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Abstract

In this chapter, the connection between general linear interpolation and initial, bound-
ary and multipoint value problems is explained. First, a result of a theoretical nature is
given, which highlights the relationship between the interpolation problem and the
Fredholm integral equation for high-order differential problems. After observing that
the given problem is equivalent to a Fredholm integral equation, this relation is used in
order to determine a general procedure for the numerical solution of high-order differ-
ential problems by means of appropriate collocation methods based on the integration
of the Fredholm integral equation. The classical analysis of the class of the obtained
methods is carried out. Some particular cases are illustrated. Numerical examples are
given in order to illustrate the efficiency of the method.

Keywords: boundary value problem, initial value problem, collocation methods, inter-
polation, Birkhoff, Lagrange, Peano, Fredholm

1. Introduction

The relationship between interpolation and differential equations theories has already been
considered. In Ref. ([1], p. 72), Davis observed that the Peano kernel in the interpolation
problem

y@a)=a, yb)=p,  ab,aBeR, (1)

is the Green’s function of the differential problem
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¢"(x) = f(x)
b(a) = 6(b) =0

where ¢(x) = y(x)-P1[y](x), being P1[y|(x) the unique interpolatory polynomial for Eq. (1).

He observed that “these remarks indicate the close relationship between Peano kernels and Green’s
functions, and hence between interpolation theory and the theory of linear differential equations.
Unfortunately, we shall not be able to pursue this relationship” [1].

Later, Agarwal ([2], p. 2), Agarwal and Wong ([3], pp. 21, 151, 186) considered some separate
boundary value problems and the related Fredholm integral equation, using only polynomial
interpolation, without taking into account the related Peano kernel. They used Fredholm
integral equation in order to obtain existence and uniqueness results for the solution of the
considered boundary value problems.

Linear interpolation has an important role also in the numerical solution of differential prob-
lems. For example, finite difference methods (see, for instance, [4-6] and references therein)
approximate the solution y(x) of a boundary value problem by a sequence of overlapping
polynomials which interpolate y(x) in a set of grid points. This is obtained by replacing the
differential equation with finite difference equations on a mesh of points that covers the range
of integration. The resultant algebraic system of equations is often solved with iterative pro-
cesses, such as relaxation methods.

Many authors (see [7-10] and references therein) used linear interpolation with spline func-
tions for the numerical solution of boundary value problems.

Here, we take into account a more general nonlinear initial/boundary/multipoint value prob-
lems for high-order differential equations

M (x) = f(x, : [=[a,b], r>1
{y @ =f(vy@).  xel=lab] r2 o

Lily|(x) =w;, i=0,...,r-1, xel

where y(x) = (y(x),y (x),...,y9(x)), 0 < g < r,y € ©'(I), and L; are r linearly independent
functionals on (). Moreover, we suppose that the function f : [2,b]x R7™" — R is continu-
ous at least in the interior of the domain of interest, and it satisfies a uniform Lipschitz
condition in y, which means that there exists a nonnegative constant A, such that, whenever
(X, Ygs Yqs--sY q) and (x,¥,, Y, ...,yq) are in the domain of f, the following inequality holds

q
V(x’yO’yl’ ---»]/q>_f(x»yoay1’ ""yq)‘ < AZ‘%‘?}J- ©)
k=0

If Lily] = (D(y(a)),i =0,...,r-1, then (2) is an initial value problem (IVP); if L;[y] = CD(y(a),

y(b)),i =0,...,r-1, then (2) is a boundary value problem (BVP); if L;[y] = @(y(ag)) ,i=0,...,
r=1,j = 0,...,m 2 2, then (2) is a multipoint value problem (MVP).
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In this chapter,

- we assume that the conditions for the existence and uniqueness of solution of problem (2) in a

g+1

certain appropriate domain of [a,b] xR7"™ are satisfied and that the solution y(x) is differen-

tiable with continuity up to what is necessary;

- we get the Fredholm integral equation related to problem (2), by polynomial interpolation
and the Peano kernel of the linear interpolation problem L;[y|(x) = w;, i =0,...,7-1. In this
way, we point out the close relationship between Green’s function and Peano kernel;

- then, we construct a class of spectral collocation (pseudospectral) methods which are derived
by a linear interpolation process.

