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Resumo 
 

 

O presente trabalho propõe-se a rever e compilar toda a bibliografia 

cientificamente relevante até à data, no que respeita as vias de sinalização 

antivirais implicadas na imunidade celular inata em células humanas.  

Com ênfase na proteína adaptadora MAVS, este trabalho explora as 

particularidades das vias de transdução de sinal e respetivos intervenientes em 

dois organelos celulares específicos: mitocôndrias e peroxissomas. Estas vias, 

em última instância, resultam na expressão de genes estimulados por 

interferões (ISGs), principais responsáveis pelo combate celular eficaz contra a 

replicação viral, montagem de partículas virais e libertação de viriões na célula 

infetada. 

Neste trabalho são ainda apresentadas propostas para investigações futuras, 

uma vez que ainda muito pouco se sabe sobre o papel dos peroxissomas nas 

respostas imunitárias inatas contra infeções virais. 
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Abstract 

 
The present paper presents a review and compilation of all the scientifically 

relevant bibliography to date, regarding the antiviral signalling pathways 

implicated in the cellular innate immune system in humans.  

Emphasizing the mitochondrial antiviral signalling adaptor (MAVS), this paper 

explores the special features of the signal transduction pathways and their 

components in two specific organelles: mitochondria and peroxisomes. These 

pathways, ultimately, result in the expression of interferon-stimulated genes 

(ISGs), which are primarily responsible for fighting against viral replication, viral 

particle assembly and virion release within the cell.  

In this paper, several proposals for further investigation are also presented, 

since there is still a lot to learn about the role of peroxisomes in the antiviral 

innate immune responses. 

 
 



 

 

 

 

 

 

 

 

 

 
 
 
 

“Science, my boy, is made up of mistakes, but they are mistakes which it is 

useful to make, because they lead little by little to the truth.” ― Jules Verne, 

Journey to the Center of the Earth  
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1 – Introduction 

 

1.1 – Mitochondria: general features and functions 

Mitochondria are among the largest cellular organelles in the eukaryotic cell, with 

the same approximate  size of an E. Coli bacterium (Lodish et al., 2008). They occupy 

a maximum of 25% of the cell cytosolic volume, depending on the cell type (e.g.: liver 

cells can have up to two thousand mitochondria, occupying a fifth of the cell volume 

(Alberts, 2008; Lodish et al., 2008). 

Despite being large enough to be visualized under light microscopy, the details of its 

structure were only recognized with the use of electron microscopy and their unique 

functions were first revealed upon the development of experimental procedures in 

order to isolate intact mitochondria (Alberts, 2008; Lodish et al., 2008). The first 

observations of intracellular structures that could represent mitochondria date back to 

the 1840s. In 1890, Richard Altmann recognized the ubiquitous occurrence of these 

structures and named them “bioblasts”. The term “mitochondrion” was coined by Carl 

Benda in 1898 and derives from the Greek “mitos” (thread) and “chondros” (granule), 

referring to the appearance of these structures during spermatogenesis (Ernster and 

Schatz, 1981).  

 
Figure 1 – Electron microscopy photograph of a mitochondrion. 

          (Hall, 2010) 
 

 

Mitochondria are usually portrayed as stiff elongated cylinders with an approximate 

diameter of 0.5 to 1μm. However, live cell studies have shown that mitochondria are 

incredibly dynamic and plastic organelles, constantly changing their shape, even fusing 
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with one another and splitting up again. As they move along the cytosol, they appear 

frequently associated with microtubules, which might determine the orientation and 

distribution of mitochondria in different cell types: in cardiac muscle cells they appear to 

be packaged around adjacent myofibrils while, in sperm cells, mitochondria are mainly 

found wrapped around the flagellum (Alberts, 2008). 

Each mitochondrion is surrounded by two specialized membranes that together 

create two separate mitochondrial compartments (Figure 2): an intermembrane space 

and a core space, named the mitochondrial matrix (Alberts, 2008). The outer 

membrane defines the external perimeter of mitochondria while the inner membrane 

has numerous convolutions and infoldings – named cristae – that greatly increase the 

surface area of this membrane (Lodish et al., 2008).  

 

Figure 2 – Scheme of a mitochondrion with the individualized internal compartments. 
Two membranes form the main structure of the mitochondrion, dividing it into three 
compartments: outer membrane, intermembrane space, inner membrane and matrix. The inner 
membrane possesses infloldings named cristae and contain ribosomes (blue spheres) facing 
the matrix. The matrix compartment contains, among others, the mitochondrial DNA (blue 
strands) and granules (yellow spheres). (Lodish et al., 2008) 
 
 

Each membrane has its own set of proteins. The outer membrane contains porins – 

transmembrane channels similar to bacterial porins – allowing the flow of ions, 

molecules and proteins no bigger that 5kDa, in and out of the intermembrane space. 

However, while the intermembrane space is chemically equivalent to the cytosol, the 

matrix is a much more selective space, due to the special features of the inner 

membrane (Alberts, 2008). Proteins account for ~76% of the total weight of the inner 
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membrane. Some of them are F0F1 complexes that synthesize ATP while others 

function in the transport of electrons, O2 and NADH. Others allow that some otherwise 

impermeable molecules such as ADP and Pi enter the matrix and molecules such as 

ATP exit the matrix. A great proportion of the inner membrane is composed of 

cardiolipin that helps to keep this membrane especially impermeable to ions, reducing 

the membrane permeability to protons (Lodish et al., 2008). 

The inner mitochondrial membrane, the cristae and the matrix are the sites where 

most of the reactions involving pyruvate and fatty acids oxidation into CO2 and H2O 

with ATP production take place – citric acid cycle and oxidative phosphorylation, 

respectively. This is a multistep process but it can be divided into three simple groups 

of reactions:  

1. Pyruvate and fatty acid oxidation into CO2 and combination with co-

enzyme A to form acetyl Co-A, coupled with NAD+ reduction into NADH and 

FAD into FADH2 – citric acid cycle. These electron transporters are not 

permanently bound to proteins and are the source of electrons to the electron 

transporter chain; most of these reactions occur in the matrix or in the inner 

membrane facing the matrix. 

2.  Transfer of electrons from NADH and FADH2 to O2, regenerating these 

electron transporters back to its oxidized form NAD+ and FAD – oxidative 

phosphorylation. These reactions take place at the inner membrane.  

3. Recovery of the stored energy in the electron transport chain in order to 

produce ATP at the inner membrane (Lodish et al., 2008). 

 

While most organelle proteins are coded in the nuclear genome of the cell, 

synthesized in ER ribosomes and then imported to the destination organelles, others, 

such as mitochondrial proteins, are coded by mitochondrial DNA and synthesized in 

ribosomes within the organelle itself (Alberts, 2008).  

The human mitochondrial genome contains 2 rRNA genes, 22 tRNA genes and 13 

protein-encoding sequences that are core constituents of the respiratory complexes 

embedded in the inner membrane. The mitochondrial DNA molecule is circular (like a 

typical bacterial genome) and, in mammals, it has around 16 500 base pairs, which 

accounts for less than 0,001% of the size of the nuclear genome. Mitochondrial 

genome is contained within the matrix and is usually arranged in clusters named 

nucleoids which are thought to be attached to the inner mitochondrial membrane. This 
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nucleoid organization resembles the one of bacteria and, as for bacteria, it does not 

possess histones (Alberts, 2008). 

 

The number of mitochondria and their shape varies among different cell types and it 

can change within the cell under special physiological conditions, so that mitochondria 

can be presented as spherical organelles or in a single branched structure (or 

reticulum). This arrangement is controlled by mitochondrial fission and fusion events 

that are regulated by a special set of GTPases localized at mitochondrial membranes 

(Alberts, 2008) – the members of the dynamin family: Mitofusins (Mfn1 and Mfn2) 

mediate the outer membrane fusion in mammals, while Opa1 mediates fusion of the 

inner  membrane; Drp1, which cycles between the cytosol and the outer membrane 

mediates mitochondrial fission (van der Bliek et al., 2013).  

 

 
 
 
Figure 3 – Representation of the mitochondrial growth and division events. 
a) Three proteins constitute the fusion/fission machinery of mitochondria: mitofusins (Mffn) 
mediate outer membrane fusion in mammals while Opa1 mediates inner membrane fusion; 
Drp1 (also known as DLP1) cycles between the cytosol and the mitochondrial outer membrane 
and mediates mitochondrial fission; b) Electron micrograph of a dividing mitochondrion in a liver 
cell. Adapted from: (Alberts, 2008; van der Bliek et al., 2013) 
 
 
 

Despite energy conversion from glucose or fatty acids into ATP being the most 

significant function of mitochondria – which are commonly designated as the 

“powerhouse of the cell” due to this feature – these organelles are involved in a much 

larger number of signaling pathways involving apoptosis, immune responses, calcium 

homeostasis, control of the cell growth and division, etc., rendering mitochondria as all-

purpose organelles (Lodish et al., 2008). 

 

a) b) 
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1.2 – Peroxisomes: general features and functions 

Peroxisomes differ from mitochondria in some aspects, such as the fact that they 

are surrounded by a single membrane and do not possess their own set of DNA 

(Alberts, 2008). However, they are a part of the basic equipment of the eukaryotic cell 

and perform important metabolic functions involved in the hydrogen peroxide and fatty 

acid metabolism, being therefore essential to the health and development of human 

beings (Islinger and Schrader, 2011; Schrader and Fahimi, 2008).  

Peroxisomes (originally called microbodies) were first described by a Swedish 

doctoral student J. Rhodin in 1954 but were only identified as organelles by the Belgian 

cytologist Christian de Duve in 1967. Peroxisomes were first defined as organelles 

where oxidation reactions take place leading to the production of hydrogen peroxide. 

Since hydrogen peroxide is harmful to the cell, these organelles contain an array of 

enzymes, particularly catalase, which decomposes hydrogen peroxide into O2 and 

water molecules. A variety of substrates are broken by these oxidation reactions in the 

peroxisomes, including fatty acids (β-oxidation), ethanol (particularly in liver cells) and 

uric acid (Cooper, 2000).  

 

Figure 4 – Fluorescence microscopy photograph of peroxisomes (green) and 
mitochondria (red) in human hepatoma cells.  
Peroxisomes vary in their morphology, cycling between a spherical, rod-shaped morphology 
and elongated tubular morphologies, while mitochondria are mainly found in the form of an 
interconnected tubular network. Peroxisomes can also present a “beads on a string” 
morphology during division events (arrow). Boxed region shows higher magnification view. N 
nucleus. Scale bars 10nm. Adapted from:  (Schrader and Fahimi, 2008) 
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However, peroxisomes functions are not restricted to oxidation reactions: they are 

multitask organelles, with functions that vary concerning the cell type or development 

state of the organism. Several specialized functions have been developed such as the 

penicillin biosynthesis in fungi, glycolysis in trypanosomes, photorespiration and 

glyoxylate cycle in plants and plasmalogen biosynthesis in mammals (plasmalogens 

are important constituents of myelin sheets in the brain) (Islinger and Schrader, 2011; 

Schrader and Fahimi, 2008). 

Besides catalase, peroxisomes possess other enzymes involved in the production 

and elimination of reactive oxygen species (ROS), such as superoxide dismutase, 

peroxiredoxins and glutathione peroxidase, actively participating in ROS metabolism, 

oxidative stress, neurodegeneration and carcinogenesis (Schrader and Fahimi, 2008). 

The fatty acid oxidation is a particularly relevant function, once it provides the main 

source of metabolic energy to the cell (Cooper, 2000). While in yeast and plants β-

oxidation of fatty acids depends exclusively on peroxisomes, in mammals this function 

takes place in both, peroxisomes and mitochondria. Both organelles have their own set 

of β-oxidation enzymes but have different specificities for certain fatty acids. Very long 

chain fatty acids and phytanic acid for example, can only be degraded in peroxisomes. 

Additionally, in mammals, peroxisomes are involved in the synthesis of bile acids, 

inflammation mediators and docosahexanoic acid (a modulator of neuronal function) 

(Islinger and Schrader, 2011). 

Peroxisomes can form by growth and division from pre-existing peroxisomes or by 

de novo formation from the ER. Peroxissomal division is preceded by membrane 

elongation through a mechanism that involves the peroxin Pex11p. The final requires a 

dynamin-related protein with GTPase activity and associated adaptor proteins such as 

DLP1 and Fis1 and Mff in mammals. Remarkably, these components are shared with 

mitochondria. On the other hand, the de novo formation of peroxisomes from the ER is 

less understood but it seems to require a maturation process that involves the 

recruitment of new membrane and matrix proteins. The peroxissomal matrix proteins 

are synthesized in free ribosomes at the cytosol and are imported into the 

peroxisomes. An interesting feature is that peroxisomes are able to import fully folded 

or even oligomeric proteins. This import is dependent upon two peroxissomal targeting 

signals: PST1 and PST2; these signals are recognized by receptor peroxins (Pex5p 
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and Pex7p, respectively) and interact at a receptor docking site at the peroxissomal 

membrane (Schrader and Fahimi, 2008). 

 

 
 
Figure 5 - Prototypical of peroxisome growth and division events.  
The peroxisomal growth and division process begins with the formation of a small protuberance 
from a mature peroxisome that keeps extending to a larger one where new internal components 
are being synthesized. This extension starts acquiring constriction points from where the newly 
formed peroxisomes will separate and become individualized. At the same time, new proteins 
are imported to the forming peroxisomes. The final division occurs through the actions of DPL1 
(which is responsible for the final division) and the membrane tail-anchored proteins Mff and 
Fis1 (the latter has been shown to interact with the elongation factor Pex11β), which recruit 
DLP1 to the constriction points. Mitochondria use a similar mechanism of growth and division. 
Adapted from: (Delille et al., 2009; Ribeiro et al., 2012) 
 
 
 

It has become recently evident that peroxisomes are dynamic and interconnected 

organelles that actively contribute to signaling events, developmental decisions, ageing 

and pathogen defence (Islinger and Schrader, 2011). It was recently discovered that 

peroxisomes are involved in antiviral innate immunity through the membrane MAVS 

protein (Dixit et al., 2010)– greatly developed in chapter 4. 
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1.3 – Viruses: structural and taxonomic features; overview of the replication 

cycle 

The Virus’ universe is rich in diversity and they are known for their ability to infect all 

kinds of organisms, from mycoplasmas, bacteria and algae to all kinds of plants and 

animals. Viruses vary in their structure, genome, organization, expression and 

replication and transmission strategies (Adelberg, 2007). 

The French bacteriologist Louis Pasteur was on the right path when we postulated 

that rabies was caused by a “living thing” smaller than bacteria and in 1884 was able to 

develop a vaccine against rabies. Pasteur also proposed the term virus (from the Latin 

“poison”) to name this special group of infectious agents. In the 1890s, D. Ivanovski 

and M. Beijerinck demonstrated that a tobacco disease was caused by a virus. Latter, 

Friedrich Loeffler and Paul Frosch discovered that an animal virus caused the foot-and-

mouth disease in cattle.  In the following decades, a bigger picture of the physical, 

chemical and biological nature of viruses began to shape up and around 1950s virology 

had grown as a multi-layered discipline (Talaro, 2002). 

1.3.1 - Viral Structure and Composition  

The organizational plan of viruses is very simple, as they only comprise the 

necessary parts to invade and control host cells: an outer coating and a core with one 

or more DNA or RNA strands (Talaro, 2002). 

 All viruses have a protein capsid that surrounds the nucleic acid and central core. 

Together, capsid and nucleic acid are called as nucleocapsid. Some members of viral 

families have an additional coating named envelope that is nothing more than a 

modified part of membranes of the host. Viruses that only possess a nucleocapsid are 

called naked viruses and have different mechanisms than enveloped viruses of 

entering and exiting host cells. The virus particle is commonly designated as virion 

(Talaro, 2002). 

The capsid is composed of identical subunits called capsomers. These capsomers 

self-assemble into the final capsid structure, and, depending on their shape, they can 

be arranged in two different forms: helical and icosahedral (Talaro, 2002). 

Helical capsids are simple with rod-shaped capsomers that bind a series of hollow 

discs to form a structure that resembles a bracelet. These discs bind each other to form 
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a continuous helix in which the nucleic acids are coiled. The icosahedral capsids form 

a three dimensional structure (20 sides of equilateral triangles with 12 corners), with 

capsomers arranged in different ways: some build their capsid from a single type of 

capsid while others contain different types. Individual capsomers can have a ring or 

dome like shape, and the packaging of the nucleic acid occurs in the centre of the 

icosahedron, forming the nucleocapsid (Talaro, 2002). In spite of their icosahedral 

shape, most capsids have a spherical or cubical appearance (Adelberg, 2007).  

Viruses only have one kind of nucleic acid, RNA or DNA – never both at the same 

time – that encodes the genetic information necessary for viral replication. Their 

genome can be single or double stranded, linear or circular, segmented or non-

segmented, and the type of nucleic acid, their strandedness and size are the main 

features used to classify viruses into families (Adelberg, 2007). 

A given number of virus families have an envelope in addition to the capsid in their 

structure. This lipid layer is acquired when the nucleocapsid buds through host 

membranes (organelle membranes or the cell membrane itself) during its maturation 

process. The phospholipidic content of the viral envelope is determined by the cell 

membrane type that is involved in the budding process. There are also glycosylated 

viral proteins protruding from the envelope that are exposed at the surface of the viral 

particle – designated peplomers. These glycoproteins are usually the ones involved in 

the attachment of the viral particle to specific host receptors – representing important 

viral antigens – and are also involved in the fusion of the envelope with the host cell 

membrane (Adelberg, 2007). 

The main purpose of viral proteins is to facilitate the transfer of the nucleic acid from 

a host cell to another. In order to do so, they protect the viral genome against nuclease 

inactivation and provide structural symmetry to the viral particle. Some viruses possess 

enzymes such as RNA polymerase and reverse transcriptase, inside their virions that 

are essential to the beginning of the replication cycle when the virion enters the host 

(Adelberg, 2007). 
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1.3.2 - Classification and Taxonomy 

The following features are used to classify and organize viruses into families: 

1- Virion morphology, including size, shape, type of symmetry, presence or 

absence of peplomers and/or membranes 

2- Viral genome properties such as the type of nucleic acid, genome size, 

strandedness (single stranded, double stranded), linearity or circularity, sense 

(positive, negative or ambisense), segments (presence, number and size), 

nucleotide sequence, G+C content, and the presence of special features 

(repetitive elements, isomeration, 5’ terminal cap, 5’ terminal linked protein, 

etc.) 

