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Abstract

Terahertz technology is a nondestructive technique, which has progressed significantly in 
the scientific research and gains highly attention in the analysis of biological molecular, 
cellular, tissues and organs. In this decade, some studies were reported on the applica-
tion of terahertz technology in medical testing and diagnosis. Here, we summarize the 
terahertz characters, terahertz spectroscopy, and terahertz imaging technology combined 
with chemometrics. This chapter focuses on introducing the research progress on analyz-
ing the tissues of cancers using terahertz spectroscopy and terahertz imaging technology. 
Furthermore, the problems should be solved, and development directions of terahertz 
spectroscopy and terahertz imaging technology are discussed.

Keywords: medical diagnosis, medical testing, terahertz imaging, terahertz 
spectroscopy

1. Introduction

1.1. Development of terahertz spectroscopy in biomolecular detection and medical 
diagnosis

The terahertz (1 THz is equal to 1012 Hz) is an electromagnetic wave located between the 
infrared and microwave regions of the electromagnetic spectrum. Its frequency is defined 
from 0.1 up to 10 THz. In this region, the spectra can respond and display spectra absorption 
to low-frequency vibrational modes of molecules, such as torsional and collective vibrational 
modes and hydrogen-bond modes, and rotational modes [1, 2]. THz waves have a feature of 
low energy, non-ionizing which provide the advantage of harmless to analyze living tissues 
[3, 4]. THz spectroscopic methods have been used in the biological sciences for investigating 
DNA [5], proteins [6, 7], and tissues [8].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The characterization and quantification of DNA are often regarded as a complex laborious process 
in bioscience. A number of different techniques are therefore offering a variety of approaches, like 
spectrophotometry [9], UV-induced fluorescence [10, 11], chip-based nucleic acid analysis sys-
tem [12], etc., for charactering DNA. The terahertz spectrum has been determined to be a promis-
ing candidate for the characterization of DNA. Several alternative methods, including fluorescent 
chromophore labeling and techniques that use terahertz radiation, have been proposed and are 
currently in use [13]. Terahertz spectroscopy can characteristic DNA samples pretreatment free, 
fast, and sensitively. Nagel et al. reported a promising approach for the label-free analysis of 
DNA molecules using direct probing of the binding state of DNA with terahertz spectroscopy 
[14]. In comparison with free-space detection scheme formerly used, this method provides an 
impressively promoted sensitivity enabling analysis down to femtomol levels. Debanjan Polley 
et al. reported a dielectric relaxation study using terahertz spectroscopy of extended hydration 
sheathe of dilute aqueous solution of salmon sperm (SS) and calf thymus (CT) DNA samples, 
which are always used as model organism [15]. They fitted the frequency-dependent complex 
dielectric response according to a Debye relaxation model, which assumes three relaxation 
modes in their work on SS DNA and CT DNA. The observed relaxation time constants have high 
relation with that of bulk water and vary from any particular trend indicating to the extended 
hydrogen-bonded network of DNA in marginal modification. Though a variety of methods were 
established for characterization of DNA, they have disadvantages like alteration to the nucleic 
acid sequence, requirement of a thick DNA testing layer, and conductor structure complexity. 
From that point, THz spectroscopy has its advantage to be applied on the area of DNA detection.

The THz frequency also corresponds to global correlated protein motions, molecular inter-
action between protein molecules, which were proposed to be essential to functional con-
formational changes. Niessen used THz microscopy to inhibitor binding sensitivity and test 
reproducibility of the narrow-band resonances for lysozyme protein crystals. To achieve the 
data analysis of THz spectra data, they applied a rapid data acquisition technique. The THz 
spectra were changed dramatically and can be reproducible with inhibitor binding [16]. Chen 
et al. proposed an approach for automatic identification of biomolecule terahertz (THz) spec-
tra based on the most used chemometric methods, like principal component analysis (PCA) 
and fuzzy pattern recognition [17]. Chen investigated THz transmittance spectra of saccha-
ride biomolecular samples, and some typical amino acid and their results demonstrate that 
THz spectroscopy can be utilized for identification of biomolecules efficiently.