The reason for which we prefer collocation methods is their superior accuracy for problems
whose solutions are sufficiently smooth functions. Recently, Boyd ([11], p. 8) observed that
“When many decimal places of accuracy are needed, the contest between pseudospectral algorithms and
finite difference and finite element methods is not an even battle but a rout: pseudospectral methods win
hands-down.”

2. The Fredholm integral equation for problem (2)

We consider the general differential problem (2), and we prove that it is equivalent to a
Fredholm integral equation.

Proposition 1 [1, p. 35] The linear interpolation problem
Li[P](x) = w;, wi, €R, i=0,...,r-1, PEPry, x€l 4)
with L;, i = 0,...,r-1, linearly independent functionals on (1), has the unique solution

O 1 ¢t .- R
wo
w1 ]
: L[] . G=ILil¥]; 0, - (5)

Wr-1

Proof. Since the L;, i = 0,...,7-1 are linearly independent, the result follows from the general
linear interpolation theory.

Proposition 2 Ifye ~"(I) and Lily|(x) = w;, i =0,...,v-1, x €1, then
b

W) =Pl + [ Kie) y (0 dt, vrel fired (6)

a

with L;[y] = Li[P;4], i = 0,...,r=1, P, [y|(x) = P, (x), and
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K6, 8) = o [ ()P (-0 (), (7

1
(r-1)!
where index x means that K3 (x,t) is considered as a function of x.

Proof. It follows by observing that P,_l[(x)];r](t) = (t)];r, j=0,...,7~1 and from Peano kernel
Theorem [1].

Theorem 1 With the above notations and under the mentioned hypothesis, problem (2) is equivalent to
the Fredholm integral equation

b

x) = Praly)) + | KoCef (1y(0)) . ®

a

Proof. The result follows from the uniqueness of the Peano kernel and from Propositions 1 and 2.
Corollary 1 It results L;i[K}] = 0,i =0,...,7-1.

From Theorem 1, general results on the existence and uniqueness of solution of problem (2) by
standard techniques [2, 3] can be obtained. In the following, we will not linger over them, but
we will outline the close relationship between interpolation and differential equations. Partic-
ularly, we will use linear interpolation in order to determine a class of collocation methods for
the numerical solution of problem (2).

3. A class of Birkhoff-Lagrange collocation methods

Integral Eq. (8) allows to determine a very wide class of numerical methods for Eq. (2), which
we call methods of collocation for integration.

Let {x;}i_; be m distinct points in [a,b] and denoted by I;(t), i =1,...,m, the fundamental
Lagrange polynomials on the nodes x;, that is
W (t) &

(t—xi)a)'m (xl-> ’ where wm(t) B kgl(t—xk). (9)

li(t) =

Theorem 2 If the solution y(x) of Eq. (8) is in """ (I), then

y(x) = Pralyl(x) + > p, i (x)f (xi,Y(xi)) + Trm(y, %), (10)
=1
where
b
prin(@) = J K (e, (6 db, i=1,...,m, (1)

and the remainder term T, ,,(y,x) is given by:
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1 b
Tonl:) = | Km0 (E0) (12)

cJa

being &, a suitable point of the smallest interval containing x and all x;, i =1,...,m.

Proof. From Lagrange interpolation
Yy (0 = Y L)y () + Ru(y.x) (13)

where
— 1
Ru(y,x) = %wm(t)y(ﬂrm)(éx) (14)

is the remainder term. From (2), f(x,y(x)) = Zi i (x)y" (x;) + Ry (y,x). Then, from Theorem
1, inserting Eq. (13) into (8), we obtain Eq. (10).

Theorem 2 suggests to consider the implicitly defined polynomial
Vron) = Pralt 0 D0 (69,050 ). (15)
i=1

For polynomial (15), the following theorem holds.

