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Abstract

Rolling element bearings play a crucial role in determining the overall health condition of a
rotating machine. An effective condition-monitoring program on bearing operation can
improve a machine’s operation efficiency, reduce the maintenance/replacement cost, and
prolong the useful lifespan of a machine. This chapter presents a general overview of
various condition-monitoring and fault diagnosis techniques for rolling element bearings
in the current practice and discusses the pros and cons of each technique. The techniques
introduced in the chapter include data acquisition techniques, major parameters used for
bearing condition monitoring, signal analysis techniques, and bearing fault diagnosis
techniques using either statistical features or artificial intelligent tools. Several case studies
are also presented in the chapter to exemplify the application of these techniques in the
data analysis as well as bearing fault diagnosis and pattern recognition.

Keywords: rolling element bearings, condition monitoring, fault diagnosis

1. Introduction

Rolling element bearings are the most critical but vulnerable mechanical components in a

rotating machine. A bearing failure can lead to a complete machine breakdown causing

unintended interruption to a production process and financial losses. It is important to have

an effective bearing condition monitoring (CM) and fault diagnosis system in place so that

incipient bearing faults can be detected and correctly diagnosed on time to prevent them from

deteriorating further to cause damage to a machine. For instance, an early detection of incipi-

ent defect of a rolling element bearing in a high speed train or a wind turbine can lead to a

timely maintenance/replacement to prevent potential disastrous consequence and human loss

caused by unexpected failure of critical mechanical components.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Many condition-monitoring and fault diagnosis techniques have been developed in the last

few decades to improve the reliability of rolling element bearings. This chapter provides an

overview on the most commonly employed condition-monitoring, signal analysis, and fault

diagnosis techniques for rolling element bearings and discusses some of the pros and cons of

these techniques.

A starting but most fundamental information in bearing condition monitoring is the character-

istic bearing defect frequencies. The characteristic defect frequency components in a signal are

generated by flaws or faults presented in a bearing when the bearing is operated at a specific

machine rotating speed under certain loading conditions. Alternatively, defect signals can also

be produced accompanying the normal wear process during a bearing’s operational life.

Figure 1 shows the graphical and the cross-sectional representations of a rolling element

bearing. The bearing comprises four mechanical components: an outer race, an inner race,

rollers (balls), and a cage that hold the rollers (balls) in place. Correspondingly, there are four

possible characteristic defect frequencies for a rolling element bearing: ball (roller) pass fre-

quency at the outer race (BPFO), ball (roller) pass frequency at the inner race (BPFI), ball

(roller) spin frequency (BSF), and fundamental train frequency (cage frequency) (FTF). The

formulae for these four characteristic bearing defect frequencies are listed in Table 1.

Figure 1. (a) A graphical illustration of a roller element bearing and (b) a cross-sectional view of the roller element

bearing.
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Ball-spin frequency (BSF) BSF ¼
D
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D
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� �2
h i

Fundamental train frequency (FTF) FTF ¼
1
2
N

60 1− d

D
cosα

� �

Note: N is the shaft speed in revolutions per minute (RPM), n is the number of roller elements in a bearing, α is the contact

angle of the bearing due to the load from the radial plane, d is the diameter of the roller, and D is the mean diameter of the

bearing as shown in Figure 1.

Table 1. Formulae of the bearing defect frequencies.
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A bearing defect signal can be simulated using the following equations [1]:

sðt, nÞ ¼ Qe−γðt−
n

BDFÞ sin 2πf r

�

t−
n

BDF

�� �

þ
OðtÞ

rsn
, t <

nþ 1

BDF
, n ¼ 0, 1, 2,…: (1a)

and

sðt, nÞ ¼ Qe−γðt−
nþ1
BDFÞ sin 2πf r

�

t−
nþ 1

BDF

�� �

þ
OðtÞ

rsn
, t ≥

nþ 1

BDF
, n ¼ 0, 1, 2,…: (1b)

where Q is the assumed maximum loading intensity for a bearing defect and t is the time

variable, BDF represents a bearing defect frequency, fr is the assumed bearing resonance

frequency and α is the energy decay constant of the bearing race. The first part in Eqs. (1a)

and (1b) is the signal produced by a bearing defect, and the second part of the equations is the

superimposed white Gaussian noise representing the machine background noise. n is the pulse

index of the bearing defect frequency, O(t) is the white Gaussian noise and rsn is the assumed

signal-to-noise ratio (SNR). A typical bearing defect signal is shown in Figure 2. The parame-

ters used in the simulation of the signal are listed in Table 2.

Figure 2. A simulated defect signal of a roller element bearing due to a fault at the outer race: (a) pure defect signal; (b)

noise-added signal.

Fault type Defect frequency (Hz) Resonance frequency, fr (Hz) Decay constant, α Loading intensity, Q SNR, rsn

BPFO 78.18 4000 200 1 −20 dB

Table 2. Parameters used in the simulation.
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2. Condition-monitoring techniques

Condition-monitoring (CM) techniques are required to acquire the operation condition data of

a rotating machine. The CM data can then be processed and analyzed using appropriate signal

analysis techniques to obtain the most relevant characteristic parameters before being used in a

diagnosis or prognosis algorithm to evaluate/predict the health state of the machine. The data

employed in a condition-monitoring program can be vibration, noise, electric current, oil

and grease, temperature or a combination of these data. The CM data can be analyzed using

either time-domain techniques, frequency-domain techniques, or time-frequency techniques

according to the data properties such as linearity or nonlinearity, stationary or nonstationary,

to extract the most useful and effective features for bearing fault diagnosis. This section

summarizes some of the most commonly employed techniques in condition-monitoring appli-

cations of rolling element bearings.

2.1. Vibration technique

Vibration technique is the most frequently employed technique for machine condition monitoring. A

change of the vibration signal in a machine without changing the operation condition can imply a

change of health state of the machine. Vibration signals are typically generated by defects in the

moving components of the machine such as defects in a bearing, gearboxes, reciprocating compo-

nents, and so on. For example, when a rolling element bearing operates under a faulty condition, an

impulse signal will be generated as other bearing components passing through the faulty position.

This will lead to an increase in overall vibration amplitude of the machine. The defect component of

the bearing and its severity can be determined by the characteristic defect frequency component

contained in the condition monitoring signal (see Figure 2). The frequency range of vibration

measurement can be as low as in the infrasonic region (below 20 Hz) and span across to the upper

limit of the audible frequency (20 kHz). Though the vibration technique can be problematic in

acquiring useful signals when it is deployed for condition monitoring of large low-speed rotating

machine where the energy of an incipient defective signal is usually weak and often submerges

under the background noise. High-frequency techniques such as acoustic emission (AE) technique

can be employed to overcome this limitation.

2.2. Acoustic emission technique

Acoustic emission is a transient elastic wave generated by the sudden release or redistribution

of stress in a material. For example, in bearing condition-monitoring applications, AE is

generated by the sudden release of energy caused by the material deformation as other bearing

components passing through a defect part. The signal then propagates to the bearing house to

be detected by a monitoring AE sensor. Compared to vibration signals, the AE signal is less

likely to be affected by the dominating noise and vibration generated by the moving mechan-

ical components of the monitored system due to the high-frequency nature of the signal

(typically above 100 kHz). Care should be taken in choosing the mounting locations of AE

sensors to minimize the energy loss along the AE propagation path for better signal clarity.

Furthermore, AE also comes with inherited problems such as calibration, nonlinearity, data
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storage and transfer, data processing and interpretation. Recently, Lin et al. [1–3] developed a

number of signal-processing algorithms to overcome the problems of nonlinearity and large

AE data. Nowadays, a large industry deployment of AE technique in bearing condition

monitoring is still restricted by the expensive highly specialized AE data acquisition devices.