In the application of medical testing and diagnosis, THz spectroscopy and THz imaging have 
been applied to complex analysis [18]. THz imaging has been used for detecting micrometa-
static foci of early-stage cervical cancer in the lymph nodes [19]. The in vivo tissue spectro-
scopic response in vivo tissues is highly depending on the constituent materials and their 
physical arrangement for the heterogeneous of tissues. This means that the measurements of 
in vivo tissues will be different from spectroscopic measurements on homogeneous samples of 
DNA, saccharide, fat, or proteins. THz interactions with biological components of tissue were 
reviewed by Smye et al. [20]. Woodward et al. demonstrated the application of terahertz pulse 
imaging (TPI) on skin or related cancer tissues. Using this technique, they detected imaging in 
reflection approach for the study of skin tissue and corresponding cancer tissue both in vitro 
and in vivo. The sensitivity of terahertz radiation to polar molecules makes THz spectroscopy 
and imaging be used for analyzing the hydration levels in the skin. And, it also has potential to 
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be applied on the preoperative determination of the lateral spread of skin cancer. The terahertz 
pulse shape in the time domain was studied, and the results show that they were able to dif-
ferentiate diseased and normal tissues for the study of basal cell carcinoma [21].

The study of Nazarov et al. showed that in the terahertz frequency range, small organic mole-
cules had characteristic absorption lines. Large molecules and tissues had crucial absorption lin-
early increases with frequency. THz refection spectroscopy provides possibility to study strongly 
absorbing substances [22]. Using differences in THz absorbance, pathologic diagnosis between 
normal and cancerous tissues has been reported in the medical literatures [23, 24]. Knobloch’s 
results show that different kinds of tissues can be clearly distinguished from both the larynx of 
a pig and cancerous human liver using THz spectroscopy. Cherkasova et al. studied human and 
rat skin reflection spectra in vivo and the effect of glucose and glycerol on these spectra by THz 
spectroscopy [25]. Variations in skin optical properties were found in the frequency of 0.1 THz.

Hyperspectral imaging can provide information in both space and spectral dimensions. 
THz imaging has potential for tissue analysis and medical diagnosis as a very promising 
harmless approach for future imaging applications. It is hopefully to develop the THz imag-
ing system in the future, which requires high-frequency resolution and a cost-effective and 
much more compact setup that does not necessarily require a laboratory environment based 
on the development of THz techniques.

1.2. Application of chemometrics on terahertz spectra analysis

THz spectroscopy should take advantage of chemometrics, which has applied in other fields 
of spectroscopy like infrared, near-infrared, Raman, or fluorescence. Chemometrics [26] pro-
vides multivariate tools for exploring the relationships among the objects and tested variables 
in collected dataset as well as classifiers. Chemometrics has been applied for qualitative and 
quantitative analysis of the THz spectra of not very complex mixture systems. Absorption 
intensity of THz spectra is proportional to the concentration of analytes in commonly used 
dynamic ranges; thus, normal linear modeling methods in chemometrics can be used in their 
calibration and prediction [27].

A review of terahertz pulsed spectroscopy summarized the most common chemometric methods 
applied for processing the THz spectra including the way of quantitative univariate and multi-
variate methods, and it can be found from this chapter [28]. Two quantitative analysis approaches 
are mostly used: the first is the method applied to a single spectrum without any calibration but 
using the intensity of the spectra for modeling, and the other is calibration based on a series of THz 
spectra of reference samples in order to predict quantitative information from unknown samples.

THz spectroscopy combine with chemometrics was reported for quantitative or qualitative 
analysis of mixture systems in environment, food, agriculture, material, biology, and medi-
cine. Otsuka et al. did quantitative analysis of mefenamic acid polymorphs by terahertz spec-
troscopy with chemometric methods [29]. They studied the effect of spectra data preprocessing 
on the chemometric parameters of the calibration models. Hua et al. mostly used regression 
models like partial least squares (PLS) and principle component regression (PCR) methods 
for quantitative evaluation of cyfluthrin in n-hexane by THz-TDS [30]. Partial least squares 
(PLS) is one of the most effective and reliable methods normally being applied for quantitative 
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analysis of various spectra. El Haddad et al. applied principal component analysis (PCA), PLS, 
and artificial neural networks (ANN) to quantitative analysis of ternary mixtures by THz-TDS 
[31], and they obtained good results. Ellrich et al. presented a postscanner by THz spectros-
copy using chemometric methods for the evaluation of detected THz fingerprints [32].

