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Abstract

Electrical motors are vital components of many industrial processes and their operation 
failure leads losing in production line. Motor functionality and its behavior should be 
monitored to avoid production failure catastrophe. Hence, a high‐tech DSP processor is a 
significant method for electrical harmonic analysis that can be realized as embedded sys‐
tems. This chapter introduces principal embedded design of novel high‐tech 1024‐point 
FFT processor architecture for high performance harmonic measurement techniques. 
In FFT processor algorithm pipelining and parallel implementation are incorporated 
in order to enhance the performance. The proposed FFT makes use of floating point to 
realize higher precision FFT. Since floating‐point architecture limits the maximum clock 
frequency and increases the power consumption, the chapter focuses on improving the 
speed, area, resolution and power consumption, as well as latency for the FFT. It illus‐
trates very large‐scale integration (VLSI) implementation of the floating‐point parallel 
pipelined (FPP) 1024‐point Radix II FFT processor with applying novel architecture that 
makes use of only single butterfly incorporation of intelligent controller. The functional‐
ity of the conventional Radix II FFT was verified as embedded in FPGA prototyping. For 
area and power consumption, the proposed Radix II FPP‐FFT was optimized in ASIC 
under Silterra 0.18 µm and Mimos 0.35 µm technology libraries.

Keywords: FFT, butterfly, Radix, floating point, high speed, FPGA, Embedded, VLSI

1. Introduction

The prevalent subject of Fourier analysis encompasses a vast spectrum of mathematics where 

parts may appear quite different at first glance. In Fourier analysis, the term Fourier transform 
often refers to the process that decomposes a given function into the harmonics domain. This 

process results in another function that describes what frequencies are in the original function. 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Meanwhile, the transformation is often given a more specific name depending upon the domain 
and other properties of the function being transformed.

2. Fourier transform fundamental

Fourier transform was introduced with the main concepts of discrete Fourier transform 

(DFT) [1] in the heart of most DSP processor. The DFT is a Fourier representation of a 

finite‐length sequence which is the most important fundamental operation in digital signal 
processing and communication system [2, 3]. However, the computation complexity of the 
direct evaluation of an N‐point DFT involves a long phase computational time and large 

power consumption [4]. As a result of these problems, it is important to develop a fast 
algorithm. There are numerous viewpoints that can be taken toward the derivation and 

interpretation of the DFT representation of a finite‐duration sequence. The sequence of  
x ̃(n )  that is periodic with period  N  so that  x ̃(n ) =  x ̃(n + kN )  functions for any integer value 

of  k . It is possible to represent  x ̃(n )  in terms of Fourier series that is represented by the sum 

of sine and cosine values or equivalently complex exponential sequences with frequen‐

cies that are integer multiplies of the fundamental frequencies  2π / N  associated with the 

periodic sequence. The same representation can be applied to finite‐duration sequence. 
The resulting Fourier representation for finite duration sequences will be referred to as 
the DFT. Sequence of length N by a periodic sequence can be represented by a periodic 

sequence with period N, one period of which is identical to the finite‐duration sequence. 
The sampled sequence signal in frequency is defined as

  X  (  ω )    =     ∑  
n= −∞

  
∞
   x  (  n )    e   −jωn   (1)

The DFT X(ω) is a function of continuous‐frequency variable ω, and the summation in Eq. (1) 

extends toward positive and negative infinitively. Therefore, the DFT is a theoretical Fourier 
transform of a digital signal. However, it cannot be implemented for real applications. It is the 

sample of the signal in time domain at a particular time and can be expressed as:

  x  (  n )    =     ∫  
0
  

∞
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n
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The frequency analysis of a finite‐length sequence is equal to the sample of continuous fre‐

quency variable ω at N equally spaced frequencies ωk = 2πk/N for k = 0, 1, 2, …, N ‐ 1 on the 

unit circle. These frequency samples are expressed as:
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where the twiddle factors are defined as:
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N
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N
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The DFT is based on the assumption that the signal  x(n )  is periodic. Therefore, X(k) for k = 0, 1, 

…, N ‐ 1 can uniquely represent a periodic sequence x(n) of period N. The inverse DFT is the 
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reversed process of the DFT. It converts the frequency spectrum X(k) back to the time domain 

signal x(n) [5]:

  x  (  n )    =     1 __ 
N

     ∑  
k=0

  
N−1

  X  (  k )    e     
j2πkn

 _____ 
N

    =   1 __ 
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  X  (  k )    W  
N
  −kn ,  n = 0,  1, … , N − 1  (5)

Direct computation of an N‐point DFT according to Equation Eq. (5)  requires N(N‐ 1) complex 
additions and N(N‐ 1) complex multiplications. The complexity for computing an N‐point 
DFT is therefore O(N2). High computation complexity in DFT algorithm and need for having 
efficient Fourier processor leads for introduction of a fast Fourier transform (FFT) processor.