2.3. Current signal technique

Current signal technique is mainly used to monitor the bearing condition of electric motors.

The technique is based on the principle that the vibration signal generated in a motor is closely

related to the change of magnetic flux density in the motor. Stator current technique is the

frequently employed current signal technique. When a motor bearing operates on a faulty

condition, the radial motion of the motor axis would lead to a small shift of the rotor causing

a change in the magnetic flux density between the stator and the rotor. The induced voltage

will then cause the variation of the stator current. The stator current technique employs

noninvasive sensors to monitor the variation of the stator current; therefore, it is easy to

implement and simple to operate.

2.4. Oil and debris-monitoring technique

The application of oil and debris-monitoring technique is a frequently employed tribology

approach for machine condition monitoring. The health condition of a roller element bearing

can be monitored by analysis of the properties and particle contents of the lubrication oil. The

application of oil and debris-monitoring technique is rather straightforward. Though such

tribology analysis is normally undertaken at laboratories using spectrometers and scanning

electron microscopes rather than in situ. The technique is also limited to condition-monitoring

applications of lubrication-related or wear-related problems.

2.5. Thermography technique

Thermography technique detects faults in a bearing by measuring the emission of infrared

energy using thermo-infrared devices during bearing operation process. Laser thermography

devices or thermo-infrared cameras are the most common instruments used for such measure-

ment. This technique can be applied to monitor the heat variation caused by the change of

bearing lubrication, load, and operation speed. It is particularly sensitive in monitoring the

overheating phenomenon caused by improper lubrication but less sensitive in detecting incip-

ient fault developed in a bearing such as early pitting, slight wear, or peeling.

3. Data analysis and fault diagnosis techniques

Many signal analysis and machine fault diagnosis techniques have been developed in the last

few decades in order to improve the reliability, efficiency, and lifespan of machines, as well as

to reduce the maintenance and operation cost. In this section, the most frequently employed

signal-processing and fault diagnosis techniques for rolling element bearings are briefly

discussed and summarized.
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3.1. Time-domain data analysis techniques

3.1.1. Time series analysis

Time series analysis is a mathematical method, which handles an observed data series in a

statistic manner. Time series analysis is based on the assumption that the variation trend of a

historical observed data can be extended to provide an indication/prediction of future data

variation of a same monitored system. A typical time series analysis approach is to establish a

predictive model based on the observed data series. The three widely adopted univariate time

series models in machine fault diagnosis are autoregressive (AR) model, moving average (MA)

model, and autoregressive moving average (ARMA) model [4].

A general linear ARMA (p, q) model can be expressed as

yt ¼ cþ
Xp

i¼1

φiyt−i þ
Xq

j¼1

θjεt−j þ εt (2)

where yt is the time series needed to be modeled, c is a constant, p is the number of

autoregressive orders, q is the number of moving average orders, φi is the autogressive

coefficients, θj is the moving average coefficients, and εt is the independent and identically

distributed terms, which are commonly assumed to have zero mean and a constant variance,

or (i) EðεtÞ ¼ 0; (ii) EðεtεTÞ ¼ 0 for t ≠ T ; and (iii) Eðε2t Þ ¼ σ2.

An AR model and an MA model can be viewed as the special case of an ARMA model. For

instance, when all autoregressive coefficients φi equal to 0 ðφi ¼ 0, 1 ≤ i ≤ pÞ, an ARMA model

degrades to an MAmodel. On the other hand, when all moving average coefficients θj equal to

0 ðθj ¼ 0, 1 ≤ j ≤ qÞ, an ARMA model degrades to an AR model.

After selecting the most suitable time series model for the data analysis, the next step is to

determine the orders of AR or MA models. The commonly adopted order parameter determi-

nation criteria for these time series models are the final prediction error (FPE) criterion, Akaike

information criterion (AIC), and Bayesian information criterion (BIC).

On the other hand, the common methods used to determine the autoregressive coefficients and

moving average coefficients are least squares estimation, maximum likelihood estimation,

Yuler-Walker estimation, and so on.

It is worth mentioning that ARMA models are developed based on the assumption that the

signal is stationary. If the signal is not stationary, some data preprocessing steps need to be

adopted. For example, (1) performing a differential operation of the data term by term until the

signal satisfies the stationary criterion and (2) decomposing a nonstationary signal by empiri-

cal mode decomposition (EMD) to obtain the stationary intrinsic mode functions (IMFs).

3.1.2. Minimum entropy deconvolution

Minimum entropy deconvolution (MED) technique is proposed originally by Wiggins, which

has been successfully employed in dealing with the seismic response signal [5]. The basic idea

of MED is to find an inverse filter that counteracts the effect of the transmission path [6]. It is

designed to reduce the spread of impulse response functions (IRFs) and then obtain signals,
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which are close to the original impulses giving rise to them. The MED technique has been

successfully employed in bearing fault diagnosis such as in [6].

Figure 3 illustrates the basic idea of the MED technique. In this process, an unknown impact

signal x(n), which can be as highly impulsive as possible, passes through a structural filter h

and then mixes with a noise e(n) to produce an intermediate output o(n). The signal o(n) then

passes through an inverse (MED) filter f to produce a final output y(n). The process eliminates

the structure resonance and the final output y(n) after the inverse filter needs to be as close as

possible to the original input x(n).

The inverse filter f(l) can be modeled as a finite impulse response (FIR) filter with L coefficients:

yðnÞ ¼
X

L

l¼1

f ðlÞxðn − lÞ, (3)

and

f ðlÞ � hðlÞ ¼ δðn − lmÞ: (4)

where δ is a Dirac delta function and lm is the time delay after the MED process, which

displaces the entire signal by lm but keeps the impulse spacing of the signal.

The inverse filter f(l) is implemented for the MED technique by the objective function method

(OFM). The OFM is an optimization process designed to maximize the kurtosis of the output

signal, y(t). OFM achieves this by changing the coefficients of the filter f(l). The kurtosis is taken

as the normalized fourth-order moment given by

K
�

f ðlÞ
	

¼
X

N

n¼1

y4ðnÞ=

�

XN

n¼1
y2ðnÞ

�2

, (5)

and the maximum kurtosis of y(t) can be obtained according to f(l) for which the derivative of

the objective function is zero:

Figure 3. Inverse filtering (deconvolution) process for MED.
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∂Kð f ðlÞÞ=∂f ðlÞ ¼ 0 (6)

where the filter coefficients of f(l) can converge to a given tolerance by the iterative process [7].

3.1.3. Spectral kurtosis

Spectral kurtosis (SK) was first proposed in the 1980s for detecting impulsive events in sonar

signals. SK was first applied in bearing fault diagnosis by Antoni [8]. The method basically

computes a kurtosis at “each frequency line” in order to discover the presence of hidden

nonstationarities and to indicate in which frequency band it takes place. The method has been

proved to be relatively robust against strong additive noise. An SK of nonstationary signals is

defined based on the Wold-Cramer decomposition, which describes any stochastic random

process x(t) as the output of a causal, linear, and time-varying system [9]:

xðtÞ ¼ ∫
þ1=2
−1=2 Hðt, f Þej2πf ndZxð f Þ, (7)

where dZxð f Þ is an orthonormal spectral process of unit variance andH(t, f) is the time-varying

transfer function interpreted as the complex envelope of x(t) at frequency f. The SK of a signal x

(t) is defined as a normalized fourth-order spectral accumulation given by [8, 9]:

Kxðf Þ ¼
〈jHðt, f Þj4〉

〈jHðt, f Þj2〉2
− 2, (8)

in which Kx( f) is the spectral kurtosis of signal x(t) around frequency f and 〈∙〉 denotes the

averaging over time.