3- Physical and chemical properties of the virion, including molecular 

weight, buoyant density, pH and heat stability, susceptibility to chemical and 

physical agents such as ether and detergents. 

4- Viral proteins properties such as size, number, functional activities, 

amino acid sequence, modifications, etc.  

5- Genome organization and mode of replication: genetic order, number 

and position of open reading frames, replication strategies and patterns of 

transcription and translation, cellular sites, etc.  

6- Antigenic properties 

7- Biological properties such as the host range, modes of transmission, 

vector relationships, pathogenicity, tissue tropism and pathology (Adelberg, 

2007). 

 Taking into account these special features, it was established a taxonomy system 

where viruses are separated in large groups designated as families; the names of the 

families have the suffix –viridae. Within each family, there can be subfamilies (suffix –

virinae) that comprise subgroups called genera that are classified based in 

physicochemical or serologic differences. Genus names have the suffix – virus and 

Orders (suffix – virales) can be used to group virus families (Adelberg, 2007). 

The latest virus taxonomy release (July 2013) by the International Committee on 

Taxonomy of Viruses (ICTV) had organized viruses into 8 Orders: Caudovirales, 

Herpesvirales, Ligamenvirales, Mononegavirales, Nidovirales, Picornavirales and 

Tymovirales and another one for virus families without an assigned order and together 
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they comprise  around 103 families, with ~40 subfamilies and countless genera and 

genus (International Committee on Taxonomy of Viruses, 2013).  

Another virus classification system was proposed in 1971 by David Baltimore, which 

divides viruses into seven groups according to their genome type (RNA, DNA, single-

stranded (ss), double-stranded (ds), positive or negative sense) and their method of 

replication (see Figure 6) (Baltimore, 1971; ViralZone, 2014). 

 

 

Figure 6 – The Baltimore Classification of viruses.  
David Baltimore developed a virus classification system that groups viruses into families, 
depending on their type of genome. Group I encompasses double-stranded DNA viruses, which 
usually replicate within the nucleus of the host cell, requiring host polymerase in order to 
replicate their viral genomes. Group II covers all single-stranded DNA viruses, which also 
replicate within the nucleus. Group III includes double-stranded RNA viruses, that possess 
segmented genomes where each of the genes codes for a single protein. Group IV and V 
consist of single-stranded RNA viruses, with positive (group IV) or negative (group V) sense, 
which replicate in the cytoplasm (within their own capsids), not depending on host polymerases 
as much as DNA viruses do. Group VI comprises positive-sense, ssRNA viruses which require 
a DNA intermediate, using reverse transcriptases to convert the +ssRNA into DNA(Baltimore, 
1971). Lastly, group VII covers dsDNA viruses, who are not considered DNA viruses (like in 
Group I viruses), but rather reverse transcribing viruses, as they replicate through a RNA 
intermediate (Temin, 1985).  
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Table 1 – Virus’ classification according to family, virion size, type of symmetry, presence or absence of envelope, genome features and size, replication strategy and 
known viruses of each family or associated pathologies.  
Adapted from: (Adelberg, 2007) and (ExPASy, 2014); images courtesy of (ExPASy, 2014; The Science Picture Company, 2014; Zygote Media Group Inc., 2014); (+) –  positive sense strand;  (-) –  
negative sense strand; ss – single stranded; ds – double stranded; kb – kilobases; kbp – kilobase pairs; nm – nanometers 

 

Virus Family  
Virion Size 
(diameter) 

Type of 
Symetry 

Envelope 
Genome 
Features 

Genome 
Size 

Replication 
Strategy 

Viruses/Pathologies  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DNA 
Viruses 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parvoviridae 18-26 nm 
icosahedral        

(32 
capsomers) 

no 
linear; 
ssDNA 

5.6 kb 
nuclear replication in 

hosts undergoing 
active cell division 

Parvovirus B19 - causes a 
childhood exanthem 
called "fifth disease" 

 
Parvovirus B19 

Polyomaviridae 45 nm 
icosahedral         

(72 
capsomers) 

no 
circular; 
dsDNA 

5 kbp nuclear replication 

JC virus 
(leucoencephalopathy), 

BK virus (mild respiratory 
infection), KI virus, WU 

virus  
Murine Polyomavirus 

Papillomaviridae 55 nm 
icosahedral        

(72 
capsomers) 

no 
circular; 
dsDNA 

8 kbp nuclear replication 
Human papillomaviruses - 

genital cancers 

 
Human Papillomavirus 16 

Adenoviridae 70-90 nm 
icosahedral     

(252 
capsomers) 

no 
linear; 
dsDNA 

26-45 kbp nuclear replication 
51 types; Adenovirus 
serotype 14 (severe 

respiratory infection)  

 
Human Adenovirus 

Herpesviridae 150-200 nm 
icosahedral     

(162 
capsomers) 

yes 
linear; 
dsDNA 

125-240 
kbp 

nuclear replication 

herpes simplex type 1 
(oral) and type 2 (genital), 

varicella-zoster, 
cytomegalovirus, Epstein-

Barr  
Herpes simplex 
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DNA 
Viruses 

 
 

Anelloviridae 30-32 nm icosahedral no 
circular; 
ssDNA 

3,8 kb nuclear replication 

Alphatorquevirus; 
Betatorquevirus; 

Gamatorquevirus; 
Asymptomatic; may be 

associated with hepatitis, 
pulmunary diseases, 
myopathy and lupus 

 
Anelloviriade structure 

Hepadnaviridae 40-48 nm icosahedral yes 
circular; 
dsDNA 

3,2 kb 
nuclear and cytosolic 

replication 

Hepatitis B virus; chronic 
hepatitis; can develop to 

liver cancer 

 
Hepatitis B virus 

Poxviridae 
220-450X140-

260 nm 

brick-like or 
ovoid 

structure 
yes 

linear; 
dsDNA 

130-375kbp 
exclusively cytosolic 

replication 
Smallpox; Vaccinia; 

Molluscum contagiosum 

 
Smallpox virus 

 
 
 
 
 
 
 

 
 

RNA 
viruses 

 
 
 
 
 
 
 
 
 
 

Picornaviridae 28-30 nm icosahedral  no  +ssRNA 7.2-7.8 kb cytosolic replication 

Enteroviruses; 
Rhinoviruses; 

hepatoviruses (hepatitis 
A) 

 
Human Rhinovirus 

Astroviridae 28-30 nm icosahedral no 
linear; 

+ssRNA 
6.4-7.4 kb cytosolic replication gastroenteritis 

 
Astrovirus 

Caliciviridae 27-40 nm icosahedral no  +ssRNA 7.4-8.3 kb cytosolic replication 
Norwalk virus (acute 

gastroenteritis) 

 
Norwalk virus 
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RNA 
viruses 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reoviridae 60-80 nm icosahedral  no 
linear; 

segmented; 
dsRNA 

16-27 kbp cytosolic replication 
Rotaviruses that cause 

gastroentheritis 

 
Rotavirus 

Togaviridae 65-70 nm icosahedral yes 
linear; 

+ssRNA 
9.7-11.8 kb cytosolic replication Rubella virus 

 
Rubella virus 

Flaviviridae 40-60 nm 
spherical or 
pleomorphic 

yes  +ssRNA 9.5-12.5 kb cytosolic replication 
Dengue and Yellow Fever 

viruses 

 
Dengue virus 

Arenaviridae 120 nm pleomorphic yes 

circular; 
segmented; -

ssRNA or 
ambisense 

10-14 kb cytosolic replication 

Hemorrhagic fever 
syndromes; Guanarito 
virus, Junin virus, Lassa 

virus, Lujo virus, 
Machupo virus, Sabia 

virus  
Lassa virus 

Coronaviridae 120-160 nm 

spikes 
arranged in a 
fringe at the 

surface (like a 
solar corona) 

yes  +ssRNA 27-32 kb cytosolic replication 
SARS (severe acute 

respiratory syndrome) 

 
Coronavirus 

Retroviridae 80-110 nm icosahedral  yes 
2 copies of 

+ssRNA; 
linear 

7-11 kb 
each copie 

nuclear replication; 
reverse transcriptase 

leukemia and sarcoma 
viruses; HIV 

 
Human Immunodeficiency 

virus (HIV) 
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RNA 
Viruses 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Orthomyxoviridae 80-120 nm helical yes 
linear; 

segmented -
ssRNA 

10-13.6 kb 
nuclear replication; 
hematoglutinin and 

neuraminidase activity 
Influenza viruses 

 
Swine Influenza virus (H1N1) 

Bunyaviridae 89-120 nm 
spherical or 
pleomorphic 

yes 

triple-
circular 

segment; -
ssRNA or 

ambisense 

11-19 kb cytosolic replication 
Hemorrhagic fevers and 

neuropathies; severe 
pulmonary syndrome 

 
Orthobunyavirus structure  

Bornaviridae 80-125 nm spherical yes 
linear; -
ssRNA 

8.5-10.5 kb nuclear replication  Borna disease (horses) 

 
Borna virus 

Rhabdoviridae ~78x180 nm bullet-shaped yes 
linear; -
ssRNA 

13-16 kb 
cytosolic and nuclear 
(plants) replication 

Rabies virus, Vesicular 
stomatitis virus 

 
Rabies virus 

Paramyxoviridae 150-300 nm pleomorphic yes 
linear; -
ssRNA 

16-20 kb 
hematoglutinin 

activity 

mumps, measles, 
respiratory syncytial 

viruses 

 
Mumps virus 

Filoviridae ~89X1000 nm pleomorphic yes 
linear; -
ssRNA 

19 kb cytosolic replication Marbog and Ebola viruses 

 
Ebola virus 
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RNA 
viruses Arboviridae 

ecological group; not a viral family; diverse chemical and physical properties; complex replication cycle --> use arthropods as vectors of infection to vertebrate 
hosts through mosquito/tick bite 

Other 
Viruses 

Viroids  
not adequate with typical definition of viruses; nucleic acids without protein coating; in plants are ssRNA; viroid RNA doesn't encode protein products; 
replication mechanism completely oblivious 

Prions 
absense of nucleic acid, only proteins - might not be a virus at all; hihgly resistant to heat, formaldahyde and UV light 
inactivation; enconded by a celular gene;cause prion disease - transmissible spongiform encephalopathies 

 
Prion (Mad Cow disease) 
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1.3.3 - Viral Replication Cycle 

Viruses can only multiply in living cells and the host must provide the energy and 

synthesis machinery and precursors for the synthesis of viral proteins and nucleic acids 

(Adelberg, 2007). Although this cycle is a continuous process, it helps to define the 

replication cycle into sequential events. The general phases of the animal viruses’ 

cycle are as follows: Adsorption/Attachment  Penetration and Uncoating  

Replication (viral genome expression and viral components synthesis)  

Assembly/Morphogenesis Release (Figure 7). The length of an entire replication 

cycle varies from 8 hours in polioviruses to 36 hours in herpesviruses (Adelberg, 2007; 

Talaro, 2002). 

 

 

Figure 7 – General representation of a replicative cycle in animal viruses  
Two types of viruses are compared: an enveloped and a naked virus. (Talaro, 2002) 
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1.3.3.1 - Adsorption, Penetration and Uncoating  

The first step in viral infection is the attachment of a virion with a specific receptor 

at the surface of the host cell membrane. These receptors are usually glycoproteins, 

however, in certain cases viruses can bind to protein sequences or to oligosaccharides. 

The presence or absence of the receptors is a determinant for cell tropism and viral 

pathogenicity, since not all cells in a host organism express the necessary receptors. 

For example, HIV virus binds to CD4 receptor in immune cells while Epstein-Barr virus 

recognizes the CD21 receptors in B cells (Adelberg, 2007). 

Upon binding to the cell surface, the virion is internalized – penetration. Some 

viruses use receptor-mediated endocytosis with uptake of the viral particles inside 

endosomes, while others (usually the enveloped viruses) penetrate directly their viral 

particles through the cell membrane with the interaction of a viral fusion protein with a 

secondary receptor (Adelberg, 2007).  

The uncoating can occur simultaneously or right after penetration and it consists in 

the physical separation of the nucleic acid from the external virion structure. The viral 

genome can be released in the form of free nucleic acids or nucleocapsids that usually 

have polymerases (Adelberg, 2007). 

 

 

Figure 8 – Means of penetration of the host cell membrane by animal viruses. 
(a) endocytosis and uncoating of a non-enveloped virus; (b) Fusion of the cell membrane with 
the viral envelope (mumps virus). (Talaro, 2002) 
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1.3.3.2 - Replication  

Viral nucleic acids must be transcribed into mRNAs in order to the expression and 

duplication of the genetic information to be successful. Once this is achieved, viruses 

hijack cell components to translate these newly formed mRNAs. Different groups of 

viruses use different pathways to synthesize mRNAs depending on the structure of the 

nucleic acid (RNA or DNA), and some of them require RNA polymerases in order to 

synthesize their mRNAs (Adelberg, 2007).  

During the course of viral replication, all virus-specific molecules are synthesized in 

a well-coordinated fashion; some are produced in an early stage of the infection while 

others only begin their synthesis later on. There’s also a quantity control, since not all 

molecules are produced in the same quantity (Adelberg, 2007).  

The intracellular sites where the different replication events take place also varies 

from group to group (Table 1) but, in general terms, viral proteins are synthesized in 

polyribosomes with virus-specific mRNAs in the cytosol; viral DNA is usually replicated 

within the nucleus while viral RNA is duplicated in the cytosol, with a few exceptions 

(Adelberg, 2007). 

1.3.3.3 - Assembly and Release  

The newly synthesized viral genomes, proteins and capsids all come together to 

form the progeny viruses. General rule, non-enveloped viruses accumulate inside the 

infected cells until they end up lysing and releasing the viral particles. Enveloped 

viruses mature through a budding mechanism. Specific envelope glycoproteins are 

inserted at the cell membrane so that nucleocapsids can bud through the membrane at 

these sites, and doing it, they acquire their envelope. Budding usually occurs at the cell 

membrane but it can happen in other cell membranes (i.e., Golgi apparatus, 

endoplasmic reticulum) (Adelberg, 2007).  

 

Figure 9 – Maturation of an enveloped virus with acquisition of envelope and spikes 
(parainfluenza virus).  
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 (Talaro, 2002) 
 
 
 

1.4 – Host defence mechanisms: Innate Immune response and Pattern 

Recognition Receptors 

The defence systems have evolved to protect cells against the invasion of 

pathogenic microorganisms, being a system that is able to create a variety of cells and 

molecules that act together in a dynamic network in order to specifically recognize and 

eliminate a never ending variety of invaders.  Functionally, the immune response can 

be divided into two phases: recognition and response. The recognition is extremely 

specific and it is able to distinguish subtle chemical differences that differentiate one 

pathogen from another. Besides, it is able to tell apart foreigner molecules from the 

ones of the own organism. Once the pathogen is recognized, the immune system 

recruits an array of cells and molecules in order to induce an effector response so that 

the invader organism can be neutralized and eliminated. Thus, the immune system is 

capable of converting the initial recognition event and processing it into effector 

responses, each response being highly specific to clear a particular type of pathogen. 

A later exposure to the same pathogen may induce a memory response, 

characterized by a faster and stronger immune reaction that acts in order to clear the 

pathogen and prevent the development of a disease state (Kindt et al., 2007).  

The immune system is typically divided in two main components: the innate 

immune response that provides the first line of defence against infections (i.e.: 

barriers like the skin, mucous membranes, phagocytic cells, macrophages and 

neutrophils) and it is unspecific for any given pathogen; and the adaptive immune 

response that is highly specific, only takes place after the presentation of an antigenic 

challenge and possesses a “memory” property (the main agents are lymphocytes and 

antibodies). Since this second type of response takes some time to develop 

(approximately five to six days after the initial exposure to the pathogen), the innate 

response provides the first line of defence against the critical period, right after the 

exposure to the pathogen (Kindt et al., 2007). 

The innate immune response comprises four types of defence barriers: anatomical, 

physiological, phagocytic and inflammatory (Kindt et al., 2007).  

The physical and anatomic barriers, such as the skin and mucous 

surfaces/membranes, are the actual first line of defence against infections, since they 

are effective barriers against the entry of most microorganisms. For example, the skin 
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has sebaceous glands that produce oily secretions named sebum, which maintains the 

skin pH between 3 and 5, inhibiting the growth of most microorganisms. However, 

breaks in the structure of the skin such as scratches, wounds or abrasions or even the 

bite of insects might introduce pathogens into the lower layers of the skin and present a 

potential route of infection. On the other hand, the conjunctivae and food, respiratory 

and urogenital tracts are lined by mucous membranes with an external epithelial layer 

and a connective tissue layer underneath. Saliva, tears and mucous secretions have 

antibacterial or antiviral substances that act in order to wash away potential invaders. 

Mucous traps foreigner microorganisms and in the lower respiratory tract, the mucous 

membrane is covered by cilia (hair-like protrusions from the cell membrane of epithelial 

cells); the synchronized movement of cilia propels the pathogens trapped in the 

mucous outside of this tract (Kindt et al., 2007). 

The physiological barriers include temperature, pH and soluble molecules 

associated with cells. The gastric acidity is an example of this type of barrier, since very 

few microorganisms can survive in such environment. Soluble factors such as 

lysozyme, interferons and complement proteins also contribute to this kind of innate 

barrier. Lysozyme is an hydrolytic enzyme found in mucous secretions and in tears and 

it is able to cleave the peptidoglycan layer of the bacterial wall. Interferons constitute a 

group of proteins produced by virus-infected cells that function to bind to adjacent cells 

and induce a generalized antiviral state. Several specific and unspecific mechanisms 

are able to activate complement proteins, render them able to damage the pathogen 

membranes either destroying them or facilitating their clearance. Collectins were also 

found to kill certain types of bacteria by direct breakdown of their lipid membranes or by 

aggregating bacteria to augment the susceptibility to phagocytosis (Kindt et al., 2007). 