Theorem 3 (The main Theorem). Polynomial (15), of degree r + m—1, satisfies the relations

Li[yr’m](x) = w;j, iZO,...,T—l, XEI, wieR

ygfzn(x]) :f<xf’yr,m(xj)> j: 1""’m’ (16)

that is, y, ,,(x) is a collocation polynomial for Eq. (2) at nodes xj, j = 1,...,m.

Proof. From (15), Corollary 1 and the linearity of operators L;, we get Li[y, ,](x) = w;, i =0,...,

r-1. By Theorems 1 and 2, we obtain y)(x;) = yﬁr,)n (x;), and from Eq. (11), pfrfm(x) = I;(x).
Hence, relations (16) follow.

Remark 1 (Hermite-Birkhoff-type interpolation). Theorem 3 is equivalent to the general Hermite-
Birkhoff interpolation problem [12]: given w; €R, i = 0,...,7-1, and a; €R, j = 1,...,m, determine, if
there exists, the polynomial Q(x) € .7 4,1 such that

L,‘[Q] = Wi, iZO,...,T—l
Q(x)=a;, j=1,...,m x€L (17)
Remark 2 In the case of IVPs, for each method (15), we can derive the corresponding implicit Runge-
Kutta method. For example, for r = 2, let b = xo + h and x; = xo + ¢;h with ¢; € [0, 1]. With the change
of coordinates x = xo + th, t € [0, 1], we can write
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t pr m _
prim(x) =0, m(xo + th) = hzj J li(s) dsdr, li(S) = II 5 Ck.
v h 0Jo k=1Ci—Ck
k#i

Ci

Putting f(xi,y, ,,(x:)) =y, ,,(x1)=K;, a;j = p,(xi) = hZJ (ci=s)1;(s) ds, we have
0

K; :f (xo + Cih,yo + yroﬂ’l + Zai’jK]’)

j=1

and

yl(t)Eyr,m(xO + th) = yO + y,Oth + hzzpr,i,m(xo + th)Kl

=1

y1(D=y,,,(xo + th) =y b + B> p', ;. (x0 + K.

i=1

(18)

(19)

(20)

Egs. (19) and (20) are the well-known continuous Runge-Kutta method for second-order differential

equations. Particularly, for t =1 we have the implicit Runge-Kutta-Nystrom method.

3.1. A-priori estimation of error

In what follows, we consider the norm

Ifl = maxi[f(k)(m, Vfe ~ ().
k=0

ast<b

Moreover, we define
m b .
— = X _
Qu =3 1pil F) = | Keen, = maxiR, o),
where R,,(y, t) is defined as in (14).
Theorem 4 With the previous notations, if AQ,, < 1, then

ly—y, |l < AL
rnll = 700,

Proof. By deriving Egs. (10) and (15), s times, s = 0,...,q, we get

Y0 = S0 [ (3300 ) of (313,30 | + %jhmx, DR (y. ).
=1

a

It follows that

1)

(22)

(23)

(24)



Relationship between Interpolation and Differential Equations: A Class of Collocation Methods
http://dx.doi.org/10.5772/66995

1y (x)-y5), (x)] sz|p£?3m |Az|y (x:)-y®), (x)| + H |F¥ (x)]
(25)

<Aly-y, "Z\P“m )| + HIF® (x)].

i=1

From this, we obtain inequality (23).

4. Algorithms and implementation

To calculate the approximate solution of problem (2) by polynomial y, , (x) at x €I, we need the
values yﬁszﬂ (xx), k=1,...,m, s =0,...,q. In order to get these values, we propose the following
algorithm:

- Put yk =yt ) (x¢), k=1,...,m, s =0,...,q and consider the following system

m

Y = POy () + > pS) (x)f (xi ), (26)

i=1

k=1,..,ms5=0,...,q wherey, = (yi,y'i, ...,yfq)).

System (26) can be written in the form

Y-AF(Y) =C (27)
where
Ay O 0
a=|? : (28)
- : 0
0 0 Aq m(q+1)xm(g+1)
with
i) i,
A= : i =p%x), s=0,..q (29)
s 76 6 ij = Prjti ot
1 m,m
mxXm
Y = (?0, "?q);(ﬁl)xl’ ?S — <y§5)’ "'7]/52))’ (30)
F(Y) = (Fp,.... Fu)", Fu= (- f ) fi=fxy), (31)
q
Bo = (PO ](x1), - A ), €= (Boveo By)gginysr: (32)

From Eq. (27), we get

175
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Y = AF(Y) +C, (33)

or, putting G(Y) = AF(Y) + C,

Y = G(Y). (34)
For the existence and uniqueness of solution of system (34), we can prove, with standard
technique, the following theorem.

