
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 1

Epidemiology of Cleft Lip and Palate

Mairaj K. Ahmed, Anthony H. Bui and

Emanuela Taioli

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67165

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Mairaj K. Ahmed, Anthony H. Bui and 
Emanuela Taioli

Additional information is available at the end of the chapter

Abstract

Orofacial cleft (OFC) anomalies are amongst the most common congenital anomalies 
and the most common craniofacial anomalies. Despite their poorly characterized etiolo-
gies, cases of OFC are usually grouped by epidemiological studies as cleft lip, with or 
without cleft palate (CL/P), and cleft palate alone (CPO). Incidence of CL/P and CPO 
differs according to gender and ancestry and may vary widely across studies. Cases of 
OFC are characterized as either “syndromic” or “nonsyndromic,” with further classifi-
cation of nonsyndromic cases into isolated cases and cases that present with additional 
malformations. The genetic bases for many syndromic cases of OFC have been previ-
ously elucidated. Genetic associations have been described for nonsyndromic OFC as 
well. Importantly, etiology of OFC is known to involve interaction between genetic and 
environmental factors, including maternal nutrition and exposure to teratogenic agents. 
Furthermore, evidence points toward epigenetic as well as genetic factors influencing 
OFC etiology. Recent studies have begun to explore the association between CL/P and 
cancer. These studies report higher incidence of cancer among patients with CL/P and 
their family members as well as identification of common genetic markers mediating this 
increased risk, although much remains unknown about this link.

Keywords: cleft, epidemiology, etiology, genetics, epigenetics, environmental risk 
factors, cancer

1. Introduction

Orofacial cleft (OFC) anomalies may be unilateral or bilateral and involve the lip, the palate, 
or both. Due to similar phenotypic overlap and resulting health care needs of these patients, 
epidemiological studies usually group cleft lip, with or without cleft palate (CL/P), and cleft 
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palate alone (CPO) even though the etiology of each may be unique. Whether or not CL/P and 
CPO have distinct etiology and should be combined in investigations is under debate.

It is often found in epidemiological studies that CL/P and CPO is considered underneath 

the umbrella of either “syndromic” or “nonsyndromic.” Furthermore, “nonsyndromic” CL/P 

and CPO cases can be subgrouped into those that are isolated or those that have additional 
malformations that do not form a recognizable syndrome. Relatively, the etiology of non-

syndromic cases of CL/P and CPO is lesser known compared to those found identified with 
a syndrome. Due to the poorly characterized etiology of CL/P and CPO, in general, there is 

still debate for the best method of grouping CL/P and CPO in epidemiological studies, but the 

most common current classifications are used to help determine associations and thus help 
the clinician with their diagnosis and subsequent treatment.

The genetic basis for many syndromic cases of CL/P and CPO are well-described. Evidence 
for genetic factors underlying nonsyndromic CL/P and CPO has begun to materialize as well. 

While less well-described, it is also known that epigenetic modifications can play a role in 
the development of CL/P and CPO. Recently, the association between OFC and cancer has 
been explored, with evidence suggesting existence of a link between the presence of OFC in 
patients and risk of cancer in these patients and/or their families.

2. Descriptive epidemiology

2.1. Prevalence

The overall prevalence of OFC is estimated to be approximately 1 in 700 live births, account-
ing for nearly one half of all craniofacial anomalies [1, 2]. As reported by the World Health 
Organization (WHO), the prevalence at birth of OFC varies worldwide, ranging 3.4–22.9 per 
10,000 births for CL/P, and 1.3–25.3 per 10,000 births for CPO [3]. The incidence of CL/P and 

CPO can vary greatly between studies. The inclusion criteria, case definition, data sources, 
and selection bias contribute to the varying incidence estimates. Even though there are many 
different variables regarding the inclusion or exclusion criteria of in studies, the majority 
report a higher incidence of CL/P compared to CPO.