Assessment of THz spectroscopy with chemometrics is still under studying including prepro-
cessing, data selection and calibration methods. We strongly believe that THz spectroscopy 
should take advantage of multivariate analysis for advanced data processing, classification 
and calibration methods of chemometrics.

2. Instrumentation

For all of the work introduced in this chapter, a transmission THz-TDS cell configuration was 
used, as depicted in Figure 1. Figure 2 gives schematic of a terahertz time-domain transmis-
sion spectrometer system used in this chapter. The THz spectroscopy system was equipped 
with a commercially available femtosecond laser (SPECIM, MaiTai) for generating the THz 
pulse. The femtosecond laser light is separated into two beams using a prism. One beam is 
the probe, and it travels across a free space to focus on the detecting antenna, so that the probe 
beam provides a relative time delay periodically. The other beam goes through a GaAs-based 
semiconductor antenna to generate the THz pulse. Then, a parabolic mirror with a hemi-
spherical silicon lens is applied for improving the coupling efficiency of the THz radiation. 
The beam that passed through the sample placed at the focus of the parabolic mirror, and it is 
collected by another parabolic mirror. Finally, a photoconductive detector is used for signa-
ture collection [33]. In the experiments, the volume of the THz spectra system was filled with 
dry nitrogen (N2) to reduce absorption caused by vapor in air.

Figure 1. Schematic representation of tissue samples for TDS measurement.
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3. Theory and practical applications

3.1. Parameter extraction from THz spectra

The measurement of the reference pulse and the sample pulse are necessary for calculating 
the THz absorption coefficient of a sample. When the tissues are analyzed by THz spectra 
for medical testing or diagnosis, the sample pulse collected is transmitted through the tissue 
slides, and the reference signal is the THz signal transmitted without the tissue slides. The 
THz electric field pulses can be calculated as a function of time and the frequency for both 
signal crossed the tissue sample and reference passed nothing. The frequency domain spec-
tra are obtained by the fast Fourier transform (FFT) in this work. The refractive index n(ω) 
describing the dispersion and absorption coefficient α(ω), describing the absorption charac-
teristics, can be calculated through the following equations [33]:

  n (ω)  =   
φ (ω) c

 _____ ωd
   + 1  (1)

  α (ω)  =   2κ (ω) ω ______ c   =   2 __ 
d
   ln   4n (ω)  ___________  

A (ω)    (n (ω)  + 1)    2     (2)

for which ω is the frequency, and ρ(ω),k(ω) and ϕ(ω) are functions for the amplitude ratio, 
extinction coefficient, and phase difference of the sample and reference signals, respectively. 
d is the thickness of sample, and c is the velocity of light in vacuum.

3.2. Chemometric methods applied in this chapter

3.2.1. Data preprocessing methods

The Savitzky-Golay (SG) method is a polynomial filter that performs numerical differentia-
tion and smoothing [34]. This filter removes the noise in the dataset analyzed and simplifies 

Figure 2. Schematic of a terahertz time-domain transmission spectrometer system used in this chapter.
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the computation during the model building. SG method has the ability to process the signals 
with little delay and with no shifts of the peaks, and it can be performed in a computationally 
efficient procedure by applying least squares on subsets of the data. In the dataset, a window 
moves forward within 2m + 1 points fitting by a polynomial of degree p (in which p ≤ 2 m). The 
dth (0 ≤ d ≤ p) differentiation of the original data at the midpoint is obtained by performing 
the fitness polynomial. Finally, the convolution of the entire input data with a digital filter of 
length 2m + 1 is performed by running least squares polynomial fitting [35, 36].