Antoni and Randall [9] proposed two techniques to calculate the spectral kurtosis, one is based

on short-time Fourier transform (STFT) (the so-called kurtogram for finding the optimal filter)

and the other is based on one-third binary filter banks (fast kurtogram for on-line condition

monitoring and fault diagnosis). Kurtogram is a powerful tool for the analysis of nonstationary

signals in bearing fault diagnosis, though it has been reported that the technique fails to detect

a bearing fault when the defect signal has low signal-to-noise ratio and contains non-Gaussian

noise with high peaks [10, 11].

3.1.4. Singular-value decomposition

Singular-value decomposition (SVD) is a numerical method which states that a matrix A of

rank L can be decomposed into the product of three matrices: U (an orthogonal matrix), Λ (a

diagonal matrix) and V
T (the transpose of an orthogonal matrix V) [12]. This method is usually

presented as

Am · n ¼ Um ·m∙Λm ·n∙V
T
n· n, (9)

where U
T
U ¼ 1 and V

T
V ¼ 1; Λm ·n is a diagonal matrix containing the square roots of

eigenvalues of AT
A which can be expressed as Λ ¼ diagðσ1, σ2, …, σLÞ, where L ¼ minðm, nÞ.
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The non-zero diagonal terms σiði ¼ 1, 2,⋯, lÞ together with the zero terms σlþ1 ¼… ¼ σL ¼ 0

form the singular values of the matrix A.

SVD can be an effective tool for data reduction, for example, a reduction of the fault feature

dimensions. It is also a useful tool for signal de-noising. The application of SVD in signal

de-noising is mainly operated as follows:

Suppose a bearing CM signal x(k) can be modeled as

xðkÞ ¼ yðkÞ þ nðkÞ, (10)

where y(k) and n(k) are respectively, the uncontaminated signal and noise. A conversion

method such as phase space reconstruction can be used to transform the signal from a one-

dimensional vector into a two-dimensional matrix as follows:

A ¼ A þN, (11)

where the matrix A represents the uncontaminated data y(k), which contains characteristic

fault information and the matrix N signifies the unwanted noise part n(k). From Eqs. (9) and

(11), we have

A ¼ A þN ¼ ½Ul U0 �
Λl 0
0 Λ0

� �

VT
l

VT
0

� �

: (12)

Λ1 in Eq. (12) contains the significant singular values σiði ¼ 1, 2,⋯, lÞ which are used to

construct the uncontaminated data and Λ0 contains small singular values σi ði ¼ lþ 1,…, LÞ,

which can be viewed as noise.

From Eq. (12), the de-noising signal matrix can be written as

A ¼ U1Λ1V
T
1 (13)

A is a reconstructed matrix using only the largest l number of singular values whose values are

greater than a pre-set threshold value ε. The rest of the singular values are replaced by zero

such that

σi ¼ 0 when σi ≤ ε, t ¼ lþ 1,…, L: (14)

3.2. Frequency-domain data analysis techniques

3.2.1. Power spectrum

Spectrum analysis is the most popular frequency-domain analysis techniques, which trans-

forms a time-domain data into discrete frequency components by Fourier transform. The

power spectrum of a time-domain signal is defined as the square of the magnitude of the

Fourier transform of a signal. It can be written as
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PðωÞ ¼ j∫þ∞−∞ xðtÞe−jωtdtj2 ¼ XðωÞX�ðωÞ, (15)

where XðωÞ ¼ ∫þ∞−∞ xðtÞe−jωtdt is the Fourier transform of a signal, X�ðωÞ is its complex conjugate

and ω is the angular frequency in radian/s. The power spectrum is frequently employed to

extract useful characteristic defect frequency components of a stationary CM signal.

3.2.2. Cepstrum

A cepstrum is defined as the power spectrum of the logarithm of the power spectrum of a

signal [13]. The name of cepstrum was derived by reversing the first four letters of spectrum.

There are four types of cepstra: a real cepstrum, a complex cepstrum, a power cepstrum and a

phase cepstrum.

The real cepstrum of a signal x(t) is given by

cðtÞ ¼
1

2π
∫π−πlogjXðωÞje

jωtdω: (16)

The complex cepstrum of a signal x(t) is given by

c
!
ðtÞ ¼

1

2π
∫π−πlog

�

XðωÞ
	

ejωtdω: (17)

The power cepstrum of a signal x(t) is given by

cðtÞ2 ¼
1

2π
j∫π−πlogjXðωÞje

jωtdωj2: (18)

The most commonly used cepstrum in machine condition monitoring is power cepstrum. The

following steps can be taken to calculate the power cepstrum of a signal: A signal ! power

spectrum of the signal ! logarithm of the power spectrum ! power spectrum of the data from

the previous step ! inverse Fourier transform of the log power spectrum from the previous step

(power cepstrum). The main application of cepstrum analysis in machine condition monitoring is

for signals containing families of harmonics and sidebands where it is the whole family rather

than individual frequency component characterizing the fault [13] (typical for bearing CM sig-

nals). The technical terms used in a cepstrum are quefrency, gamnitude and rahmonics

corresponding to frequency, amplitude and harmonics in a spectrum analysis. The cepstrum can

be used for the harmonics generated by bearing faults, but only if they are well separated. In

contrast, envelope analysis to be introduced in the next section is not limited by such restriction.

3.2.3. Envelope spectrum

It has been pointed out by Randall [13] that the benchmark method for rolling element bearing

diagnosis is envelope analysis as the spectrum of raw bearing CM signals often contains little

information about bearing faults. In envelope analysis, a time waveform is bandpass filtered in

a high-frequency band and the fault signal is amplified by the structural resonances and
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amplitude modulated to form the envelope signal for bearing diagnosis [13]. The procedures

for envelope analysis are briefly described below:

Given a real signal xðtÞ, its Hilbert transform, hðtÞ ¼ HfxðtÞg is defined as

hðtÞ ¼ HfxðtÞg ¼
1

π

∫∞−∞
xðτÞ

t−τ
dτ ¼

1

πτ

xðtÞ, (19)

The real signal xðtÞ and its Hilbert transform hðtÞ together form a new complex analytic signal

zðtÞ,

zðtÞ ¼ xðtÞ þ jhðtÞ: (20)

The envelope signal EðtÞ is simply the absolute value of the analytic signal zðtÞ,

EðtÞ ¼ jzðtÞj ¼ jxðtÞ þ jhðtÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2ðtÞ þ h2ðtÞ

q

: (21)

After taking a fast Fourier transform on the envelope signal EðtÞ, an envelope spectrum can be

obtained. An envelope spectrum can reveal the repetition characteristic defect frequencies

caused by bearing faults even in the presence of a small random fluctuation. The envelope

spectrum of the noise-added bearing defect signal shown in Figure 2(b) is given in Figure 4. It

is noted that due to a high noise level in the signal (SNR = 0.05, representing an initial bearing

defect), the envelope spectrum is compromised by many artificial frequency components and

produces a subtle bearing defect information. Also due to such interference, the calculated

defect frequency (the modulated frequency) of the outer race fault and its higher harmonics

(1 +BPFO, 2 +BPFO and so on) shown in the envelope spectrum are also slightly lower than

that of the simulated defect frequency (1 +BPFO = 78.18 Hz).