Theorem 5 If T = A||All.. <1, system (34) has a unique solution which can be calculated by an
iterative method

Yo = G((Vu))s 120 (35)

with a fixed (Y), € R™ Y and G(Y,,) = AF(Yy,) + C.

Moreover, if Y is the exact solution,

(Y o)y q =Yl < % I (Yo)=(Yon)ollee - (36)

Remark 3 If fis linear, then system (27) is a linear system which can be solved by a more suitable method.
Remark 4 System (27) can be considered as a discrete method for the numerical solution of (2).

Remark 5 Method (15) can generate the polynomial sequence

(yr,m(x)) - Pr—lb/rm +Zpr1m xl’ yr m(xl)) 1)’ (yr,m)O :Pr—l[y](x) (37)

which is equivalent to the discretization of Picard method for differential equations.

4.1. Numerical computation of the entries of matrix A
To calculate the elements ﬁf’s,z of the matrix A in Eq. (27), we have to compute the integrals

pL(x) = d‘i; J K2 (x, H)Li(t) dt (38)

for x = x;. Integrating by parts, it remains to solve the problem of the computation of
Lt Fa(x) = J Foa(dt  k=2,..n (39)

a

Fi(xj) = J

a

b b

li(t)dt, Mik(x]') = J Mi,k—l (t)dt k= 2,...,11 (40)

Xj

Mii(x;) = J

Xj

i,j =1,...m. To this aim, it suffices to compute
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=tk pt 51
J J J ij(i') dt di'] "'dtk_l (41)
c c c
wherec=aorc =", rp(t) =1,

rm,i(t) = (t—xl)---(t—xi_1)(t—xi+1)---(t—xm) i= 1,2,...,17’1 . (42)

For the computation of the integral (41), we use the recursive algorithm introduced in Ref. [13]:

for each i =1,...,m, let us consider the new points z]@

Moreover, let us define géi)u (x) =x—cand fors =1,...,m-1

&0 () = J o J " Jt (t=2") (t=28" ) (1207 dlt dty iy, 43)

Cc C Cc

=x; if j <i, and z]@ =xj1 if j21.

(x=cy
1

We can easily compute gé{},c(x) =5

. For the computation of Eq. (43), the following recur-

rence formula [13] holds

8 o) = (x21) 8 ()78 (0 (44)
Thus, if W, = ﬁ (x;—xx), then
k=1, k#i
852171(,,1(9‘]') kgl(q?—l,k,b(xf)
Fi(xj) = W, Mix(xj) = (-1) W, (45)

Remark 6 An alternative approach for the exact computation of integrals (39) and (40) is to use a
quadrature formula with a suitable degree of precision.

4.2. Outline of the method
Summarizing the proposed method consists of the following steps:

1. determine the interpolation polynomial P, [y](x) satisfying the boundary conditions and
compute the Peano remainder;

2. approximate y'") (x) by Lagrange interpolation on a set of fixed nodal point;
3. compute the elements of matrix A (28) and solve system (26);

4. obtain polynomial (15).

5. Some particular cases

Now we consider some special cases of problem (2), and for each case, we determine P, [y](x)
and K; (x, t). We also show how the proposed class of methods includes the methods presented
in previous works [12-24].
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5.1. Initial value problems

In the case of initial value problems, in Refs. [13, 17, 25], problem
y" (x) = fx,y(x)) (46)

has been considered, while in Ref. [23], the authors introduced the more general equation

v ) =f (50 @)y @), gsel. (47)
In both cases
s (-a)
Praly](x) = ; v (48)
and
K, t) = — T 49
“(x,t) = (r_l)!(x—t)Jr : (49)

If {x;}\_, are the zeros of Chebyshev polynomials of first and second kind, the explicit expres-
sion for polynomials p, ;  (x) can be obtained [13, 17, 25] for some values of r.