The multiplicative scatter correction (MSC) is a transformation method used to cope with scaling 
and offset effects, which is mostly applied in spectral data analysis [37]. It is used to counterbal-
ance for additive and/or multiplicative effects in spectral data. MSC assumed that each spectrum 
collected from the samples is determined on one hand by the actual sample characteristics and 
on the other by the particle size. It can also decrease or remove physical effects like particle size 
and surface blaze, and it corrects differences in the baseline and in the trend. The sample prepa-
ration for THz spectra collection always has problems about the difference of particle size during 
grind and compactness during tableting. So, it has an advantage that the transformed spectra 
are similar to the original spectra without the effect of baseline effect and the trend of a standard 
spectrum and that an optical interpretation is therefore more easily accessible [38].

Orthogonal signal correction (OSC) can be applied to remove systematic noise such as baseline 
variation and multiplicative scatter effects, which is a data processing technique introduced by 
Fearn [39]. The basic idea of the OSC method is to remove the systematic variations in the collected 
data that are orthogonal or not related to the properties of the dependent variables. The removed 
information can be structured noise, such as baseline, instrument variation and measurement 
conditions. Some reports show that the use of OSC may not result in calibration models with 
lower prediction errors than models based on raw data. The advantage of using OSC lies in the 
analysis and interpretation of the corrected data but not in decreased prediction errors. By remov-
ing orthogonal information, the important calibration information will be concentrated in fewer 
principal components instead of being distributed among many linearly dependent variables.

The PC-OSC method used the constraints based on OSC and also applied the theory of prin-
cipal component analysis (PCA). The detailed procedure of PC-OSC can be referred in Ref. 
[40]. The emphatic orthogonal signal correction (EOSC) method can be used for the baseline 
correction of Raman spectra or near- infrared spectra, and it is a method that can be extended 
to apply on THz spectra. The theory and procedures of EOSC can be found in Refs. [4, 41].

Asymmetric least squares (AsLS) method calculates complex baseline shapes by adjusting 
the asymmetry parameter and the smoothness parameter. The asymmetry parameter is 
related to the position of the baseline, and the smoothness parameter related to the flexibility 
in the shape of the baseline. The AsLS method has been proposed by Zhang et al. [42]. By 
minimizing the penalized least squares function based on the Whittaker smoother, AsLS 
method estimates a background contribution and removes or decreases the baseline [43]. The 
application of this method can be found in Ref. [44]. The initial range of lambda is 102–105, 
and p is 0.099, which are experienced parameters based on literatures and our laboratory 
work experience. We adapted the results to PLS models, respectively, and obtained the best 
result when lambda is 103 [27].
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Wavelet transform not only can compress the data to extract feature information but also can 
remove the noise in the spectral data. In brief, wavelet analysis is based on the wavelet transform 
of analysis signal. The signal of different spatial scales (frequency) is divided into high-frequency 
and low-frequency part, and the position of each component on the time axis remains the same. 
A more detailed description of wavelet analysis algorithm can be found elsewhere [45].

Figure 3a displays raw THz absorption spectra of the prepared samples of binary amino acid 
mixtures of L-glutamic acid and L-glutamine. Figure 3b, 3c and 3d displays the THz spec-
tra of the binary amino acid mixtures with preprocessing of SG smoothing, MSC, and AsLS, 
respectively. From Figure 3, we can observe that the absorption spectra with processing of SG 
smoothing have eliminated the effect of noise and display spectral characteristics more clearly. 
By using MSC, the scaling and offset effects were removed. Normally, using OSC can get very 
similar results to that applied in MSC. AsLS can eliminate or decrease the baselines in the THz 
spectra of the samples. The absorption bands are more easily attributed to certain wavelength 
in this work. The binary mixtures under different concentration ratios display certain quantita-
tive relation on THz absorption coefficients, which would be the basis for quantitative analysis 
by THz-TDS transmission spectroscopy. We did not apply wavelet transform on the sample 
analysis in this chapter, for the other preprocessing could obtain good result already. Anyway, 
wavelet transform still should be considered in the future work, since it is a powerful method 
for de-noising, compressing the dataset, removing the background information, etc.