Figure 4. Envelope spectrum of the noise-added bearing defect signal shown in Figure 2(b).
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3.2.4. Higher-order spectra

Higher-order spectra (HOS) (also known as polyspectra) consist of higher-order moment of spec-

tra, which are able to detect nonlinear interactions between frequency components [14]. Higher-

order spectra are defined as the Fourier transform of the corresponding cumulant sequences of a

signal. For instance, the first-order cumulant of a stationary process is themean of the signal:
C1x ¼ EfxðnÞg: (22)

The second- and third-order cumulants of a stationary process are defined as

C2xðkÞ ¼ Efx�ðnÞxðnþ kÞg, (23)

and
C3xðk, lÞ ¼ Efx�ðnÞxðnþ kÞxðnþ lÞg−C2xðkÞC2xðl − mÞ−C2xðlÞC2xðk − mÞ (24)

From Eqs. (23) and (24), it is clear that the power spectrum is, in fact, the FTof the second-order

cumulant of a signal and the third-order spectrum also termed as bispectrum is the FT of the

third-order cumulant. Note that the bispectrum S3xðω1,ω2Þ is a function of two frequencies.

Therefore, it can detect phase coupling between two frequency components which appears as

a third frequency component at the sum or difference of the first two (frequencies) with a

phase that is also the sum or difference of the first two.

Traditionally, power spectrum is used to break down a time waveform signal into a series of

frequency components. However, power spectrum cannot determine whether peaks at har-

monically related positions are phase coupling since power spectrum uses only the magnitude

of Fourier components and the phase information is neglected. Higher-order spectra such as

bispectrum use the phase information of the signal and are capable to detect phase coupling of

frequency components in the spectra. Therefore, a bispectrum can provide additional phase

information than a power spectrum analysis.

The motivation behind the use of higher-order spectrum analysis is summarized as follows.

Firstly, the technique can suppress Gaussian noise in the data processing of unknown spectral

characteristics for fault detection, parameter estimation and classification problems. If Gaussian

noise is embedded in a non-Gaussian signal, a HOS transform can eliminate the noise. On the

other hand, periodic, quasi-periodic signals and self-emitting signals from complex machinery in

practical applications are typical non-Gaussian signals which will be preserved in the transform.

Secondly, a HOS analysis can preserve the phase information. For example, there are situations

in practice in which the interaction between two harmonic components creates a third compo-

nent at their sum and/or difference frequencies. Thirdly, HOS can play a key role in detecting and

characterizing the type of nonlinearity in a system from its output data.

For a better illustration of the signal-processing techniques discussed above in data analysis, a

number of case studies are given in the following section to exemplify the usage of the above

algorithms in bearing fault detection.

3.2.5. Case studies

Case 1: (AR & MED de-noising): In this case study, the AR model described in Section 3.1.1 and

the MEDmethod described in Section 3.1.2 are employed in the analysis to filter the noise-added

bearing defect signal shown in Figure 2(b) prior to an envelope analysis to enhance the bearing
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defect frequency components in the envelope spectrum for a more reliable bearing fault diagno-

sis. The results are presented in Figures 5 and 6. Compared to the result in Figure 4, it is shown

that the two-step de-noising by the AR and MED models has successfully suppressed the

artificial components and enhanced the defect signal representation in the spectrum.

Case 2 (spectrum kurtogram): The signal used in this case study is shown in Figure 7. The signal

is generated by adding 0-dB white noise to the simulated bearing defect signal presented in

Figure 2(a). In the analysis of the signal, the fast kurtogram algorithm [9] described in Sec-

tion 3.1.3 is first employed to determine the bearing resonance band (to obtain the center

Figure 5. The time waveform and the envelope spectrum of the simulated bearing defect signal after preprocessed by an

AR model: (a) the time waveform after filtered by an AR model; (b) envelope spectrum of the signal shown in Figure 5(a).

Figure 6. The time waveform and the envelope spectrum of the simulated bearing defect signal after preprocessed by an

AR model and filtered further by an MED model: (a) the time waveform after de-noising; (b) envelope spectrum of the

signal shown in Figure 6(a).
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frequency and the bandwidth) having the highest band energy (corresponding to the highest

kurtosis value) in the signal. A five-level fast kurtogram based on a filter band and fast Fourier

transform is shown in Figure 8 and the highest band energy is found to occur in the band

encircled by the white ellipse in the figure. The band is found to be centered at 3958.33 Hz (close

to the simulated bearing resonance frequency of 4000 Hz as listed in Table 2) and has the

bandwidth of 416.67 Hz. The band has the highest kurtosis value of 0.1 which occurs at level

4.5 in the decomposition. The next step after the decomposition is to take an envelope analysis

based on the band-filtered optimum frequency band signal obtained from the fast kurtogram

and the result is shown in Figure 9(a) and (b). It is shown that the spectrum kurtosis technique

can detect the characteristic defect frequency from weak-bearing defect signals.

Figure 7. Simulated bearing defect signal with 0-dB white noise added.

Figure 8. Fast kurtogram calculated based on the defect signal shown in Figure 7.
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3.3. Time-frequency analysis

A major limitation of frequency-domain analysis is that it is only useful in dealing with

stationary signals. The presence of transient or nonstationary signals in the data would not be

captured in a traditional frequency-domain analysis. To overcome this limitation, time-fre-

quency analysis techniques are then developed for a better understanding of how spectrum

properties change with time. In time-frequency analysis, waveform signals are analyzed in

both time and frequency domains to capture the progressive change of spectrum components.

The most commonly employed time-frequency analysis techniques are short-time Fourier

transform (STFT), wavelet transform (WT), Wigner-Ville distribution (WVD) and adaptive

signal analysis techniques such as empirical mode decomposition (EMD) technique.

3.3.1. Short-time Fourier transform

Short-time Fourier transform adds a time variable to the traditional Fourier spectrum, thus

allowing it to investigate the time-varying nature of a signal. In a SFFT analysis, a continue

time-domain waveform is multiplied by a sliding narrow time window and a Fourier trans-

form is computed on the windowed signal at each time step of the sliding time window. The

STFT analysis is based on the consideration that if a signal can be considered stationary over

the length of the chosen sliding time window, a Fourier transform can be performed on the

windowed signal segment for each new position of the sliding time window to obtain a

satisfactory time-frequency analysis of a nonstationary signal.

A short-time Fourier transform of a continuous signal xðtÞ can be computed by

STFTxðτ,ωÞ ¼ ∫þ∞−∞ xðτÞw�ðτ−tÞe−jωτdτ, (25)

where wðτ−tÞ is a finite time window function centered at time t. The asterisk sign (*) in the

time window indicates a complex conjugate and the analysis window can be regarded as the

impulse response of a low-pass filter. A spectrogram, which is the squared amplitude of an

Figure 9. Spectrum kurtosis analysis of the bearing defect signal: (a) envelope of the band-filtered signal; (b) Fourier

transform of the envelope signal.
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STFT transform, is often used in the display of the transformation result for signal analysis and

interpretation. A major limitation of STFT is that the analysis has a uniform resolution in both

time and frequency planes implying that a small time window will have a good time resolu-

tion but poor frequency resolution and vice versa. This drawback limits the technique for the

analysis of signals with slow-changing dynamic only. Another time-frequency analysis tech-

nique, wavelet transform, has then been developed to overcome this limitation.

3.3.2. Wavelet transform

Wavelet transform (WT) is a time scale representation of a signal. It is the inner product of a

signal with the translated and scaled family of a mother wavelet function ψ(t). In general, WT

analysis can be categorized into three forms: a continuous wavelet transform (CWT), a discrete

wavelet transform (DWT), and a more general wavelet packet decomposition (WPD).

In CWT, the wavelet transform of a continuous signal xðtÞ is calculated using

W f ðu, sÞ ¼
1
ffiffi

s
p ∫ xðtÞψ� t − u

s

� �

dt: (26)

where s is the scale parameter and u is the time translation. If one considers the wavelet

function ψ(t) as a bandpass impulse response, then the wavelet transform is simply a bandpass

analysis. Care should be taken to ensure that the decomposed signal can be perfectly

reconstructed from its wavelet representation when using a wavelet transform. Thus, a WT

has to meet the criterion which is also known as the admissibility condition.