2.1. Fast Fourier transform (FFT) algorithm

In 1965 Cooley and Tukey [6] developed the use of FFT in order to save time and avoid unnec‐

essary complex calculations. FFT algorithm computes an N‐point forward DFT or inverse 

DFT (IDFT) where N is 2 power of M. FFT algorithm divides N‐point data into two N/2‐point 

series and performs the DFT on series individually results in the order of  O(N / 2 )      2   complex‐

ity as compared with the original N2 operations in an N‐point DFT. The process of dividing 

can be continued until a 2‐point DFT is reached. FFT algorithm computes an N‐point forward 

DFT or inverse DFT (IDFT) where N is 2 power of m. The FFT is a family of algorithms that 

efficiently implements the DFT. Table 1 shows the comparison between the calculation of 

direct DFT and FFT when a different number of  N  is applied.

To calculate FFT algorithm, there are two well‐known methods identified as DIT‐FFT and 
DIF‐FFT calculations [7–9]. In general, FFT processor has many types in terms of Fourier cal‐

culation. Taking into account different types of FFT algorithms are:

• Different Radixes, such as Radix II, Radix IV, etc., and mixed‐radix algorithms.

• DIT and DIF.

• Real and complex algorithm.

Here, further detail is provided for DIT and DIF processor.

DFT Radix II FFT

Number of points Complex addition Complex multiplication Complex addition Complex multiplication

N N(N ‐ 1) N2 Nlog2N (N/2)log2N

4 12 16 8 4

8 56 64 24 12

16 240 256 64 32

32 992 1024 160 80

64 4032 4096 384 192

127 16,256 16,384 896 448

Table 1. Computation complexity of DFT and FFT algorithm.
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2.1.1. DIT Radix II butterfly FFT processor

The FFT structure divides input series into odd and even sequences. The number of stream in 

FFT is N = 2m when m is a positive integer:

    
xe  (  n )    =  x  (  2m )   ,  m  =  0,  1,  ….,    (    N 

_ 
2
   )   – 1
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_ 
2
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   (6)

Based on the DFT definition and combination of the FFT concept, X(k) can be written as:
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Since   W  
N
  2mk  =  W  
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  mk   , the equation will be simplified as:
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where   W  
N
  k    is complex twiddle factor with unit amplitude and different phase angles. The 8‐point 

FFT utilizes the twiddle factors from   W  
N
  0    to   W  

N
  7   . The first twiddle factor   W  

N
  0   = 1 . All twiddle factors 

are distributed around the unit circle. Figure 1 shows the twiddle factor for 8‐point Fourier 

transform. The twiddle factor   W  
N
  k    repeats itself after every multiple of N. The twiddle factors are 

periodic and for 8‐point FFT twiddle factor 0 and 8 are equal.

Figure 1. 8‐point FFT twiddle factor.
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By assuming   X  
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reduction in calculations as:
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Butterfly calculation is the fundamental concept of the FFT algorithm and 8‐point butterfly 
structure is shown in Figure 2.

Radix II butterfly FFT is decomposed into  M  stages, where  M  =  log  
2
  N  . In each stage,  N / 2  complexes 

are multiplied by the twiddle factors where N complex additions are required. Therefore, the 
total computational requirement is  (N  log  

2
  N  ) / 2  complex multiplications and  N  log  

2
  N   complex addi‐

tions. Consequently, expanding Radix II butterfly calculation into 8 data is shown in Figure 3.

2.1.2. DIF Radix II butterfly FFT processor

DIF‐FFT calculation is similar to the DIT‐FFT algorithm. As far as FFT calculation is involved, 
the time domain sequence is divided into two subsequences with  N / 2  samples: The DFT con-

cept of  x(n )  expressed as:
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Figure 2. Decomposition of 8‐point DIT FFT structure.
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Given that   W  
N
    (    N 
_