Figure 3. The spectra of the L-glutamic acid and L-glutamine mixture samples after different preprocessing are 
(a) raw THz spectra, (b) the spectra after smoothing, (c) the spectra after MSC, and (d) the spectra after AsLS.
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3.2.2. Examples of chemometric methods for regression model building of THz spectra

3.2.2.1. Principal component analysis

Principal component analysis (PCA) is commonly used to reduce the number of predictive 
variables. PCA condenses all the spectral information into a few linear combinations of the 
latent variables instead of the original variables. The linear combinations of the variables can 
be used to summarize the data without losing too much information but remove noise in the 
process [46]. It can be used to identify the underlying structure of large datasets and can be 
used to identify groups within the data from complex mixtures. It can also be used for remov-
ing any contribution from noise.

3.2.2.2. Partial least squares

Partial least squares (PLS) is one of the most used chemometric techniques to build quanti-
tative model based on principal component analysis and principal component regression. 
PLS extracts the orthogonal features from the spectrum and then constructs the correlation 
between the spectra matrix (independent variable, X) and concentration matrix (dependent 
variable, Y). The detailed procedure of PLS can be referred to in Ref. [47].

We have investigated PLS for quantitative analysis of L-glutamic acid and L-glutamine using 
THz spectroscopy. Also, we compared the difference between iPLS and PLS. iPLS divided the 
whole spectrum into several intervals and builds PLS model for each subset to evaluate the 
most suitable sub-dataset for a stable model. The subset or several subsets with the lowest 
root mean square error of cross validation (RMSECV) are chosen for the PLS model building 
[27]. The iPLS yielded better results with low RMSEP (0.39 ± 0.02%, 0.39 ± 0.02%), and higher 
R2 values (0.9904, 0.9906) for glutamine and glutamic acid comparing to the conventional 
PLS models.

We also analyzed binary isomer of saccharide mixtures, D-(−)fructose and D-(+)galactose 
anhydrous quantitatively using THz-TDS combined with PLS. The result showed that 
correlation coefficient (R2) between true and predicted values is higher than 0.9773. The 
mean value of root mean square error of prediction (RMSEP) in cross validation set was 
less than 1.26%.

Therefore, THz-TDS combined with chemometrics is feasible for quantitative analysis of the 
biomolecular mixtures and may also be extended to analysis of more component mixtures.

3.2.3. Examples of chemometric for classification model building of THz spectra

3.2.3.1. Partial least squares-discriminant analysis

Partial least squares-discriminant analysis (PLS-DA) is a supervised classification method 
based upon partial least squares regression [47]. The PLS-DA algorithm models the rela-
tionship between the measured variable of the dataset and the target variables correspond-
ing to the class label [48]. PLS-DA extracts the latent variables by reducing the dimension 
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of the dataset like principal component analysis and finds the maximum separation among 
the classes. The latent variables explain both the variance of the THz spectral data and the 
high correlation with the response matrix that encodes the class membership [33]. Component 
number, which has high relative with the accuracy rate and the percentage of the explained 
variable, is a very important parameter for prediction accuracy and explanation of the model 
that needs to be estimated for PLS-DA.

3.2.3.2. Support vector machine

Support vector machine (SVM) is a powerful machine learning method with associated learn-
ing algorithms that analyze data used for classification and regression analysis [49]. For clas-
sification tasks, based on the structural risk minimization principle, this method attempts 
to find the separating hyperplane which has the largest distance from the nearest training 
data points. LIBSVM was one of the mostly used toolboxes, and the SVM calculations in the 
example in this chapter used the linear kernel function [50].

The two essential factors that affected SVM classification performance are (1) error penalty 
parameter C, which is the compromise between the proportion of error classification samples 
and algorithm complexity, and (2) form of kernel function and its parameters. Different ker-
nel functions have influence on the classification performance, while different parameters of 
same kernel function may also affect the results.