A CWT is mainly used in data analysis of scientific research. In practical applications, the

discrete version, a discrete wavelet transform (DWT), is more popular due to the small com-

putation cost and excellent signal compaction properties. A DWT decomposes a signal into

different frequency bands by passing it through a series of filters. In each step of decomposi-

tion, a signal is passed through a pair of low- and high-pass filters simultaneously accompa-

nying by down sampling. A more general form of wavelet analysis is the so-called wavelet

packet decomposition (WPD). In WPD, a signal is split into two parts, one contains a vector of

approximation coefficients and the other contains a vector of detail coefficients in each stage of

decomposition. Both the details and the approximations can be split further in the next level of

decomposition which offer a great range of possibilities to decode a signal than ordinary

wavelet analysis. Wavelet transform has been widely employed in signal processing for condi-

tion monitoring and fault diagnosis of rotating machine [15].

3.3.3. Wigner-Ville distribution

Another popular time-frequency analysis technique is Wigner-Ville distribution (WVD). WVD

is the core distribution for the quadratic class of quadratic time-frequency distributions. It

yields an ideal resolution for mono-component, linearly frequency-modulated signals, but

produces undesired cross-terms for multicomponent and nonlinearly frequency-modulated

signals. Wigner-Ville distribution can be viewed as a particular case of the Cohen class
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distributions which yields a time-frequency energy density computed by correlating the signal

with a time and frequency translation of itself.

The WVD of a signal xðtÞ is defined by

Wxðt,ωÞ ¼
1

2π
∫
þ∞

−∞

x tþ
τ

2

� 	

∙x� t−
τ

2

� 	

∙e−jωτdτ, (27)

where x* denotes the conjugate of x. Thus, the Wigner-Ville integral is in fact a Fourier

transform of the inner product of a signal and its conjugate with a time delay variable τ. The

bilinear nature of this procedure therefore avoids the loss of time-frequency resolution in the

transform such as the resolution problem encountered when performing the finite sliding time

windowing in STFT.

Compared with other distributions, the WVD has the desirable property of fulfilling the

marginal condition, thus the total signal energy can be calculated in time or in frequency using

the Plancherel formula:

jjx2jj ¼ ∫þ∞−∞ jxðtÞj2dt ¼
1

2π
∫þ∞−∞ jXðωÞj2dω (28)

The values jjxðtÞjj2 and jjXðωÞjj2 can be interpreted as the energy densities in time and

frequency domain, respectively. This enables a direct computation of the energy present at a

given time-frequency box from the WVD output.

Another important feature of WVD is that its first conditional moment for a given time tc
equals the instantaneous frequency:

dϕ

dt
¼ 〈ω〉tc ¼

1

jsðtcÞj
2
∫

þ∞

−∞

ωWðtc,ωÞdω: (29)

Therefore, it can be computed as the average of all frequencies ω present in the time-frequency

plane at a time tc.

In discrete form, the WVD is defined as

WVDðn, kÞ ¼
X

N−1

p¼−N

R½n, q�∙e−j2πkq=N , (30)

where R[n, q] is the instantaneous correlation given by

R½n, q� ¼ x nþ
q

2

h i

∙x� n−
q

2

h i

, (31)

in which n is the number of samples of the analytical or interpolated form of the discrete signal

x[n] and q is an odd integer.
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Since the instantaneous correlation is centered on a value, the delay q is distributed between

the delayed sample x½n − q=2� and the corresponding advanced sample, ½nþ q=2� . It is thus

necessary to calculate the value of x½n� at the two half integer positions using an interpolation.

In addition, positions at the extremes of x½n� are padded with zeros in order to compute the

Fourier transform. A major drawback of WVD analysis is that it can induce artifacts and

negative values which need to be properly compensated in the signal analysis [16].

3.3.4. Adaptive signal decomposition

Empirical mode decomposition (EMD) is an adaptive time-frequency analysis technique orig-

inally proposed by Huang [17] in 1998. It is based on the local characteristic time scales of a

signal and can decompose the signal into a set of complete and almost orthogonal components

termed as intrinsic mode functions (IMF). Lei et al. [18] provided a review on the successful

application examples of EMD technique in fault diagnosis of rotating machines.

In EMD analysis, the decomposed signal can be represented by

xðtÞ ¼
XN

i¼1

CiðtÞ þ rNðtÞ, (32)

where CiðtÞ represents the ith IMF component and rNðtÞ is the residual after the EMD decom-

position.

The IMFs represent the natural oscillatory modes imbedded in the signal and can serve as the

basis functions, which are determined by the signal itself, rather than predetermined kernels.

Thus, the decomposition is a self-adaptive signal process suitable for nonlinear and nonstationary

data analysis.

Although the EMD technique has been successfully employed in the analysis of nonlinear and

nonstationary signals in various applications, the algorithm itself also has a number of weak-

nesses, for instance, a lack of a solid theoretical foundation, end effects, a sifting stop criterion

and extremum interpolation. To overcome some of these deficiencies, an improved EMD

algorithm or a so-called ensemble empirical mode decomposition (EEMD) technique has been

developed [19]. EEMD is a noise-assisted data analysis technique which imposes a white

Gaussian noise into a signal and then decomposes the mixed signal by using the EMD algo-

rithm. A major advantage of the EEMD technique is that no missing scales will be presented in

the decomposition and the IMF components in different scales of the signal are automatically

projected into proper reference scales established by the white noise in the background [20].

3.3.5. Case studies

Case 3 (EMD de-noising): In this analysis, the noise-added signal shown in Figure 7 is adap-

tively decomposed into 14 IMF components and a residual component using the EMD tech-

nique described in the previous section. The decomposition result is shown in Figure 10. The

correlation coefficient of each IMF component with the original signal can be calculated using
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ρxy ¼
n
X

xiyj, i−
X

xi
X

yj, i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
X

x2i −
�

X

xi

	2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
X

y2j, i−
�

X

yj, i

	2
r , (33)

where xi ði ¼ 1, 2,…, nÞ is the original data, yj, i ði ¼ 1, 2,…, nÞ is the data of one of the jth IMF

components and n is the data record length. The calculated correlation coefficients for the 14

IMF components and the residual are listed in Table 3.

It is shown in the figure that the first IMF component (IMF1) has the highest correlation

coefficient with the original signal implying that it is most closely related to the defect signal.

Therefore, an envelope analysis is undertaken on the IMF1 component in the next step of

analysis. The result is shown in Figure 11 where the bearing defect frequency and its second-

order harmonic can be clearly discriminated from the envelope spectrum.

Figure 10. The IMF components and residual of the bearing defect signal from the EMD decomposition.

Component Correlation coefficient Component Correlation coefficient Component Correlation coefficient

IMF1 0.7084 IMF6 0.1348 IMF11 0.0152

IMF2 0.4767 IMF7 0.0913 IMF12 0.0152

IMF3 0.3220 IMF8 0.0535 IMF13 0.0169

IMF4 0.2353 IMF9 0.0485 IMF14 0.0087

IMF5 0.1747 IMF10 0.0340 RES −0.0048

Table 3. The correlation coefficients of the IMF components and the residual.
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Case 4 (Signal de-noising using SVD decomposition): The singular-value decomposition

described in Section 3.1.4 can be employed to filter out the noise from bearing condition-

monitoring signals to enhance the impulses produced by a bearing defect. In this approach,

the one-dimension time waveform of the bearing condition-monitoring signal x ¼ ðx1, x2,

…, xnÞ (as shown in Figure 12(a)) is rearranged by an incrementing process to form a Hankel

matrix Aðp, gÞ which is then decomposed into three matrices using Eq. (9) in Section 3.1.4 to

obtain the singular values σi, i ¼ 1, 2,…L, whose values are shown in Figure 13(a).

