

Let us take the relation between the complex amplitude of light in proximity to point r
!
j and at

point β
!
in the same form as in Ref. [7]:

ajðβ
!
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi

I0ð r
!

j

q

Þξð r
!
jÞe

i
�

k½jL
!

sð r
!
jÞjþjL

!

βð r
!
jÞj�þϕj

�

, (19)

where I0 ¼ I0ð r
!
Þ is a distribution of the illuminating radiation intensity, ξ ¼ ξð r

!
Þ in the

general case is a complex coefficient accounting the share of the radiation going from point r
!

to point β
!
, L
!

sð r
!
Þ is the vector connecting points r

!
and s

!
, and L

!

βð r
!
Þ is the vector connecting

points r
!
and β

!
.

Let us take arbitrary point 6 in plane (хоу) and its conjugate point 7 in plane (qx0qy) that are given

by radius vectors r
!

q and q
!
r, respectively (figure 2). It is known that the wave going from point 6
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generates an Airy pattern with the center in point 7 as the result of light diffraction on the

diaphragm of diameterD. The radius of the central spot bs of the pattern equals 1:22λL′

0=D, where

L′

0 is the distance from the lens to plane (qx0qy). The areas of radius bs in plane (хоу) correspond to

the area of radius as ¼ bs=m, where m is the magnification generated by the lens. It is known that

85% of the energy of the wave that passed through the lens falls on the central speckle of the Airy

pattern. We are going to neglect the energy of the waves beyond the area of radius bs. This in turn

means that we suppose that the waves only from the scattering centers in the area of radius as with

the center at point 6 arrive at point 7. Let N be the number of these centers.

Then, supposing that the area of radius as, the thickness of the diffuser and value D are small

compared to the distances from the object to the radiation source and to the lens, and also from

the lens to the image plane, we can obtain the expression for complex amplitude Aðq!Þ:

Aðq!Þ ¼
ffiffiffiffi

I0
p

eiψ
X

N

j¼1

eiθj , (20)

where I0,ψ are constants, θj ¼ k r
!

jð l
!

sþ l
!
Þ þ ϕj, l

!
s ¼ l

!
sðlsx, lsy, lszÞ and l

!
¼ l

!
ðlx, ly, lzÞ are sin-

gle vectors directed from point r
!

q toward the radiation center and to the observer, respectively,

complex amplitude
ffiffiffiffi

I0
p

eiψ determines the complex expression preceding the summation sign.

A detailed output of Eq. (20) can be found in Ref. [29].

Let us insert a thin phase object between the diffuser and the lens, as shown in Figure 2. Let us

suppose that the object will alter only the phase of the jth wave, and there is no light refraction.

In this case value, θj will change by value ζj, where

ζj ¼
2π

λ

n

ð

lj

½njðlÞ−n0�dl
o

¼ 2π

λ
uj, (21)

njðlÞ is a distribution of the refraction index in the phase object along the path of the jth wave, lj

is the path length of the jth wave in the object; integrals are found along the wave path, uj is the

optical difference of the jth wave travel path in the phase object.

So instead of Eq. (20), we have:

Aðq!Þ ¼
ffiffiffiffi

I0
p

eiψ
X

N

j¼1

eiðζjþθjÞ (22)

For radiation intensity at point q
!
we have the following:

Iðq! Þ ¼ Aðq!ÞA�ðq!Þ ¼ I0
X

N

j¼1

X

N

m¼1

ei½kðuj−umÞþθj−θm � ¼ I0N þ 2I0
X

K

κ¼1

cos ½k∆uκ þ ∆θκ�, (23)

where ∆uκ is the relative optical difference of the travel path of the κth pair of scattering

centers, ∆θκ ¼ θj−θm, j≠m, κ ¼ 1, 2…K, K ¼ NðN−1Þ=2.
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3.3. Temporal autocorrelation function

First, let us obtain the expression for temporal autocorrelation function of the radiation inten-

sity at point q
!
, i. е., Eq. (24):

R1,2ðt1, t2Þ ¼ 〈½I1−〈I1〉�×½I2−〈I2〉�〉 ¼ 〈I1I2〉−〈I1〉〈I2〉, (24)

where inferior indexes 1 and 2 denote time points t1 and t2, angle parentheses denote averag-

ing by the object (model) ensemble. Let us suggest that at different κ random values ∆uκ are

independent, and at the same κ, their time correlation occurs. Suppose also that joint probabil-

ity density ρð∆uκ1,∆uκ2Þ is a two-dimensional Gaussian function that is the same for different

κ. So further we are going to omit inferior index κ in expressions ∆uκ. Using the suggestions

made in Ref. [29], we obtained the expression for R1,2ðt1, t2Þ:

R1,2ðt1, t2Þ ¼ I20NðN−1Þcos½ð〈x2〉−〈x1〉Þ�×e−
1
2k11−

1
2k22þk12 , (25)

where 〈x1〉 and 〈x2〉 are the object ensemble-averaged values x ¼ k∆u at time points t1 and t2,

respectively, k11 and k22 are dispersions of value х at time moments t1 and t2, respectively,

k12 ¼ 〈ðx1−〈x1〉Þðx2−〈x2〉Þ〉. For the normalized autocorrelation function η12 ¼ R12ðt1, t2Þ=R12

ðt1, t1Þ we have the following:

η12 ¼ cos½ð〈x2〉−〈x1〉Þ�×e−
1
2k11−

1
2k 22þk12 : (26)

Let process x ¼ xðtÞ be stationary. Then 〈x1〉 ¼ 〈x2〉, k11 ¼ k22 and, therefore,

ηðτÞ ¼ e−k11þk11ρ12ðτÞ, (27)

where τ ¼ t2−t1, ρ12ðτÞ is a normalized temporal correlation function of random value k∆u. Let

ρ12ðτÞ ! 0, τ ! ∞. For example, this is a feature of normalized Lorentzian and Gaussian

correlation functions. Then function ηðτÞ levels off to η� equal to expð−k11Þ. So by value η

leveling off with time, we can determine dispersion k11 of phase differences varying in time

and variation σu ¼ λ
2π

ffiffiffiffiffiffi

k11
p

of value ∆u. We used this fact in experiments studying the processes

occurring in live cells. These experiments will be discussed in Sections 5 and 6.

3.4. Temporal spectral function

Subtracting constant component η� from Eq. (27) and renormalizing it, we obtain a new

temporal autocorrelation function of radiation intensity fluctuation η
0ðτÞ:

η
0ðτÞ ¼ ηðτÞ−η�

1−η�
: (28)

Let ∆u≪λ. Then it easy to demonstrate that η′ðτÞ≅ρ12ðτÞ. Therefore, the temporal autocorre-

lation function of intensity fluctuations corresponds to the temporal autocorrelation function

of the wave pair optical path differences. Let us further suppose that random process
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∆u ¼ ∆uðtÞ is not only stationary but also ergodic. As the normalized temporal energetic

spectrum for these processes is Fourier's transformation from the normal autocorrelation

function, the corresponding normalized temporal spectral functions of intensity fluctuations

g
∆IðωÞ and optical path differences g

∆uðωÞ are equal.