3.2.3.3. Fuzzy rule-building expert system (FuRES)

FuRES is a classification tree model using fuzzy entropy of classification which each rule is 
a temperature-constrained sigmoid logistic function [51]. The rules of FuRES are similar to 
the processing units in most feed-forward artificial neural networks, while FuRES process-
ing units differ in that the weight vector is constrained to an optical length. The inductive 
dichotomizer 3 is used for classification by minimizing H(C| A), the classification entropy. 
The weight vector w should be normalized before modeling. A temperature parameter t is 
used to control the fuzziness of each rule. When optimizing the computational temperature, 
the maximized extend of the entropy for classification can be found [4]. The equations for this 
method are given below:
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The classification entropy H(C| A) of the system is the weighted sum of the entropy for each 
attribute:

  H (C |  A)  =  ∑ 
j=1

  
2
    p ( a  

j
  ) H (C |    a  

j
  )   (6)

The FuRES model provides inductive logic in the tree structure of the classifier. In this way, 
it can accommodate overlapping the data and avoid overfitting the data by the temperature 
constraint. The advantage of fuzzy classification trees comparing to network classifiers is that 
they furnish a simple inductive structure that is amenable to interpretation.

3.2.3.4. Fuzzy optimal associative memory (FOAM)

An optimal associative memory (OAM) is using a one-way data to replace binary image of 
encoded multivariate data as a two-way binary image for fuzzy method [52]. Bipolar matrix 
with similar size grid unit is built first. A vector of ν variables is converted to ν × h bipolar 
matrix. After removing u unused grid, the number of grid is k ((ν × h) − u) [4]. The FOAM 
stores pattern in a weight matrix W, which expressed by

  W =  ∑ 
i=1

  
n

     y  
i
    y  
i
  T   (7)

for which y
i
 is the ith bipolarly encoded approach [4]. The stored grid-encoded spectra are 

orthogonalized to form a basis using singular value decomposition. The encoded predicted 
background scan z

f
 can be obtained by

   z  
f
   = V ( V   T   z  

i
  )   (8)

for which V is a matrix following the orthogonalized pattern of the collected data variables. 
Then, z

f
 is decoded to a spectrum vector by changing the gridding procedure. The data object 

can be assigned to the corresponding classes to make the building fit with the minimum error 
after reconstructing the raw data. In this chapter, FOAM used its standard configuration of 
100 intensity grids and a 19-point triangular fuzzy membership function [4].

3.2.3.5. Validation

Bootstrapped Latin partitions (BPLs) are generalized for evaluation of calibration methods 
based on cross validation and random sampling verification [53]. Unbiased evaluation of 
classification or calibration methods is important, especially as these methods are applied to 
increasingly complex datasets that are under-determined like THz spectra dataset. Precision 
bounds, such as confidence intervals, are required for interpreting any experimental result. 
By using BPLs unbiased and reliable evaluation can be gotten by systematically model with 
samples drew from an arbitrary discrete distribution.

3.2.3.6. Example of diagnosis of cervical cancer

In this work, THz-TDS system was applied to detect the normal and malignant tissue sections 
as an example for chemometric applications on THz spectral analysis. The classification mod-
els combined with different pretreatment methods were established to build a new diagnosis 
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technique for cervical cancer diagnosis based on terahertz spectroscopy. The effects of differ-
ent preprocessing methods on THz spectra data to de-noise, remove baseline and optimize 
model were investigated.

The normal and cancerous cervical tissues were collected and provided by Beijing Haidian 
Maternal & Child Health Hospital. To keep the tissues, all the cervical tissues were put into 
4% formaldehyde solution. The tissues were washed with ethanol solutions for dehydration 
when we analyzed the samples. The tissues were put into xylene for hyalinization and then 
embedded by paraffin wax before sliced into 8 μm thick sections. The water-flatted sections 
were spread upon quartz plates and then put in a regulated heating oven and dried. Two 
replicate slides were prepared for each of the tissue sections [33].