Figure 11. The envelope spectrum of the first IMF component of the bearing defect signal.

Figure 12. Noise-added bearing defect signal and its envelope spectrum: (a) time waveform (note: the sampling fre-

quency in this simulation is reduced to 5 kHz to avoid the requirement of large computer memory in SVD decomposition;

(b) envelope spectrum.
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The next step is to calculate the difference between the subsequent singular values

bi ¼ σi−σiþ1, ði ¼ 1, 2,⋯, L−1Þ to form a series vector B ¼ ðb1, b2,…, bL−1Þ which reflects the

variation of the two neighboring singular values. Vector B is plotted in Figure 13(b) for

illustration. When the difference between two neighboring singular values is large, they will

form a larger peak in the difference vector B (see Figure 13(b)) indicating that there is a

small correlation between the defect and noise signals at the corresponding singular values.

Keeping the singular values prior to as well as the largest difference peak and letting the

singular values after this peak to zero and then substituting the modified singular-value

vector to Eq. (9) to obtain a new Hankel matrix (note, as the first difference peak happens to

be the largest peak in our case, the singular values associated with the sequential three

peaks are also used in the modified singular value vector). We can then reverse the process

of the first step to obtain the de-noised bearing defect signal as shown in Figure 14(a). The

envelope spectrum of the de-noised signal (Figure 14(a)) is shown in Figure 14(b). It is

shown that the SVD de-noise can yield a much clean spectrum mainly containing the

bearing defect frequency component and its higher harmonics.

3.4. Statistical-based bearing fault diagnosis

3.4.1. Statistical features in the time domain

Some useful statistical features obtained directly from a time waveform signal can be used

to evaluate the health condition of a rolling element bearing. Such features can be grouped

into two categories: (a) dimensional features and (b) nondimensional features. The group of

dimensional statistical features includes peak value, root-mean-square (RMS) value, abso-

lute mean value and variance. This feature group is closely related to bearing fault severity,

for instance, their values increase as the bearing fault severity increases. Though, care needs

to be taken as their values are also influenced by the working conditions such as load or

rotate speed of a machine.

Figure 13. (a) Singular values and (b) the series of the difference between two sequential singular values.
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For a smooth and ergodic continuous time-domain signal xðtÞ, its peak value can be calculated as

xp ¼ Max½jxðtÞj�: (34)

Its RMS value which reflects the power level of the signal is calculated by

xrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∫þ∞−∞ xðtÞ2pðxÞdx

q

, (35)

where pðxÞ is the probability density function of the signal xðtÞ, which represents the probabil-

ity level that the signal xðtÞ fall into a certain interval.

Alternatively, an approximate formula can be used to calculate the RMS value as

xrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T
∫T0 x

2ðtÞdt

r

: (36)

The absolute mean value is defined as

xav ¼ ∫þ∞−∞ jxjpðxÞdx: (37)

Or it can be calculated using the approximate formula:

xav ¼
1

T
∫þ∞−∞ jxðtÞjdt: (38)

Variance is used to depict the fluctuation of a signal that deviated from the center, which can

be viewed as the dynamic feature of a signal. The variance of a signal xðtÞ is

Figure 14. (a) The de-noised bearing defect signal after SVD decomposition; (b) the envelope spectrum.
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Dx ¼ σ
2
x ¼ ∫þ∞−∞ ðx−μxÞ

2pðxÞdx, (39)

where μx is the mean value and σx is the standard deviation of the signal.

Variance can also be calculated approximately using the following formula:

Dx ¼ σ
2
x ¼

1

T
∫T0

�

xðtÞ−μx

	2

dt: (40)

Table 4 lists the mathematical formula for calculating the same features for a corresponding

discrete time waveform, fxðnÞjn ¼ 1, 2,⋯,Ng.

The group of nondimensional statistical features includes crest factor, shape factor, impulsion

factor, clearance factor, skewness, and kurtosis factors which are the ratio of two-dimensional

statistical features. This type of features is insensitive to the change amplitude or frequency in a

signal and thus is not influenced by the working condition of a machine and can accurately

reflect a fault condition of a bearing. The formulas for these features are listed in Table 5:

Statistical features Formula

RMS

μx ¼
1
N

X

N

i¼1

xi

Mean

xrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

X

N

i¼1

x2i

v

u

u

u

t

Absolute mean

xav ¼ 1
N

X

N

i¼1

jxij

Variance

Dx ¼ σ2x ¼
1

N−1

X

N

i¼1

ðxi−xavÞ
2

Table 4. The dimensional statistical features of a discrete time series.

Statistical features Formula

Crest factor C ¼
xp
xrms

Shape factor S ¼ xrms

xav

Impulsion factor I ¼
xp
xav

Clearance factor Cl ¼
xp
xr

Skewness

Sk ¼
∫
þ∞

−∞

�

xðtÞ−μx

	3

pðxÞdx

σ3x
ðcontinuousÞ Sk ¼

XN

i¼1

ðxi−xÞ3

ðN−1ÞS3
ðdiscreteÞ

Kurtosis

K ¼
∫
þ∞

−∞

�

xðtÞ−μx

	4

pðxÞdx

σ4x
ðcontinuousÞ K ¼

XN

i¼1

ðxi−xÞ4

ðN−1ÞS4
ðdiscreteÞ

Table 5. The nondimensional features of a time waveform.
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In Table 5, xr is the root amplitude of a continuous time waveform, which is given by

xr ¼
�

∫þ∞−∞ jxðtÞj1=2pðxÞdx
	2

: (41)

Its discrete form is given by

xr ¼
1

N

X

N

i¼1

ffiffiffiffiffiffiffi

jxij
p

 !2

: (42)

Shape factor and impulsion factor are often used to examine whether there exists pulse shocks

in a signal. Clearance factor is sometimes used to examine the wear condition of a machine.

Yet, the most frequently employed nondimensional features in data analysis are the skewness

and kurtosis factors. The skewness is the third statistic moment that measures the degree of

asymmetric distribution of a time waveform. The kurtosis is the fourth statistic moment that

measures the “Peakness” of the data distribution.

3.4.2. Statistical features in the frequency domain

The power spectrum depicts the power amplitude level of the frequency components in a

signal. If the power amplitude levels for some of the frequency components change, the

weight-averaged center frequency of a power spectrum will also change. For example, if

the number of frequency components with dominant amplitude in a spectrum increases, the

energy distribution will be more dispersed. On the contrary, the energy distribution will be

concentrated more around the dominant frequency components if there are only a few of such

components in the spectrum. Hence, the fluctuation of a signal in the frequency domain can

reflect the change of machine condition by observing the change in the weight-averaged center

frequency of power spectrum or the disperse degree of power amplitude level distribution.

The typical statistical featured used to depict the weight-averaged center of a power spectrum

are “Frequency center” and “Mean-square frequency,” which are defined as follows:

Frequency center : FC ¼
∫þ∞−∞ f Sð f Þdf

∫þ∞0 Sð f Þdf
, (43)

and

Mean‐square frequency : MSF ¼
∫þ∞0 f 2Sð f Þdf

∫þ∞0 Sð f Þdf
, (44)

where Sð f Þ represents the power spectrum of a continuous waveform xðtÞ.