Prevalence has been found to vary based on ancestry, with the highest incidence rates 
observed amongst Asian populations (0.82–4.04 per 1000 live births), intermediate rates 
amongst Caucasians (0.9–2.69 per 1000 live births), and the lowest rates amongst African pop-

ulations (0.18–1.67 per 1000 live births) [1, 4]. Prevalence has also been found to vary further 
by subgroup, for example, with one study reporting lower rates of OFC amongst Far East 
Asians compared to Filipinos [5].

2.2. Gender ratio

Prevalence of OFC additionally varies according to gender and cleft pattern. Male predomi-
nance has been consistently identified in CLP, with a male/female sex ratio of 1.81 (CI 95%: 
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1.75–1.86). For CP, the opposite has been shown, with a reported sex ratio of 0.93 (CI 95%: 
0.89–0.96) [3]; however, this may be due in part to sampling bias, as one Danish study could 
not find a significant predominance of females in individuals with CP after combining both 
surgically treated and nonsurgically treated cases [6].

2.3. Laterality

OFC may be unilateral or bilateral. According to the International Perinatal Database of 

Typical Orofacial Clefts (IPDTOC) working group, the proportion of bilateral cases is 10.3% 
for cleft lip without palate (CL) and 30.2% for cleft lip with palate (CLP). Amongst unilateral 
cases, 36.9% of CL and 41.1% of CLP occur on the right side, suggesting that unilateral cases 
of CL/P occur more frequently on the left [7].

3. Classification

It is often found in epidemiological studies that CL/P and CPO are classified as either “syn-

dromic” or “nonsyndromic.” Cases of “nonsyndromic” CL/P and CPO are further categorized 

as isolated—those without an underlying syndrome or additional, nonsecondary malforma-

tions—or multiple—those that have additional malformations that do not form a recognizable 
syndrome. These distinctions are important epidemiologically, for identifying homogenous 

subgroups of cases, and clinically, for informing prognosis, recurrence risk, diagnosis, and 

treatment plan.

3.1. Syndromic

Individuals with “syndromic” CL/P or CP present with patterns of malformations and/or 
symptomatology that form a recognizable syndrome of known or unknown origin; hence, the 

CL/P or CP is part of a syndrome. Recognition of these syndromes is essential for assessing 

the risks faced by the child, providing the necessary treatment, and counseling the parents. 
Because the prevalence of associated anomalies varies across different populations of indi-
viduals with OFC, better understanding of the epidemiology of these anomalies could aid in 
the proper identification and characterization of the syndrome, leading to better care for the 
individual. Syndromes associated with OFC for which the underlying cause is known include 
chromosomal abnormalities, such as trisomy 13 or 18, Mendelian disorders such as Van der 
Woude Syndrome and teratogenic exposure.

A guideline for identifying syndromes in individuals with CL/P or CP is outlined by Venkatesh 
as follows [8]:

• Thorough clinical examination, preferably by geneticist or dysmorphologist.

• Comprehensive medical history: description of the cleft, antenatal history, birth history, 
developmental history, and family history.
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• Physical examination: measurement of weight, length or height, and occipitofrontal cir-

cumference, identification of anomalies of eyes, ears, heart, extremities, and also to look for 
associated preauricular tags, lip pits, and epicanthal folds.

• Documentation by photographs of all affected individuals and first-degree relatives.

• Necessary laboratory and radiological evaluations.

3.2. Multiple

The multiple subset of CL/P and CPO includes those cases that are not a part of a recogniz-

able syndrome and have major other malformations which may involve, but are not limited 
to, the eye, ear, head, neck, respiratory tract, gastrointestinal tract, and musculoskeletal 

system [5, 9]. Cases of “multiple nonsyndromic” CL/P and CPO may be classified as such 
simply by virtue of unrecognized syndromes or undocumented teratogenic exposures. 
Furthermore, wide variation exists in the classification of associated anomalies in cases of 
OFC [10].

3.3. Isolated

Cases of CL/P and CPO that are classified as “isolated” do not have an underlying syndrome 
or other secondary malformations. Most epidemiological studies of CL/P and CPO focus on 
those cases that are isolated in hopes to further gain insight into associations.