 2   )   k  =  (− 1 )   k  , Eq. (10) can be simplified to:
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Later, Eq. (11) is expanded into two parts including even  X(2k )  and odd  X(2k + 1 )  sam\twid‐

dle factor characteristic, Eq. (11) is simplified to:
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Similarly, 8‐point DIF FFT structure is shown in Figure 4 with detail complex calculation in 
three stages. The output sequence  X(k )  of the DIF‐FFT is bit‐reversed, while the input sequence  

x(n )  of the DIT‐FFT is bit‐reversed. In addition, there is a slight difference in the calculation 
of butterfly architecture. As shown in Figure 4, the complex multiplication is performed 
before the complex addition or subtraction in the DIT‐FFT processor. In contrast, the complex 
subtraction is performed before the complex multiplication in the DIF‐FFT. The process of 
decomposition is continued until the last stage is reduced to the 2‐point DFT. Since the fre‐

quency samples in the DIF‐FFT are bit‐reversed, it is required to apply bit‐reversal algorithm 

to the frequency samples. Likewise, the DIF‐FFT algorithm also uses in‐place computation.

Figure 3. Decomposition of 8‐point DIT‐FFT.
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Unlike the DIF structure, input data in DIT‐FFT is in bit‐reverse format while the output is 

sorted. On the other hand, both the DIT and DIF can go from normal to shuffled data or vice 
versa. In order to apply Radix II FFT structures, DIT and DIF algorithms require the same 
number of operations and bit‐reversal to compute the FFT calculation. The overall performance 

of the FFT processor is dependent on the application, hardware implementation, and conve‐

nience. If the design is focused on high speed structure, the processor has to take the most 

efficient approach and algorithm to perform the FFT calculation accordingly. In this chapter 
DIT‐FFT architecture is considered for floating‐point implementation.

2.2. Floating point FFT algorithm

Measured frequency by FFT will be subjected to quantization noise error with respect to the 
real frequency. This is caused by the fact that the FFT only computes the spectrum at dis‐

crete frequencies. This error is said to affect the accuracy. In addition, spectral leakage effect 
becomes very significant when small amplitude harmonics are close to large amplitude ones 
since they become hidden by the energy distribution of the larger harmonics. Furthermore, 

the fixed internal arithmetic calculation generates white noise in frequency domain. To reduce 
the generated noise effect and enhance signal strength, floating‐point technique is designed 
and implemented. The floating‐point technique allows numbers to be represented with a 
large dynamic range. Therefore, floating‐point arithmetic enables the reduction of overflow 
problems that occur in fixed‐point arithmetic. Although it is at the expense of throughput and 
chip area size, the new architecture is designed and investigated to avoid undesired effects in 
floating‐point FFT algorithm. Floating‐point arithmetic provides higher precision and a much 
larger dynamic range under IEEE 754 standard [10]. Therefore, floating‐point operations sup‐

port more accurate DSP operations. Table 2 compares the efficiency between fixed‐point and 
the floating‐point FFT processor.

Figure 4. Internal calculation of 8‐point DIF‐FFT processor.
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In floating‐point format, the data are translated based on power and mantissa in the decimal 
system. This notation can be expanded into the binary system. Representing the data in power 
and mantissa system gives the data the capability of storing a much greater range of numbers 

than if the binary points were fixed. Floating point refers to the “truth” of the Radix point, which 
refers to the decimal point or in computers it is known as the binary point that has the capabil‐

ity to float. This entails the event to occur anywhere that is relative to the significant digit of 
the number. Thus, a floating‐point representation, with its position indicated separately in the 
internal representation, is a computer's recognition of a scientific concept. Although the benefit 
of floating‐point representation over fixed‐point (and integer) representation is much wider in 
range of values, but the floating‐point format needs more storage. Hence, the implementation of 
high performance system requires applying efficient and fast floating‐point processor, which is 
competitive with the fixed‐point processor. Various types of floating‐point representation have 
been used in computers in the past. However, in the last decade, the IEEE 754 standard [10] has 

defined the representation. According to the IEEE 754 standard [10], the single precision is cho‐

sen to represent the floating‐point data. The IEEE standard specifies a way in which the three 
values described can be represented in a 32‐bit or a 64‐bit binary number, referred to single and 

double precision, respectively [11, 12]. In this project, single precision is selected to function. For 

the 32‐bit numbers, the first bit (MSB) specifies the sign, followed by 8 bits for the exponent, and 
the remaining 23 bits are used for the mantissa. This arrangement is illustrated in Figure 5. The 

sign bit is set to zero if the number is positive, and the bit is set to 1 if the number is negative. The 
mantissa bits are set to the fractional part of the mantissa in the original number in bits 22 to 0.

Floating‐point algorithm finds huge demand in industry. To conclude this section, Table 3 

summarizes the FFT algorithm application in fixed‐point and floating‐point architectures.

Figure 5. Floating‐point structure in IEEE 754 standard [10].