Another important defence mechanism is the ingestion of pathogens or extracellular 

materials through phagocytosis. Most of phagocytic events are taken by specialized 

cells such as blood monocytes, neutrophils or tissue macrophages (Kindt et al., 2007). 

Tissue damage caused by wounds or pathogenic invaders induces a complex 

sequence of events known as inflammatory response. Certain microbial components 

can trigger an inflammatory response through interactions with cell surface receptors 

and the final result can be the recruitment of a specific immune response or the 

clearance of the invader by the components of innate immune response. The cardinal 

signs of inflammation – redness, swelling, heat, pain and sometimes loss of function – 

reflect the three main events of the inflammatory response (Kindt et al., 2007). 
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Vasodilatation of the surrounding capillaries takes place as the blood vessels that 

transport blood constrict, resulting in the ingurgitation of the capillary network 

(responsible for the redness and increase in tissue temperature). An increase of 

capillary permeability facilitates the influx of exudate and cells from the capillaries into 

the tissue and the accumulation of exudate contributes to the tissue swelling (edema). 

The migration of phagocytic cells to the capillaries walls (margination) is followed by 

the intake from the capillaries into the tissue (diapedesis) and finally the migration 

through the tissue to the site of infection (chemotaxis). As the phagocytes accumulate 

and begin their phagocytic activities, lytic enzymes are released and can damage the 

surrounding cells. The accumulation of dead cells, digested material and fluids forms 

the known pus (Kindt et al., 2007). 

 

Figure 10 – The Inflammatory response. 
 The entry of a foreign body into the tissue causes tissue damage accompanied by the release 
of vasoactive and chemotactic factors. These factors induce increased blood flow to the 
affected area, increased capillary permeability and influx of white blood cells such as 
phagocytes and lymphocytes from the blood into the tissue. (Kindt et al., 2007) 
 
 

Once the inflammatory response decreases and most of the debris are cleared by 

phagocytic cells, tissue repair and regeneration begin. Capillaries grow into fibrin of a 

blood clot and new cells of connective tissue (fibroblasts) replace fibrin and the clot 

dissolves. As the fibroblasts and capillaries accumulate, scar tissue is formed (Kindt et 

al., 2007). 

 

 

 

 



 
 
Universidade de Aveiro                                           Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   35 
 

 

1.4.1 – Pattern Recognition Receptors 

In order to properly initiate an immune response against an infectious agent, the 

innate immune cells must have “something” that allows them to recognize certain 

microbial components patterns (commonly known as Pathogen-associated molecular 

patterns – PAMPs) which are inherent to the majority of invader pathogens. Otherwise 

they can recognize danger signals exposed at the surface of or released from 

damaged cells (Danger-associated molecular patterns – DAMPs). In fact there are 

cytosolic molecules and cell surface receptors with the ability of recognizing pathogen 

patterns, the so called, pattern-recognition receptors (PRRs). These recognized 

patterns include combinations of sugars, certain proteins, particular molecules with lipid 

content and some nucleic acid motifs. The ability of PRRs to distinguish self and 

nonself components is remarkable, since the targeted molecular pattern is only 

produced by the pathogen and never by the host (Kindt et al., 2007). 

There are multiple families of PRRs, the best characterized including those 

associated with the cell membrane such as the Toll-like receptors (TLRs) and C-type 

lectin receptors (CLRs) and cytosolic receptors such as the NOD-like and RIG-I-like 

receptors (NLRs and RLRs, respectively). In general terms, the recognition of ligands 

by PRRs triggers signal transduction pathways which results in the expression of pro-

inflammatory cytokines, chemokines and antiviral molecules (interferons); with the 

exception of NLRs that lead to the formation of multiprotein complexes named 

inflammasomes that serve as cleavage and activation platforms for caspase-1. 

Caspase-1 promotes maturation and secretion of IL-1β (interleukine-1β) and IL-18, 

which amplifies even further the pro-inflammatory response [reviewed at (Koyama et 

al., 2008; Wilkins and Gale, 2010)]. 

1.4.1.1 – Toll-like receptors 

Toll-like receptors are a transmembrane family of PRRs that are expressed in a 

variety of immune and non-immune cells, including monocytes, macrophages, dendritic 

cells, neutrophils, B and T cells, fibroblasts, endothelial and epithelial cells. TLRs 

initiate the immune response after the recognition of PAMPs presented in microbial 

molecules or endogenous DAMPs released by damaged cells. There are ten functional 

TLRs in humans: TLR 1, 2, 4, 5, 6 and 10 are expressed at the cell surface and mainly 

recognize membrane or wall components of pathogens, while TLR 3, 7, 8 and 9 are 

expressed at membranes of endolysosomal compartments and recognize nucleic 
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acids. TLRs have a variable number of ligand-sensing, leucine-rich repeats at their N-

terminal and a cytosolic domain Toll-interleukin-1 receptor (TIR). TIR domain mediates 

interactions between TLRs and adaptor proteins involved in the regulation of the 

downstream signaling such as MyD88 (Myeloid differentiation primary response gene 

88), TRIF (TIR-domain-containing adapter-inducing interferon-β), TRAM (Toll-receptor-

associated molecule) and TIRAP (toll-interleukin 1 receptor (TIR) domain-containing 

adaptor protein; also named MAL [MyD88 adapter-like]). The signaling pathways 

downstream promote the expression of pro-inflammatory cytokines, chemokines and 

type I and III interferons (Kawai and Akira, 2011).  

 

1.4.1.2 – C-type lectin receptors 

C-type lectin receptors (CLRs) are a diverse family of soluble and transmembrane 

proteins that have one or more C-type lectin-like domains (CTLDs) and are particularly 

important in antifungal immunity. Most CLRs that function as PRRs belong to the 

Dectin-1 or the Dectin-2 subgroups. Members of these groups are transmembrane 

proteins expressed mainly in monocytes, macrophages and dendritic cells that 

recognize fucose, mannose or glycan carbohydrate structures. Dectin-1 and dectin-2 

are the best characterized CLRs that function as PRRs and both have been showing to 

promote NF-kB canonical signaling through the activation of SYK (spleen tyrosine 

kinase) and a multiprotein complex of CARD9, Bcl-10 and MALT1; they also activate 

NFAT and AP-1, and dectin-1 also regulates NF-kB activity through the non-canonical 

NF-kB pathway and through Raf-1-mediated phosphorylation and acetylation. As a 

result, the signaling pathways initiated by either of these two CLRs can control the 

expression of numerous cytokines that direct the innate and adaptive immune 

response. Signaling pathways activated by CLRs can also directly regulate or modulate 

TLR signaling; upon activation, DCIR (Dendritic Cell Immunoreceptor) and MICL 

(Myeloid C-type lectin-like receptor) recruit the phosphatases SH2-domain-containing 

protein tyrosine phosphatase 1 (SHP-1) and SHP-2 and inhibit TLR8 and TLR9 

(Hoving et al., 2014).  

 

1.4.1.3 – NOD-like receptors 

The Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) 

are cytosolic receptors that provide a second line of defence against invader 

pathogens. The NLR family comprises 22 proteins that are divided in subfamilies 
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(NLRA, NLRB, NLRC, NLRP e NLRX) based on their protein interacting N-terminal 

domains; additionally, all NLRs have a nucleotide-binding/oligomerization domain and 

a variable number of ligand-sensing, leucine-rich repeats at their C-terminals.  NOD1 

and NOD2 are the best characterized NLRs that belong to the NLRC family, 

recognizing bacterial peptidoglycan components. Upon activation, NOD1 and NOD2 

homodimerize and recruit signaling molecules leading to the pro-inflammatory cytokine-

dependent NF-kB/AP-1 expression and type I interferon expression, dependent of IRF-

3/IRF-7. Other NLRs are activated by a different array of pathogens or endogenous 

danger signals and oligomerize in order to form multiprotein complexes 

inflammasomes. The oligomerization into inflammasomes induces the cleavage and 

activation of caspase-1 that promotes the processing and secretion of IL-1β and IL-18 

and can induce cell-death known as pyroptosis (Kanneganti, 2010). 

 

1.4.1.4 – RIG-I-like receptors 

The RIG-I-like receptors (RLRs) are a family of cytosolic sensors for viral RNAs 

that include the retinoic acid-inducible gene-I (RIG-I), the melanoma differentiation-

associated 5 (MDA5) and the laboratory of genetics and physiology 2 (LGP2). These 

RLRs are composed of a DexD/H box RNA helicase domain, a C-terminal repressor 

domain and two caspase recruitment domains at their N-terminal. The LGP2 doesn’t 

have the CARD domain as the other two RLRs, consisting of a RNA helicase domain 

and a repressor terminal. RIG-I and MDA5 function as cytoplasmic sensors of RNA to 

induce the IFN-I production in non-immune cells (Loo and Gale, 2011). 

The two best characterized RIG-I-Like Receptors (RLRs), RIG-I and MDA5, are 

ubiquitously expressed in the cytosol of several cell types, and are able to recognize 

structurally distinctive RNA species that reach the cytosol of the host cell, by infection 

or by means of transfection (Dixit and Kagan, 2013). 

The Retinoic acid-inducible gene-I (RIG-I) was first identified as an induced gene in 

promyelocytic leukaemia cells after treatment with retinoic acid (Sun, 1997), while the 

melanoma differentiation associated gene 5 (MDA5) was first identified in a 

differentiation-induction subtraction hybridization screen, designed to define genes 

regulated upon induction of differentiation, in human HO-1 melanoma cells (Jiang and 

Fisher, 1993).  

Evidences suggest that RIG-I resides in membrane ruffles on non-polarized 

epithelial cells, where it associates with the F-actin cytoskeleton Alternatively, MDA5 
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localizes in the cytosol, with no visible co-localization with F-actin. Further observations 

have showed that RIG-I is capable of inducing cell migration within its association with 

F-actin and it also localizes at apical junction complexes in polarized epithelial or 

endothelial cells. The biological implications of the RIG-I – F-actin interaction are 

significant: it appears that depolymerisation of actin results in redistribution of RIG-I 

and subsequent activation of IRF3, NF-kB, and the IFN-β promoter activity (Mukherjee 

et al., 2009).  

Regarding its functions upon viral infection, RIG-I ligands encompass RNA 

molecules with two special features: (1) they possess a 5’ triphosphate (Hornung et al., 

2006) and (2) 5’ base pairing due to secondary RNA structures, such as hairpin 

conformations or panhandle structures (Schlee et al., 2009; Schmidt and Schwerd, 

2009).  

Studies targeting the characterization of molecular features of RIG-I ligands are 

largely based on in vitro transcripts [reviewed in (Schlee and Hartmann, 2010)]. In vitro 

RNA transcription by all the known RNA polymerases leaves a triphosphate at the 5’ 

terminal (pppRNA). Transfection of pppRNA in monocytes resulted in a robust 

secretion of IFN-α, while RNA without the triphosphate didn’t (Hornung et al., 2006). 

However, the 5’ triphosphate structure is not enough on its own to target a single 

stranded RNA (ssRNA) as nonself RNA and render it immunogenic – since studies 

revealed that 5’ triphosphate ssRNA  did not activated the RIG-I signaling (Schlee et 

al., 2009). Reverse cloning and sequencing of this ssRNA revealed the presence of 

sequences generated by self-coding intramolecular 3’ extensions that lead to a blunt-

ended RNA with complementary 5’and 3’ sequences (Schlee et al., 2009). Thus, these 

aberrant products of in vitro transcription are responsible for the immune-stimulatory 

properties of such preparations (Schlee et al., 2009). Alternatively to the 5´ base 

pairing, the composition of the RNA sequence may as well contribute to the stimulatory 

potential of pppRNA (Saito et al., 2008; Uzri and Gehrke, 2009). For example, the 

genomic ssRNA of Hepatitis C virus (HCV) is characterized by poly-uridine motifs with 

interspaced C nucleotides (known as poly-U/UC motifs), as well as a 5’ triphosphate 

(Saito et al., 2008; Uzri and Gehrke, 2009). Deletion of the poly-U/UC motifs abrogated 

the stimulatory activity of HCV (Uzri and Gehrke, 2009). Thus, both, the panhandle 

structures and poly-U/UC might serve as secondary PAMPs to pppRNA (Saito et al., 

2008; Uzri and Gehrke, 2009). 

 So far, the understanding of the molecular nature of MDA5 ligands is very poor. The 

common agonist for MDA5 is poly I:C, a synthetic molecule without a 5’ triphosphate 
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generated by annealing of poly-iosine strands to poly-citidine strands of variable sizes 

(Gitlin et al., 2006). Size fractionation of poly I:C revealed that MDA5 responds to high 

molecular weight poly I:C, while poly I:C with less than 1000bp acts as an agonist for 

RIG-I (Kato et al., 2008). In vitro assays using recombinant RIG-I and MDA5 showed 

that short and long poly I:C induce ATPase activity for RIG-I and MDA5, respectively 

(Kato et al., 2008). Consistent with this data, short dsRNA species (1.2-1.4 kbp) of 

reovirus genome selectively activated RIG-I, while longer dsRNA (~3.4 kbp) was able 

to activate MDA5 (Kato et al., 2008). These results strongly suggest that RIG-I and 

MDA5 discriminate short and long dsRNA; however, the underlying mechanism of the 

nucleotide length detection is yet to be discovered (Kato et al., 2008).  

All three highly related proteins that constitute the RLRs family ( RIG-I, MDA5 and 

LGP2) are presented at low levels in resting cells and its expression is strongly induced 

by type I interferons, creating a feed-forward feedback loop for a sustained antiviral 

response [reviewed at (Dixit and Kagan, 2013)]. 

RIG-I and MDA5 are DexD/H-box RNA helicases comprising two caspase activation 

and recruitment domains (CARDs) in their N-terminal – which are in fact the effector 

domains, responsible for signal transduction –  while LGP2 lacks CARDs (Saito et al., 

2007; Yoneyama et al., 2005) and reviewed at (Takeuchi and Akira, 2008; Yoneyama 

and Fujita, 2008). RIG-I and MDA5 share ~25% homology in their CARD regions and 

40% in their helicase domain (Yoneyama and Fujita, 2008); however, it was not well 

understood how nonself RNA was physiologically recognized, since none of these 

helicases has a RNA-binding domain. 

 

Figure 11 – Representation of the domains structures of RLRs and MAVS.  
Schematic representation of the domain features of the three RLRs. RIG-I and MDA5 hold two 
CARD domains while LGP2 lacks CARD domains at the N-terminus. All three RLRs contain an 
ATPase/helicase domain followed by the repressor domain (RD) at the C-terminus (CTD) – 
MDA5 RD-like domain doesn’t participate in auto-regulation. Adapted from: (Dixit and Kagan, 
2013) 
 
 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

 

40           Mariana Guedes 
 

RIG-I and LGP2 also have a repressor domain (RD, aa. 723-925), localized at the 

C-terminal domain (CTD) (Saito et al., 2007). The repressor domain is capable of 

interaction with the CARD and helicase (helicase linker region, aa. 420-627) domains, 

and overexpression of the repressor domain blocks the immediate RIG-I signalling 

(Saito et al., 2007). Thus, it was proposed an auto-repression model, in which the 

CARDs are masked through intramolecular interactions, mediated by the RD (Saito et 

al., 2007). 

The crystallographic structure of the repression domain reveals a zinc-binding 

domain, coordinated by four cysteines, also conserved in MDA5 and LGP2 (Cui et al., 

2008). Mutation studies show that this zinc-coordination site is a key structural motif, 

essential for RIG-I signalling; however, further studies are required in this matter (Cui et 

al., 2008). 

The C-terminal domain was recently described to partially overlap with the repressor 

domain, and the atomic structure of the former was determined by x-ray 

crystallography (Cui et al., 2008) and nuclear magnetic resonance (NMR) (Takahasi et 

al., 2008). One side of CTD exhibits a large cleft with positive surface charges and, the 

opposite side contains acidic patches (Takahasi et al., 2008). Adding dsRNA or 

5’pppRNA specifically titrates the NMR signal, suggesting that this cleft is, in fact, the 

RNA recognition surface (Takahasi et al., 2008). Consistent with this observation, 

mutagenesis at the cleft reduced the RNA binding and the signalling ability of RIG-I 

(Takahasi et al., 2008). Additionally, Cui et al. demonstrated, through filtration-gel 

analysis, that RIG-I CTD recognizes 5’pppRNA as a dimer, so, it is probable that one 

dsRNA molecule can simultaneously bind multiple CTD RIG-I molecules (Cui et al., 

2008). 

Functional studies suggest that CTD detains two distinct functions: the RNA 

recognition and signal repression. Mutagenesis in the concave cleft inactivated RNA 

recognition, but none of the mutations led to a permanently active RIG-I, suggesting 

that the RNA recognition and the RNA repression surfaces don’t overlap (Takahasi et 

al., 2008). Furthermore, ATP binding or its hydrolysis is not required to RNA 

recognition, suggesting a model of an inactive RIG-I, in which the repressor domain 

mediates a closed structure through intramolecular interactions, while the RNA-binding 

domain remains available (Cui et al., 2008; Saito et al., 2007; Takahasi et al., 2008). 

When a virus releases its dsRNA or 5’pppRNA, these PAMPs bind to the concave 

surface of the RNA-recognition site, inducing conformational changes in the presence 

of ATP, and, consequently, the CARDs are exposed (Takahasi et al., 2008). The freed 
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CARD domains form complexes with other molecules of RIG-I or with the protein 

adaptor MAVS (Mitochondrial AntiViral Signalling adaptor) for the progression of the 

downstream signal transduction (Cui et al., 2008; Takahasi et al., 2008).  

 

Figure 12 – Model of RIG-I activation by nonself RNA.  
In an inactive state, the RIG-I CTD overlaps with the repressor domain and interacts with the 
helicase domain and the CARD in the absence of its ligand. When viruses produce dsRNA or 
5’ppp-RNA, these nonself RNAs bind to the RNA-recognition cleft on the CTD and induce 
conformational changes in the presence of ATP, resulting in the exposure of the CARD. The 
released CARD becomes able to form complexes with either other RIG-I molecules or 
downstream adaptor MAVS to transduce biological signals (Yoneyama and Fujita, 2008). 
 