Particularly, forr = 1 and r = 2, in the case of zeros of Chebyshev polynomials of first kind, we get

m-1 _1\k1 i
Pl,i,m(x) = %;{ T;;l_(f) —Tl;ciix) +2 (121 cos (Ekn> }

1 2i-1
+— {x +1+ cos (Z— n) (x2—1)}
m 2m

(50)

where T1(x) and Ty 1(x) are the Chebyshev polynomials of the first kind and degree k-1 and
k + 1, respectively, and

n(2i-1) .
1{(x+1)2 ¥-3x-2 [ 08— + x cos t(2i-1)

L Teal®) 12k(-1)F  4(-1)*
(k-1)(k-2) k(K*-1)(k*-4) K*-1

}. (51)

In the case of zeros of Chebyshev polynomials of second kind
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2 P k+Dmi 1 x
. T -1 2
Prim®) =" s kz S g [T @)+ (1] (52)
and
(x) = 1 . T ] (+1)2
Paim(X —m+1smm+1 smm+1x
iy ki [Trp1(x)  Tieq(x) K 3)
. T k(X)L pelX) _1\k
+kz_;ksmm+1{k+l 1 2<x+k2_1>(1)”

In Refs. [13, 25], the authors presented the corresponding implicit Runge-Kutta methods too.

In Ref. [26], Coleman and Booth used also a polynomial interpolant of degree n for y”, but they
started from an identity different to Eq. (8) and derived a collocation method for which the
nodes {x;};"; are the zeros of Chebyshev polynomials of second kind.

5.2. Boundary value problems
5.2.1. Caser = 2n

For n = 1, for the exact solution y(x) of the second-order BVP

y'(0) =fey@).y (1), y(-1) =y y(1) =y, (54)

€ [-1,1], it is known that

+ - L. :
o) =T 20 [ ). () (59)
where
(t+ 12)(x DI
Ki(x,t) = 56
2(31) (x +1)(t-1) (56)
x <t
2
By applying method (15), we get [16]
+ - - ,
Vo) =PI N L f (i) () (57)
i=1

1
withp, ;. (x) J K5 (x, t)[;(t)dt .
-1

If x; = cos i =1,...,m, we obtain explicitly the expression of p, ; , (x) [18]

T
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1 | Gr(x) ' 9 .

, -1

Py im(®) = i m+1 ; m+1+(x )smm+1 (58)
where
_Zx even k
T T,

Gk(x) _ ;-‘rl (ic) _ I;{igx) + kz—% (59)

+ B oddk

The same method has been presented in Ref. [24], where also stability has been studied.
Now assume [a,b] = [0,1] and r > 2. Several types of boundary conditions can be considered.

-Hermite boundary conditions [22]:

y"0)=ay, yW1)=p, h=0,..,n-1 (60)

with &y, B, h = 0,...,n—1 real constants.

In this case, P, is the Hermite polynomial of degree 2n-1

n- 1
Poya[y)(x +y"(1)Hp(x)) (61)
1:0
with
xll_xnnll n+s—1
Ha ) = 2 : ) )
s=0 n-1
-1 +s-1 (62)
(1-x)'"E= (TS5 s
Hp(x) = (i' ) < )(1—x)
: s=0 n-1
The kernel is
n-1 2n-1-1
(-t)
3 (2n—i—1)‘Hﬂ(x) 0<t<x
Kgn (X, t) - l_*l (1_t)2n—1—1 (63)
- . Hp(x) x<t<1
— (2n-i-1)!
-Lidstone boundary conditions [19]:
Y (0) =ay, y(1) =8, h=0,..,n-1 (64)

where ay,,,, h = 0,...,n are real constants.
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In this case, P,; is the Lidstone interpolating polynomial [3] of degree 2n-1

—_

n—

Paaly]() = D [y (0) A1) + y ) (1) Ax(x)] (65)
0

x.
Il

where Ai(x) are the Lidstone polynomials of degree 2k + 1 [3], and the function K3, (x, f) is

n-1 t2n—2k—l

Z m Ak(l_X) t<x
X k= \
K21’l (x’ t) = n—? (1_t)2n_2k_l (66)
—— Mlx x<t.
£ (2n-2k-1)! ()
522 Caser =2n+1
If we consider the following boundary conditions
y(0) =ap, y@V0)=ay, y@ V(1) =8, h=1,..,n (67)

with &g, ay,B,, h = 1,...,n real constants, then P,—; is the complementary Lidstone interpolat-
ing polynomial [27] of degree 21 [3, 24, 27, 28].