It was also demonstrated in Ref. [29] that if ∆u≥λ and ρ12ðτÞ is a Gaussian function,

functions g
∆uðωÞ and g

∆IðωÞ are also Gaussian functions, but spectrum width g
∆IðωÞ is

k11-fold spectrum width g
∆uðωÞ. So at k11 increasing spectrum g

∆IðωÞ widens, and at ∆u≥λ

it widens k11-fold.

3.5. Time averaging technique

A disadvantage of the theory presented in the Section 3.4 is the difficulty of application in

the case when the wave phase variations in time happen due to existence of various

processes occurring simultaneously at different scale levels. For example, when the target

of research is a cell, sounding wave phase variation can occur due to passage of ions via

the membrane, to capture large molecules by endocytosis (local variation of the cell

shape), due to chemical processes during protein synthesis in the cytoplasm and nucleus

of the cell, so in Ref. [30] the technique was upgraded to overcome this disadvantage. The

idea was in the application of time-averaging procedure for speckle dynamics. If charac-

teristic time τ0 of wave phase variation corresponding to the most rapid process is known,

averaging time T of the recorded optical signals can be taken as a value exceeding τ0. In

this case, the speckle dynamics will result from slower processes, and interpretation of the

experimental data can get simplified. In the para below the results obtained in Ref. [30]

are presented in brief.

Using the model discussed in Section 3.1, we obtained expressions for time-average intensity

~Iðq
!
Þ at point q

!
r (Figure 2). Having substantiated the possibility of discussing continuous

function ~I ¼ ~IðtÞ at point ðq
!
Þ, we obtained the expression for temporal autocorrelation func-

tion R1,2ðt1, t2Þ of time-average intensity:

~Iðq
!
Þ ¼ I1 þ I2e

−k2σ2=2 cos ðkμþ αÞ, (29)

R1,2ðt1, t2Þ ¼ I2NðN−1ÞC2
0cos½〈x2〉−〈x1〉�×e

−
1
2k11−

1
2k22þk12 : (30)

In Eq. (29) I1, I2, α are constants, μ and σ2 are mean value and dispersion of variable ∆u

obtained by time-averaging and averaging by a region of radius as (see Figure 2). Eq. (30)

coincides with Eq. (25) to a precision of insufficient coefficients I2 and C2
0. But now x ¼ kμ, so

the arguments of the cosine and the exponent contain mean values, dispersions, and the

correlation moment of a new value x ¼ kμ.

The peculiarity of Eq. (30) is that if averaging time T of the radiation intensity exceeds the

correlation time of value μ, normalized function, Eq. (30) takes on the following appearance:
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ηðq
!
, t1, t2Þ ¼

R1,2ðq
!
, t1, t2Þ

R1,2ðq
!
, t1 , t2Þ

¼ cos½〈x2〉−〈x1〉�e
−k22=2þk11=2: (31)

Supposing in Eq. (31) that values k11, k22, and kμ are small compared with 1, let us decompose

Eq. (31) into Taylor's series in the neighborhood of points k22 and kμ equal to zero, having

retained the first-order derivatives. We obtain

ηðtÞ ¼ 1−
ðk22ðtÞ−k11Þ

2
, (32)

where t ¼ t2−t1. It is seen from the formula that if averaging time T exceeds the correlation time

of random value kμ, the relation between η and k22 is linear.

Now among N waves let us have two wave groups with random optical wave path variations

un ¼ unðtÞ occurring homogeneously in the statistical sense. Let count n of such waves in

groups 1 and 2, respectively, equal N1 and N2. In practice, groups 1 and 2, for example, lie

inside and outside a live cell. At large magnifications, such groups can lie within the cell

nucleus and in its cytoplasm. In Ref. [30], it was shown that in this case time-average radiation

intensity at conjugate point q
!

r is determined by Eq. (33):

~Iðq
!
Þ ¼ ~I1 þ ~I2 þ 2~I12cos½k∆μþ θ�, (33)

where ~I1 and ~I2 are time-average intensities generated by groups 1 and 2 individually,
~I12 ¼ I3e

−σ2
1
=2−σ22=2 and I3, θ are constants, ∆μ is the difference of time-average values un in

groups 1 and 2, σ21 and σ22 are dispersions of values un in groups 1 and 2, respectively.

3.6. Relation between the object features and the parameters of speckle dynamics

We used the results of the theory presented in Section 3 to conduct experiments with live cells

cultured or precipitated on a transparent substrate. To determine the value η, we took seg-

ments of diameter 2as in the object plane. We regarded a region containing a large number of

such segments as an object ensemble. The corresponding segments of the speckle image in the

conjugate region were recorded at time points t1 and t2, and then they were used to determine

correlation coefficient η of digital speckle images.

Analysis of the formulas obtained demonstrates that experimentally obtained dependences

ηðtÞ and (or) ~IðtÞ can in principle be used to determine the mean value, variation, and correla-

tion time of the medium refraction index in small regions of the transparent object. In turn, the

refraction index is related to medium density ρ and its specific refractivity r̂ via Lorentz-

Lorenz formula for liquids. For multicomponent media, the latter is equal to the sum of the

products r̂ of single molecules on their relative concentration.
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It is known that the density of liquids depends on their temperature. Therefore, if the time

range where the composition of the medium can be considered constant is selected, under

certain conditions the spectrum of intensity fluctuations can be regarded as the energetic

spectrum of chemical reactions occurring in the cell areas under study. Similarly, if a time

range or the object segments with the temperature (density) that can be considered invariable

is selected, the processes of mass transfer in live cells can be studied by variation of correlation

coefficient η or average intensity ~IðtÞ.

4. Cultured cells as research target

4.1. Features and advantages of cultured cells

Cell cultures have been playing a more important and notable role in toxicological, pharmaco-

logical, and other investigations. That said, the sphere of their application has been widening,

and the technique of in vitro culture has been getting upgraded and automated. Cell cultures are

single cell groups grown in invariable conditions. Moreover, the researcher is allowed to vary

these conditions within certain limits enabling themself to assess the effect of various factors such

as pH, temperature, and amino acid concentration on cell growth. Cell growth can be assessed in

a short time period or by increase of the cell count or size, or by inclusion of radioactive pre-

cursors into cellular DNA. These real advantages compared with investigations on intact animals

put cell cultures on a par with cultured microorganisms as an experimental system.

When working with cell cultures, we can obtain significant results only on a fairly small

number of cells. Experiments requiring 100 rats or 1000 humans for clearing up some matter

can be conducted using 100 cultures on cover glasses with equal statistical significance. So if

every cell is regarded as an independent object of the experiment, one culture on a cover glass

can give an answer as reliable as a clinic full of patients can. This is a significant advantage

when it concerns humans; besides, it removes a number of ethical problems from the agenda

when it is necessary to use a large group of animals for an experiment.