4. Etiology

Development of the head and face represents one of the most intricate events during embry-

onic development, synchronized by a network of transcription factors and signaling mole-

cules together with proteins conferring cell polarity and cell-cell interactions. In mammals, 

the facial region develops from the facial primordia, which consists of the lateral and medial 
nasal prominences arising from the frontonasal process and the maxillary and mandibular 
processes arising from the first branchial arch. As demonstrated in Figure 1, fusion of medial 

nasal and maxillary prominences gives rise to the lip and primary palate, while fusion of 
separate palatal processes arising from the maxillary prominence gives rise to the secondary 
palate and occurs later during embryogenesis. These processes are known to be dependent, 

in part, on the migration and differentiation of neural crest cells from the neuroectoderm into 
the branchial arches [11].

Disturbance of this closely controlled cascade can result in a facial cleft where these facial 

primordia ultimately fail to meet and fuse or form the proper structures. Historically, OFCs 
have been classified as either CL/P or CPO [13, 14]. This broad subdivision is consistent with 
both the distinct developmental origins of the lip/primary palate and the secondary palate 
and the distinct cellular and genetic etiologies described for CL/P and CPO; cleft palate may 

occur secondary to or independently from cleft lip. However, there is some epidemiologic 
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evidence suggesting that cleft lip only has distinct etiologic features from cleft lip with palate 
and should be classified accordingly [15, 16].

5. Genetics

Both genetic and environmental factors have been shown to influence the risk of CL/P and 
CPO. Approximately 70% of all cases of CL/P and 50% of cases of CPO are designated as 
nonsyndromic [17], with the rest comprised of a wide range of malformation syndromes with 

known genetic and/or cellular etiologies. A summary of syndromic forms of CL/O and CPO 

in which the underlying genetic mutation has been elucidated is provided by Dixon et al. 
(Table 1; see original article for references) [18].

 Figure 1. Schematic diagrams depicting human craniofacial development and formation of the secondary palate [12]. 

(a) By the fourth week of embryonic development, neural crest cells have migrated into the craniofacial region to 
form the frontonasal prominence, paired maxillary processes and the paired mandibular processes. (b) Formation of 
the nasal pits by the fifth week of embryogenesis divides the frontonasal prominence into paired medial and lateral 
nasal processes. (c) By the end of the sixth week of embryonic development, the medial nasal processes have merged 
with one another and with the maxillary processes to form the upper lip and primary palate, whereas the lateral nasal 
processes form the alae of the nose. The mandibular processes fuse together to form the lower jaw. (d) The secondary 
palate develops from the maxillary processes as bilateral outgrowths which grow vertically down the side of the 
tongue during the sixth week of embryogenesis. (e) During the seventh week of embryonic development, the palatal 
shelves elevate to a horizontal position above the tongue, make contact with one another and begin to fuse. (f) Fusion 
of the secondary palatal shelves with one another and with the primary palate and nasal septum is completed by the 
tenth week of embryogenesis. Figure is adapted from [12] © (2009) John Wiley and Sons Ltd.
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Cleft type Syndrome Gene

Cleft lip +/− cleft palate Autosomal dominant developmental malformations, 
deafness, and dystonia