Fixed‐point FFT Floating‐point FFT

16‐bit or 24‐bit 32‐bit

Limited dynamic range Large dynamic range

Overflow and quantization errors Less error

Higher frequency Low frequency

Less silicon area More silicon area

Cheaper More expensive

Low power consumption High power consumption

Table 2. Fixed‐point and floating‐point FFT processor properties.
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2.3. Pipeline/parallel FFT algorithm

In 2009, Xilinx Logic core [13] introduced the FFT processor using the Radix structure on a 
chip. The introduced FFT processors were designed to offer a trade‐off between core sizes and 
transform time. These architectures are classified below:

• FFT Processor with Radix II pipelined serial I/O architecture

• FFT Processor with Radix IV, parallel I/O (burst) architecture

• FFT Processor with Radix II, parallel I/O (burst) architecture

• FFT Processor Radix II lite, parallel I/O (burst) architecture

The pipeline serial I/O allows to continue data processing, whereas the burst parallel I/O 

loads and processes data separately by using the iterative approach. It is smaller in size than 
the parallel but has a longer transform time. In the case of Radix II algorithm, it uses the same 
iterative approach as Radix IV with the difference of smaller butterfly size that differentiates 
it. Yet, the transformation time is longer. Finally, for the last category, based on Radix II archi‐
tecture, this variant uses a time multiplexed approach to the butterfly for an even smaller core, 
at the expense of longer transformation time. Figure 6 shows the throughput versus resource 

among the four architectures.

2.3.1. FFT processor with Radix II pipelined, serial I/O

In this design, n‐stage of Radix II butterfly is connected as a serial structure. Each unit of 
Radix II butterfly has its own RAM memory to upload and download data. The input data 
are stored in the RAM while the processor simultaneously performs transform calculations 
on the current frame of data and loads input data for the next frame of data and unloads 
the result of the previous frame of data. Input data are presented in sorted order. The 

unloaded output data can either be in bit‐reversed order or in sorted order. When sorted 

output data are selected, an additional memory resource is utilized. Figure 7 illustrates the 

architecture of the pipeline serial I/O with individual memory bank, which connects in a 

serial structure.

Fixed‐point FFT Floating‐point FFT

Low resolution disk drive Radar, Image processing

Consumer audio application High‐end audio application, ambient acoustics simulators

Channel coding Professional audio encoding/decoding and audio mixing

Communication device Sound synthesis in professional audio and video coding/

decoding

Prototyping

4G OFDM Transceiver

High resolution motor monitoring

Table 3. Fixed and floating‐point FFT application.
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2.3.2. FFT processor with Radix IV, burst I/O

Radix IV structure accepts 4 input data simultaneously whereas Radix II takes only 2 input data 
at the time to perform FFT calculation. Radix IV input data uploaded into the FFT processor, 
cannot be uploaded while the calculation is underway. When the FFT is started, the data are 

loaded. After a full frame has been loaded, the core computes the transformation. The result 
can be downloaded after the full process is over. The data loading and unloading processes can 

be overlapped if the data are unloaded in digit‐reversed order. Figure 8 shows the Radix IV 
structure when 4 input data are loaded for FFT calculation.

Figure 6. FFT architecture resources vs. throughput.

Figure 7. FFT processor with Radix II pipelined, serial I/O [13].
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2.3.3. FFT processor with Radix II, burst I/O

FFT processor with burst I/O architecture utilizes Radix II butterfly calculation to execute 
the arithmetic structure. In spite of Radix IV with burst I/O processor, which the input data 
cannot be loaded and unloaded simultaneously, the Radix II processor accepts the input data 
during the FFT processor and data can be used concurrently when the output samples are in 

bit‐reversed order. The twiddle factors are stored in the ROM blocks while the output and 

input data are stored in a separate or mixed RAM blocks. Figure 9 shows the Radix II struc‐

ture when 2 input data are loaded for FFT calculation.

2.3.4. FFT processor with Radix II lite, burst I/O

FFT processor with Radix II lite architecture uses one shared RAM, hence reducing resources 
at the expense of an additional delay per butterfly calculation. The multiplier in this structure 
multiplies the real part of complex number in one clock cycle and the imaginary in the next. In 
this architecture, the data can be simultaneously loaded and unloaded if the output samples 

are in bit‐reversed order. In this architecture, sine and cosine twiddle factor coefficient will be 
saved in the ROM and the output data will be saved in a single RAM. Although this proposed 
architecture saves the resources, the throughput is significantly limited by the FFT structure 

Figure 8. FFT processor with Radix IV architecture [13].
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due to the sequence calculations. Figure 10 shows the Radix II lite structure when 2 input data 
are loaded for FFT calculations.