To establish a model for diagnosis of cervical cancer, PLS-DA, FuRES, FOAM, and SVM were 
used to build classification models. The parameter for FuRES and FOAM was determined 
using a self-optimizing PLS-DA from the training datasets. A method to verify the accuracy 
of classification and calibration models, bootstrapped Latin partition, was used for cross vali-
dation of the calibration dataset. When we built PLS-DA and SVM models for this study, the 
matrix of category variables was used, one for the normal samples and two for the cancer 
tissue samples. When the predicted value of an external test tissue sample in PLS-DA model 
was smaller than 1.5, the sample was assigned to normal class or assigned to cancer class 
otherwise [33].

The classification results of these methods were compared when the data was processed with 
different preprocessing. MSC, SG smoothing, SG first derivative, EOSC, and PC-OSC were 
used for pretreatment of the THz spectra, respectively, and the data were normalized before 
modeling. The performance of preprocessing methods applied in this work was compared. 
The results of the modeling approaches after pretreatment are evaluated by the pooled pre-
diction rates. The raw data were divided as training datasets and prediction sets based on KS 
method. The pretreatments were constructed from the training datasets and applied to the 
prediction sets. For cross validation, five Latin partitions bootstrapped 50 times were applied 
to evaluate the prediction accuracy of the classification models with different parameters and 
different pretreatments. For each bootstrap, the data were separate as training set and test set, 
and each spectrum was used only once in the test set. Each time, four Latin partitions were 
used for calibration during model building, and the fifth was used for prediction. The pre-
dicted results of the five test sets from each partition were pooled back after each validation 
was finished. This approach was used for evaluations of all the classification models in this 
work. The average prediction results were calculated with 50 bootstraps to give 95% confi-
dence intervals [33]. The number of components of the OSC model was selected by finding 
the maximum average classification rate across internal 100×5 bootstrap Latin partitions. All 
model optimization and construction were performed in MATLAB (MATLAB 7.14.0.334. The 
MathWorks Inc.).

The obtained results showed that the FuRES and FOAM model using Savitzky-Golay smooth 
by the first derivative and PC-OSC as pretreatment methods had provided a good predictive 
results and their classification rates are 92.9 ± 0.4 and 92.5 ± 0.4 %, respectively [4]. The results 
of the proposed methods show that terahertz spectroscopy combined with fuzzy classifiers 
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could supply a technology which has potential for diagnosis of cancerous tissue. Combining 
SG first derivative with PC-OSC as signal pretreatment procedure, the prediction accuracies 
of the optimal SVM and PLS-DA were 94.0 ± 0.4 and 94.0 ± 0.5%, respectively. Therefore, 
SVM and PLS-DA with the combination of SG first derivative and PC-OSC based on terahertz 
spectroscopy of tissue can also provide a good application for diagnosis of cervical carcinoma.

Comparing the classification accuracies pretreated by different preprocessing methods, it 
indicated that the classification models applied based on terahertz spectroscopy of tissue 
could provide a better application for early diagnosis of cervical carcinoma, with high clas-
sification accuracies. Coupled with terahertz technology, the proposed procedure could pro-
vide a convenient, solvent-free, and environmentally friendly application that had a potential 
development as cancer diagnosis method.

3.2.4. Examples of chemometric for resolution of THz spectra data

3.2.4.1. Multivariate curve resolution

Multivariate curve resolution (MCR) is designed to solve the analysis problem of mixture 
systems following bilinear model. The MCR methods decompose the raw mixed measure-
ment datasets into matrix corresponding to pure concentration profiles and pure spectra. 
Constrains following physical and chemical property can be flexibly used during iterations 
when alternating least squares is applied and the maximum variance of the raw measure-
ment data is explained. The profiles in the bilinear model resolved by MCR are physically 
and chemically meaningful and correspond to interpretable patterns of variation of principal 
components [27, 54, 55].

In our study, MCR-ALS was applied to resolve binary amino acid mixtures of L-glutamic 
acid and L-glutamine analyzed by THz-TDS. Non-negativity constraint was applied on 
both spectra and concentration directions during the iterations. The spectra of the pure ana-
lytes obtained from the MCR displayed are corresponding to glutamine and glutamic acid. 
MCR results provided fitting error in % (exp) is 6.731, and percent of variance explained (R2) 
at the optimum is 99.55, and this results show that the MCR model can fit the raw data well in 
this case. The correlation coefficients (r2) between the reference THz spectra of pure analytes 
and those resolved pure spectra for each principal component by MCR are 0.9990 and 0.9979 
for glutamine and glutamic acid, respectively. The spectrum of glutamine resolved by MCR is 
in good agreement with that measured by THz in the laboratory. The fitting constant is 0.9999.