Palilx) = 0) + 3 [V (0) (V)01 + (1) (ou0e0)) ], (68)
k=1

where vy (x) are the complementary Lidstone polynomials of degree k [27]. The kernel is

t2n n t2n*2k+1

@ kz_; (2n-2k + 1) (”k(l_x)‘vk(l)) f=x
n (1_t)2n—2k+1

Ko (x,8) = (69)

—kX_; (2n-2k + 1)! (vk(X)—vk(O)) x<t.

In Ref. [19], the proposed method applied to problem (2) with conditions (64) and (67),
respectively, has been examined in detail.

5.2.3. Other special boundary conditions

If r = n-1 and [a,b] = [0, 1], we can consider Bernoulli boundary conditions [21]
y(0) =g y) =6 yP Oy 0) =Py k=102 (70)

with f,, k = 0,...,n—1 real constants. The method has been examined in [14].

5.3. Multipoint boundary value problems

Let us now consider [15] the following conditions in I = [-1,1]

181
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y(k)(—l) =ar, k=0,...,5-1, y(s)(xi) =w; i=1,..,r-s. (71)
In this case
Prall(x) = Z 1) oy = 2wwr,k<x> , (72)
with
p) = [ (ot (73)

and [i(t) are the fundamental Lagrange polynomials on the points x;,j = 1,...,7-s. P,-1(x) is the
unique polynomial of degree <r-1 which satisfies the Birkhoff interpolation problem

PO 1) =ar, k=0,...5-1, PY(x)=awi, i=1...,rs s<r1 (74)

with-1 < x < -+ < x< 1. Hence, the solution of problem (2), with multipoint condi-
tions (71), is

— Palyl(x) +J:Kf(x, Oy (1), (75)

with P,1[y](x) given in Eq. (72) and

Kf(x,t):ﬁ[( ! (r 1)52,9% = (76)

Observe that Eq. (74) is a special type of Birkhoff interpolation problem with incidence matrix
E = (eij) defined by e;; = e;; = 1,j = 0,-+,5-1,i = 2,...,r—s + 1, ¢; = 0 otherwise and r > 1.

In Ref. [23], P,-1[y](x) is presented in a little different form:
s—1 i r=s
1
P,1y](x) = (x j ) o+ Y wiEs(x, k(%)) (77)
i=0 ’ k=1

where E;(x, [k (x)) = Jx J li(t)dt---dt.
-1 )1

S

Let us now consider the following conditions [12, 20]

y(-1) = wo, y(1) = w4 y"'(xi) = w; i=1,...,r2. (78)

The solution to the Birkhoff interpolation problem
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P,1(-1) = wo, Pr1(1) = w1, Pa(x) =wi, i=1..,r2
with -1 < x1 < - < x,00 < 11is [12]
r=2
_ Wr1 T W Wr1—Wo .
with
1
1,400 = | K no)
-1
and
x (t+12)(x—1) i<y
KB =90 e+ 1)1
— x <t
2
Hence, the solution of problem (2) is
1
Vi) = Pralylx) + || Kt o,
with P, [y](x) given in Eq. (80) and
X 1 r-1 (1_t)r_1 (1 =+ X) = r-3
Ki (x,t) = 1)1 (x=1), _f‘(“l)(Y‘Z)ZPr,i,m(x)(xi_t)+
: i=1

6. Numerical examples

http://dx.doi.org/10.5772/66995

(79)

(80)

(81)

(82)

(83)

(84)

In this section, we present some numerical results obtained by applying method (15), which
we call CGN method, to find numerical approximations y, ,(x) to the solution of some test

problems. In order to solve the nonlinear system (19), we use the so-called modified Newton
method [29] (the same Jacobian matrix is used for more than one iteration) and we use
algorithm (44) for the computation of the entries of the matrix, when polynomials p, ; , (x) are

not explicitly known. Since the true solutions of the analyzed problems are known, we con-

sider the error function e, (x) = [y(x)-y, , (x)].