Figure 9. FFT processor with Radix II burst I/O architecture [13].

Figure 10. FFT processor with Radix II lite burst I/O architecture [13].
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3. Advanced high‐tech fast Fourier transform algorithm

In Section 2, FFT fundamental was discussed and elaborated. Furthermore, different FFT archi‐
tectures were provided with the detail on IO configuration. Here, advance FFT processor with the 
focus on 1024 floating‐point parallel architecture for high performance application is provided.

3.1. Stage realization of 1024‐point parallel pipeline FFT structure

High‐tech FFT principle is based on Radix II algorithm in floating‐point format to conduct 
1024 point FFT structure. Figure 11 illustrates the main block diagram of the 1024‐point 

Radix II floating‐point parallel pipeline (FPP) FFT processor in detail.

As shown in Figure 11, there are six major subprocessor units in the high‐tech 1024 point 
Radix II FPP‐FFT algorithm. These units are shared memory, bit reverse, butterfly arithmetic, 
smart controller, ROM, and finally address generator unit. The floating‐point input data act 
as a variable streaming configuration into the processor. The variable streaming configuration 
allows continuous streaming of input data and produces continuous stream of output data. 

Figure 12 shows the internal schematic of the pipeline butterfly algorithm with the parallel 
architecture at a glance.

To enhance the speed of calculation in Radix II butterfly algorithm, the pipeline registers 
are located after each addition, subtraction, and multiplication subprocessors. Hence, the 

pipeline butterfly algorithm keeps the final result in the register to be transferred into the 

Figure 11. 1024 point Radix II FPP‐FFT block diagram.
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RAM by the next clock cycle. Additionally, the parallel architecture splits the data in real 
and imaginary format and increases the speed of FFT calculation by 50%. As a result of 
the design algorithm, Radix II FPP‐FFT processor calculates 1024 point floating‐point FFT 
exactly after  O  (  N / 2  log  

2
  N  )    + 11  clock a pulse which proves the performance improvement in 

comparison with similar Radix II FFT architecture. The existence of 11 clock pulses delay 
is due to 11 pipeline registers in adder, subtraction, and multiplier in a serial butterfly 
block. Additionally, parallel design of the FFT algorithm decreases the calculation time 
significantly.

Radix II butterfly unit is responsible for calculating the complex butterfly equations as  
output1 = input1 +  W   k  × input2  and  output2 = input1 −  W   k  × input . To calculate the butterfly equa‐

tion, it is necessary to initiate the RAM with bit‐reverse format and the external processor 
loads the data in the RAM. Since butterfly equation deals with complex data, thus each 
butterfly requires four multiplication units (two for the real and two for the imaginary) 
and six additional units (three for the real and three for the imaginary part). Fixed point 
implementation of such complex calculation does not satisfy high‐tech application of FFT 
processor due to the generated noise of round‐off, overflow, and coefficient quantization 
errors [14]. Consequently in order to reduce the error as well as to achieve high‐resolu‐

tion output, the floating‐point adders and subtractions are used to replace the fixed‐point 
arithmetic units.

Figure 12. Designed FPP Radix II butterfly structure.
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3.1.1. Floating point adder/subtraction

Butterfly processor efficiency greatly depends on its arithmetic units, and high‐speed float‐
ing‐point adder is the bottle neck of butterfly calculation. Based on IEEE‐754 standard [10] for 

floating‐point arithmetic, 32‐bit data register is considered to allocate mantissa, exponent, and 
sign bit in a portion of 23, 8, and 1 bits, respectively. The advantages of floating‐point adder 
are that the bias power is applied to complete the calculation and avoid using unsigned value. 

Additionally, the floating‐point adder unit performs the addition and subtraction using sub‐

stantially the same hardware as used for the floating‐point operations. This functionality 
minimizes the core area by minimizing the number of elements. Furthermore, each block 
of floating‐point adder/subtraction operates the arithmetic calculation within only one clock 
cycle that results high‐throughput and low latency for the entire FFT processor. Figure 13 

shows the novel structure of the floating‐point adder when it is divided into four separate 
blocks while detail algorithm is presented in Figure 14.

The purpose of having separate blocks is to share the total critical path delay into three equal 

blocks. These blocks calculate the arithmetic function within one clock cycle. However, the 

propagation delay can be associated with continuous assignment to increase the overall criti‐

cal path delay and for the slowing down of the throughput. Based on combinational design, 

the output of each stage depends on its input value at the time. The unique structure of float‐
ing‐point adder enables feeding of the output result in the pipeline registers after every clock 

cycles. Hence, the sequential structure is applied for the overall pipelined add/subtraction 

algorithm to combine the stages. The processing flow of the floating‐point addition/subtraction 
operation consists of comparison, alignment, addition/subtraction, and normalization stages.