4.2. Cell life cycles

Cell culture monolayers are populations of cells having certain species and tissue origin

growing on the surface of a carrier made of plastic, glass etc. A complete cell monolayer may

cover more than 90% of the surface, with the cell membranes connected. In such conditions, an

average cell size is 20–30 μm at 5.5-μm thickness.

Cell cultures may be roughly divided into two main groups: (1) continuous cultures that are

capable of unrestrictedly long existence in vitro; (2) diploid ones obtained from normal body

tissues retaining many features of the original tissue and capable of restricted (up to 50

divisions) growth in an artificial medium.

In turn, the first group is divided into two subgroups:

(1) high-transformed ones, derived, as a rule, from various tumors and capable of existing in

artificial conditions for an uncertain time, (2) low-transformed ones derived from normal
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tissues whose transformation source is often unclear, also capable of unrestricted growth but

closer to normal body tissues in many respects.

In compliance with the experimental terms, all the three cell culture types were used. The

selection of the cultures was chiefly due to by their sensitivity to herpes simplex virus type.

All the cell cultures of the endotherm have similar cell cycle duration—19 to 24 h. The cell cycle

consists of the following phases:

1. The presynthetic phase (G1) (phase formula 2n2c, where n is the chromosome count, and c

is the molecule count in the cell). It starts immediately after the cell division. There is no

DNA synthesis yet. The cell actively increases in the dimensions, increases supplies of the

substances necessary for division: proteins (histones, structural proteins, and enzymes),

RNA, and ATP molecules. Division of mitochondria and chloroplasts (i.e., structures

capable of reduplication) occurs. The features of interphase cell organization are being

restored after the previous division.

2. The synthetic phase (S) (2n4c). The genetic material duplicates by DNA replication. It

occurs in a semiconservative way when the DNA double spiral separates into two chains,

and a complementary chain is synthesized on each one. This results in the formation of

two identical DNA spirals, each one consisting of one old and one new DNA chain. The

amount of genetic material doubles. Besides, RNA and protein synthesis continues. A

small part of mitochondrial DNA also undergoes replication (most of it replicates in G2

period).

3. The postsynthetic phase (G2) (2n4c). DNA is not synthesized anymore, but the synthesis

flaws of S period are corrected (reparation). Also, energy and nutrients are accumulated;

synthesis of RNA and proteins (mainly nuclear ones) continues.

4. The quiescent phase (G0) wherein the cell only consumes the survival minimum of nutri-

ents without preparing for another multiplication cycle.

Each phase is characterized by a different intensity level of nutrient absorption/exchange/

release, and these processes can localize in various parts of the cells (the nucleus, cytoplasm,

and organelles) depending on the cell cycle phase.

It is also noteworthy that in an actively growing continuous cell culture more than 90% cells

enter the cycle, while in a diploid cell culture at most 20% cells (more often less than that) do so.

At a certain cycle phase, the percentage of cells in an actively growing cell culture approxi-

mately complies with the phase duration ratio; cells in G0 phase prevail in a closely packed cell

monolayer.

4.3. L41, Vero, and HLE-3 cell lines

In compliance with the passport of L41 CD/84 cell line Ref. [32], a strain of continuous cells G-

96 derived from the blood of a patient with monocytic leukemia is known, which was used in

1966 by Solovyov et al. to derive a subline (G-41) specifically resistant to Coxsackie B3 virus by

triple treatment with large doses of the virus.
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By its morphological features, L41 cell line is an even monolayer of distinct epithelium-like

polygonal or roundish cells; there is a constant 4–6% share of giant cells. The cytoplasm is fine-

granular. The nuclei are roundish and contain 2–4 nucleoli. There are up to 6% abnormal

mitosis forms. The share of cells with irregularly shaped nuclei is 8%. The monolayer was

generated on day 3–5 from planting into a medium consisting of equal parts of Eagle medium

and 199 medium with 10% bovine embryo serum. The cell maintenance medium contains

necessary amino acids, salts, and glucose.

The culture is highly sensitive to poliomyelitis, Coxsackie B, ECHO-19, human adenovirus,

and measles viruses.

Vero cell line was derived from normal simian renal cells (those of an adult African green

monkey). The number of generations and passages: over 120 passages before the test start. The

line has been used in a laboratory research since 1962. The monolayer forms on days 3–5 from

the planting moment. The multiplying factor is 6–7 on day 5.

The morphological features: epithelium-like cells, polygonal, with notable vacuolization, and

distinctly oriented growth zones.

The karyological characteristics: the cells correspond to the monkey karyotype by their struc-

ture—44 diploid cells, 3 hyperploid cells, and 53% hypoploid cells.

Species origin: monkey, confirmed karyologically. Data on contamination: no bacteria, fungi,

or Mycoplasma detected. The cell line is maintained in the growth medium + 10% glycerin in

liquid nitrogen. About 80–85% cells restore on defrosting. The culture is highly sensitive to

poliomyelitis viruses and arboviruses.

HLE-3 cell line was derived by Yekaterinburg Institute of Viral Infections (YRIVI) staff from

normal human lung tissue. The technique for obtaining this cell line was developed in the cell

line laboratory of YRIVI by Glinskikh et al. in 1980 from the lung of a 12-week human embryo

from a healthy female whose genelogy was free from malignant or hereditary diseases.

The number of generations and passages: 20 passages at most before the test start.

The monolayer forms on days 4 and 5 from the planting moment. The morphological features:

fibroblastic cells with distinct edges.

The karyological characteristics: the cells correspond to the human karyotype by their struc-

ture. The modal class contains 87% cells with normal diploid human chromosome set.

Species origin: human, confirmed karyologically with an isoenzyme technique.

Data on contamination: no bacteria, fungi, or Mycoplasma detected. The cell line is maintained

in the growth medium +10% glycerin in liquid nitrogen. About 70% of the cells restore on

defrosting.

Sensitivity to viruses: the culture is highly sensitive to polioviruses 1, 2, and 3, Coxsackie B3,

BArinsECHO 3, 6, 11, 13, 19, 20, 24, 28, RS viruses, and herpes simplex virus.
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5. Procedure and technique of experimental research

We used the theory presented in Section 3 to study the processes occurring in a thin layer of

live cells. In the text below, a description of the experiment, its errors, and the measurement

calibration is given. The latter procedure by default stemmed from the experiment conducted

to check one of the tenants of the theory.

5.1. Thermostats and temperature control

Precise maintenance of the temperature in the medium for the cells plays an important role in

the experiments. After several attempts to create a small thermal chamber to maintain the

temperature in the small region, we decided on placing the entire optical system into a

thermostat of suitable dimensions. We used three thermostats: (a) a self-made laboratory

thermostat, (b) a liquid thermostat of ЗЦ-1125М type, and (c) an air bath of ТСЭ-200 type.

We used the laboratory thermostat in the cases when we had to place the substrate with cells in

a horizontal position. The photo of the thermostat is shown in Figure 3.