The maximum values of e, (x) over the interval [a, b] have also been calculated by using Matlab,

particularly the built-in solvers

* odel5s, a variable-step, variable-order multistep solver based on the numerical differenti-

ation formulas of orders 1-5;

183



184  Dynamical Systems - Analytical and Computational Techniques

* ode45, a single-step solver, based on an explicit Runge-Kutta (4, 5) formula, the Dormand-
Prince pair

for initial value problems, and the finite difference codes;

*  bvp4c (with an optional mesh of 200 points) that implements the three-stage Lobatto Illa formula;
*  bvp5c that implements the four-stage Lobatto Illa formula.

for boundary value problems.

All solvers have been used with optional parameters RelTol=AbsTol=1e-17.

Moreover, the powerful tool Chebfun [30] has been used.

Example 1 Consider the following linear ninth-order BVP [28]

y9(x) = -9¢* + y(x) x€0,1]
y(0) =15  j=0,...4 (85)
y(1)=—je j=0,..,3

with exact solution y(x) = (1-x)e*

The unique polynomial Pg(x) = Pgly|(x) of degree 8 satisfying the boundary conditions Pg) 0) =1+
forj=0,...,4, and Pg(;j)(l) =—jej=0,..,3is

1 1 1 1 2
Pg(x) = 1-= -3 at 4 3—1 —i?) ¥+
2 3 8 6 (86)
—1321 g1e x® + 3 x7 + 085 21 ) s
24 2
From Eq. (7), we get
( 70t*(x*-4x° + 6x°-4x” + x8) + 561 (—x> + 10x°-20x° + 15x"—4x8)+
281%(x2-20x° + 45x5-36x7 4 10x%) + 8t (=x + 35x°—84x° + 70x7-20x%)+
£8(1-56x° + 140x°-120x7 + 35x%) 0<t<x
K§(x,t) = —x8 4 8tx”7-2812x° + 56£3x° + 70t (—4x° + 6x0-4x” + xB)+ (87)

5612 (10x°-20x° + 15x7—4x8) + 281°(—20x> 4 45x°-36x7 + 10x8)+-
8t7 (35x°-84x° + 70x”-20x8)+
[ #3(-56x> + 140x5-120x7 + 35x%) x<t<1.

Now we calculate the values of the integrals (39) by using Eq. (45), and we solve system (26). Thus, we
obtain the approximate solution (15) to problem (85).

Table 1 shows the numerical results. The absolute errors are compared with those obtained in Ref. [28],
where a modified decomposition method is applied for the solution of problem (85). The second and third
columns of Table 1 show the error, respectively, in the method in Ref. [28] and in the CGN method,
using in both cases polynomials of degree 12. The last column contains the error in the approximation
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by a polynomial of degree 14 using CGN method. As collocation points, equidistant nodes in [0,1] are
chosen. Analogous results are obtained by using Chebyshev nodes of first and second kind, and
Legendre-Gauss-Lobatto points.

The maximum absolute error max{e,,(x)} on [0, 1] has also been calculated by using Matlab (Table 2).

X Method in [28] CGNm =4 CGNm =16
0.1 2.0e-10 1.45e-14 0.00

0.2 2.0e-10 3.93e-13 1.11e-16
0.3 2.0e-10 2.16e-12 9.99¢-15
0.4 2.0e-10 5.70e-12 2.00e-15
0.5 2.0e-10 9.27¢e-12 2.55e-15
0.6 6.0e-10 1.00e-11 2.66e-15
0.7 1.0e-9 7.04e-12 2.44e-15
0.8 2.0e-9 2.70e-12 2.83e-15
0.9 3.4¢-9 2.98e-13 4.91e-15

Table 1. Absolute error e, (x) in MDM and CGN methods for problem (85).