The comparison stage compares two input exponents. This unit compares two exponents and 
provides the result for the next stage. The comparison is made by two subtraction units and 
the result is revealed by compare_sign bit.

Figure 13. Schematic diagram of advance floating‐point adder.

High Resolution Single-Chip Radix II FFT Processor for High-Tech Application
http://dx.doi.org/10.5772/66745

81



According to the results of the comparison stage, the alignment stage shifts the mantissa 
and transfers it to the adder/subtraction stage. The number of shifting will be selected by the 

comparison stage output. Consequently, each stage of the floating‐point adder algorithm is 
executed within one clock cycle. Floating‐point adder/subtraction unit satisfies high speed and 
efficiency of arithmetic unit in cost of die area size. The floating‐point arithmetic unit is designed 
to calculate entire numbers regardless of the number sign. As shown in Figure 15, there is a logic 

gate involved with the stages, which cause higher delay propagation through the circuit.

Floating‐point numbers are generally stored in registers as normalized numbers. This means 
that the most significant bit of the mantissa has a nonzero value. Employing this method 
allows the most accurate value of a number to be stored in a register. For this purpose, the 

Figure 14. Flowchart of advance floating‐point adder.
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normalized stage is required. This unit is located after the add/sub stage. The output signal 
representing the add/sub block leads to zero digits of an unnormalized result of the calcula‐

tion operation. The normalized block ignores the digital value of zero from the MSB of the 
mantissa and shifts the mantissa to imply value of one in digital as MSB in mantissa.

3.1.2. Floating‐point multiplier

In a floating‐point multiplier, numbers are represented in single‐precision normalized man‐

tissa and 8‐bit exponent format defined by the IEEE 754 standard. This structure has developed 
the architecture for partial‐product reduction for the IEEE standard floating‐point multiplica‐

tion, leading to a structured high‐speed floating‐point multiplier. The shortening of the data 
path is desirable because they require shorter wires and therefore support faster operation. 

The former approach uses a reduction scheme based on combination unit and connects it as 

parallel architecture. Implementing floating‐point multiplier is simpler than floating‐point 
adder since it does not require alignment stage. The processing flow of the floating‐point 
multiplication operation consists of multiple stage and normalized stage. Figure 16 shows the 

overall block diagram of the floating‐point multiplier while the flowchart of the functionality 
of the multiplier is shown in Figure 17.

In a floating‐point multiplier, the bias power format is applied to avoid having negative expo‐

nent in the data format. Additionally, the multiplier is designed as pipelined structure to 

Figure 15. Addition/subtraction structure.
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enhance speed calculation, with the intention of the initial result appearing after the latency 

period where the result can then be obtained after every clock cycle. The multiplier offers 
low latency and high throughput and is IEEE 754 compliant. This design allows a trade‐off 
between the clock frequency and the overall latency by adding the pipeline stage.

3.1.3. Smart controller structure

Smart controller unit significantly affects the efficiency of the 1024 Radix II FPP‐FFT proces‐

sor. As such, small die area can be achieved by designing high performance controller for 
the FFT processor. In this architecture, FFT controller is designed with the pipeline capabil‐

ity. The global controller unit provides the signal control to the different parts of the FFT 
processor. Additionally, several paths are switched between the data input and data output 
in architecture design and the data path is controlled. To calculate the 1024 point Radix II 
FFT processor, it is necessary to have   log  

2
   N  stages, which are 10 stages for 1024‐point data. 

Furthermore, each stage calculates    N __ 
2
    butterfly that is 512 butterfly calculations in the design. 

Hence, there are two counter in corporation with the controller to count the stage number of 

the processor and the number of butterfly calculation. Smart controller with collaboration of 
address generator unit calculates 1024 point floating‐point FFT by using only one butterfly 
structure. This functionality has great contribution on power supply as well as saving die area 

size. Figure 18 shows the smart controller state machine, which controls the flow of the 1024 
floating‐point Radix II FFT processor.