ACTB

Familial gastric cancer and CLP CDH1

Craniofrontonasal EFNB1

Roberts ESCO2

Holoprosencephaly GLI2

“Oro-facial-digital” GLI3

Hydrolethalus HYLS1

Van der Woude/popliteal pterygium IRF6

X-linked mental retardation and CL/P PHF8

Gorlin PTCH1

CLP—ectodermal dysplasia PVRL1

Holoprosencephaly SHH

Holoprosencephaly SIX3

Branchio-oculo-facial TFAP2A

Holoprosencephaly TGIF

Ectrodactyly-ectodermal dysplasia-clefting TP73L

Ankyloblepharon-ectodermal dysplasia-clefting TP73L

Tetra-amelia with CLP WNT3

Cleft palate only Oculofaciocardiodental BCOR

CHARGE CHD7

Lethal and Escobar multiple pterygium CHRNG

Stickler type 1 COL2A1

Stickler type 2 COL11A1

Stickler type 3 COL11A2

Desmosterolosis DHCR24

Smith-Lemli-Opitz DHCR7

Miller DHODH

Craniofrontonasal EFNB1

Kallmann FGFR1

Crouzon FGFR2

Apert FGFR2

Otopalatodigital types 1 and 2 FLNA

Larsen syndrome; atelosteogenesis FLNB

Hereditary lymphedema-distichiasis FOXC2

Designing Strategies for Cleft Lip and Palate Care8



In contrast, nonsyndromic CL/P is complex and multifactorial in origin. Both genetic and 
environmental risk factors have been shown to influence the probability of occurrence. 
Furthermore, there is evidence that the presence of environmental factors—in particular, 
maternal smoking—modulates the risk conferred by genetic factors and vice-versa, compli-
cating the genetic analysis of nonsyndromic forms of CLP [19]. As such, multifactorial models 

of inheritance which allow for the evaluation of these risk factors both independently and in 
interaction with each other are preferred.

Association studies such as candidate gene studies, which test correlation between a phe-

notype and prespecified genes of interest, and genome-wide association studies (GWAS), 
which identify genetic variations across entire genomes that are associated with a phe-

notype, have been used to evaluate a variety of genetic polymorphisms associated with 
nonsyndromic OFC. Genes that have been examined through these studies for associations 
with nonsyndromic OFC exhibit a range of functions, including growth, DNA transcription, 
nutrient metabolism, immunity, and oncogenesis. A few such genes are described here.

Cleft type Syndrome Gene

Bamforth-Lazarus FOXE1

“Oro-facial-digital” GLI3

Van der Woude/popliteal pterygium IRF6

Andersen KCNJ2

Kabuki MLL2

Cornelia de Lange NIPBL

X-linked mental retardation PQBP1

Isolated cleft palate SATB2

Diastrophic dysplasia SLC26A2

Campomelic dysplasia SOX9

Pierre Robin SOX9

DiGeorge TBX1

X-linked cleft palate and ankyloglossia TBX22

Treacher Collins TCOF1

Loeys-Dietz TGFBR1

Loeys-Dietz TGFBR2

Saethre-Chotzen TWIST1

Midline cleft lip Opitz G/BBB MID1

Oro-facial-digital type I OFD1

Table 1. Clefting syndromes in which the mutated gene has been identified. Adapted from Ref. [18].
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5.1. Growth factors

Transforming growth factor alpha (TGF-α) is a growth factor encoded by the TGFA gene that 

serves as a ligand for the epidermal growth factor receptor, which is involved in cell prolif-
eration, differentiation, and development [20]. The first association study of genes associated 
with CL/P found an association with TFGA [21]; however, evidence of this linkage since then 
has been mixed [22, 23]. TGFA is currently viewed as a modifier, rather than a necessary or 
sufficient determinant, of risk for OFC.

Proteins in the transforming growth factor beta (TGF-β) family bind various TGF-β receptors 
leading to recruitment and activation of the SMAD family of transcription factors. TGF-β is 
involved in processes including apoptosis, modulation of immune cell function, and wound 
healing; disruption of TGF-β has been implicated in cancer, Loeys-Dietz syndrome, and other 
conditions [20]. Knockout experiences in mice have shown the TGFB3 gene to be associated with 

OFC [24, 25], and subsequent association studies have identified these results in humans [26].

5.2. Transcription factors

The MSX1 gene, which is a part of the homeobox gene family, codes for a protein that is 
involved in transcriptional regulation during embryogenesis as well as limb pattern forma-

tion, craniofacial development (in particular odontogenesis), and tumor growth inhibition 
[20]. This gene has been implicated in the development of cleft in several candidate gene stud-

ies, and may even account for 1–2% of all isolated cases of OFC [27].