We used a dustproof chamber of a scanning atomic-force microscope. To heat the air inside the

chamber, we used a liquid ultrathermostat U10 connected to the radiator with pipes which is

common for Russia. The radiator was in the lower part of the chamber under the table for the

microscope: it was blown over by six small ventilators. A metallographic microscope of Axio

40 MAT type that we used to generate speckle images of the cells was placed on the table.

The temperature of the cuvette in all the thermostats was determined by a temperature sensor

of DS18В20 type of precision to ±0.1°С. The signals from the sensor entered the computer; the

temperature values were displayed in the monitor or recorded into the computer memory in

the preset time.

Figure 3. Photograph of laboratory thermostat.
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The laboratory thermostat maintained the temperature of the cuvette to ±0.1°С precision for

several hours, and the liquid thermostat ЗЦ-1125М did so for several days. An air bath was

used to study the cell reaction to temperature.

5.2. Optical and television systems

When the laboratory thermostat was used, the transparent substrate with cells was placed at

the bottom of a special cuvette. In turn, the cuvette was placed on the stage of the microscope.

The transparent lid of the cuvette was placed so that (1) the nutrient solution about 1 mm thick

was placed above the cells and (2) there was no free liquid surface. Above the lid, there was

matte glass that was illuminated by a diverging beam from the semiconductor laser module.

The speckle image of the cells was entered into the computer using a monochrome TV camera

of Videoscan—415/P/C-USB type. The camera had a photosensor array of 6.5 × 4.8 mm size

with 780 × 572 cells (pixels) of 8.3 × 8.3 μm size. The frame input frequency was up to 25 Hz.

The signals from the TV camera entered the laptop computer of Aspire 3692 WLMi 8 type by

Acer firm via a USB port. A semiconductor laser module of KLM-D532-20-5 type with wave-

length λ = 0.532 μm and 20 mW power was used as the light source. Note that the above TV

camera and laser were used in all of our optical systems.

In the liquid thermostat and in the air bath, optical systems with the upright position of the

substrate with cells in the optical cuvette were used. The logic chart of the optical systems is

given in Figure 4, and its photograph is presented in Figure 5.

5.3. Software

Input of the image frames into the computer was made using the software coming standard

with camera Videoscan—415/P/C-USB. The frames entered into the computer were processed

to obtain dependences ηðtÞ and ~IðtÞ using two original computer programs. The first program

was intended to process the frames already entered into the computer. The operator displayed

the first frame of the speckle image onto the monitor and selected the fragment of the frame to

determine η using the mouse or the keyboard. Then it gave the second frame or a mass of

frames. In the first case, the program displayed value η using Eq. (34) and digital value ~I , in the

second case, it displayed dependences ηðtÞ and ~IðtÞ onto the monitor. The first program also

Figure 4. Logic chart of optical device: (1) laser module, (2) illuminating beam, (3) matte glass, (4) scattered radiation, (5)

cuvette, (6) substrate with cells, (7) lens with diagram, (8) photosensor array, (9) computer.
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allowed to obtain the distribution of values η. The operator selected two frames corresponding

to time moments t1 and t2. Then the operator selected a segment on the displayed image and

divided it into subsegments. The program digitized the fragment and determined value η in

every subsegment using Eq. (34). The obtained values were recorded into the computer mem-

ory as a matrix in text format to be processed.

Value η was determined by Eq. (34):

η ¼

1
m×n

Xm−1

i¼0

Xn−1

j¼0
½Ai, j−A�½Bi, j−B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
m×n

Xm−1

i¼0

Xn−1

j¼0
½Ai, j−A�

2

r

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
m×n

Xm−1

i¼0

Xn−1

j¼0
½Bi, j−B�

2

r , (34)

where Ai, j are digitized signals at a segment of m × n-pixel size at initial time point t1, Bi, j are

the signals in the same segment at a different time point t2, i, and j are the segment pixel

numbers xd and yd, respectively, A is the mean signal value in the segment at the start time,

and B is the mean signal value in the segment at time moment t2.

The second program in DOS medium permitted real-time determination of digital values η

and ~I . First, the operator set x and y coordinates of the pixels (up to 40 pieces) on the program

interface. By the operator's command, the program determined digital values of mean inten-

sity ~I in the above pixels, and it obtained η values in the neighborhood of the pixels using

Eq. (34). Masses η and ~I were saved in txt format in preset files. The program could work for

several days continuously.

5.4. Errors and calibration of optical measurements

We assessed the error of value η determination by Eq. (34). In compliance with the

indirect measurement error assessment techniques recommended in Russia [31], the mean

square deviation of random error Sð~ηÞ in the indirect measurement result is determined

by Eq. (35):

Figure 5. Photography of the optical device: (1) laser module with microobjective, (2) matte glass, (3) lock of the object on

the platform of the motorized translator, (4) camera with lens.
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Sð~ηÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

i

∂η

∂ai

� �2

×S2ð~ai

v

u

u

t Þ, (35)

where ~η is experimentally found value of η, aiði ¼ 1,…,mÞ are values Ai, j and Bi, j featuring

Eq. (34), ∂η

∂ai
is the first derivative of function η by argument ai, calculated at point ~a1,…,~am, ~ai is

the result of measuring value ai, and Sð~aiÞ the mean square deviation of random errors in the

result of measuring the ai-th argument.

We performed the transformations by Eq. (35) and assessed the error of value η determination

in a typical experiment. We selected the variant with 8-bit digitization of the radiation intensity

averaging-out half the dynamic range, the minimum speckle size slightly exceeding the TV

camera pixel size, and Sð~aiÞ ¼ 0:7. Calculations showed that value ∂η=∂ai featuring Eq. (35)

consists of sum m of random 10-2-order values of different signs. The random sign value

appears due to randomness of intensity deviation from the average value in the speckle field.

In the model experiment, a reflecting rough object in the form of a metal plate was used, and

value η varied due to its shift. For a 10 × 10-pixel fragment of the speckle image, we obtained

that Sð~ηÞ decreases steadily with increase of η in the range from 0.3 to 0.999, and the relative

error of η determination does not exceed 1%.

Essentially, the calibration technique for the optical systems intended to determine the optical

path dispersion value was developed in Ref. [29]. In this technique, batched random variations

of the wave phase difference were set by means of shifting a 1-mm thick transparent plate. The

plate shift ux was performed with a 0.12-μm pitch. The plate roughness was prechecked with a

WYKO NT-1100 optical profilometre. Figure 6 shows experimental and theoretical depen-

dences of η on the plate shift ux.

Figure 6. Theoretical (---) and experimental dependences η(ux).
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As is seen from the graphs, when the plate is shifted for a value exceeding the characteristic

surface roughness size, the correlation coefficient levels off to η�. The theoretical curve was

obtained for the Gaussian function by Eq. (27). The difference between the theory and the

experiment was in the range of 2.5%. Roughness parameter difference Ra obtained by level η�

from that measured by the profilometre was in the range of 5%. The experiment details and the

digital derivations can be found in Ref. [29]. This experimental technique can be used to

calibrate the equipment used to determine value k22. As for the calibration of the device for

determination of value 〈x2〉, further research is needed to perform this procedure.