Figure 16. Floating‐point multiplier block diagram.
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Figure 17. Floating‐point multiplier flow chart.
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There are several control signals in smart controller to clarify the presence of correct output after 

finishing the current cycle of FFT calculation. The control signals transfer information through 
the RAM, ROM, butterfly preprocessor, and address generator. The designed controller oper‐

ates according to the provided state machine (Figure 18) and makes the high performance FFT 

calculation feasible for implementation. The controller unit is structured into the subblocks 

such as in sequential and combination units. Sequential unit is responsible for updating the 

state of the processor, while the combinational unit performs the states individually. The state 

machine waits for processor core to complete the entire FFT calculations and then records data 

points into the memory. Reset state is received every time the reset input is asserted then holds 

the entire calculation. The processor gets activated after the reset input signal is removed.

3.1.4. Memory and address generator

Address generator has a significant task in Radix II FFT processor, since it delivers the 
address of the input/output data for each computational stage in an appropriate way. 

Address generator architecture consists of ROM address generator, Read address genera‐

tor, and Write address generator. ROM address generator produces the reading address for 

the ROM module. The reading address represents the address of the twiddle factor, which 

must be taken to feed the butterfly structure. This address generator is designed to select the 
specific twiddle factor for the butterfly calculations. Meanwhile, the Write address generator 
is designed to save the result of the butterfly calculation in the proper location in the com‐

plex RAM. The proposed smart address generator is designed to provide the correct result 
for the next stage of the butterfly in 1024‐point Radix II FFT calculations. The architecture 
of the Read address generator is similar to the Write address generator. The butterfly will 
save the data result after reading from the certain address and input it to the butterfly, in the 
previous address line. The reading RAM select control signal ensures the correct location 
of data in the complex RAM. On the other hand, memory modules are used for the storing 
input and output results with 1024 complex long words of 32‐bit registers. The implemented 
architecture for the memory is shown in Figure 19. The capacity of the memory is 1024‐point 

data for real and imaginary data. In high‐tech implementation, shared RAM architecture is 
designed and implemented in a single‐chip FFT processor. The high‐tech design makes the 

Radix II FFT architecture entirely independent of the type of FPGA board since it has on 

Figure 18. Smart controller state machine.
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board memory system. Furthermore, each complex RAM has the capability of saving real 
and imaginary input data separately. The module is programed with a dual‐in‐line header 

to provide the appropriate location for storing input and output result in each stage con‐

sequently. It is composed of two delay memories and multiplexer, which allows straight 
through or crossed input‐output connection as required in the pipeline algorithm. Memory 

unit similarly contains the controller trig. The controller, which is connected directly to the 

memory modules, takes the responsibility of transferring data through the memory and 

arithmetic blocks ensuring that no data conflict occurs within the complete process of the 
FFT calculations. This is another advantage of high‐tech smart memory modules, by which 

data can be read and written in the memory simultaneously without sending bubble data in 
the FFT processor.

Figure 19. RAM internal architecture.
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3.2. Advantages of 1024‐point parallel pipeline FFT structure

Design algorithm of the 1024 point Radix II FPP‐FFT processor was based on the smart sub‐

blocks where the result was optimized accordingly. The designed processor takes the advan‐

tages of (i) shared memory to store the input and output data and makes the system as single 

chip. Hence, it reduces hardware complexity. Furthermore, (ii) the entire individual arith‐

metic unit is designed to operate within one clock cycle to increase the maximum clock fre‐

quency. Additionally, (iii) the butterfly structure is in parallel and pipelined architecture to 
minimize delay caused by the FFT calculations, and finally, (iv) the strong controller with 
collaboration of address generator unit ignores the need of using N numbers of butterfly unit, 
since Radix II calculation is carried out within one butterfly unit that results reduction of 
power consumption, area, and avoid system complexity. The high performance processor is 
implemented with optimizing the architecture to enable the system in maintaining a reason‐

able clock rate and with low latency of    (  N / 2  Log  
2
  N  )    + 11 . The throughput of the operation is 

limited by the amount of available logic in the target device.

4. 1024 point FPP‐FFT implementation

Section 4 details the implementation of introduced 1024‐point floating‐point parallel pipeline 
Radix II FFT algorithm. Hardware implementation of the algorithm as system on chip (SOC) 
is presented here.

4.1. Hardware implementation

In order to verify the functionality of the 1024‐point FPP‐FFT processor, the VHDL code for the 

overall processor is developed. Register transfer level (RTL) behavior description of the pro‐

cessor is generated for downloading into FPGA prototyping. The procedure is continued by 
attaching the library cell and constraint file for ASIC implementation. High performance FFT 
is transferred into the gate level synthesis to complete postsimulation stage. The design moves 

forward to the back‐end implementation by 0.18 µm Silterra technology and 0.35 Mimos tech‐

nology library. Generated netlist with constraint file is transferred to complete floor planning 
and place and route stage. The implementation process is summarized in Figure 20.