Interferon regulatory factor 6 (IRF6) is a transcription factor protein that is involved in early 
development, especially of tissue in the head and face [20]. Mutations of the IRF6 gene at 1q32 
causes Van der Woude syndrome, a Mendelian-inherited disorder which induces CL/P or CPO 
and accounts for about 2% of all CL/P cases  [28, 29]. The overlap between phenotypic presenta-

tion of Van der Woude syndrome and isolated CL/P motivated further study into the role of 
IRF6 in development of OFC. Variation at IRF6 has been found to be strongly associated with 

CL/P and may account for up to 12% of the genetic contribution to CL/P at the population level 
[30–32]. Furthermore, the discovery of ILF6 as a risk factor for CL/P served as an important 
example of elucidating genetic variants associated with cases of nonsyndromic OFC, which are 
often excluded from genetic analyses [33].

5.3. Nutrient metabolism

Deficient maternal folate intake has long been implicated in risk of OFC in children, leading to 
suggestions that mutations of the enzyme 5,10-methyltetranhydrofolate reductase (MTHFR), 
which catalyzes the synthesis of 5-methylenetetrahydrofolate, play a role in the etiology of 
cases of nonsyndromic CL/P [34]. However, results from several association studies evaluat-
ing the role of MTHFR mutations in CL/P have been conflicting [35–37].

Retinoic acid plays an important role during development. Its functions, mediated by 
retinoic acid receptor alpha (RAR-α), include regulation of development, differentia-

tion, apoptosis, granulopoeisis, as well as transcription of genes involved in the circadian 
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rhythm [20]. Transgenic and knockout mice studies have additionally proposed a role in 
facial development [38]. Mutations of the RARA gene have been associated with develop-

ment of OFC [39].

6. Epigenetics

Due to the relative lack of success in identifying causal genetic factors involved in OFC 
despite the numerous association studies that have been performed, recent attention has been 
directed toward the role of epigenetic programming, or modifications that do not involve 
DNA sequencing. Commonly studied epigenetic events include histone modification, chro-

matin remodeling, posttranscriptional gene alteration via noncoding MicroRNAs, and DNA 
methylation. MicroRNAs and DNA methylation, in particular, have begun to demonstrate 
distinct roles in etiologies of OFC.

6.1. MicroRNAs

While protein-coding genes make up only about 1.2% of the human genome, recent estimates 
suggest that up to 93% of the human genome codes for RNA transcripts. MicroRNAs (miR-

NAs) represent the largest family of such noncoding RNAs in the human genome. They are 

involved in gene silencing and play important roles in cell and tissue differentiation, including 
development of the secondary palate [40–43]. miRNAs have been shown to orchestrate many 
of the processes that are central to palatal morphogenesis, including epithelial-mesenchymal 

transformation, platelet-derived growth factor (PDGF) and TGF-β signaling, cell migration 
and proliferation, and collagen synthesis [44–48]. As such, further analysis of miRNA expres-

sion and gene networks will be key to elucidating mechanisms of palatal development as well 
as etiologies of OFC.

6.2. DNA methylation

DNA methylation, one of the most important epigenetic modifications in mammalian cells, 
is a process by which methyl groups are added to DNA in order to regulate gene expression. 
Methylation generally occurs at cytosines within the context of symmetrical CpG dinucleo-

tide sequences, which are often concentrated in regions known as CpG islands and found in 

both gene bodies and promoter regions [49, 50]. Classically, methylation of CpG islands at 

gene promoters is thought to induce silencing of gene transcription; however, positive correla-

tion between gene body methylation and gene expression has been observed [51, 52].