Good coincidence of the data obtained by the speckle dynamics and with the optical

profilometre (Figure 6) is to a great extent determined by small errors of determining the

speckle image correlation coefficient η and with high sensitivity of the technique. Let us assess

the sensitivity limits of the equipment for the determination of values 〈x2〉 and σu. Let us admit

that in Eq. (26) values 〈x1〉, k11, k22, and k12 are equal to zero. Typical values η12 equaled 0.99 in

the absence of the object. Then for wavelength λ ¼ 0:532 μm, we obtain that

∆u ¼ ðλ=2πÞarccos0:99 ¼ 12 nm. Hence, it follows that the limit sensitivity of the device related

to the optical path difference generated in the range of the linear resolution of the lens equals

12 nm. Let us admit that the object thickness is invariable, and the optical paths vary due to

variation of the mean refraction index. For instance, for the 10-μm cell thickness, we obtain that

the refraction index will vary by 1:2×10−3. Now let us find the limit sensitivity of the equipment

in determination of mean square deviation σ ¼ ½λ=ð2πÞ�
ffiffiffiffiffiffi

k11
p

of value ∆u by value η�. Suppos-

ing again in formula η� ¼ expð−k11Þ that η� ¼ 0:99, and λ ¼ 0:532 μm, we obtain that

σ ¼ ½λ=ð2πÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ln0:99
p

¼ 8nm.

It is noteworthy that values η12 and η� equal to 0.99 appeared due to application of medium-

quality equipment. If limit values η12 and η� equal to 0.999 are reached due to noise decrease,

then the sensitivity to the mean value and dispersion of value ∆u will equal 4 and 3 nm,

respectively.

6. Experiments

6.1. Studying speckle dynamics in the image plane of a cultured cell monolayer

We studied the features of speckle dynamics caused by an activity of cultured cells on L41 cells

discussed above in Section 4.3. After the formation of a monolayer, the substrate with the cells

was placed into an optical cuvette filled with nutrient solution. A cell-free substrate of similar

thickness was placed near. Next, the cuvette was fixated on the optical device shown in

Figure 5 that was placed in liquid thermostat ЗЦ-1125М. The typical magnification by the

optical system was 0.25, and the typical linear resolution of the lens was 60 μm.

Figure 7 presents a typical speckle pattern recorded in the image plane of the cuvette with

substrates.

After equalization of the temperatures of the cuvette and the thermostat the mechanical system

was checked for stability. To do so, we used the above software, selected the segment of the
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frame near the image of the cuvettes. Using two speckle images of the segment recorded in 1 or

2 min, we determined the value of correlation coefficient η of their digital images. If value η

equalled 0.99 or 0.98, the system was considered mechanically stable. Further, we recorded the

film of the speckle dynamics lasting 20–40 s with 25 Hz frequency. Using the software

discussed in Section 5.3, we obtained dependences of the speckle image fragment correlation

coefficient η on the time using the frames of the film. In Figure 7, typical selected fragments are

shown by white frames.

Figure 8 shows typical dependences of ηðτÞ for the cells in the nutrient solution (dependence 1)

and for the nutrient solution (dependence 2) obtained after processing of the film. The dotted

lines show theoretical dependences obtained using Eq. (27) for normalized Lorentzian function

k12ðτÞ. Analysis of the experimental dependences obtained in different segments of the sub-

strate with cells within its image showed that the deviation of the theory from the experiment

was in the range of 8–11%.

As seen from the graphs in Figure 8, in about 5 s dependences ηðτÞ level off. The mean

square deviation of the last four points from their mean value does not exceed 1%. In

compliance with the theory discussed above in Section 3, levelling off dependence ηðτÞ

means that random process ∆u ¼ ∆uðtÞ is stationary in time. Value ∆u is typical (mean)

optical wave path difference within the region with cells of 60-μm diameter. As fragments

of about 1-mm size correspond to the selected segments of the speckle images in the object

plane (Figure 7), random process ∆u ¼ ∆uðtÞ can also be regarded as homogeneous in this

fragment.

As was pointed out in Section 3, by values of variable η ¼ η� we can determine the

corresponding dispersions of the wave pair optical paths σ21 and σ22 in the horizontal segment

of dependences 1 and 2. Supposing that optical wave path variations in the cells and in the

Figure 7. Typical speckle image of a cuvette with transparent substrates: the substrate with cells is on the left, and the cell-

free one is on the right. The selected image fragments are denoted by numbers.
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nutrient solution are uncorrelated, we can show that the optical path dispersion in cells can be

determined using Eq. (36):

σ2
u
¼ σ21−σ

2
2: (36)

Mean square deviation σu of values ∆u obtained by Eq. (36) came to 14 nm.

The homogeneity and stationarity of process ∆u ¼ ∆uðtÞ in a segment of a 1-mm order can be

explained by the fact that in a monolayer, the cells are closely packed, so there is no variation of

their shape due to translation and division. In these conditions local deviations of the medium

refraction index from its mean value are possible at the structural level. As was discussed

above in Section 3, chemical reactions and phenomena of mass transfer can be the reasons for

refraction index variation.

6.2. Defrosted cells and speckle dynamics

We conducted an experiment with L41 cells precipitated onto a transparent substrate imme-

diately after defrosting. The interest in similar experiment was caused by the fact that, as

distinct from a monolayer of cultured cells, after defrosting the cells do not attach to the

substrate immediately, being in motion. When a cell is moved for a distance comparable to

its size, the sounding wave pair path difference can vary by a value comparable to wave-

length of radiation λ and exceeding it. Therefore, in compliance with Eq. (26) variation of

speckle image fragment correlation coefficient can be caused both by the cosine argument

variation and by variation of the values in the exponent. As a cosine can be both positive and

negative, appearance of negative values of the variable close to 1 would speak for correctness

of Eq. (26) and our theory.

Besides, the objective of the conducted research was to study the possibility to apply the

technique at large magnifications to analyze the processes occurring in different parts of one cell.

Figure 8. Joint dependences of η on the time for the cells in the nutrient solution (1) and for the nutrient solution (2).
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The experiments were conducted on a laboratory device with a horizontal position of the

substrate with cells. When the temperature reached the value near 36°С a glass 0.1-mm thick

was placed into a cuvette with nutrient solution, and poured frozen cells from Dewar vessel

onto it. After the temperature stabilization in 30–60 min, recording of the speckle dynamics

film was started. The optical magnification was about ×8, the exposure time equaled 9 s, and

the frames were recorded for several hours.

A typical speckle pattern of cells precipitated on a substrate is shown in Figure 9. Viewing of the

films showed that the cells contact other cells being in continuous random motion. The typical

shift of a cell in one direction was comparable to its dimensions. There were cells making shifts

for a larger distance, and there were also cells that could be visually regarded as stationary.