 

Unlike RIG-I and MDA5, the LGP2 role in antiviral immunity is less clear. LGP2 

lacks the CARD domain.(Rothenfusser et al., 2005; Yoneyama et al., 2005) Deployed 

of a signalling domain, LGP2 was proposed as a negative regulator of RLR signalling, 

since the overexpression of LGP2, in fact, does not activate induction of IFN-

β.(Rothenfusser et al., 2005) In vivo experiments with different lines of LGP2-defficient 

mice contradicted the previous data generated by in vitro studies, implicating LGP2 as 

a positive regulator (Satoh et al., 2010). In the absence of LGP2, the viral RNA 

responses through RIG-I and, particularly, through MDA5 were compromised while 

responses to synthetic ligands weren’t affected (Satoh et al., 2010). Presumably, LGP2 

facilitates the binding of viral RNA – potentially through protein complexes – to its 

receptor, while the affinity of RIG-I and MDA5 is strong enough to bind naked synthetic 

agonists (not bound to LGP2) (Satoh et al., 2010; Venkataraman et al., 2007). 

Structural analysis of the binding interface between RNA and the CTD supports this 

model, since it predicts a weaker affinity of MDA5 than RIG-I to its ligand (Takahasi et 

al., 2009).   
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Besides confirming the role of LGP2 as a positive regulator (although not essential 

to RLR signaling), a recent study implicated LGP2 as an intrinsic regulator of the 

survival of CD8+T virus-specific cells (Suthar et al., 2012). CD8+T cells are crucial to 

control the pathology of the West Nile virus in the brain. LGP2-defficient mice 

presented a higher viral burden and a significant reduction of West Nile virus-specific 

CD8+T cells, leading to a higher mortality rate when compared to wild-type animals 

(Suthar et al., 2012). In spite of these findings, further clarification is still necessary to 

establish the role of LGP2 in RLR signaling pathways. 

 

1.4.1.5 – Cytosolic DNA receptors 

While RLRs focus their actions against viral RNAs, very recently, other molecules have 

been found to act as cytosolic receptors capable of direct recognition of viral DNA. 

Among them, DAI (DNA-dependent activator of IFN-regulatory factor) was the first DNA 

cytosolic sensor described to induce type I IFN in response to dsDNA (Takaoka et al., 

2007). Several groups identified AIM2 (absent in melanoma 2) as a cytosolic dsDNA 

sensor, whose activation promotes the assembly of an inflammasome (Bürckstümmer 

et al., 2009; Fernandes-Alnemri et al., 2009; Hornung et al., 2009). A third cytosolic 

dsDNA sensor, LRRFIP1 (Leucine-rich repeat flightless-interacting protein 1) can 

recognize AT-rich B-form dsDNA as well as GC-rich Z-form dsDNA. Yang et al. 

demonstrated that LRRFIP1 triggers IFN-β production in a β-catenin-dependent 

manner (β-catenin binds to the C-terminal domain of IRF3, inducing an increase in IFN-

β expression) (Yang et al., 2010). Despite the discovery of these cytosolic DNA 

sensors and their ligands, their precise role in antiviral innate immunity remains elusive.  

 

Since a single pathogen can activate multiple PRRs, crosstalk between the different 

receptors might have a role in enhancing or inhibiting immune responses. Thus, the 

regulation of the PRR signaling is required in order to clear infectious pathogens and, 

at the same time, preventing an abnormal and excessive PRR activation that could 

lead to the development of auto-immune or inflammatory disorders.  
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1.5 – Cellular responses to viral infections: Interferons (IFNs) and Interferon-

stimulated genes (ISGs) 

1.5.1 - Interferons  

There is no definitive cure to viral infections and, most of the times, their outcome 

relies entirely on the ability of the immune system to recognize, restrain and eliminate 

the virus. Based on current evidences, it seems that the immune system employs 

essentially the same type of mechanism against the endless array of viruses. This 

mechanism relies on the actions of interferons (IFNs). This molecules are produced in 

infected cells and are capable of “warning” the neighbouring cells about the presence 

of a viral infection in course, so they can be better “prepared” to fight the infection (or 

even commit suicide through apoptosis), thus preventing the spread of the virus. To 

date, the key aspect for the establishment of an effective immune response relies on a 

robust production and secretion of IFNs in response to a given infection (Meager, 

2006).  

The interferon system is considered unspecific since several stimuli can induce the 

production of the same type of IFNs and the same type of IFNs inhibits several kinds of 

viruses. On the other hand, interferon can also possess very specific actions 

depending on the animal species in which they are induced (e.g.: IFNs protect human 

and monkey cells but not chicken cells) (De Andrea et al., 2002).  

Based on their amino-acidic sequence, their receptor specificity, chromosomal 

location, structure and physicochemical properties, interferons are grouped in three 

distinct classes, namely, type I , type II  and type III (Meager, 2006).  

The mammalian type I interferons include IFN-α (alpha), IFN-β (beta), IFN-κ 

(kappa), IFN-δ (delta), IFN-ε (epsilon), IFN-τ (tau), IFN-ω (omega), and IFN-ζ (zeta, 

also known as limitin). This repertoire of interferons is thought to signal through the 

surface receptor complex IFNAR that consists in two transmembrane chains IFNAR-1 

and IFNAR-2. However, not all type I interferons are expressed in humans; thus, the 

focus will be only upon IFN-α and -β, the first to be discovered and best characterized 

interferons (Meager, 2006). 

IFN-α is encoded in a cluster of genes on chromosome 9 in humans. It is a protein 

family that comprises around 13 subtypes that share 76-99% of their amino acid 
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identity, whose structure comprises 166 amino acids with no glycolisation sites and a 

stable pH – with the exception of IFN-α2a that has a deletion on position 44. The 

different subtypes are produced differentially, depending on the inducer or producing 

cell. They are induced in macrophages and lymphocytes under the stimulation by 

tumour or virus-infected cells as well as prokaryotic cells and mitogens (De Andrea et 

al., 2002; Meager, 2006).  

Unlike IFN-α, IFN-β is encoded by a single gene, also on chromosome 9 in humans. 

IFN-β proteins have a 166 amino acid sequence, sharing 40-50% of homology with 

IFN-α. They are expressed during myeloid differentiation and, as for IFN-α, in response 

to a given infection, particularly to Gram-negative bacterial infections (interestingly 

bacterial LPS doesn’t induce IFN-α) (Meager, 2006). 

Interferon-γ belongs to the type II class of interferons and is commonly known as 

the “immune” interferon. It is encoded on chromosome 12 and it is produced mainly in 

sensitized lymphocytes with the aid of macrophages and only under the action of 

mitogens. The IFN-γ protein has 166 amino acids with 23 of them representing a 

hydrophobic signaling sequence, with no analogy with IFN-α and –β (De Andrea et al., 

2002; Meager, 2006). 

Until 2003, the knowledge of immune responses to viruses was focused on type I 

and type II interferons; however, a new class of IFNs has been identified, the type III 

interferons. They comprise a family of proteins capable of inducing antiviral protection, 

designated by IFN-λ1, -λ2 and –λ3, alternatively, interleukins 29, -28A and -28B. 

Despite using a different receptor complex than type I IFNs, the main outcome is 

basically the same, resulting in the activation of Janus kinase (JAK)–Signal transducers 

and activators of transcription (STAT) signal transduction events, including the 

formation of IFN-stimulated gene factor 3 (ISGF3). A special feature of this class is that 

their actions are mainly limited to epithelial-like cells, providing antiviral protections only 

to certain tissues and organs (Meager, 2006). 

In spite of interferons being acknowledged by their potent antiviral action, they were 

also found to affect other vital cells and body functions. They can increase cell death in 

granulocytes, macrophages, natural killer and cytotoxic lymphocytes and interfere with 

the humoral immune response and the antigen/receptor expression. They can also lyse 

or inhibit the growth of certain cells, influence the differentiation and hormonal functions 

of epinephrine and adrenocorticotropin (ACTH). Interestingly, the effect of these 

modulations can also influence the outcome of viral infections (Albrecht et al., 1996). 
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1.5.2 – Interferon-stimulated genes 

The interferon system is famous for its ability to block viral replication and their 

effects are mediated by gene products whose expression is highly induced by 

interferons (Sen and Sarkar, 2007). These Interferon-stimulated genes (ISGs) were 

first discovered over 25 years ago, and, depending on cell type, interferon dosage, time 

of treatment, several microarray studies identified 50 to 1000 ISGs; In spite of these big 

numbers, only a small amount of action mechanisms of the ISG effector proteins were 

so far revealed. Collectively, ISGs aim at almost all steps of viral replication and 

present combinatory antiviral effects, acting synergistically to provide a powerful 

antiviral response. Some ISGs can even re-enforce antiviral effects inducing additional 

IFNs or ISGs (Schoggins and Rice, 2011). – refer to CHAPTER 2.4 for individual ISG 

action mechanisms. 
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2 – Mitochondria-dependent Antiviral Signalling – via the MAVS adaptor  

 

2.1 – Overview of the mitochondria-dependent antiviral pathway 

Mitochondria have been shown to be the key location for the signalling pathways 

initiated by RLRs. In fact, the mitochondrial antiviral signalling adaptor (MAVS), 

primarily localized in the mitochondrial outer membrane, has been characterized as a 

RIG-I binding protein (Ohta and Nishiyama, 2011). 

Upon RNA virus infection, the RIG-I helicase domain senses RNA-specific 

structures, inducing conformational changes and exposure of CARD domains, which 

are then submitted to polyubiquitination by TRIM25 at Lys172 (Gack et al., 2007). This 

conformational change mediates the dimerization of RIG-I through CARD interactions 

and subsequent binding to MAVS, which, in turn, dimerizes to generate a signalling 

scaffold (Gack et al., 2007). The RIG-I – MAVS interaction leads to the recruitment of 

members of the TRAF (Tumour Necrosis Factor (TNF) Receptor-Associated Factor) 

adaptor family, resulting in the parting of the signalling pathway in two: the antiviral IFN 

response, mediated by TRAF3, or the inflammatory response, mediated by TRAF2 and 

TRAF6 (Figure 13) (Saha et al., 2006; Seth et al., 2005; Xu et al., 2005).   

The type I IFN induction is mediated by an initial complex, consisting of TRAF3, 

NEMO (NF-κB Essential Modulator, also known as IKK-γ [Inhibitor of κB kinase, 

gamma subunit]) and TANK (TRAF family member-associated NF-kB activator). This 

complex controls the kinase activity of TBK1 (TANK-binding kinase 1) and IKKε 

(Inhibitor of κB kinase, epsilon subunit), which, specifically, phosphorylates the 

interferon regulatory factors IRF3 and IRF7, leading to their dimerization, nuclear 

translocation, and transcriptional activation of type I IFN genes (Belgnaoui et al., 2011). 

On the other hand, TRAF2 and TRAF6, in cooperation with RIP1 (Receptor-

Interacting Protein 1), activate the canonical kinase complex – IKKα, IKKβ and NEMO 

– resulting in the phosphorylation of IκBα at its Ser32/36 residues, leading to the 

ubiquitin-dependent proteasomal degradation of IκBα. IκBα is a regulatory protein that 

inhibits NF-kB by complexing with, and trapping it in the cytoplasm. The release of 

DNA subunits of NF-kB results in the nuclear activation of specific NF-kB target genes 

which regulate inflammatory responses (Belgnaoui et al., 2011). 
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Figure 13 – Schematic representation of the 

RIG-I signalling pathway.  

Upon detection of viral RNA with specific 
structure features (short dsRNA or 5’-
pppRNA) RIG-I is subject of protein unfolding 
(exposing the CARD domains), CARD 
ubiquitination by TRIM25 and interaction with 
MAVS that is bound to the mitochondrial 
outer membrane through its transmembrane 
domain. MAVS dimerizes (forming prion-like 
aggregates at the surface of mitochondria) 
and recruits adaptor proteins which are 
responsible for the activation of the 
transcription factors NF-kB, IRF3 and/or 
IRF7. The NF-kB branch of this pathway is 
induced via the recruitment of TRAF2/6 and 
RIP1, which triggers the activation of the IKK 
complex (NEMO/IKKα/IKKβ) that in turn is 
responsible for the phosphorylation of the NF-
kB inhibitor IκBα, causing its proteasomal 
degradation. Phosphorylation of this 
repressor releases NF-kB, promoting its 
nuclear translocation. The IFN branch of the 
RIG-I pathway is carried out by the interaction 
of TRAF3 with MAVS, which leads to the 
recruitment of the TANK/NEMO/IKKε/TBK1 
complex, which is accountable for the 
phosphorylation, dimerization and nuclear 
translocation of IRF3 and/or IRF7. IRF3 and 
IRF7 dimers bind to ISREs (Interferon-
Stimulated Response Elements) promoters to 
ultimately induce the expression of IFN-
stimulated genes. Text adapted from: 
(Belgnaoui et al., 2011)  
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Both, IRFs and NF-kB bind to the IFN-β promoter in a temporary coordinated 

fashion to carry on its transcription. In turn, the secreted IFN-β binds to and activates 

the type I IFN receptor in an autocrine or paracrine manner. The receptor-ligand 

interaction induces the activation of the JAK-STAT pathway and formation of ISGF3 

(IFN-stimulated gene factor 3), which translocates to the nucleus and induces the 

transcription of hundreds of ISGs (Interferon Stimulated Genes) involved in the 

generation of an antiviral state (Belgnaoui et al., 2011).  

Many ISGs function as direct antiviral effectors that prevent the viral genome 

replication, virion assembly or release from the infected cells. Others encode signalling 

pathways components such as PRRs or transcription factors in order to enhance the 

IFN response, thus creating a positive feedback loop, amplifying the antiviral response 

(Dixit and Kagan, 2013). 
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2.2 – Viral interaction with RIG-I/MDA-5 and subsequent recruitment of MAVS 

adaptor 

2.2.1 – Activation of RIG-I by viral genomes and proximal signal 

transduction  

The RLR activation is a multistep process that requires a well-coordinated 

interaction between receptor, ligand and several accessory proteins. Contrarily to RIG-

I, the requirements for an efficient MDA5 activation are yet to be clarified, but it seems 

reasonable to assume that both follow a similar mechanism.  

Taking RIG-I as an example, the knowledge of this process, to date, involves the 

following chain of events (as proposed by (Dixit and Kagan, 2013) review): 1 – in 

resting-state cells, RIG-I adopts a closed conformation, resulting in an auto-inhibitory 

state (no signaling); 2 –  pppRNA binds to RIG-I and induces conformational changes 

that lead to dimerization and exposure of CARDs in an open conformation; 3 – 

phosphorylation events of RIG-I and TRIM25-dependent ubiquitination activate the 

signalling ability of RIG-I; 4 – RIG-I associates with MAVS, in a CARD-dependent 

manner; 5 – MAVS accumulates in signalling aggregates by a prion-like mechanism.  

In the absence of infection, RIG-I is kept in an auto-inhibited state by intramolecular 

interactions between CARDs and helicase domains that hinders the RNA binding to the 

helicase domain and prevents CARDs from signalling (Kowalinski et al., 2011; Saito et 

al., 2007). When overexpressed, the N-terminal of RIG-I comprising the two CARDs 

adopts a constitutively active conformation, but, in physiologic conditions, the closed 

conformation only opens upon binding of the ligand at the C-terminus to facilitate the 

downstream signalling through CARDs (Kowalinski et al., 2011; Yoneyama et al., 

2004).  

Crystallographic structures of RIG-I present a detailed vision of the conformational 

changes triggered by the ligand binding, which are required to the signal initiation 

(Kowalinski et al., 2011; Luo et al., 2011). Structural data suggest a model where, in an 

auto-repressed state, the CTD is deprived of intramolecular interactions and can freely 

engage the binding of pppRNA (Kowalinski et al., 2011). This initial event increases the 

local RNA concentration and leads to a cooperative RNA and ATP binding to the 

helicase domain, resulting in dramatic rearrangements within the helicase domain 

(Kowalinski et al., 2011). The helicase domain and the CTD completely surround the 

RNA, anchoring themselves to the helix through a number of intramolecular 

interactions (Luo et al., 2011). This newly formed channel comprises 9 to 10 bp along 
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the RNA; longer RNAs allow the binding of two monomers of RIG-I, simultaneously 

(Kowalinski et al., 2011). However, this apparent dimerization lacks a protein-protein 

interface, reflecting instead an oligomerization guided by RNA (Kowalinski et al., 2011).  

 

Figure 14 – Model of RIG-I activation by short dsRNA and/or 5’ppp ssRNA.  
A) RIG-I, in its inactive state is found with a closed structure with the CARD repressed by, 
presumably, interactions between the CTD and helicase linker region. B) Upon viral infection, 
short dsRNA or 5’pppRNA activates RIG-I in the presence of ATP. C) Longer dsRNAs (like poly 
I:C) might interact with CTD and the helicase domain of RIG-I, allowing the formation of a stable 
complex that induces a distinct conformation of RIG-I (Takahasi et al., 2008). 

  

The propagation of the signalling pathway through ligand-activated RIG-I is 

accomplished by the N-terminal CARDs (Yoneyama et al., 2004). Deletion of CARDs 

results in a dominant negative phenotype (Yoneyama et al., 2004). Take the following 

example: Huh7.5 cells, a subpopulation of Huh7 hepatocyte cell line, which is 

characterized by a mutation of threonine by an isoleucine in the position 55 (T55I) at 

the first CARD of RIG-I, failed to respond to HCV infection (Sumpter et al., 2005). As a 

consequence, the absence of a functional antiviral activity generated conditions for 

HCV replication in Huh7.5 cells (Sumpter et al., 2005). The T55I mutant interferes with 

the ubiquitin-ligase E3 TRIM25, which is necessary for the activation of RIG-I signalling 

(Sumpter et al., 2005).  

Gack et al. reported that TRIM25 binds to the first CARD through its SPRY domain 

(Gack et al., 2007). A pre-requisite for TRIM25 is the phosphorylation of RIG-I at T170 

by a (not yet identified) phosphatase (Gack et al., 2010). A phosphomimetic mutation of 

T170 jeopardized the TRIM25 binding to RIG-I and, subsequently, interfered with 

downstream signalling events (Gack et al., 2010). TRIM25 transfers ubiquitin fragments 

bound to K63 in lysine 172 (K172) at the second CARD, using its RING domain and 
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oligomerization of RIG-I with the MAVS adaptor depends critically upon this 

modification (Gack et al., 2007). Accordingly, TRIM25-defficient MEFs (Mouse 

Embryonic Fibroblasts) can’t secrete IFN-β after infection with Sendai virus (Gack et 

al., 2007; Jiang et al., 2012). Despite the fact that TRIM25 does not bind ubiquitin 

fragments to MDA5, a poly-ubiquitin binding by MDA5 is necessary for its signalling 

functions (Jiang et al., 2012).  