The statistical feature used to depict the disperse degree of energy distribution in the frequency

domain is the “Variance of frequency,” which is defined as
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Variance of frequency : VF ¼
∫þ∞0 ð f −FCÞ2Sðf Þdf

∫þ∞0 Sðf Þdf
¼ MSF−FC2

: (45)

Accordingly, for a discrete time series fxðnÞjn ¼ 1, 2,⋯,Ng, the three frequency-domain statis-

tical features are given by

FC ¼
1

2πΔ

∫π0ωSðωÞdω

∫π0SðωÞdω
, (46)

MSF ¼
1

4π2Δ
2

∫π0ω
2SðωÞdω

∫π0SðωÞdω
, (47)

and

VF ¼
1

4π2Δ
2

∫π0 ðω−2πΔFCÞ
2SðωÞdω

∫π0SðωÞdω
¼ MSF−FC2, (48)

where ∆ is the sampling frequency, SðωÞ is the power spectrum of a discrete time series xðnÞ,

which can be obtained using the following formula:

SðωÞ ¼ XðωÞXðωÞ, (49)

and

XðωÞ ¼
XN−1

n¼1

xðnÞe−jπω, (50)

where ω is the angular frequency.

3.4.3. Data complexity index

The complexity of a signal can be described by two measures: entropy and Lempel-Ziv

complexity.

Entropy is a measure of randomness, suggested by Shannon in 1948 [21]. Entropy is used to

depict the randomness (or “uncertainty”) existed in a signal or the amount of information

carried by the signal.

For a discrete random variable x with probability density function fxiji ¼ 1, 2,⋯,Ng, the

Shannon entropy is given by

HðxiÞ ¼ −
Xn

i¼1

pðiÞlogbpðiÞ, (51)

where pðiÞ is the probability of the ith event of the random variable x, b is the base of the

logarithm which takes the common logarithm base values of either 2, e, or 10 depending on the
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application. For events with a probability around 0 or 1, the term pðiÞlogbpðiÞ converges to zero

and the entropy is zero. For random signals with uniform probability density function such as

pure noise, the entropy is maximum.

The entropy-based techniques have been widely used in bearing fault diagnosis in the last

decade. It has been shown that the entropy value is closely related to the working condition

of a machine and its value decreases monotonously with aggravation of faults or conditions

[22]. Entropy is often combined with other techniques to capture the detail changes of the

nonlinearity and nonstationary properties of a signal in machine fault diagnosis [23, 24].

Typical entropies used in machine fault diagnosis are approximate entropy, sample entropy,

fuzzy entropy and permutation entropy. Yet, some of these features are still not ideal and

problematic in CM applications. For example, approximate entropy is heavily dependent on

the data record length which could yield lower estimation value. Sample entropy uses

Heaviside step function which is mutational and discontinue at the boundary. Fuzzy entropy

is calculated based on the membership function which is difficult to determine accurately.

Permutation entropy requires the reconstruction of phase space though the embedding

dimension and time lag of the reconstructed matrix need to be selected manually which has

so far limits its application.

Ziv and Lempel [25] presented a specific complexity algorithm termed as Lempel-Ziv com-

plexity (LZC) to calculate the complexity of a finite length time series. LZC can reflect the rate

for generating the new condition pattern feature as the nonlinearity of a time series grows [26].

Its value represents the degree of random variation of a time series. In their algorithm, the

complexity values of a time series is evaluated based on a ‘‘coarse-graining’’ operation by

which the data sequence is transformed into a pattern of only a few symbols, for example,

0 and 1 and involves data sequence comparison and number counting in one dimension only.

A flow chart of the LZC algorithm is shown in Figure 15 and the process is described below:

1. Coarse-grain process to a finite binary sequence. A discrete time series A ¼ fa1, a2,⋯, ang

is converted into a binary sequence SN ¼ {s1, s2,⋯, sn} in the initiation and preprocessing

phase.

2. Copy and Insert. A binary sequence up to srð1 < r < NÞ of complexity cN can be

reconstructed by simply copying and inserting some of the existing vocabulary of

SQvr ¼ {s1, s2,⋯, sv} ðv < rÞ. To check the rest string SN−r ¼ {srþ1,⋯, sN} can be

reproduced by the same approach, the process is executed by the following steps:

Step 1: Take Qr ¼ {sr} and check whether this string belongs to the vocabulary of SQvr. If

so, string Qr ¼ {sr} is a simple repetition of an existing substring of SQvr (i.e., a

simple “copy” of the existing vocabulary can restore it) and the complexity

remains unchanged or cNðrÞ ¼ cNðr−1Þ.

Step2: Read the next string and take Qrþ1 ¼ {sr, srþ1}. Check if Qrþ1 ¼ {sr, srþ1} belongs to

SQvrþ1.

Step 3: If string Qrþ1 does not belongs to SQvrþ1, increase the complexity by one, i.e.,

cNðrþ 1Þ ¼ cNðrÞ þ 1, nullify Qrþ1 ¼ {}, read the next string and take Qrþ3 ¼ {srþ3}.
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Step 4: Repeat the above process until SN ¼ {s1, s2,⋯, sn} is covered. The resulting cNðnÞ is

the complexity of a given string.

3. Normalization of the complexity value. The complexity obtained above equals the num-

ber of nullification of Q. It indicates that the complexity is affected by the length of the

string, or the number of data sample N. To find a robust complexity measure, Lempel and

Ziv [27] suggested a normalized measure cLZ ¼ cNðnÞ
bNðnÞ

, which is termed as LZC after their

names and defined by

0 ≤ cLZ ¼
cNðnÞ

bNðnÞ
≤ 1 (52)

where bNðnÞ ¼ lim
n!∞

cNðnÞ≈
n

logkn
.

It is shown in Figure 15 that the coarse-grained process of a finite time sequence serves as the

basis for the LZC algorithm. Commonly employed technique in coarse-grained process is a

single-scale process which converts a discrete time series A ¼ fa1, a2,⋯, ang into a symbolic

binary sequence SN ¼ {s1, s2,⋯, sn} using the following formula:

si ¼
1, a i ≥ a

0, a i < a

�

(53)

where a ¼ ða1 þ a2 þ⋯þ anÞ=n is the mean value of the discrete time series which is used as a

threshold in the coarse-graining preprocess.

In the single-scale coarse-grain process, all segments of a discrete time series larger than or

equal to the mean value are set to 1 while all segments smaller than the mean value are set

to 0. The process neglects the fluctuation between the data intervals and loses many

detailed information of the data series during the process. In order to capture the details

contained in a discrete time series, the division interval should be reduced and a

multidivision scale should be adopted so that the variation in the data can be reflected in

the binary sequence at a multiscale process. The preprocess of a revised multiscale coarse

grain is outlined below:

1. Divide the discrete time series into various scales. A two-scale division process is used

here as an example. In this process, a discrete time series is divided into two regions, with

the mean value of each region as the boundary. The same approach can be applied to a

multiscale division where a discrete time series can be divided into several regions.

2. When the first number in the discrete time series is larger than the mean value of the entire

discrete time series, this point is set to 1 or 0 vice versa. Starting from the second data

point of the discrete time series, the binary value is determined by comparing its value

with the value of the previous point in the discrete time series. If the two points are in the

same division interval, the binary value of the latter point will be the same as the previous

one. When the value of the latter point increases to another division interval, the point will
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be assigned to the binary value of 1. When the value of the latter point decreases into

another division interval, the point will be assigned to the binary value of 0.

A data sample given by Figure 16 is used here as an example to illustrate the difference between

the single-scale and multiscale coarse-grain process. For single-scale coarse-grain process, the

binary sequence of the data sample is SN ¼ ð1;1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0Þwhich does not reflect the

fluctuation between the data interval of the time series. When a two-scale coarse-grain process is

employed to process the same data, the binary sequence becomes SN=(1,1,0,1,0,1,0,1,0,1,0,1).