Figures 10–13 demonstrate typical dependences η ¼ ηðτÞ obtained for different sizes of speckle

image segments. The graph in Figure 10 corresponded to a 4 × 4-pixel segment or the cell

fragment size of about 4 × 4 μm. Originally, the segment was in the center of the cell image. The

rest of the dependences were obtained by means of data averaging in segments containing

from 4 to 200 cells.

As seen from Figure 10, for a randomly moving cell value η randomly varies in the range from

-1 to +1 around zero. The obtained result qualitatively confirms correctness of Eq. (26)

containing dependence of value η on the optical wave path difference by the cosine law.

Variation of η from 1 to -1 means that the positive image has changed to a negative one, or

vice versa. This is possible, for example, if in all the 16 pixels radiation intensity varies by the

cosine lawwith the same period (the same ∆u) but with the different initial phase. In Figure 10,

value η does not reach +1 and -1 again. It points out that either during the cell motion its shape

changing in a 4×4-μm segment is inhomogeneous, or value η varies not only by the cosine law.

If the data averaging region covers plenty of cells (see Figures 11–13), values of variable η are

positive and reach a horizontal segment in about 0.5 h. The obtained data can be explained by

the fact that at a fixed time point values х included in the cosine argument in Eq. (26) can reach

large values with different signs in different cells. But in averaging by a large count of cells (the

Figure 9. Speckle image of defrosted cells.
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objects of the ensemble) variables 〈x1〉 and 〈x2〉 have values close to zero. Then in Eqs. (26) and

(31) the dependence on the cosine disappears, but the dependence on k22 remains.

Dependences ηðtÞ shown in Figures 11–13 can be interpreted in twoways. Supposing that the 9-s

speckle averaging time exceeds the correlation time of the fastest processes in the cells, one can

suppose that by Eq. (31) dependence ηðtÞ corresponds to an unstable process wherein value k22
first increases continuously and then levels off. On the other hand, we can suppose that graphs of

ηðtÞ correspond to stationary process ∆uðtÞ with the correlation time about 30 min.

To clear up this matter, we selected different segments of the view-field containing about 100

cells. For each of these segments, four dependences ηðtÞ lasting about 1 h were built for

different time intervals. The form of dependences was well reproducible, the multiple correla-

tion coefficients of the four masses was in the range from 0.86 to 0.96. We came to the

conclusion that in fragments containing hundreds of defrosted cells random processes ∆uðtÞ

can be regarded as homogeneous in space and stationary in time for several hours.

Figure 10. Dependence η ¼ ηðtÞ for fragment inside the cell image.

Figure 11. Dependence η ¼ ηðtÞ corresponding to four cells.
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6.3. Application of speckle dynamics for studying the reaction of a cell mass and fragments

of individual cells to temperature variations

The theoretically detected and experimentally confirmed relation between the correlation

coefficient of speckle images η and the dispersion of the optical wave pair path difference σ2
u

was immediately used in our first experiments studying dependence of σu on temperature Т.

The details of the experiment can be found in Ref. [33]. A segment of L41 cell monolayer

containing hundreds of cells was the averaging region. Value σ2
u
corresponding to the cells

was obtained as the difference of values σ2
u
corresponding to the cells in the nutrient solution

and to the nutrient solution. The cuvette with cells was first heated to a temperature around

40°C. Then the heating was stopped, and when the cuvette cooled to room temperature,

speckle dynamics films lasting 20–40 s were recorded with 25-Hz frame rate. The optical

system presented in Figure 5 was used. Figure 14 presents dependence of σu on temperature

T obtained experimentally. As seen from the given graph, an approximately linear relation

between σu and T is found.

Figure 12. Dependence η ¼ ηðtÞ corresponding to 60 cells.

Figure 13. Dependence η ¼ ηðtÞ corresponding to 200 cells.
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The purpose of the next experiment was studying the reaction of small fragments inside a

cell and a small group of cells to temperature variation. As distinct from the previous

experiment, the frames were recorded continuously with heating of the thermostat from the

room temperature to 43°С in about 2 h. The averaging time (the frame exposure time)

equaled 9 s. We used an air bath of ТСЭ-200 type and an optical system with an upright

position of the substrate. An L41 cell monolayer was the research objective. For the experi-

ment, we selected a segment that contained at least a small cell-free area (Figure 15) in the

view-field. The magnification was ×8, and about 10–30 pixels of the TV camera matrix fell

onto an image of an individual cell.

Figure 14. Dependence of σu on T for L41 cells.

Figure 15. Photographs of cells in white light. A cell-free fragment is visible in the lower part of the frame.

Dynamic Speckle Interferometry of Thin Biological Objects: Theory, Experiments, and Practical Perspectives
http://dx.doi.org/10.5772/66712

129



Next in Figure 16, there is distribution of value η obtained at the temperature of 30°С by 2

speckle cell images shown in Figure 15. The time interval between the frames equaled 18 s.

Values η were found in segments of 10 × 10-pixel size.

Figures 17, 18 and 19 show typical dependence σu on temperature and joint dependences of σu
and temperature Т on time. Value σu was obtained using two dependences ηðtÞ corresponding

to the cells in the nutrient solution and to the nutrient solution. Segments containing 60 cells

(Figure 18) and small regions inside the cells were averaging regions (Figure 17). As is seen

from the pictures, considerable fluctuations of σu are observed with temperature increase.

Fluctuations of value σu differ from one cell part to another. If the temperature gets stabilized

in 30 min, σu also stabilizes (Figure 19). The correlation coefficient of masses σu and Т shown in

Figure 19 equals 0.88.

Figure 16. Distribution of value η obtained by two speckle images.

Figure 17. Dependences of σu on Т for three segments inside one cell. Red colour – cell edge, gray colour – cytoplasm,

blue – cell center.
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So on the basis of the conducted research, we can conclude that with temperature increase

from 25° to 43°C at the rate of about 0.5° a minute, there are fluctuations of value σu in space

and time. With decreasing variation rate of temperature Т by an order variations of σu stabilize,

and the dependence of σu on Т becomes linear. To study the dependence of σu on Т in small

segments inside the cells in detail, further research is needed.

6.4. Comparison of theory and experiment: cell activity parameters

Our experiments on cultured and defrosted cells showed qualitative coincidence of theory and

experiment. So in random cell motions on the bases of a 1-μm order, the mean difference in the

optical paths of two waves can reach and exceed wavelength λ. Then, in compliance with the

Figure 18. Joint dependences σu on time and those of temperature on time.

Figure 19. Joint dependences σu and temperature on time at small heating rates.
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theory, the value of the cosine and also value η must accept not only positive but also negative

values in a random way. Experimental confirmation of this supposition speaks for correctness

of the model applied and the calculations made.