The high‐tech 1024‐point FPP‐FFT specification generated by Xilinx ISE synthesis report is 
provided in Table 4.

As stated in Table 4, high‐tech FFT processor operates with the maximum clock frequency 
of 227.7 MHz and the total latency of 5131 clock cycles (Figure 21) to prove the computation 

complexity derived from (N/2log2N) + 11 when N = 1024.

Place and route (PAR) process was completed and the processor routed successfully on silicon 
chip (Figure 22).

Later, the 1024‐point FPP‐FFT processor was optimized in Silterra 0.18 µm and Mimos 0.35 µm 
technology for power consumption and die size measurement in maximum clock frequency. 
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Table 5 shows the optimization result of FFT processor implementation in Silterra 0.18 µm and 
Mimos 0.35 µm technology library.

Figure 20. Flowchart of hardware implementation.

HDL synthesis report Timing summary

Registers flip‐flops 1175 Minimum period (ns) 4.391

Shift registers 43 (6%) Maximum frequency (MHz) 227.747

LUTs slice 4419 (23%) Min. input arrival time (ns) 3.788

Logic slice 2584 (13%) Max. output required time (ns) 6.774

RAM cells 1835 (35%) Total equivalent gate count 998678

IOs 88 (40%) Total number of path 220310

Memory usage (MB) 254 (40%) Total number of destinations 5926

Multiplexers 77

Tri‐states 98

Table 4. 1024‐point FPP‐FFT specification.
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Figure 22. Chip layout of high‐tech FFT processor.

FPP‐FFT

specification

Silterra 0.18 µm technology Mimos 0.35 µm technology

Active core area (mm2) 2.32 × 2.32 4.256 × 4.256

Power consumption (mW) 640 1198

Table 5. Optimized power consumption and die area size in different technology library.

Figure 21. 1024‐point FPP‐FFT processor output signal.
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To conclude, after FPGA implementation and ASIC optimization and with considering avail‐
able software and hardware resources, the high‐tech 1024‐point Radix II FPP‐FFT processor 
was implemented and tested in FPGA prototyping under Xilinx ISE software and CAD tools in 
synopsis. Figure 23 shows relevant FPGA board, and Table 6 summarizes the design property.

Figure 23. FPGA implementation of high‐tech FFT processor.

Parameters Unit specification

Processor machine Radix II

Calculation type Floating‐point

Latency (µs) 22

Maximum precision 32‐bit

No. of input data 1024

Data rate (ms/s) 25

Max. clock frequency   f  
s.max

   227 MHz

Signal to noise ratio SNR 192 dB

Power consumption (Silrerra 0.18 µm library)   P  
o
   640 mW

Active core area (Silrerra 0.18 µm library) mm 2.32 × 2.32

Accuracy ≤0.01

Table 6. High‐tech 1024 point FFT specification.
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5. Summary and conclusion

In this chapter, high‐tech 1024‐point Radix II FFT processor was implemented. The design 
was launched with introducing 32‐bit data single precision floating‐point parallel pipeline 
architecture. Then, it was followed by implementing the subcomponents such as Radix II 
butterfly and smart controller. The implementation result of high‐tech 1024‐point Radix II 
FPP FFT processor was provided accordingly. Designing high speed floating‐point arith‐

metic unit such as adder/subtraction (278 MHz), multiplier (322 MHz), implementing smart 
controller to save area and increase system efficiency, design processor as single chip by 
implementing complex dual memory, and providing pipeline and parallel architecture 
lead to present a high‐tech 1024‐point Radix II FPP FFT processor. In addition, the proces‐

sor was synthesized using the Xilinx ISE platform. From synthesis report, it was found 
that the FPP FFT processor shows the maximum clock frequency of 227 MHz. The latency 
for calculating 1024‐point FFT is 22 µs. After FPGA implementation, the proposed proces‐

sor was optimized in ASIC under Silterra 0.18 µm and Mimos 0.35 µm technology librar‐

ies. The estimation power consumption was reported 640 mW in Silterra and 1.198 W in 

Mimos technology library with sample rate of 25 ms/s. The procedure was followed by 

defining the constraints and the netlist (gate level) to produce the ASIC layout. The design 
compiler result shows the die size of  2.32 × 2.32  mm2 in Silterra 0.18 µm technology and  

4.256 × 4.256  mm2 in Mimos 0.35 µm technology. From the given specification, it was found 
that the high‐tech 1024‐point Radix II FPP FFT processor is suitable for high performance 
DSP application.
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