Chebfun bvp4c bvp5c

1.46 1.55e-12 4.44e-16

Table 2. Maximum absolute error in problem (85) using Matlab built-in functions.

x Cheb I Cheb II EqPts
m=4 m=6 m=9

0.1 1.11e-16 0.00 0.00

0.2 9.54¢-15 0.00 0.00

0.3 5.47¢-13 3.33¢e-16 0.00

0.4 9.45¢-12 1.11e-16 4.44e-16

0.5 8.50e-11 4.22¢-15 1.11e-16

0.6 5.05e-10 3.47e-14 2.11e-15

0.7 2.25¢-9 2.08¢-13 1.55e-15

0.8 8.08¢-9 9.68¢-13 1.44e-14

0.9 2.74¢-8 3.72¢-12 9.18¢-15

1.0 6.64¢-8 1.22¢-11 1.37e-14

Table 3. Problem (88)—example 2.
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Example 2 Consider the fifth-order initial value problem [13]

y© (32x +120x)y = 160%™ x€[0,1]

y(0) = y’(O) =0, y"(0)=-2 (88)
y'(0)=0, y¥(0)=12

with solution y(x) = ™

Table 3 shows the absolute error in some points of the interval [0,1] for CGN method in the case,
respectively, of Chebyshev nodes of first kind (Cheb 1), of second kind (Cheb II) and in the case of
equidistant nodes (EqPts).

The maximum absolute errors calculated by using Matlab are displayed in Table 4.

Chebfun odel5s ode45

2.11e-11 1.35e-13 1.33e-15
Table 4. Maximum absolute error in problem (88) using Matlab built-in functions.
Example 3 Consider now the following nonlinear problem [31]

. 2
y®(x) = sinx + SIN 2 (y"(x)) x€[0,1]

y(0)=0  y(0)=1
y(1)=sin(1)  y(1) = cos(1)

(89)

with exact solution y(x) = sin (x).

This kind of problems models several nonlinear phenomena such as traveling waves in suspension
bridges [32] or the bending of an elastic beam [33].

Suspension bridges are generally susceptible to visible oscillations, due to the forces acting on the bridge
(including the force due to the cables which are considered as a spring with a one-sided restoring, the
gravitation force and the external force due to the wind or other external sources). f represents the
forcing term, while y represents the vertical displacement when the bridge is bending.

In the case of elastic beam, f represents the force exerted on the beam by the supports. x measures the
position along the beam (x = 0 is the left-hand endpoint of the beam), y and vy indicate, respectively,
the height and the slope of the beam at x. y' measures the curvature of the graph of y, and, in
physical terms, it measures the bending moment of the beam at x, that is, the torque that the load
places on the beam at x.

The considered boundary conditions state that the beam has both endpoints simply supported. Moreover,
the derivative of the deflection function is not zero at those points, and it indicates that the beam at the
wall is not horizontal.

Table 5 shows the comparison between the NMD method presented in Ref. [31] and the CGN method
with m =5 and m = 9, respectively. The approximating polynomial of NMD method has degree 11,
while the polynomial considered in CGN method for m = 5 has degree 8.
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The maximum absolute errors calculated by using Matlab are displayed in Table 6.

X NMD [31] CGNm=5 CGNm =9
0.1 7.78e-8 4.45¢-10 1.53e-15
0.2 2.72e-7 5.54¢-10 3.02¢e-15
0.3 5.24e-7 8.95e-11 7.77e-16
0.4 7.77e=7 2.03e-10 6.66e-16
0.5 9.71e-7 3.32e-11 5.55e-17
0.6 1.05e-6 1.53e-10 0

0.7 9.63¢-7 9.48e-11 0

0.8 6.84e-7 5.18e-10 1.11e-16
0.9 2.71e-7 4.15e-10 0

Table 5. Error of NMD and CGN methods—problem (89).

Chebfun bvp4c bvp5c

1.67e-16 1.22¢-8 8.88¢-16

Table 6. Maximum absolute error in problem (89) using Matlab build-in functions.
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