We detected good correlation of dependences ηðtÞ corresponding to hundreds of defrosted

cells obtained in different time intervals. Absence of dependence of a random process on

selection of the counting origin means its stationarity. According to the theory, levelling off

dependence ηðtÞ speaks for stationarity of processes ~IðtÞ and ∆uðtÞ. Homogeneity and

stationarity of the intracellular processes in defrosted cells detected using two methods can

find practical application. In particular, studying the reaction of hundreds of defrosted cells to

the effect of viruses, bacteria, and searching the optimum drugs that prevent their develop-

ment can be promising. Cultured cells can serve this purpose as well. The advantage of

cultured cells is their immobility. That is why above-noted studies can be conducted on a small

cell number and on individual cells. The advantage to application of defrosted cells is simplic-

ity of the research target preparation.

At present we suggest that it is value σu, or mean square deviation of wave pair optical paths

obtained by way of averaging by some region that can be regarded as a cell activity parameter.

This selection is well substantiated from the viewpoint of physics. Indeed, if some processes do

not occur in the cells, there is no optical path variation, so σu ¼ 0. If the processes connected

with small energy absorption or emission and with transfer of small amounts of substances

arise in the cells, small random deviations of the refraction index and the cell shape from the

mean value appear. Therefore, values σu will be small as well. With intensification of physical-

chemical processes in the cells, the values of σu will increase.

The selection of parameter σu is justified from the viewpoint of biophysics as well. It is known

that at room temperature, the metabolic processes in cultured cells are weakly manifested. The

culture techniques have shown that with increase of temperature Т, the metabolic processes

become more distinctly manifested and reach their maximum at 34–37°C. The increase of value

σu with increase of Т (Figure 14) in a relatively wide range for hundreds of cells and good

linear correlation between σu and Т in the range of 0.4°С (Figure 19) for tens of cells speaks

good reason behind applying σu as a cell activity parameter.

That said, it is not clear yet what constituents of cell metabolism affect σu. Further, research is

needed to clarify the matter.

7. Rapid speckle control of cell reaction to herpes simplex virus

The previous sections discussed the theoretical and experimental research that allowed for

substantiating the application of speckle dynamics for studies of a thin cell layer activity. This

section presents the research results aimed at the study of opportunities for application of the

speckle technique for detection of viruses in cells and, in perspective, for therapeutic drug

management. The features of speckle dynamics generated by the effect of herpes simplex virus

on a monolayer of cultured cells were studied as the first step toward this goal. Initially, it was
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necessary to understand if the technique can distinguish between the processes in virus-free

and virus-infected cells.

7.1. Features of virus development in the cell

Herpes (from Greek herpes—fever) is a viral infection remaining long in the body, predomi-

nantly in a latent form Ref. [34]. The most reliable data on herpes were obtained after the virus

of this disease was isolated. W. Grüter (1912) first observed development of keratoconjunctivi-

tis in rabbits after administration of the liquid from a human herpetic blister into the scarified

sclera. Later, the author made effective successive passages of the viruses on the rabbit eye

cornea.

Due to using the negative drug contrasting technique, it was discovered that the external

envelope of HSV-1 virus (capsid) has a cubic symmetry type and is an icosahedron. The

capsomers composing the capsid are hollow bodies, penta- and hexagonal in the cross-section.

Typical viral particles (virions) consist of three main components: a nucleoid located in the

central part of the capsid covering the nucleoid and composed from capsomers, and the

envelope surrounding these structures. The envelope of the particles has diverse shapes.

Sometimes, it repeats a hexagonal capsid projection. Its diameter varies from 170 to 210 nm.

On the basis of on a number of generally agreeing observations, it was established that HSV-1

attachment to the cells is rather slow, and the time is difficult to measure in such cases. The

virus attaches to the cells insecurely, so about 50% of the viruses can be detached in various

ways.

At the adsorption site, the cell wall forms kind of a “pocket” that transforms into a vacuole,

and thus the virus finds itself in a cytoplasm. Then the process of virus disintegration follows

resulting in release of the nucleic acid from the proteins of the external envelopes. It is known

that the perinuclear space is connected with the extracellular channel system of the endoplas-

mic reticulum. It is considered that in the period of cell infection, with the centripetal motion of

the virus, the channels can serve as natural “passages“for the causative agent, and the struc-

tures described by various authors and called vacuoles are nothing but individual sections of

the endoplasmic reticulum channels in the cross-section. In 10–12 h postinfection, the charac-

teristic signs of virus formation are undetectable. At the same time, structural viral proteins

and nuclear acids are generated to be later used to arrange the nucleic acid and the capsomers

into a single structure conventionally called a nucleocapsid or a virinucleon.

The development of herpes is accompanied by the formation of intranuclear inclusions. These

formations are considered as assembly sites of viral particles.

HSV-1 causes gradual suppression of macromolecular syntheses in the cell. Suppression of the

cell DNA synthesis starts approximately 2 h from the onset of the disease and completes by 7

h. In HSV-1-infected HEp-2 cells, the bulk of the viral DNA is synthesized between the 3rd and

the 7th hours from the onset of the disease. It was shown that the DNA of the herpes virus

family is reduced in a semiconservative way. To initiate synthesis of the viral DNA, synthesis

of early proteins is necessary. After the start of viral DNA synthesis, it continues in the absence

of accompanying protein synthesis.
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The intranuclear cycle of virus reproduction is completed with its “maturation“. Morphologi-

cally, it is expressed by covering the capsid with an envelope that further probably has a

protective function.

Mass release of virus particles from the cell occurs from 15 to 18 h and is accompanied by the

formation of numerous structures of a platy type. At late stages of the disease, various types of

viral particles at different stages of formation get beyond the cell limits during its destruction.

7.2. Speckle control procedures

The experiments were conducted in a liquid thermostat of ЗЦ-1125М type with the optical

device shown in Figure 5 inside. Monolayers of cultured virus-free and herpes simplex virus-

infected cells were the research targets. Two identical optical cuvettes were prepared for the

study. There were two identical substrates in each cuvette, one with the cells and the other cell-

free with nutrient solution. The experiments used HSV-1 infectious titre 4.5 lg TCD 50/ml

(tissue cytopathic doses) in a dilution of 10-3. Speckle dynamics films of frequency 25 Hz

lasting 20–40 s were recorded in the first experiments for 18–20 h at half-hour intervals. Cells

of L41 line were the research target. Typical joint dependences ηðtÞ for the nutrient solution

and virus-free and virus-infected cells are shown in Figure 20.

Analysis of dependences of ηðtÞ as well as σuðtÞ for virus-free and virus-infected cells shows

that they have features agreeing with some phases of virus development in cultured cells, but

they are reproduced in about 50% of the cases. The result obtained was probably related to two

considerations. First, while dependences ηðtÞ were being recorded, the initial frame, starting

from the second film, did not correspond to the experiment start. Second, the optical wave

path variation could have been caused by several factors with relaxation times of the same

Figure 20. Typical joint dependences ηðtÞ for the nutrient solution (1), virus-free cells (2), and virus-infected cells (3).
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order. Appearance and disappearance of these factors could have occurred in an unpredictable

mode. To eliminate the detected flaw, we altered the experimental technique. In the new tech-

nique, the program for real-time recording of dependences ~IðtÞ and ηðtÞ was started 1 h after the

administration of the virus. Values ~I were determined in preselected pixels, and value η was

obtained by a segment of 10 × 10-pixel size in the neighborhood of the selected pixel. In 18–20 h,

the program was switched off. The frame exposure time was taken as a value exceeding the

radiation intensity correlation time found by the graphs in Figure 20 and equalled 9 s.