Therefore, a multiscale coarse-grain process can better capture the detailed fluctuation in a

discrete time series.

Figure 15. Flow chart of the LZC algorithm.
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3.4.4. Manifold learning

Classical dimensionality reduction techniques, such as multidimensional scaling (MDS)

and independent component analysis (ICA), are only applicable to linearly structured data

sets but not suitable for high-dimensional, nonlinear data sets such as bearing CM data. To

overcome this problem, a nonlinear dimensionality reduction technique, manifold learn-

ing, has recently developed for machine fault diagnosis [28]. Manifold learning technique

projects the original high-dimensional data onto a lower-dimension feature space while

preserving the local neighborhood structure to detect the intrinsic structure of nonlinear

high-dimensional data. Manifold learning can be realized through several algorithms

including locally linear embedding (LLE), isometric feature mapping (IsoMap), local tan-

gent space alignment (LTSA) and local preserving projection (LPP).

The application of manifold learning in mechanical fault diagnosis can be in twofolds. Firstly,

fault features with a large dimension can have many redundant components, which can

increase the complexity and operation time of a fault diagnosis process. Manifold learning

can be used to eliminate the redundant components and extract the nonlinear features for fault

classification in this case. Secondly, manifold learning can discard the noise components and

extract the intrinsic manifold features related to nonlinear dynamic of a CM signal; therefore, it

can also be used as a de-noise technique. It should be noted that manifold learning only

operates on a matrix, so a preprocessing such as a reconstruction of phase space converting

an original one-dimensional signal into a two-dimensional data is required. For a detailed

information of the manifold learning algorithm and its application in fault diagnosis, inter-

ested readers are referred to [28, 29].

Figure 16. An example of a discrete time series.
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3.5. Bearing fault diagnosis based on artificial intelligent

3.5.1. Shallow architecture machine learning

The most commonly employed machine-learning techniques in fault diagnosis of rotating

machines are hidden Markov models (HMMs), support vector machines (SVMs) and artificial

neural networks (ANNs), which exploit shallow architectures either contain a single hidden

layer or without a hidden layer. Such shallow architecture-based models have achieved great

success both in theory and in practical applications. Though, shortcomings of these algorithms

such as poor universality, lacking of theory basis in parameter selection, easier to fall into a

local optimum value have limited the application of the algorithms in machine fault diagnosis.

3.5.2. Deep neural network

A consensus criterion for an effective bearing fault diagnosis technique is that it should not only

be able to identify various bearing fault conditions but also be able to discriminate different fault

severities in each fault condition [30]. This leads to a stricter requirement on identification pro-

cedures where a classifier must have a greater capability in discriminating different fault classes.

When fault data contain more than one level of fault severities in each fault condition, the

accuracy of fault diagnostic result using shallow architecture classifiers described in the previous

section will reduce dramatically. Hinton and Salakhutdinov [31] proposed a deep learning

technique to overcome the deficiencies of single-layer architecture classifiers for a better pattern

recognition capability. The concept is further extended to become a so-called deep belief net-

works (DBNs) [32] which relieves the training difficulties of deep network structures by adopting

a layer-by-layer unsupervised forward pretraining learning and then back fine-tuning mecha-

nism. A description of the training process of a DBN is given in Figure 17.

Bengio et al. [33] proposed a deep stack auto-encoder (SAE) network by using a network

structure similar to DBNs which is stacked with a number of auto-encoder networks. Further-

more, Le Cun et al. [34] proposed a convolutional neural network (CNN), a multilayer network

where each layer is composed of several two-dimensional planes, to reduce the number of

parameters in the learning process using a unique weight-sharing mechanism. The above cited

deep-learning-based neural network algorithms have been widely employed in machine fault

diagnosis nowadays [35, 36].

Figure 17. A description of the training process of a DBN.
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3.5.3. A case study on bearing fault diagnosis

Case 5: In this case study, a combination of a four-level wavelet packet decomposition

(WVD), a locality preserving projection (LPP), a particle swarm optimization (PSO) and

support vector machine (SVM) algorithms are employed for an intelligent bearing fault

diagnosis and recognition. Bearing condition-monitoring data on various operation condi-

tions such as healthy bearing, outer race fault, inner race fault and ball fault acquired from a

bearing fault simulation test-rig as shown in Figure 18 are used in this analysis.

Three types of bearing defects are simulated in this experiment: an outer race fault, an inner

race fault and a ball fault as shown in Figure 19. The measured vibration signals from an

accelerometer mounted on the test bearing house for the four bearing operation conditions (the

three simulated faults and a healthy bearing) are shown in Figure 20. Hundred data sets are

acquired in the experiment which are divided into two groups: one contains 70 sets of data and

is used as the training data set and the other contains 30 sets of data which is used as the test

data set.

Figure 18. A graphical illustration of the bearing fault simulation test rig.

Figure 19. Simulated bearing faults: (a) outer race fault; (b) inner race fault; and (c) ball fault.
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Five major steps are taken in the analysis of the bearing condition-monitoring data:

1. Each data is decomposed by a four-level wavelet packet decomposition leading to 16

components of different frequency contents (mutual orthogonal subspaces). The wave-

let components of the condition-monitoring data for the outer race fault are shown in

Figure 21 for illustration.

2. The energy value for each wavelet component is calculated and is used as the fault feature

since the energy of the component can discriminate different classes and contains the fault

information and its fluctuation in the particular component corresponding to the occur-

rence of the fault. A fault feature vector containing 16 energy features can be obtained for

Figure 20. The measured vibration signals for the four bearing operation conditions. Note, sampling frequency, 8192,

data length, 8192.

Figure 21. The wavelet components of the outer race bearing defect signal.
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each data. The energy distribution of the 16 wavelet components for the four bearing

operation conditions is shown in Figure 22.

3. For the 100 data sets (of four bearing operation conditions), the process in Step (2) will

generate a 400· 16 feature set. The dimension of the large feature set can cause a problem

for the following algorithm leading to misclassification of the bearing fault classes in the

diagnosis step using SVM algorithm. The locality preserving projection (LPP) [37], a linear

dimensionality reduction algorithm, which can effectively reduce the dimension while

preserving the neighborhood structure of a data set, is utilized to reduce the feature set

dimension to 400 · 3. The three-dimensional feature distribution for the four bearing

operation conditions after the dimensional reduction by LPP is shown in Figure 23.

Figure 22. The energy values of the 16 wavelet components for the four bearing operation conditions.

Figure 23. The optimization result of the PSO algorithm.
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4. Particle swarm optimization (PSO) is adopted in this step to find the optimal kernel

parameters and penalty factor used in SVM algorithm from the training data set to

enhance the performance of the SVM algorithm. The optimization result of the PSO is

shown in Figure 23 where the fitness function of the optimization is above 99% (close

to zero misclassification rate) throughout the time evolution progress.

5. Training and prediction (recognition) of the bearing experimental data using the SVM

algorithm. The prediction result by the SVM is shown in Figure 24.

4. Conclusion

This chapter presented a comprehensive, step-by-step approach on conditionmonitoring of roller

element bearings aiming to provide an introductory and referencing material for engineers and

researchers new to the field. It summarized themost frequently employed data acquisition, signal

analysis, feature and parameter extraction and fault diagnosis techniques in the current practice.

Pros and cons of each technique are briefly discussed in the text. The formulation and discussion

are also supported by ample tables, graphs and figures throughout the text for a better illustration

and understanding of how to utilize the techniques presented in the chapter for real-life problems.
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Figure 24. Prediction result of the SVM algorithm. Note, Levels 1–4 correspond to healthy bearing, inner race fault, ball

fault and outer race fault, respectively.
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