MCR-ALS was also applied to resolve the binary isomer mixtures of D-(−)fructose and D-(+)
galactose analyzed by THz-TDS. The absorption spectra of the two components obtained by 
MCR-ALS were well fitting to spectra of pure D-(−)fructose and D-(+)galactose anhydrous, 
which were obtained from experiment data in the same condition, respectively. The results 
of correlation coefficient between THz spectra obtained by MCR-ALS and pure D-(−)fructose 
and D-(+)galactose samples are 0.9974 and 0.9933, respectively. Relative concentrations of the 
two components were resolved by MCR-ALS, and they can fit the true concentrations well. 
MCR-ALS successfully resolved pure THz spectra of the components in the binary isomer 
mixtures and their corresponding concentrations.
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Hyperspectral images based on infrared, near-infrared, Raman, and fluorescence are an active 
area of research that has grown quickly since a decade ago [56]. THz time-domain imaging is 
an emerging modality and has attracted a lot of interest since THz spectra got successes [57]. 
MCR-ALS can easily resolve the pure spectra and their corresponding concentration distribu-
tions from hyperspectral imaging, as well as external spectral can be used for local rank con-
straints. In the future, MCR-ALS can be proposed to resolve the biomedical images based on 
THz spectroscopy based on the development of THz hyperspectral imaging [56]. We believe 
that THz time-domain imaging will provide potential for medical diagnosis.

4. Does terahertz radiation lead to DNA or tissue damage?

Investigations of the interaction between nonionizing electromagnetic radiation and biological 
systems are necessary before the application of electromagnetic radiation in medical diagno-
sis. Recent emergence and growing use of terahertz radiation for medical imaging and public 
security screening raise questions on reasonable levels of exposure and health consequences 
of it. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic 
imaging techniques. From different studies, the researcher got different conclusions on the 
effects of THz pulses on human cells and tissues. Titova et al. studied the biological effects of 
THz radiation on artificial human skin tissues [58], and their work shows that THz pulse irra-
diation may cause DNA damage in exposed skin tissue when intense THz pulses are applied. 
They consider that DNA damage repair mechanisms are quickly activated after THz radia-
tion. But they found that the cellular response to pulsed THz radiation is significantly differ-
ent from that induced by exposure to UVA (400 nm). However, Hintzsche et al. investigated 
power intensities ranged from 0.03 to 0.9 mW/cm and the cells were exposed for 2 and 8 h. 
Chromosomal damage and DNA damage were not detected in the disdained condition. Cell 
proliferation was also found to be unaffected by the exposure [59]. Bogomazova studied DNA 
damage and transcriptome responses in human embryonic stem cells (hESCs). They did not 
observe any effect on the mitotic index or morphology of the hESCs following THz exposure 
[60]. Anyway, THz is still one of the most harmless techniques for biomolecular analysis and 
medical diagnosis, and it will be powerful to detect the information from DNA, protein, or 
tissues.

5. Conclusion

Terahertz technology is progressing in biological and medical diagnosis in recent years. It 
has potential to be applied on analysis of biological molecular, cellular, tissues and organs, 
since terahertz is a nondestructive technique. The study displayed in this chapter indicates 
that terahertz spectroscopy and terahertz imaging technology combined with chemomet-
rics can give accurate classification for normal and cancer tissues, predict the concentration 
of different compounds, and resolve the pure THz spectra of biomolecules in mixture sys-
tems. Comparing the classification accuracies pretreated by different preprocessing methods, 
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it indicated that the models applied based on terahertz spectroscopy could provide a better 
application for medical diagnosis. Terahertz is still one of the most harmless techniques for 
medical diagnosis, and it is hopefully to be developed as a powerful technique to detect the 
information from biomolecules or tissues in the future.
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