7.3. Studies using L41, Vero, and HLE cells

The studies using the upgraded technique were conducted using three cell types: L41, Vero,

and HLE-3. Dependences ~IðtÞ and ηðtÞ of the nutrient solution, virus-free and virus-infected

cells were considerably different for all the cell types and were well reproduced in a qualitative

sense.

Figure 21 shows typical dependences ~IðtÞ for the monolayer of HLE-3 cells.

It is seen from the dependence for virus-infected cells that in the first 3 h, value ~I diminishes

considerably to a certain level. This time coincides with the time necessary for penetration of the

viral material into the cell and then into its nucleus. Then in the next 5 h, relatively weak

fluctuations of value ~I compared with the variations of ~I occurring in the virus-free cell take

place. This time interval coincides with the time interval during which the cell produces proteins

necessary for appearance of new viruses. Then relatively strong quasiperiodic variations of value
~I reappear. It is known that in this time interval, a capsule with new virions grows.

Figure 21. A typical dependence of ~IðtÞ of the HLE-3 line: (1) for the nutrient solution, (2) cells with virus, (3) for the cells

without virus.
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In Figures 22–24 typical dependences ηðtÞ for L41, Vero, and HLE-3 cells are shown.

Figure 22. Typical dependences ηðtÞ for L41 line: (1) nutrient solution, (2) cells without virus, (3) cells with virus.

Figure 23. Typical dependences ηðtÞ for Vero line: (1) nutrient solution, (2) cells without virus, (3) cells with virus.
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Every picture presents three graphs corresponding to the nutrient solution, virus-free and

virus-infected cells. It is seen from the pictures that dependences (1), (2), and (3) differ consid-

erably in the numerical sense. Dependences (2) and (3) are nonstationary processes, but their

forms are similar: first value η decreases rapidly, then its decrease slows down. Respectively, σu
found by Eq. (30) supposing that 〈x1〉 ¼ 〈x2〉 first rapidly grows, and then its growth slows

down. We evaluated the multiple correlation coefficient of three masses ηðtÞ corresponding to

one cell type, and also to different virus-free and virus-infected cell types. For the three masses,

the coefficient was in the range from 0.82 to 0.96. This character of curves ηðtÞ was probably

related with the fact that in the solution, the amount of nutrients gradually decreases and the

concentration of harmful cell activity products increases.

Analysis of dependences ηðtÞ enabled us to conclude that the presence of the virus can be

reliably detected by the curve difference for virus-free cells η1ðtÞ and for virus-infected cells

η2ðtÞ 10 min from the experiment start. Twofold excess of the noise amplitude by difference

η1−η2 at fixed t was considered the reliability criterion.

7.4. Conclusions

The conducted experiments showed that recording of dependences ~IðtÞ and ηðtÞ in the image

plane of a cell monolayer on a transparent substrate permits reliable recording of difference in

the virus-free and virus-infected cell activity. The necessary conditions are the following:

• Rigidity of the optical system providing the value of speckle image fragment correlation

coefficient in the absence of the object at 0.99 level for 2 min.

• Maintenance of invariable cuvette temperature selected in the 30–37°С range with ±0.1°С

precision.

• Averaging time of radiation intensity equal to 9 s.

Figure 24. Typical dependences ηðtÞ for HLE-3 sells: (1) nutrient solution, (2) cells without virus, (3) cells with virus.
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8. On some application perspectives of the technique

On the basis of the material discussed above, we can conclude that a dynamic speckle interfer-

ometry technique that allows studies of processes in thin transparent biological media has

been theoretically substantiated and experimentally tested. Application of the technique is

based on the formulas relating the parameters characterizing the target of research and the

dynamics of speckle fields. The parameters characterizing the object are mean value 〈x〉,

dispersion σu, and relaxation time τ0 of the optical path difference ∆u of sounding wave pairs

as well as temporal energetic spectrum of a random process ∆u ¼ ∆uðtÞ. The minimum sizes of

the averaging regions of the above-named values are transverse and longitudinal resolution of

the lens generating the object image. The parameters characterizing speckle dynamics are

time-average radiation intensity ~I at a point in the image plane, relaxation time τκ of value ~I ,

constant level η� of temporal autocorrelation function η ¼ ηðtÞ of process ~I ¼ ~IðtÞ, and also the

temporal energetic spectrum of this process.

Using samples in the form of a cell monolayer cultured on a transparent substrate, or one

precipitated on a transparent substrate after defrosting, we demonstrated that value σu can be

used as a parameter that quantitatively characterizes the activity of live cell. A technique for

calibration of a relevant device and a technique for determination of value σu were developed.

So applications related to assessment of cell activity can be the nearest perspective for the

application of the technique. In particular, the technique for determining σu can be applied to

study of the effect of toxic substances on live cells and determine their science-based maximum

allowable doses. Such a technique can be applied to search the optimum drugs preventing

penetration of viruses and bacteria into cells.

Determination of value σu is based on creating special conditions excluding the influence of

parameters 〈x〉 and τ0 on speckle dynamics. In the general case, the necessity may arise for

simultaneous determination of all the three parameters characterizing the processes occurring

in different parts of the same cell. Further studies are needed to solve this problem.

9. Conclusion

On the basis of the model accounting interference of multiple waves with random phases a

relation between phase dynamics of the waves sounding a thin transparent object and the

speckle dynamics in the object image plane was detected theoretically. General-case formulas

were obtained to determine the dependence of time-average intensity ~I and temporal autocor-

relation function η ¼ ηðtÞ of this intensity at some point in the image plane with mean value

〈x〉, mean square deviation σu, and correlation time τ0 of optical path difference ∆u of wave

pairs in the neighborhood of the conjugate point of the object plane. The diameter of this

neighborhood equals the linear resolution of the lens that generates the object image. Relation

between the temporal spectral function of a random process ∆uðtÞ and a similar function of the

process ~IðtÞ was substantiated.
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An optical device relevant to the model used in the theory was developed.

Very good coincidence between the theory and the experiment has been demonstrated by

batched random variation of path difference ∆u. The procedure of calibrating the optical device

for determination of σu was developed; its errors and the sensitivity limit of the technique were

assessed.

Biological objects in the form of a live cell monolayer on a transparent substrate in a thin

cuvette with nutrient solution were used to substantiate application of value σu as a cell activity

parameter.

It was shown that the technique allows detection of herpes virus in cells as early as 10 min

from the experiment start.

Rapid assessment of cell reaction to toxic substances therapeutic management of antibacterial

and antiviral drugs can be the nearest perspective for application of the technique. Develop-

ment of a technique for simultaneous determination of values 〈x〉, σu, and τ0 in different parts

of an individual cell can become a line of further research.
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