DNA methylation was first identified as a potential mediator of palatal development after a 
series of studies in which DNA demethylating agents were used to induce cleft palate in mice 

[53–55]. Since then, failures in DNA methylation demonstrated involvement in craniofacial 
malformations including cleft palate [56, 57]. Despite the current lack of knowledge regarding 

the epigenetic mechanisms mediating palatal development, evidence strongly indicates that 
DNA methylation plays a central role in regulating this process, and may perhaps serve as 
future risk assessment and therapeutic targets for patients with OFC.
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7. Risk factors

The role of environmental factors in the etiology of OFC has been extensively studied. Known 
and suspected risk factors for CL/P and CP include family history, maternal nutrition, and 

exposure to teratogenic agents. The upper lip and palate are developed by 7 and 9 weeks after 
conception, respectively. Therefore, risk factors must be present before these times to influ-

ence the risk of CL/P and CPO.

7.1. Heredity

Family history is one of the strongest risk factors for both CL/P and CP. The risk of CL/P 

and CP has been reported to be increased in the first-, second-, and third-degree relatives 
and the identical twins of individuals with CL/P and CP, with even nonsyndromic cases of 
CL/P exhibiting evidence of genetic components [58–61]. However, few cases demonstrate 
true Mendelian inheritance patterns [62]. Moreover, CL/P and CP are known to be influenced 
by environmental risk factors. Specifically, there is growing evidence of gene-environment 
interactions that may influence the risk of these conditions.

7.2. Maternal drug use

Maternal drug use seems to play only a small role for the origin of orofacial clefts, but stud-

ies have shown that maternal use of folate antagonists (valproic acid and carbamazepine), 
dihydrofolate reductase inhibitors (trimethoprim, triamterene, and sulfasalazine), benzodi-

azepines, nonsteroidal anti-inflammatory drugs, retinoids, and corticosteroids is associated 
with a marked increase of cleft lip and palate [63–67].

7.3. Maternal diseases

The increased risk of having a child with CL/P or CP in women with nongestational diabetes 
or maternal hyperthermia is well-characterized [68, 69]. Additionally, a study conducted 

in Hungary found an increased risk of CL/P for children born to mothers with influenza, 
common cold, orofacial herpes, and gastroenteritis during pregnancy, posterior CP in moth-

ers with influenza, sinusitis, and bronchitis, and OFC in mothers with epilepsy or angina 
pectoris [70].

7.4. Nutrition

The role of maternal nutrient intake in the development of congenital malformations in the 
child has long been studied with the aim of elucidating the etiologies of specific birth defects 
and informing effective prevention strategies. Evidence indicates that maternal nutrient 
intake affects the risk of giving birth to a child with CL/P or CP. In particular, a lack of vitamin 
B9, more commonly known as folate (or its synthetic form, folic acid), in the mother’s diet has 
long been linked to the risk of congenital malformations. An association between maternal 
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folate intake and reduced risk of having a child with CL/P or CP has previously been demon-

strated [71]. However, studies have not consistently linked folic acid with OFC as they have 
with neural tube defects [72, 73].

Previous reports have shown maternal intake of vitamins other than folate, such as other B 
vitamins (e.g. riboflavin), iron, zinc, and the amino acids choline, methionine, and cysteine, to 
be associated with reduced risk of having a child with CL/P or CP [72, 74, 75].

Vitamin A is known to play a crucial role in fetal development. Deficient and excessive intakes 
of vitamin A increase the risk of birth defects, including OFC, in animals as well as humans 
[76–79], but exact daily intake numbers have not been established [80].

7.5. Maternal exogenous exposures

Most of the CL/P and CPO epidemiologic studies support a role for environmental factors 
in the etiology of clefting. The most common risk factors reported were maternal exposure 
to tobacco products [81, 82], alcohols [83], some viral infections [70], pesticides [84], and 

teratogens in the workplace or at home in early pregnancy [85–87]. Recognized teratogens 

included rare exposures such as phenytoin, valproic acid, thalidomide, and herbicides such 
as dioxin. As mentioned previously, risk of CL/P or CPO conferred by these exposures—in 
particular tobacco—may be modulated by the presence or absence of certain genetic factors 

[19, 88, 89].