The need of RIG-I ubiquitination for the initiation of the downstream signalling was 

challenged by a study using a cell-free system, to identify the minimal components 

necessary for the signal transduction (Zeng et al., 2010). The RIG-I pathway was 

reconstituted by a mix containing affinity-purified RIG-I, raw mitochondria and 

peroxisomes (containing the adaptor MAVS), cytosolic extracts (containing TBX1), in 

vitro synthesised IRF3 and ATP. The RIG-I activity was quantified by the measurement 

of the IRF3 dimerization, a readout for its activation. In this in vitro assay, the authors 

reviewed key aspects of the RIG-I signalling and revealed new regulatory mechanisms. 

The IRF3 activation required MAVS and TRIM25, while depletion of these proteins by 

RNAi interfered with IRF3 dimerization. RIG-I needed to be isolated from virus-infected 

cells in order to be activated by in vitro RNA or to be present under the form of a N-

terminal CARD fragment for the IRF3 activation to occur. The ubiquitination factory, 

responsible for RIG-I activation, showed to comprise E1, E2 Ubc5, Ubc13 and E3 

TRIM25, once the mitochondrial fraction of infected cells with depletion of Ubc5 

(isoform b and c) and Ubc13 no longer raised IRF3 dimerization. Thus, the TRIM25 

requirement and K63-bound ubiquitin for the IFN-β induction by RIG-I was confirmed in 

this experimental context (Zeng et al., 2010). 

As a consequence of the initial antiviral events (viral-RNA binding  RIG-I activation 

 CARDs ubiquitination) as previously described, RIG-I turn into an adequate 

complex, capable of inducing a powerful downstream signalling cascade through its 

interaction with the mitochondrial antiviral signalling (MAVS) adaptor. 

  

2.2.2 – MAVS Interactome/Signalosome 

The MAVS adaptor, comprising 540 amino acids, in Homo sapiens, is an external 

membrane protein with a predicted molecular weight of ~56kDa (Kawai et al., 2005; 

Meylan et al., 2005; Seth et al., 2005; Xu et al., 2005). MAVS is coded at the nuclear 

genome and it is ubiquitously expressed in a variety of cells lines and tissues (Kawai et 

al., 2005; Meylan et al., 2005; Seth et al., 2005; Xu et al., 2005). 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   53 
 

Structurally, MAVS has a CARD domain in its amino terminal (aa. 10 to 77), a 

proline-rich region (PRR; aa. 107 to 173) and a C-terminal transmembrane domain 

(CTD; aa. 514 to 535) that anchors MAVS to the outer mitochondrial membrane (Seth 

et al., 2005). MAVS also comprises two TRAF-interacting motifs (TIMs) at the proline-

rich region: one of them localizes at aa. 143-147 and binds TRAF2, and the second 

one localizes at aa. 153-158 binding TRAF6 (Seth et al., 2005; Xu et al., 2005). An 

alternative TRAF6-binding site is also located at the C-terminal (aa. 455-460), and both 

TIMs at the PRR and carboxyl terminal are required for the NF-kB activation mediated 

by TRAF6 (Xu et al., 2005). It was recently demonstrated that the C-terminal TIM of 

MAVS also binds to TRAF3 and exclusively mediates the induction of IFN and ISG 

expression (Paz et al., 2011; Saha et al., 2006).  

 

Figure 15 – Schematic representation of Mitochondrial Antiviral Signalling protein. 
In accordance with (Seth et al., 2005); TM – Transmembrane domain; N- amino terminal; C- 
Carboxil terminal 
 
 

The initial identification of MAVS was achieved by four independent groups, almost 

simultaneously (Kawai et al., 2005; Meylan et al., 2005; Seth et al., 2005; Xu et al., 

2005). One group used a cloning strategy to identify activating molecules of IFN-β 

promoter and ended up isolating a gene, whose protein they named IFN-β Promoter 

Stimulator-1 (IPS-1) (Kawai et al., 2005). A second group isolated the same protein by 

screening of non-characterized proteins known as powerful NF-kB inducers; they 

named their protein as VISA – Virus-Induced Signalling Adaptor (Xu et al., 2005). Two 

other groups conducted research profiles at human proteins databases to identity novel 

proteins containing CARD domains, similar to those found at RIG-I and MDA5; they 

called the resulting products Cardif (CARD adaptor inducing IFN-β) and MAVS 

(mitochondrial antiviral signalling adaptor) (Meylan et al., 2005; Seth et al., 2005). 

The precise space-time events that involve MAVS adaptor in viral infections are still 

under intense investigation. Although several studies portray adaptor molecules that 

interact with MAVS, it is unlikely that all of them have a physiological role at the MAVS 

mediated signalling [MAVS interacting partners can be reviewed in (West et al., 2011)]. 

However, given their physiological importance in the innate immune response to viral 

infection, some of the components of MAVS interactome already mentioned in this 
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chapter will be further analysed here, and a few more components will now be 

introduced. 

 
 

 

Figure 16 – Focusing on the Mitochondria: antiviral signalling pathways. 
Cytosolic viral RNA is recognized by the RIG-I-like receptors (RLRs) RIG-I and MDA5, which 
activate MAVS through CARD-CARD interactions. MAVS then recruits various signalling 
molecules to transduce downstream signalling such as TRAF6 and TRAF5. TRAF6 along with 
TRADD activates canonical NF-kB signalling via RIP1 and FADD. Canonical NF-kB signalling 
occurs as the IκB kinase (IKK) complex – consisting of IKKα, IKKβ and IKKγ (a.k.a. NEMO) – 
phosphorylates the NF-kB inhibitor IκBα, resulting in the proteasomal degradation of IκBα and 
thus liberating NF-kB to translocate into the nucleus and initiate pro-inflammatory cytokine gene 
expression. MAVS also interacts with various molecules that activate IRF signalling (such as 
STING). These molecules, together with the TRAP complex and the SEC61 translocon mediate 
the activation of TBK1, which phosphorylates IRF3 and IRF7. In addition, MAVS interacts with 
TOM70 which, in turn, interacts with HSP90 and thereby localizes TBK1 and IRF3 in proximity 
to the MAVS signalosome. Finally, MAVS binds to TRAF2 and TRAF3 and through TRADD and 
TANK/NAP1 promotes IKKε- and TBK1-mediated phosphorylation of IRF3. This promotes IRF3 
nuclear translocation, leading to the expression of type I interferon genes. Adapted from: (West 
et al., 2011) 
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TRAF3: The MAVS regulation of type I IFN induction is accomplished by direct and 

specific interaction between the TRAF domain of TRAF3 and a TRAF interaction motif 

of MAVS itself (TIM) (Saha et al., 2006; Tang and Wang, 2009). Point mutations in two 

critical amino acids (Y440A/Q442A) in the TRAF domain of TRAF3 prevented the 

association with MAVS and completely ablated the TRAF3-dependent IFN production, 

after viral infection (Saha et al., 2006). Additionally, TRAF3 knockout cells showed a 

pronounced reduction in IFN-α production, indicating its crucial role in RLR signalling 

(Saha et al., 2006). After TRAF3 recruitment to the signalling complex, the RING 

domain of TRAF3 – responsible for its E3 ubiquitin ligase activity – assembles Lys63 

polyubiquitin chains, thus creating a scaffold for the assembly of a signalling complex 

made of IKKε and TBK1, leading to the activation of IRF3 and IRF7 ([reviewed at (West 

et al., 2011)]. 

TRAF2 and TRAF6: Similarly to TRAF3, TRAF2 and TRAF6 interact with MAVS (Xu 

et al., 2005). Although the binding of TRAF6 to MAVS has been demonstrated, the role 

of TRAF6 in IFN-α/β production is not fully understood. A recent report showed that 

NF-kB, JNK (c-Jun N-terminal kinase) and p38 mitogen-activated protein kinase 

activation was compromised in TRAF6-deficient MEFs in response to vesicular 

stomatitis virus (VSV) and poly I:C (Yoshida et al., 2008). Furthermore, this study 

suggested that MAVS requires TRAF6 and MEKK1 (mitogen-activated protein (MAP) 

kinase/extracellular signal-regulated protein kinase (ERK) kinase 1) to activate NF-kB 

and mitogen-activated protein kinases (MAPKs) to achieve an optimal type I IFN 

induction (Yoshida et al., 2008). In line with the role of TRAF6 in the RIG-I signalling, 

myeloid dendritic cells and fibroblasts, upon Sendai virus (SeV) infection, mediate the 

activation of the p38 MAPK, via TRAF2 and TAK1 (aka. Mitogen-activated protein 

kinase kinase kinase 7); the p38 MAPK activation, in turn, promoted the IL-12 

production and increases the type I IFN induction (MIKKεlsen et al., 2009).   

TANK and NAP-1: Both, TANK (TRAF-family member associated NF-kB activator) 

and NAP-1 (NF-kB-activating kinase-associated protein 1) are adaptor proteins 

involved in IRF activation in response to a viral infection (Guo and Cheng, 2007). TANK 

acts as a scaffolding protein with multi-domains that gathers elements of the IRF and 

NF-kB pathways, promoting the activation of both, the IKK complex and the IKK related 

kinases (Guo and Cheng, 2007). NAP-1 is an ubiquitous cytoplasmic protein that 

interacts with IKKε and TBK1, facilitating the IRF3 activation and induction of IFN-β 

after VSV infection (Sasai et al., 2006).  
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NEMO: Known as a regulatory subunit of the classical IKK complex, NEMO serves 

as a bridge for the NF-kB and IRF signalling pathways, promoting cross-talk between 

these pathways during RIG-I signalling to activate IFNs (Zhao et al., 2007). NEMO acts 

downstream of MAVS and interacts with TANK to mediate the recruitment of TBK1 and 

IKKε to the RIG-I – MAVS complex (Zhao et al., 2007). NEMO mutants, lacking the 

TANK-binding domain, fail to interact with IKKε, TBK1 and MAVS mediated signals 

(Zhao et al., 2007). 

FADD, RIP1, TRADD and Caspases 8 and 10: Interestingly, FADD (Fas-

associated death domain) and RIP1 (receptor interacting protein 1) have also been 

implicated in the antiviral pathway (Balachandran et al., 2004). These death domain 

containing molecules interact with MAVS C-terminal, inducing NF-kB through 

interaction and activation of caspases 8 and 10 (Takahashi et al., 2006). Both 

caspases are cleaved during dsRNA stimulation and overexpression of the cleaved 

form of these caspases is enough to activate NF-kB (Takahashi et al., 2006). In 

addition, caspase 8-deficient mouse derived cells showed reduced expression of 

inflammatory cytokines and NF-kB, illustrating the importance of these caspases in the 

NF-kB branch of the RIG-I signalling (Takahashi et al., 2006). Moreover, TRADD 

(Tumour necrosis factor receptor type 1-associated death domain), a fundamental 

adaptor of the TNFR-I (tumour necrosis factor receptor-1), has been showed to be 

recruited to MAVS, upon viral infection, coordinating the assembly of a signalling 

complex comprising TRAF3, TANK, FADD and RIP1, leading to IRF3 and NF-kB 

activation (Michallet et al., 2008)– see Figure 16 above. 

STING: The recent discovery of a novel protein, named stimulator of interferon 

genes (STING) brought a new component to the antiviral pathway (Ishikawa and 

Barber, 2008; Jin et al., 2008; Zhong et al., 2008). STING, comprising four 

transmembrane domains, was shown to be expressed at the external mitochondrial 

membrane and the binding of nucleic acids to RIG-I triggered the formation of a 

complex between MAVS and STING, conducting to the TBK1 recruitment and 

subsequent phosphorylation of IRF3 (Zhong et al., 2008). Conversely, the Barber 

group reported STING to be localized at the endoplasmic reticulum (ER) membrane 

through its transmembrane domains (Ishikawa and Barber, 2008). Although STING 

interacts directly with RIG-I, it was not able to co-immunoprecipitate with MDA5 or to 

respond to the poly I:C mediated IFN activation (Ishikawa and Barber, 2008). Other 

reported differences show that STING co-immunoprecipitates with TRAP complex 

components (TRAPβ - Target of RNAIII-activating protein beta) and the translocon 

adaptor SEC61β, whose cellular functions involve translocation of proteins through the 
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ER membrane, after translation (Ishikawa and Barber, 2008). This observation lead the 

authors to suggest that STING can bind RIG-I to the translocon, in order to detect 

translating viral RNAs to induce antiviral immunity through TBK1 (Ishikawa and Barber, 

2008). Jin et al. localized a similar molecule, named MPYS, in both, mitochondria and 

the plasma membrane, and found an alternative function, where MPYS associates with 

the major histocompatibility complex class II (MHC II) and mediates apoptotic signal 

transduction (Jin et al., 2008). A full understanding of the role of STING/MPYS/MITA in 

innate immune signalling awaits further investigation.  

 

 2.2.3 – Posttranslational Modifications of MAVS 

As mentioned in the beginning of this chapter, MAVS accumulates in the cell, in 

signalling aggregates, by a prion-like mechanism (Hou et al., 2011). Recent studies 

defined these aggregates as highly organised fibrils, self-replicating, like prions. Using 

a cell-free system to reconstitute RLR signalling in vitro, MAVS complexes, bigger than 

26S proteasome were detected 9h after SeV infection, which coincided with IRF3 

dimerization (Hou et al., 2011). These complexes present several prion features:  (1) 

MAVS-CARD is required and it is enough for the formation of the fibril-like structures, 

as it was determined by electronic microscopy; (2) these fibrils are resistant to protease 

treatment and detergent solubilisation; (3) the protease resistant fibrils convert MAVS 

of mitochondria extracted from non-infected cells, into functional aggregates, leading to 

IRF3 activation (Hou et al., 2011). On the other hand, mitochondria lacking MAVS, 

generated by RNAi previous to the extraction, didn’t result in IRF3 dimerization (Hou et 

al., 2011). Importantly, MAVS aggregates form within minutes after RLR signal 

activation in the cell-free reconstitution, indicating that these MAVS fibrils are a bona 

fide determinant of the activated state of MAVS. 
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Figure 17 – MAVS forms prion-like aggregates when induced by RIG-I.  
The interaction between CARD domains of RIG-I and MAVS induces a conformational change 
of the MAVS CARD, which in turn converts other MAVS on the mitochondrial outer membrane 
into prion-like aggregates. These aggregates activate cytosolic signalling cascades that turn on 
NF-kB and IRF3, leading to the induction of type I IFNs and other antiviral molecules (Hou et al., 
2011). 
 

 
Ubiquitination represents an important posttranslational modification of the proteins 

of the host cell, and the list of ubiquitinated proteins in RIG-I pathway is already 

extensive, demonstrating the relevance of this modification in the regulation of IFNs 

(Ribet and Cossart, 2010).  

MAVS is ubiquitinated upon viral infection and studies show that K48 and K63 

polyubiquitination occurs in virus-infected cells (Paz et al., 2009). Furthermore, 

polyubiquitination at lysine500 of MAVs leads to the recruitment of IKKε to MAVS and 

contributes to the negative regulation of IFN signalling by dislodging TRAF3 (Paz et al., 

2009). 

Several E3 ligases and proteins have been identified to contribute to the turnover of 

MAVS after viral infection: You et al. demonstrated that PCBP2 (Poly(rC)-binding 

protein 2) recruits the E3 ligase AIP4 (atrophin-1-interacting protein 4) to catalyse the 

K48 polyubiquitination and degradation of MAVS; Zhong et al. identified the E3 ligase 

RNF5 (ring finger protein 5) as another ligase that targets MAVS to ubiquitination and 

degradation (F. You et al., 2009; Zhong et al., 2010). In the latter study, Lys362 and 

Lys461 were identified as the K48 acceptor sites, which lead to proteasomal 

degradation of MAVS, upon viral infection (Zhong et al., 2010). Arimoto et al. identified 
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RNF125 (ring finger protein 125) as negative regulator of RIG-I pathway through a 

mechanism mediated by E2 ligase UbcH8 (a.k.a. UBE2L6 - Ubiquitin/ISG15-

conjugating enzyme E2 L6) (Arimoto et al., 2007). Taken together, these studies 

provide evidence that the MAVS degradation is an important mechanism, employed by 

the cell to turn off the antiviral IFN response. 

The negative regulation of MAVS signalling was also associated with 

phosphorylation. PLK1 (Polo-like kinase 1) was also identified as a MAVS partner, 

using yeast two-hybrid assays (Vitour et al., 2009). PLK1 associates with two discreet 

domains of MAVS, in a phosphorylation-dependent or independent manner (Vitour et 

al., 2009). The phosphodependent binding to MAVS requires phosphorylation at 

threonine 234 (Vitour et al., 2009). However, PLK1, as a negative regulator of MAVS, is 

independent of phosphorylation events and requires the binding of PLK1 to the MAVS 

C-terminal; this association disrupts the interaction of MAVS with TRAF3 (Vitour et al., 

2009).   

It has been showed that MAVS can be phosphorylated in the presence of IKKε, but 

not in the presence of TBK1, and the disruption of the MAVS – IKKε interaction, by 

point mutation at Lys500 of MAVS, diminishes, but doesn’t completely abolish 

phosphorylation, suggesting other kinases to be involved in MAVS phosphorylation 

(Paz et al., 2009). A study by Johnsen et al. demonstrated that tyrosine-kinase c-Src 

augments the RIG-I mediated signalling at the level of TRAF3, although c-Scr can also 

interact with other components such as RIG-I and MAVS and, thus, participates in the 

formation of the innate signalling complex (Johnsen et al., 2009). c-Scr acts with MAVS 

and TRAF3 in the activation of IRF3, but the possibility of c-Scr directly phosphorylate 

MAVS, TRAF3 or RIG-I is yet to be determined (Johnsen et al., 2009). The non-

receptor kinase protein like c-Scr, c-Abl has also showed to interact with, and 

phosphorylate MAVS, in order to regulate the immune response upon viral infection 

(Song et al., 2010). The same way as other adaptor proteins, the transmembrane and 

the CARD domain of MAVS are necessary for the interaction with c-Abl (Song et al., 

2010). Further studies are necessary to delineate the specific sites of 

interaction/phosphorylation, as well as the physiological role of phosphorylation in this 

context (Song et al., 2010). 

Like most of posttranslational modifications, phosphorylation is a reversible process, 

which involves the activity of phosphatase proteins. In this regard, the threonine-

phosphatase EY4A was showed to interact with NLRX1 and STING, thus 

demonstrating their role in MAVS interactome (Okabe et al., 2009). Although several 
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studies have been demonstrated that MAVS is phosphorylated, there is no clear 

evidence of the relevance of this posttranslational modification for the IFN signalling or 

to the general outcome of viral infection. 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   61 
 

2.3 - Host regulatory mechanisms of the virus – RIG-I/MDA5 – MAVS interface  

The RLR signalling pathway is under tight control by a number of mechanisms to 

prevent an aberrant interferon production. The limitation of the IFN production is a 

physiological requirement for the general well-being of the organism. Upon initiation of 

antiviral responses, a restriction of the excess IFN production must occur. Therefore, 

several regulatory mechanisms take place to control the IFN levels, confirming the 

importance of counteracting the deleterious effects of IFNs, which include chronic 

cellular toxicity and the development of inflammatory or auto-immune diseases 

(Komuro et al., 2008; Loo and Gale, 2011; Ramos and Gale, 2011). 

The first described regulatory mechanism was possible by the identification of a 

repressor domain within RIG-I and LGP2, which auto-regulates the RLR functions via 

dynamic intramolecular interactions(Komuro and Horvath, 2006; Rothenfusser et al., 

2005; Saito et al., 2007; Yoneyama et al., 2005). LGP2 itself was found to play a role 

as positive and negative regulator of the RLR signalling pathway. Recent studies 

showed that, whereas LGP2-/- MEFs are more susceptible to IFN production 

stimulation in response to synthetic RNA (poly I:C), and LGP2-/- mice are more 

resistant to the lethal virus VSV,  LGP2-/- cells/mice have a defective IFN production in 

response to EMCV (Satoh et al., 2010; Venkataraman et al., 2007). These apparently 

incongruent observations suggest that RIG-I may in fact be a target for the regulation of 

LGP2-mediated IFN production. The observed differences in LGP2 regulatory functions 

may be due, in part, to distinctions of genetic background of the mice lines, as well as 

the nature of each construct used to make the null LGP2 lines (Satoh et al., 2010; 

Venkataraman et al., 2007).  

LGP2 has also been reported as a negative regulator of MAVS, through its direct 

interaction with MAVS at the mitochondrial membrane (Komuro and Horvath, 2006). 

This prevents the vital association of MAVS with IKKi (a.k.a. IKKε) for downstream 

signal propagation through IRF3 (Komuro and Horvath, 2006).  

The regulatory functions of LGP2 are still to this date unclear and controversial 

between research groups and further work is required to determinate in which step of 

the RLR pathway LGP2 exerts its regulatory effects.  
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The regulatory mechanisms that will be further discussed in this chapter can be divided 

in three main categories: (1) Regulation by protein-protein interactions (where the 

previously described LGP2 regulation is included), (2) regulation by posttranslational 

modifications of components and cofactors of the RLR signalling pathway and (3) 

regulation via organelle dynamics.  

 

Figure 18 – RLR signalling cascade and its regulating partners. 
Several cellular factors known to contribute to regulation of multiple stages of RLR signalling are 
depicted in the figure. LGP2 is the third member of the RLR family of proteins with contradicting 
roles in the RLR signalling pathway. IFIT3, NLRX1 and Tom70 are mitochondrial-localized 
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proteins which interact directly with MAVS. Factors involved in ubiquitin mediated regulation are 
denoted in green text; factors which require direct interaction with RLR signalling components 
are depicted in blue text. 
 
  
 

 2.3.1 – Regulatory protein interactions 

Regulation of the RLR signalling components via protein interactions serves as one 

of the control mechanisms of the RLR response to a given viral infection. This 

regulation is mainly achieved through negative feedback, in order to regulate the levels 

of IFN production in later states of the cellular immune response, but there are also a 

few positive feedback mechanisms.  

In fact, ZAPS protein (zinc finger antiviral protein shorter isoform) directly associates 

with RIG-I in a ligand-dependent manner to potentiate and amplify downstream 

signalling events, such as IRF3 and NF-kB activation and type I IFN induction 

(Hayakawa et al., 2011). Additionally, tyrosine kinase s-Scr interacts with MAVS, TBK1 

and TRAF3, likely within the MAVS signalosome to enhance RLR-dependent IFN 

induction (Johnsen et al., 2009).  Separately, c-Abl (Src-like non-receptor protein 

kinase) has been showed to interact with, and phosphorylate MAVS during viral 

infection, to facilitate both signalling of IRF3 and NF-kB (Song et al., 2010). Besides, 

EYA4 (Eyes Absent 4) and its phosphothreonine-specific phosphatase activity are 

required to facilitate IFN signalling. EYA4 has been reported to interact with MAVS, 

STING and NLRX1, more likely within MAVS signalosome (Okabe et al., 2009). 

The mitochondrial protein Tom70 (Translocase of outer membrane 70) has been 

identified, through mass spectrometry and immunoprecipitation, as a novel MAVS-

interacting partner (Liu et al., 2010). Tom70 is a member of the TOM complex at the 

outer mitochondrial membrane that recognizes newly synthesised mitochondrial 

proteins at the cytosol and has a role in the translocation of such proteins to their 

destination within the mitochondria [reviewed at (Baker et al., 2007)]. Exogenous 

Tom70 potentiated IFN-β induction in response to SeV and cytosolic poly I:C 

stimulation, while its depletion by RNAi resulted in an abrogated IFN-β induction to the 

same stimuli (Liu et al., 2010). MAVS and Tom70 interaction was enhanced in 

response to SeV infection and poly I:C and it requires the mitochondrial localization of 

both proteins (Liu et al., 2010). Based in previous works by the same group showing 

that chaperone protein Hsp90 was constitutively complexed with IRF3/TBK1 (Yang et 

al., 2006), and other studies showing that Hsp90 interacts with Tom70 (Young et al., 

2003), the authors proposed the hypothesis that Tom70 can be involved in the 
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recruitment of IRF3/TBK1 to MAVS to enable signalling (Liu et al., 2010). In fact, 

immunoprecipitation experiments confirmed that exogenous Hsp90 bound to Tom70 

and IRF3/TBK1 and exogenous Tom70 interacts with Hsp90 and IRF3/TBK1 (Liu et al., 

2010). The results of these studies taken together proposed a model in which Tom70 

interacts with MAVS and recruits both, IRF3/TBK1 and IKK complexes to mitochondria, 

by specifically recognizing and interacting with Hsp90, thus linking MAVS to 

downstream signalling.(Liu et al., 2010)    

Other studies have demonstrated that ISGs can also regulate MAVS to influence 

signalling. The IFIT3 protein (IFN-induced protein with tetratricopeptide repeats 3) is an 

ISG and represents a candidate to positive feedback in RLR signalling, via MAVS 

interactions (Liu et al., 2011). The IFIT proteins are known for being highly inducible by 

viral infections and IFNs. IFIT3 localizes at mitochondria, where it interacts with both 

MAVS and TBK1. Overexpression of IFIT3 potentiated RLR signalling, while its 

depletion reduced it. IFIT3 probably acts as a scaffold to favour MAVS interaction with 

TBK1, since this interaction is weak in the absence of IFIT3 and reinforced in its 

presence. Thus, this study added IFIT3 to the list of positive regulators of MAVS 

signalosome and found a novel role of IFIT3 in the antiviral signalling (Liu et al., 2011). 

Conversely, a greater number of protein interactions acts as negative feedback 

regulatory factors. For instance, a proteasome molecule, the subunit PSMA7(a4) has 

been shown to directly bind to MAVS and reduce its ability to translocate downstream 

IFN signals. This regulation operates through a MAVS proteasomal degradation-

dependent mechanism (Jia et al., 2009). The autophagy conjugate Atg5-Atg12 has 

been shown to regulate RLR signalling via direct interactions with both CARD domains 

of RIG-I and MAVS to limit the downstream IFN production (Jounai et al., 2007). SIKE 

(Suppressor of IKK-epsilon) is a physiological suppressor of TBK1 and IKKε that keeps 

these kinase proteins sequestered in inactive complexes to prevent non intentioned 

activation by any RLR (Huang et al., 2005).   

The specific regulation of MDA5 through protein interactions is less understood. 

However, MDA5 regulation has been described to occur via DAK (dihydroacetone 

kinase), in which, the overexpression of this molecule leads to diminished IFN 

responses to MDA5 agonists. Besides, DAK was found to interact with MDA5 but not 

with RIG-I, suggesting that the mechanism for the activation acts in order to prevent 

MDA5 activation and its interaction with MAVS. There’s still a requirement for further 

comparison studies between the regulatory mechanisms of RIG-I and MDA5, with the 
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purpose of defining specific regulatory processes that take place via protein 

interactions (Diao et al., 2007). 

Recent studies identified unique roles for some members of the caspase family in 

the regulation of RLR signalling (Kim and Yoo, 2008; Takahashi et al., 2006; Wang et 

al., 2010). This family of proteins perform in the activation of apoptotic cascades 

[reviewed at (Fan et al., 2005)] as well as targeting the inflammasome activation 

through processing and liberation of IL-1β, IL-18 and IL-33 [reviewed at (Kanneganti, 

2010)]. 

Caspase 1, whose functions as inflammatory caspase and whose expression is 

activated during viral infections, was demonstrated to negatively regulate RIG-I 

signalling by promoting RIG-I secretion, therefore controlling its intracellular levels (Kim 

and Yoo, 2008). It is yet not clear how RIG-I is secreted but, since RIG-I interacts with 

caspase 1 and it was found in supernatant together with caspase 1, an hypothesis 

arises, stating that RIG-I secretion involves the inflammasome complex. However its 

physiological significance has not yet been clarified (Kim and Yoo, 2008). 

Caspase 8 has shown to associate with MAVS signalosome  via interactions with 

FADD, RIP1 and MAVS, after dsRNA stimulation (Rajput et al., 2011; Takahashi et al., 

2006). Caspase 8 can function by supressing RLR signalling via two distinct 

mechanisms. First, caspase 8 promotes direct depletion of RIG-I through a mechanism 

dependent on its ability to bind to FADD, and independent of its cleaving ability. 

Second, caspase 8 cleaves RIP1 at signalosome complex, leading to the loss of IFN 

induction. These roles of caspase 8 are thought to act in the negative regulation and 

terminate RLR response in later stages after the initial RLR triggering during an acute 

viral infection. However, a further understanding of the RIP1 cleavage mechanism is 

needed for a better comprehension of how this process regulates MAVS signalosome 

and RLR functions (Rajput et al., 2011). 

Caspase 12 has also been identified as a negative regulator of RLR signalling 

(Wang et al., 2010). Using a West Nile virus (WNV) infection model, caspase12-/- mice 

showed higher mortality rates to viral infection. Besides, knockout mice cells failed to 

mediate TRIM25 ubiquitination of RIG-I, and this correlates with the decrease in IFN 

responses and lack of protection against WNV. The exact mechanism by which 

caspase 12 regulate TRIM25 has yet to be described, requiring further analysis. 

Additionally, since only a small percentage of the human population expresses 

caspase 12, its role in RLR regulation remains debatable. However, this study 



 
 
Universidade de Aveiro                                            Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

 

66           Mariana Guedes 
 

identified the potential cross-talk between the RLR and caspase signalling pathways as 

regulatory features that govern the antiviral immune response (Wang et al., 2010). 

Since the CARD-CARD interactions play an important role in both, RLR and caspase 

pathways, it is likely that more regulatory interactions will be identified in a near future.  

Proteins localized at mitochondria are logical candidates for MAVS regulation. The 

first mitochondrial protein identified as a negative regulator of MAVS was NLRX1 

(nucleotide-binding oligomerization domain, leucine rich repeat containing X1) (Moore 

et al., 2008). NLRXs are members of the NOD-like cytosolic receptors family of pattern 

recognition receptors, which initially were thought to be independent of RLR signalling. 

This study confirmed the putative localization of NLRX1 at the outer mitochondrial 

membrane and went on by showing that NLRX1 interacts with MAVS through its CARD 

domain, disrupting upstream interactions with MAVS interacting partners (Moore et al., 

2008). This data was corroborated in NLRX1-/- MEFs: IFN-β production was enhanced 

in NLRX1 knockout MEFs infected with a variety of viruses known to induce RIG-I 

(Allen et al., 2011). Interestingly, NLRX1-deficient cells exhibit RIG-I–MAVS 

association, even in the absence of viral infection. This constitutive association 

between RIG-I and MAVS in the absence of NLRX1 may explain the increase of IFN-β 

response to a viral infection that uses RIG-I but not with viruses that require MDA5 

(e.g. encephalomyocarditis virus) (Allen et al., 2011). There are, however, contradicting 

results, since two studies using NLRX1 knockout MEFs, independently showed no 

potentiation of IFN induction or IRF3 phosphorylation in response to poly I:C or Sendai 

virus (SeV), in comparison with wild-type MEFs under poly I:C infection (Rebsamen et 

al., 2011; Soares et al., 2012). Another study reported that inhibition of the RLR 

signalling pathway may be an artefact of inhibition of the luciferase activity, which is 

quite relevant, since many of the previously mentioned studies used luciferase based 

assays to measure RLR signalling (Ling et al., 2012). Like the LGP2 inhibition of MAVS 

activity, NLRX1 have led to contradicting results. It is plausible that NLRX1 possesses 

several regulatory roles, depending on which ones are advantageous for the cell. 

Further studies are required to reconcile these findings and clarify the exact role of 

NLRX1 in MAVS signalling.  

STING, also known as MITA, MPYS or ERIS, was originally identified as a RIG-I 

signalling regulator, owing its ability of direct binding to RIG-I, MAVS and TBK1 to its 

knockout phenotype (Ishikawa and Barber, 2008; Jin et al., 2011; Sun et al., 2009; 

Zhong et al., 2008). Overexpression of active fragments of RIG-I failed to induce IFN in 

STING-deficient MEFs. Besides, VSV infection in STING-deficient mice resulted in 
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significantly reduced survival rates and lower IFN serum levels, comparatively to 

control mice (Ishikawa and Barber, 2008). Thus, STING has been found to play an 

indisputable role in IFN response to cytosolic DNA from viruses or synthetic agonists. 

Along with the mitochondria-resident proteins, those who relocate to mitochondria 

during a given viral infection also represent a cluster of MAVS regulators. Complement 

protein gC1qR (receptor for globular head domain of complement component C1q) 

was investigated for its role in antiviral signalling, due to reports that it is involved in 

cytomegalovirus and rubella infections (Xu et al., 2009). gC1qR localizes at 

mitochondria, nucleus, cytoplasm and cell surface. Interestingly, it has been 

demonstrated that gC1qR is recruited to mitochondria upon viral infection or poly I:C 

stimulation. Overexpression of gC1qR inhibits antiviral signalling activated by virus, 

poly I:C or exogenous RLRs. In addition, gC1qR and MAVS interact weakly in non-

infected cells; this interaction was strongly enhanced upon viral infection. gC1qR 

knockdown, mediated by RNAi, resulted in an increased antiviral response to 

exogenous RIG-I or VSV infection (Xu et al., 2009). This study revealed a role for this 

complement receptor, which is known to act in several branches of innate immunity, in 

the regulation of RLR signalling through its interaction with MAVS.  

 

2.3.2 – Regulation by posttranslational modification events 

The posttranslational control of proteins is a common mean by which cells regulate 

a diversity of pathways and processes. Thus, it is not surprising that posttranslational 

modifications of RLR signalling pathway components are a key aspect in the cell 

antiviral signalling regulation. Specific modifications of RLRs and their co-factors 

impose regulation of signalling of the immune defences in a variety of levels, ranging 

from RLR activity to the assembly and function of MAVS signalosome. 

Posttranslational modifications such as ubiquitination or deubiquitination are a major 

point of the RLR regulation. RNF135 protein (RING finger protein leading to RIG-I 

activation or Riplet) is an ubiquitin-ligase that interacts with RIG-I but not with MDA5 

(Oshiumi et al., 2009, 2010). It is reported to mediate the conjugation of K63-linked 

polyubiquitin chains to RIG-I at its C-terminal domain, as well as in its repressor 

domain, and it is crucial to the virus-induced IFN signalling (Oshiumi et al., 2009). 

RNF135-deficient mice weren’t able to produce IFNs or cytokines during a RNA virus 

infection, and subsequently, those mice were more susceptible to viral infection than 
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wild-type mice (Oshiumi et al., 2010). TRIM25 also mediates K63-linked 

polyubiquitination of RIG-I at aa. K172 upon viral infection (Gack et al., 2007). This 

modification is thought to stabilize RIG-I and MAVS interactions to induce the activation 

of IFN production (Gack et al., 2007). However, free K63-polyubiquitin chains are 

also able to induce RIG-I activation in an in vitro reconstitution of the RIG-I pathway, 

suggesting that it is the actual polyubiquitin chain binding at K172 and not the ubiquitin-

induced change that leads to RIG-I activation (Zeng et al., 2010). This data suggested 

that K63-polyubiquitin chains act as the second ligand to increase activation of RIG-I 

signalling (Zeng et al., 2010).  

RIG-I signalling is also subject of regulation by the ubiquitin editing protein A20 (Lin 

et al., 2006). A20 has both ubiquitin-ligase and deubiquitinase activities; however, only 

the ubiquitin-ligase activity, linked to its C-terminal, is important for the RLR signalling 

regulation. Overexpression of A20 inhibits RIG-I-dependent activation of IRF3 and NF-

kB, while its depletion increased virus-induced signalling, suggesting its role as a 

negative regulator of RLR pathway (Lin et al., 2006). Additionally, TRAF3, a K63-linked 

ubiquitin-ligase and essential regulator of IRF3 activation induced by viral infection, 

was found to regulate IFN but not inflammatory cytokine production during viral 

infection (Häcker et al., 2006). TRAF3 binds to TIM (TRAF-interacting motif), which is 

found at the proline-rich region of MAVS and facilitates the IKKε recruitment to the 

MAVS signalosome (Saha et al., 2006). TRAF3 activity in RLR signalling is further 

regulated by the E3 ubiquitin-ligase Triad3A (Nakhaei et al., 2009), the OTUB1, 

OTUB2 (Li et al., 2010) and DUBA (Kayagaki et al., 2007) deubiquitinases, and the 

interferon-stimulated gene FLN29 (Sanada et al., 2008), alongside with the stability of 

the interactions between IKKε and MAVS (Paz et al., 2009) and by the PLK1 (Polo-like 

kinase 1) – MAVS interactions (Vitour et al., 2009).  