8. Cleft palate and cancer

Several studies from different countries (USA, Latvia, Denmark, and Brazil) have identi-
fied an association between cleft palate and cancer [90–95]. The first epidemiological studies 
addressed the presence of cancer in cleft lip/palate subjects and their families. Parents of kids 
with sporadic CL/P have a higher risk of developing cancer than control families [96], and 

increased risk of cancer in adulthood can be seen in a Danish population-based cohort of 

CL/P subjects [97]. Such studies suggested that the association was most frequent for breast 
cancer but also colorectal, gastric, prostate, and uterus cancers. In a large study, 313 families 
segregating cases of isolated CL/P, including information of 13,879 individuals, were ana-

lyzed by Vieira [93]. The study brings further evidence that individuals born with CL/P and 
their family members have a higher prevalence of cancer than the general population. This 
risk is three times higher in first- and second-degree relatives and decreases to 1.5 times in 
third-degree relatives.

A possible genetic link was identified in two families with mutations in the E-cadherin 
gene CDH1 with CL/P and hereditary diffuse gastric cancer [98]. CDH1 is highly expressed 
in the palate. Vogelaar et al. also identified germline mutations multiple families with 
gastric cancer and orofacial clefts [99]. One concern in interpreting these studies is that 

cleft lip/palate patients tend to have a higher prevalence of behavioral risk factors, such 
as smoking and drinking because of their limited social interactions as adolescents, thus 
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are at higher risk of tobacco and alcohol-related cancers independently from their initial 

malformation.

What is lacking is a study of cancer cases and the risk of cleft palate in their family mem-

bers. Such studies are limited by the fact that the genetic defect is still a rare event, and the 
number of cancer cases necessary to address the problem would be extremely large. A study 
conducted on family members of cancer patients (Taioli et al. [95]) involved an epidemiologi-
cal questionnaire including family history of cancer and congenital oral cleft malformations 
that was administered to 168 cancer survivors and a population-based sample of 170 healthy 
subjects. In the control group, 1.2% reported a family member with CL/P; among cancer sur-

vivors, the figure was 4.2% (odds ratio: 3.7; 95% confidence interval: 0.75–17.8; p = .07). Among 
cancer survivors with a family member with CL/P, there was an apparent excess of testicular 
cancer and melanoma in comparison with the cancer survivors with no family history of 
CL/P. These preliminary results suggest a common etiologic background for cancer and CL/P.

Taken all together, the data suggest that there are shared environmental and genetic factors in 
families that predispose to both cleft palate and cancer.

9. Conclusion

OFCs are the most common craniofacial anomalies, and one of the most common congenital 

anomalies worldwide. OFCs have historically been grouped as CL/P or CPO. However, exist-
ing evidence suggests that separate etiologies may exist for cleft lip alone versus cleft lip with 
palate. CL/P and CPO are classified as syndromic or nonsyndromic; nonsyndromic cases are 
further subclassified as multiple or isolated.

Both genetic and environmental factors have been implicated in the etiology of OFC. The 
genes underlying a number of known syndromes associated with OFC have been identified. 
Furthermore, environmental factors such as alcohol and tobacco have been shown to modu-

late the risk of OFC conferred by certain genetic factors.

Although nonsyndromic OFCs are not traditionally the subject of genetic analysis, a number 
of genomic association studies have evaluated the link between genetic variants and nonsyn-

dromic OFC. Examples of genes that have been examined in such studies include those that 
code for growth factors, transcription factors, and nutrient metabolism proteins. In addition 

to genetic factors, studies have recently begun to explore the role of epigenetic modifications 
in palatal ontogeny and etiology of OFC.

A number of environmental and maternal factors that influence the risk of having a child with 
OFC are well-described. In particular, family history, maternal drug use, nutrition, and exog-

enous exposures demonstrate strong links with development of OFC in the child.

Several studies have shown a higher incidence of cancer amongst patients with CL/P and 
their families. Additionally, studies have begun to identify higher rates of CL/P in the families 
of patients with cancer, although less is known about this. Combined, these suggest that CL/P 

and cancer may be mediated by shared environmental and genetic etiologies.
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