RNF125 is another ubiquitin-ligase that cooperates with E2 ubiquitin-ligase HbcH5 

to conjugate K48-linked ubiquitin to RIG-I, MDA5 and MAVS in order to mediate 

proteasomal degradation (Arimoto et al., 2007). RNF125 is an ISG itself, whose 

expression is induced after viral infection and its action is part of a negative feedback 

loop to prevent an excessive IFN production. RNF125 activity is supressed by UbcH8 – 

the same ubiquitin-ligase responsible for the conjugation of ISG15 to target proteins 

during a viral infection (Arimoto et al., 2008). Based on cumulative evidence, it was 

proposed that the interaction of ISG15 with UbcH8, simultaneously with virus-induced 

ISG15 expression, dissociates from its interaction with RNF125. This action will then 

facilitate the ubiquitin conjugation by RNF125 at RIG-I and other molecules to inhibit 
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RLR signalling and IFN expression (Arimoto et al., 2008). Consistent with this model, 

basal expression of RIG-I is higher in Ube1-deficient cells that fail in their ability to 

conjugate ISG15, comparatively to wild-type cells, providing RIG-I amounts that 

facilitate a robust RLR signalling (Arimoto et al., 2008). In addition, the tumour 

suppressor CYLD is a deubiquitinase that interacts with both RIG-I and MAVS (Zhang 

et al., 2008). It was previously shown to be essential to prevent aberrant activation of 

IKKε and TBK1 (Zhang et al., 2008). Consistent with this finding, CYLD expression-

deficient cells signal a constitutive activation and exhibit an hyper-induction of IFN 

during viral infection (Zhang et al., 2008). Besides, a recent study suggests that CYLD 

operates in the removal of polyubiquitin chains from RIG-I and TBK1 to inhibit IRF3 

signalling and further IFN production within the MAVS signalosome (Friedman et al., 

2008). Taken together, these studies define a critical role for reversible ubiquitination of 

RLRs and co-factors at the RLR signalling pathway during an immune response to a 

viral infection.  

RLR signalling pathway is also regulated by additional posttranslational 

modifications, including phosphorylation, acetylation and SUMOylation. Aside from the 

previously described modification events that govern ubiquitination, further 

posttranslational modifications of RIG-I serve as means of prevention of its premature 

activation in the absence of PAMPs, and represent another level of regulation of the 

RLR activation. For instance, casein kinase II phosphorylates RIG-I at its resting state 

at threonine 770, serine 854 and 855 (Sun et al., 2011). Mutations at these sites, 

chemical inhibition or casein kinase II depletion turn RIG-I into a constitutive active 

state, resulting on an augmented IFN induction. By contrast, treatment of cells with 

phosphatase inhibitor supresses RLR-dependent signalling, suggesting that RIG-I 

phosphorylation is required to maintain the auto-regulation of its repressor domain (Sun 

et al., 2011). RIG-I was additionally identified to be acetylated in its K858 and K909 

residues; however, it remains undetermined how acetylation of lysine regulates RIG-I 

signalling activity (Choudhary et al., 2009).  

Downstream components of RLR signalling are also regulated by posttranslational 

modifications. Of note, the virus-induced activation of TLR and RLR pathways are 

known to lead to SUMOylation of IRF3 and IRF7 at their K152 and K406, respectively 

(Kubota et al., 2008). Mutants of these factors that cannot support SUMO modification 

exhibit an increased IFN induction, suggesting that the SUMO modification of IRF3 and 

IRF7 is a negative regulation mechanism (Kubota et al., 2008). 
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The specific posttranslational modifications of MAVS were already introduced in the 

previous chapter as well as the present one, but further discussion is required in order 

to approach some novel regulatory mechanisms of RLR signalling. 

 

Figure 19 – Mechanisms of MAVS regulation.  
MAVS can be regulated by host cell factors that inhibit MAVS signalling by direct protein-protein 
interactions, by altering mitochondrial properties or dynamics, or by post-translational 
modifications. PRR – proline-rich region; Ub – ubiquitination; P – phosphorylation. Positive 
regulators of MAVS signalling are shown in green text and negative regulators of MAVS 
signalling are shown in red text. Note that LGP2 is shown in both red and green given the 
confliting results on its role in the regulation of RLR signalling. (Jacobs and Coyne, 2013) 
 
 

PCBP2 acts as negative regulator of MAVS, mediating its ubiquitination and 

proteasomal degradation (Fuping You et al., 2009). PCBP2 is involved in DNA and 

RNA binding with several purposes within the cell, including mRNA stability and 

regulation of protein translation (Makeyev and Liebhaber, 2002). Overexpression of 

PCBP2 results in the suppression of IFN-β induction mediated by MAVS but has no 

effect in TBK1 – IRF3 signalling. PCBP2 was highly induced under interferon treatment 

and viral infection, and the interaction between endogenous PCBP2 and endogenous 

MAVS was induced by SeV infection. Subcellular localization studies showed that 

PCBP2 localizes primarily at the nucleus but re-localizes to the cytoplasm, where it co-

localizes with MAVS upon viral infection or MAVS overexpression. Despite not having 

any ubiquitin kinase activity by itself, PCBP2 overexpression induces MAVS 

proteasomal degradation. Through mutational analysis of MAVS, the authors showed 
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that ubiquitination of two specific residues of lysine lead to MAVS degradation and 

revealed that polyubiquitination levels of MAVS where higher in the presence of 

overexpressed PCBP2. Given that PCBP2 isn’t an ubiquitination enzyme, the authors 

proposed that PCBP2 can act as a scaffold, binding MAVS to an E3 ubiquitin-ligase 

(Fuping You et al., 2009). 

Tracing for known E3 ubiquitin-ligases for a potential candidate that mediates MAVS 

degradation and binds to PCBP2, the authors found the E3 ubiquitin-ligase AIP4, a 

Nedd4-like E3 ubiquitin-ligase (Fuping You et al., 2009). Overexpression of AIP4 

partially interrupted IFN-β signalling and induced MAVS degradation, in an ubiquitin-

ligase activity-dependent manner. Despite being demonstrated that AIP4 interacts with 

MAVS, this interaction requires PCBP2, which suggests that PCBP2 actually functions 

as a scaffold to facilitate the AIP4-dependent MAVS degradation. This was confirmed 

using in vitro ubiquitination assays, which showed that PCBP2 expression greatly 

increases AIP4-mediated ubiquitination and, consequently, MAVS degradation. At last, 

IFN-β signalling was increased in mice Itch-/- MEFs (Itch is the mice AIP4 homolog), 

further connecting this E3 ligase to MAVS signalling. Collectively, this study proved that 

PCBP2 acts as an adaptor for AIP4-mediated MAVS ubiquitination, and subsequent 

proteasomal degradation of MAVS in order to negatively regulate the RLR pathway, 

lighting up a novel mechanism for RLR pathway regulation (Fuping You et al., 2009). A 

later study by the same group has demonstrated that PCBP1 is also involved in MAVS 

negative regulation, using a similar mechanism (Zhou et al., 2012). However, and 

unlike PCBP2, PCBP1 doesn’t induce type I IFNs, leading the authors to conclude that 

PCBP1 acts as a “housekeeper” for MAVS levels and is not exactly a negative 

feedback inhibitor (Zhou et al., 2012).   

Besides acting in RIG-I specific regulation, TRIM25-dependent ubiquitination also 

plays a role in regulation of MAVS through a negative feedback mechanism different 

than other ubiquitin-ligases (Castanier et al., 2012). TRIM25 overexpression enhanced 

MAVS ubiquitination and degradation, and catalysed the addition of ubiquitin in two 

specific residues of MAVS (K7 and K10). Functional studies revealed that exogenous 

TRIM25 increases IFN-β promoter activity, stimulated by high molecular weight poly I:C 

(a known MDA5 agonist used to avoid experimental complications related with TRIM25 

modification of RIG-I) and, conversely, TRIM25 depletion lead to attenuation of IFN-β 

promoter activity, due to a diminished ubiquitination and degradation of MAVS. Based 

in these observations, the authors proposed that, under RLR activation, MAVS 

signalosome was assembled at the mitochondria, and only under TRIM25-mediated 
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ubiquitination and proteasomal degradation MAVS can be released and translocate to 

the cytosol to phosphorylate IRF3 and subsequently induce IFN-β production. While 

this presents as a tempting hypothesis, it remains unverified if the degradation 

elimination of MAVS (perhaps through mutational analysis of the MAVS ubiquitinated 

residues) maintains the same effect in the IRF3-mediated IFN-β induction (Castanier et 

al., 2012). 

Ndfip1 has also been classified as a negative regulator of MAVS at mitochondria via 

an increase in ubiquitination and proteasomal degradation (Wang, Tong, and Ye, 

2012). In light of cumulative evidence establishing connections between E3 ubiquitin-

ligase activity with MAVS regulation, Ndfip1 is a logical candidate, given its role in the 

enhancement of protein ubiquitination through interactions with the E3 ubiquitin-ligase 

family known as Nedd3 ubiquitin-ligases. Ndfip1 inhibited MAVS-mediated signalling in 

a proteasome-dependent manner. Since these results pointed to proteasomal 

degradation mediated by ubiquitination as the regulatory mechanism of MAVS, the 

authors performed a screening of other four members of Nedd4 E3 ubiquitin-ligase 

family, for their ability to induce MAVS degradation, but not RIG-I or TBK1, in the 

presence of Ndfip1. Nedd4 E3 ubiquitin-ligase Smurf1 led to MAVS degradation but 

not RIG-I/TBK1, in the presence of Ndfip1. Smurf1 and MAVS interaction was 

enhanced in the presence of Ndfip1, as well as the Smurf1-mediated MAVS 

ubiquitination, indicating that Ndfip1, probably, serves as an adaptor for the recruitment 

of Smurf1 to MAVS. This study described a regulatory mechanism similar to PCBP2 

and AIP4 and provides another example of the complexity of ubiquitination in MAVS 

signalling regulation (Wang, Tong, and Ye, 2012). 

TSPAN6 (tetraspanin protein 6) was recently described for its role in RLR-mediated 

MAVS signalling (Wang, Tong, Omoregie, et al., 2012). TSPAN6 is a member of the 

membrane-embedded tetraspanin protein family that have been showing several roles 

within the cell, including a variety of roles in host immunity [reviewed at (Hemler, 

2005)]. Interestingly, TSPAN6 does not promote direct MAVS ubiquitination but it is 

ubiquitinated itself, in order to promote its association with MAVS and to disrupt MAVS 

signalosome at mitochondria. Overexpression of TSPAN6 resulted in a reduction of 

exogenous MAVS-induced signalling and showed interaction with MAVS. The authors 

proposed that TSPAN6 ubiquitination, in the presence of viral infection, promotes its 

recruitment to the mitochondria, where it interacts with MAVS, disrupting the assembly 

of MAVS signalosome, thus inhibiting antiviral signalling. The responsible enzymes for 
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TSPAN6 ubiquitination, in the context of RLR activation, are yet to be determined 

(Wang, Tong, Omoregie, et al., 2012). 

Just like ubiquitination, phosphorylation represents a posttranslational mechanism 

of protein regulation of a variety of cellular processes such as the RLR signalling. A 

recent report revealed that UBNX1 (ubiquitin regulatory X domain-containing protein) 

negatively regulates MAVS by binding and blocking its interaction with TRAF3/TRAF6 

at their binding site at MAVS C-terminal, supporting even further the importance of this 

region in MAVS mediated signalling (Wang et al., 2013). More recently, tyrosine kinase 

c-Abl was identified as MAVS interacting partner, acting as its positive regulator by 

direct interaction and phosphorylation (Song et al., 2010). c-Abl is a nuclear and 

cytoplasmic Src-like non-receptor protein tyrosine kinase known to play different roles 

within the cell [reviewed at (Backert et al., 2008; Koleske, 2006)]. MAVS–c-Abl 

interaction has shown to require both transmembrane domain and CARD domain of 

MAVS, probably suggesting that MAVS mitochondrial localization is fundamental for 

this interaction. c-Abl depletion results in an abrogated MAVS signalling and 

pharmacological inhibition of c-Abl disrupts IFN-β production in response to VSV 

infection. Tyrosine phosphorylation of MAVS was increased by c-Abl expression but 

not by a c-Abl mutant lacking its kinase activity ability (Song et al., 2010). In a later 

report, tyrosine-scanning mutational analysis revealed that inducible phosphorylation 

at MAVS Tyr9 residue is involved in the recruitment of TRAF3/TRAF6 to propagate 

MAVS-mediated RLR signalling (Wen et al., 2012). If c-Abl is involved in Tyr9 

phosphorylation of MAVS is yet to be determined and might represent an interesting 

follow-up for these two studies.  

 

 2.3.3 – Organelle dynamics as regulatory mechanisms of RLR signalling 

pathway 

All three receptors of RLR family are cytosolic proteins and haven’t been associated 

to any subcellular structure in steady-state. However, several signalling components 

downstream of these receptors are membrane proteins, whose functional domains 

project to the cytosol from the surface of the respective organelles. More important, the 

correct localization of such proteins is a requirement for their biological activity, and the 

physical proprieties of the organelles where they reside may play a role in the 

regulation of their activities. The best characterized example in this context is the 

adaptor protein MAVS.  
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Initial evidence for the role of mitochondrial dynamics in MAVS signalling came from 

studies demonstrating that SeV-infected cells or poly I:C transfection resulted in 

mitochondrial elongation/fusion, leading the authors to conclude that activation of the 

RLR signalling pathway results in physical alterations in mitochondria themselves 

(Castanier et al., 2010). In fact, the same study also demonstrated that phosphorylation 

of IRF3 was delayed in cells with fragmented mitochondria and that RLR signalling was 

attenuated by mitochondrial fragmentation and increased by mitochondrial fusion. 

Immunoprecipitation experiments revealed that MAVS interacts with MFN1 (mitofusin 

1), a protein responsible for the regulation of mitochondrial fusion events, suggesting a 

possible role of this interaction in the mitochondrial dynamics regulation that 

accompanies antiviral signalling (Castanier et al., 2010). Interestingly, a later report 

about MAVS – MFN1 interaction showed that MFN1 acts as a positive regulator of 

MAVS-mediated antiviral signalling by redistributing MAVS to speckle-like aggregates, 

observed after RLR signalling activation. This can explain why MFN1 and mitochondrial 

fusion seem to be important in RLR signalling, given that mitochondria may facilitate 

MAVS aggregation (Onoguchi et al., 2010). Others have investigated the role of MFNs 

in MAVS signalling using MFN1/MFN2-deficient MEFs; these cells were unable to 

undergo mitochondrial fusion and presented a compromised ability to produce IFN-β 

and IL-6, in response to a given viral infection (Koshiba et al., 2011). In line with these 

results, it is likely that the role of MFNs in the innate immune signalling is versatile. Not 

only MFN1 and MFN2 can directly interact with MAVS to exert a regulatory role, but 

their activities in mitochondrial dynamics appear to be important in MAVS functions. 

This is in accordance with previous studies, where MAVS activation required auto-

association in higher order oligomers and the formation of large prion-like aggregates 

to induce powerful antiviral signal propagation (Hou et al., 2011; Tang and Wang, 

2009). Recently, prion-like aggregates containing MAVS were reported to be 

responsible for downstream signal propagation by binding to TRAF2, TRAF5 and 

TRAF6 in an ubiquitin-dependent manner. This study also provides evidence that 

TRAF2 and TRAF5 act redundantly with TRAF6 to activate IRF3 (Liu et al., 2013). 

Additionally, MFN1 and MFN2-deficient cells exhibit a dissipated mitochondrial 

membrane potential, suggesting that mitochondrial membrane potential may be 

important in RLR antiviral response (Koshiba et al., 2011). In wild-type MEFs, the 

dissipation of such potential caused a deficiency in MAVS-mediated antiviral response. 

These results demonstrated that the ability of mitochondria to fuse correctly and to 

maintain an appropriate membrane potential are crucial events of MAVS signalling 

(Koshiba et al., 2011).  
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Figure 20 – Mitochondrial dynamics regulate MAVS signalling.  
a) During infection, RIG-I and MAVS-enriched mitochondria are recruited around centres of viral 
replication to promote MAVS signalling. This occurs as mitofusin 1 (MFN1) and MFN2 induce 
fusion of the mitochondrial network, which also serves to increase MAVS interactions with 
downstream signalling molecules. Mitochondrial MFN1 and MFN2 also interact with 
endoplasmic reticulum-localized MFN2, which promotes interactions between MAVS and 
STING at mitochondrial-associated membranes (MAMs). b) Fragmentation of the mitochondrial 
network – which is induced by viral infection, mitofusin deficiency or overexpression of fission-
promoting molecules – results in decreased mitochondrial membrane potential and blocks 
interactions between MAVS and signalling molecules such as STING. This leads to reduced 
signalling by NF-kB, IRF3 and IRF7. (West et al., 2011) 
 
 

Besides regulating mitochondrial fusion, MFN2 is also important in the tethering 

between mitochondria and the endoplasmic reticulum (ER) at MAMs (mitochondrial 

associated membranes) (Horner et al., 2011). MAMs are a subcellular domain 

emerging in MAVS signalling. For instance, infected cells exhibit increased numbers of 

ER-elongated mitochondria contacts, in comparison with non-infected cells, suggesting 

that these contacts are augmented under mitochondrial fusion and elongation, induced 
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by infection. This is particularly important, given that the MAVS population that resides 

in MAMs is quite important for antiviral signalling (Horner et al., 2011). A recent study 

described a role for FAK (focal adhesion kinase) in positive regulation of MAVS-

mediated antiviral signalling (Bozym et al., 2012). FAK is a tyrosine kinase protein that 

localizes in contact points between extracellular matrix and the intracellular 

cytoskeleton, known as focal adhesions. This study demonstrated that FAK-knockdown 

MEFs were highly susceptible to viral RNA but did not reveal susceptibility to DNA virus 

infections. FAK-knockdown MEFs were attenuated in IFN-β and NF-kB signalling in 

response to poly I:C. Surprisingly, co-immunoprecipitation and immunofluorescence 

microscopy assays demonstrated that FAK re-localizes from focal adhesions to the 

mitochondrial membrane, where it interacts with MAVS, in a viral infection-dependent 

manner.  Despite of the exact role of FAK in MAVS signalling remain undetermined, 

MAVS and mitochondria distribution is quite abnormal in FAK-deficient cells, 

suggesting a potential role in mitochondrial dynamics regulation, required to facilitate 

MAVS downstream signalling (Bozym et al., 2012).  

As previously mentioned in this chapter, STING, is an ER-linked protein that 

modulates MAVS signalling, and, in addition to its localization at the ER outer 

membrane in four transmembrane domains, STING is also expressed at the 

mitochondrial outer membrane (Zhong et al., 2008). Following RIG-I activation, STING 

interacts with MAVS and facilitates TBK1 recruitment and subsequent IRF3 

phosphorylation (Zhong et al., 2008). STING is able to bind itself to RIG-I but not to 

MDA5 and does not respond to poly I:C activation, indicating that STING acts strictly 

downstream of RIG-I (Ishikawa and Barber, 2008). Interestingly, STING was shown to 

interact with components of the translocon-associated protein complex (TRAPβ) and 

SEC61β translocon, essential interactions for a proper STING signalling (Ishikawa and 

Barber, 2008). Taken together, these observations suggest that special regulation of 

STING at ER and mitochondria is essential for the RIG-I–dependent antiviral response, 

despite the mitochondrial and ER STING proportions remain difficult to determine, due 

to the close interaction between these two organelles. Cumulative evidences underline 

the importance of the physical platform – denominated Mitochondria associated 

membranes (MAMs) – that connect ER to mitochondria (Horner et al., 2011; Pinton et 

al., 2011). Disruption of MAMs has been linked to imbalances in calcium signalling, 

cellular stress and apoptosis deregulation (Pinton et al., 2011). 
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Regulation of ROS (reactive oxygen species) has also been reported to have a role 

in positive regulation of RLR signalling from mitochondria. Examining the mechanism 

for this phenomenon, Zhao et al. described COX5B (cytochrome C oxidase 5B) as a 

novel MAVS interacting partner, responsible for ROS repression and RLR signalling (Y. 

Zhao et al., 2012). COX5B is a mitochondrial protein and a member of the oxidase 

cytochrome c – known to catalyse the last step of the electron transport chain. 

Overexpression of COX5B diminished MAVS-mediated signalling without any effect in 

TLR or TNF-α mediated signals, suggesting an effect specific to the RLR pathway, 

while cells with COX5B depletion exhibit augmented antiviral signalling. Interestingly, in 

addition to its roles in ATP production, COX5B has also been shown to be involved in 

negative regulation of ROS production. In order to investigate the possible role of this 

pathway in MAVS regulation, the authors used two components known to alter ROS 

levels and found that an increase in ROS results in an increased MAVS signalling and 

diminished levels of ROS have the opposite effect. Additionally, cells expressing 

exogenous MAVS produced higher levels of ROS, which was disrupted by introduction 

of exogenous COX5B (Y. Zhao et al., 2012).  

The autophagosome is another organelle involved in the regulation of the innate 

immune response. As mentioned before, the Atg5-Atg12 conjugate (essential for the 

formation of the autophagosome) was shown to negatively regulate RIG-I pathway by 

direct interactions with RIG-I and MAVS (Jounai et al., 2007). Additionally, IFN 

production was increased in response to poly I:C treatment in Atg5 knockout, 

autophagy-deficient cells, that are characterized for mitochondrial accumulation (Tal et 

al., 2009). This phenotype can be explained by the fact that autophagosomes are 

responsible for the removal of several types of old or damaged organelles, including 

mitochondria. Mitochondria accumulation has two effects: it leads to an increase of 

MAVS, what partially explains the increase in IFN production; and the accumulation of 

damaged mitochondria induces an increase in mitochondrial reactive oxygen species 

(mROS). The same study demonstrated that mROS can stimulate RLRs, ultimately 

leading to IFN induction (Tal et al., 2009).  
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2.4 – MAVS downstream signaling cascade: the antiviral effector response – 

type I IFN induction and ISG production  

As previously stated at chapter 2.1, IRF3/IRF7 and NF-kB, once properly activated, 

translocate to the nucleus where they interact with the IFN-β promoter in a highly 

coordinated manner. The final steps from that point on, ending with the actual 

production of ISGs will now be explored in greater detail. Since IFN-α induction also 

depends upon IRFs actions, it will also be addressed in this chapter.  

 

2.4.1 – IRF3 and IRF7 – the antiviral IRFs 

The specificity of type I IFN induction is achieved by members of the transcription 

factor family, the Interferon Regulatory Factors (IRFs) (Honda et al., 2006; Nguyen et 

al., 1997). At total, nine interferon regulatory factors were identified: IRF-1, IRF-2, IRF-

3, IRF-4/Pip/ICSAT, IRF-5, IRF-6, IRF-7, IRF-8/ICSBP and IRF-9/ISGF3g/p48 (Hiscott, 

2007a; Nguyen et al., 1997). Each member shares extensive homology at their N-

terminus DNA binding domain (DBD), characterized by five tryptophan repetition 

elements in their first 150 amino acids (Nguyen et al., 1997). The IRF DNA-binding 

domain mediates the specific binding to IFN-stimulated regulatory elements (ISREs) in 

IFN stimulated genes.(Honda et al., 2006; Nguyen et al., 1997)  

In addition to their role in immunity, IRFs are also involved in the regulation of the 

cell cycle, apoptosis and tumour suppression (see Figure 13) (Honda et al., 2006). 

Each IRF contains an unique C-terminal, named IRF-association domain (IAD) (Honda 

et al., 2006; Nguyen et al., 1997). The particular function of a certain IRF its accounted 

by the IAD ability to interact with other members of the IRF family, through its 

transactivation potential, interaction with other factors, and the specific expression of 

IRFs in a given cell line (Hiscott, 2007a; Nguyen et al., 1997). 
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Table 2 - The IRF family members and their immune actions.  
(Richez et al., 2010) 
 

 

 

The search for IRFs that might activate IFN-α and IFN-β gene promoters led to the 

identification of IRF3 and IRF7, the so called “antiviral IRFs” (Au et al., 1995). The 

identification of these IRFs and their role in the transcriptional activation of type I IFN 

genes had a great impact in the comprehension of the molecular mechanisms of 

antiviral response induced by pathogens (Hemmi et al., 2004). It became quite obvious 

that, in spite of the recognition of pathogens being mediated by distinct cellular 

receptors and signalling pathways, all of them lead to IRF3/IRF7 activation, a critical 

step for the transcriptional activation of type I INF genes (Kishore et al., 2002; Paun, A; 

Pitha, 2007). 

The IRF3 member was first identified in a database search for IRF1 and IRF2 

homologues (Au et al., 1995). The IRF3 gene (single gene copy at chromosome 

19q13.3-13.4) encodes a 427 aa. phosphoprotein of 55kDa, which is constitutively 

expressed throughout a majority of tissues and cell lines, sharing most homology with 

IRF-8 and IRF-9 (Bellingham et al., 1998; Lin et al., 1999; Mamane et al., 1999). The 

transcriptional activity of IRF3 is controlled by viruses, induced by dsRNA, 

phosphorylation events at Ser. 385 and Ser.386 at the C-terminal, as well as 

phosphorylation at a serine/threonine cluster between aa. 396 to 405 – mediated by 

IKK-related kinases (TBK1 and IKKε) (Lin et al., 1998; Sharma et al., 2003; Yoneyama 

et al., 1998). A model for IRF3 activation was proposed, where C-terminus 

phosphorylation induces a conformational change in IRF3 that allows homo and 
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heterodimerization, dependent of association with CREB-binding protein/p300 

(CBP/p300) (Sharma et al., 2003; Weaver et al., 1998). The activated IRF3 

translocates to the nucleus, while its association with CBP/p300 retains IRF3 inside the 

nucleus, facilitating IFN-β transcription (Weaver et al., 1998). The IRF3 

phosphorylation, ultimately leads to its degradation via ubiquitin-proteasome (Hiscott, 

2007b; Lin et al., 1998). 

The IRF7 member was first described by its binding and repression functions at the 

Qp promoter of the Epstein Barr virus (EBV), which regulates the EBV antigen 1 

(EBVA1) – that contains a ISRE-like element – but its relevance in IFN-α gene 

regulation was rapidly recognized (Au, 1998; Marié et al., 1998; Sato, Hata, et al., 

1998). Unlike IRF3, IRF7 is not constitutively expressed (except for B cells and 

dendritic cells); instead, it is induced by viral infection, IFNs and it presents an half-life 

of only 30 minutes, which can represent a mechanism of transient induction of IFNs 

(Lin et al., 2000; Marié et al., 1998). Phosphorylation of serine residues acts as a 

catalyser for IRF7 activation and it is critical for its translocation to the nucleus; 

particularly, the C-terminus region between aa. 471-487 has been identified as the 

target for phosphorylation (Caillaud and Hovanessian, 2005). 

Re-examining the RIG-I signaling pathway in Figure 13, it is clear that IRF3/IRF7 are 

the substrates of TBK-1 and IKKε kinases; both directly phosphorylate IRF3 and IRF7 

at identical key residues at their respective C-terminals (Perry et al., 2004; Tenoever et 

al., 2007). The alignment of the primary sequence of the C-terminal domains of IRF3 

and IRF7 revealed an extensive consensus motif SxSxxxS that appears to be the 

target of IKKε and TBK-1 (Hiscott, 2007a). Interestingly, RNAi treatment directly 

against IKKε and TBK1 reduces IRF3 phosphorylation and expression of IRF-

dependent genes upon VSV infection in human cells (Benjamin et al., 2004). Further 

analysis of TBK1 -/- and IKKε -/- mice demonstrated that TBK1 is mainly involved in 

downstream signaling to IRF3 and IRF7 phosphorylation and development of an 

antiviral response, while recent experiments suggest that IKKε selectively regulates a 

subset of antiviral IFN genes during viral infection: IKKε-deficient mice produced 

normal levels of IFN-β but were hyper-susceptible to viral infection due to a defect in 

the IFN signaling pathway (Matsui et al., 2006; McWhirter et al., 2004). Specifically, a 

subset of IFN-stimulated genes wasn’t activated in the absence of IKKε, once ISGF3 

(Interferon-Stimulated Gene Factor 3) failed to bind to the promoters of the affected 

genes, thus confirming the requirement of the kinase activity of IKKε to regulate, at 
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least in part, the downstream transcription machinery necessary for the direct antiviral 

response (Tenoever et al., 2007).  

 

2.4.2 – NF-kB & its antiviral role 

The Rel/NF-kB family is the most studied collection of transcription factors. NF-kB 

proteins play their most evolutionarily conserved and relevant role at the immune 

system, regulating the expression of inducers and effectors in several points at the 

signaling pathways that define the response to pathogens. The range of NF-kB 

transcription factors, however, extends beyond the transcriptional regulation of immune 

responses, acting broadly to influence events of gene expression which have impact in 

cell survival, differentiation and proliferation (Hayden and Ghosh, 2008). Moreover, 

these transcription factors are found persistently active in a variety of disease states, 

including cancer, arthritis, chronic inflammation, asthma, neurodegenerative and heart 

diseases (Gilmore, 2014). 

The Rel/NF-kB proteins are structurally related through an highly conserved domain, 

responsible for DNA binding and homo/hetero-dimerization, known as Rel homology 

domain (RHD). Nevertheless, Rel/NF-kB proteins can be organized in two categories, 

based on their sequences: C-terminus sequences to RH domains. The members of the 

first class – p105, p100 and Drosophila Relish – present long C-terminal domains, 

which contain multiple copies of ankyrin repeats; members of this class become active 

by limited proteolysis or disrupted translation (p105 to p50 and p100 to p52) (Gilmore, 

2014). As a result, members of this class cannot act as transcription activators unless 

they dimerize with members of the second class, or with other proteins capable of 

recruiting co-activators (Hayden and Ghosh, 2008). The second class (the Rel 

proteins) include c-Rel, RelB, RelA (p65), Drosophila Dorsal and Dif, containing C-

terminal transcription activation domains (TAD) (Gilmore, 2014). 
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Figure 21 – The NF-kB family members and their structural features.  
The main feature of the NF-kB family members is the presence of a Rel Homology Domain 
(RHD). The presence or absence of a Transactivation Domain (TAD) separates the family 
members in two categories. The precursor proteins p100 and p105 function as both, inhibitors 
of nuclear factor-κB and, when processed by the proteasome, become NF-κB members. RHD – 
Rel Homology Domain; TAD – Transactivation Domain; LZ – leucine zipper domain; GRR – 
glycine-rich region; DD – death domain. Adapted from: (Ghosh and Hayden, 2008; Hayden and 
Ghosh, 2008) 

 

The Rel/NF-kB transcription factors bind to DNA sites of 9-10 base pairs – named 

kB sites – in the form of dimers. All vertebrate Rel proteins can form either homo or 

heterodimers, except RelB that can only form heterodimers (Gilmore, 2014). 

Particularly, the constitutive binding of p50 or p52 to kB sites at NF-kB-responsive 

promoters can act in order to verify NF-kB transactivation until they are dislocated by 

transcriptionally competent NF-kB dimers (Hayden and Ghosh, 2008). The combinatory 

diversity of homo and heterodimers that NF-kB proteins can form between them 

contributes to the regulation of distinct, but overlapping sets of genes, in which, 

individual dimers possess different specificities to DNA-binding sites in specific, but 

related, kB sites (Gilmore, 2014). Among the NF-kB dimers, the p50/p65 heterodimer is 

the biggest and most avidly forming Rel/NF-kB complex in most cells. Therefore, the 

NF-kB term will hereinafter be used referring to this particular heterodimer while 

Rel/NF-kB term will be used as a generic term, not referring to any particular dimer. 

In their inactive state, Rel/NF-kB dimers are found associated with one of the three 

typical IκB proteins IκBα, IκBβ or IkBε or to the precursor proteins p100 and p105, 

maintaining Rel/NF-kB dimers predominately “trapped” at the cytoplasm, thus acting as 

the main regulators of their activity. All IκB proteins are characterized by the presence 
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of multiple domains with ankyrin repeats. The prototypical and most studied member of 

this family is IκBα. IκBα is rapidly degraded during activation of Rel/NF-kB, leading to 

the release of several Rel/NF-kB dimers, despite the fact that p50/p65 is the most likely 

target of IκBα. The established model of IκB postulates that IκBα retains NF-kB dimers 

at the cytoplasm, thus preventing nuclear translocation and subsequent DNA binding. 

In fact, the crystal structure of IκBα bound to p50/p65 heterodimer reveals that IκBα 

protein masks only a nuclear localization sequence (NLS) of p65, while the NLS of p50 

remains exposed. The exposed NLS of p50 coupled with the nuclear export sequences 

(NES) of IκBα and p65 lead to a constant shuttling/redistribution of the IκBα/NF-kB 

complexes between the nucleus and cytoplasm, despite the steady-state location 

appearing to be almost exclusively cytosolic. On the other hand, degradation of IκBα 

(by phosphorylation events through IKK kinases) drastically alters the dynamic balance 

between cytosolic and nuclear signals, favouring the nuclear localization of the NF-kB 

dimers, thus allowing the transcriptional competent NF-kB dimers to bind to DNA at the 

previously mentioned kB sites. In the case of the repression of Rel/NF-kB dimers by 

p100, proteasomal processing of p100 to p52 takes place (instead of degradation), 

consequently releasing Rel/NF-kB dimers containing p52, which leads to a 

transcriptional response distinct from the one induced by IκBα - in part due to the fact 

that IκBα degradation and p100 processing regulate different populations of Rel/NF-kB 

dimers, therefore regulating distinct sets of genes (Hayden and Ghosh, 2008). 

Evoking once more the schematic representation of RIG-I signaling pathway 

depicted in Figure 13 it is discernible that, while the IRF3/IRF7 activation takes place 

through the actions of IKKε and TBK1, the removal of the IκBα repression from NF-kB 

cytosolic dimers occurs due to a different kinase complex: two highly homologue 

kinase subunits – IKKα and IKKβ – and NEMO, the regulatory subunit. In the majority 

of the classic NF-kB pathways (such as the one induced by RIG-I signaling), IKKβ is 

necessary and sufficient to phosphorylate IκBα at Ser32 and Ser36; IKKα can also 

mediate IκBα phosphorylation and cause its degradation, but it is not a necessary 

occurring step. The alternative/non-canonical pathways rely only on the IKKα subunit, 

which phosphorylates p100 causing the inducible processing to p52. It should be noted 

that the alternative pathway is activated by a subset of the Tumour Necrosis Factor 

Receptor (TNFR) superfamily while the canonical pathway is activated by a broader 

and overlapping set of receptors. The phosphorylation of serine residues at IκB 

proteins results in their K48-linked polyubiquitination by SCFβTrCP ubiquitin ligase 

complex in coordination with E2 UbcH5. The newly released NF-kB dimers can then 

bind to enhancer and promoter kB sites at the DNA sequence, allowing the interferon 
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response to take place. The termination of NF-kB response depends on the 

transcription of new IκB molecules that will interact with the competent NF-kB proteins 

bound to DNA sequences, trapping them once again mainly at the cytoplasm (Hayden 

and Ghosh, 2008). 

 

2.4.3 – IRF3/IRF7 & NF-kB recruitment and the assembly of the IFN-β 

“enhanceosome” 

Upon viral infection, the host cell requires three transcription factors in order to 

activate the transcription of the IFN-β gene: NF-kB, IRF3/IRF7 and ATF-2/c-Jun (Ford 

and Thanos, 2010; Honda et al., 2005). These necessary proteins to IFN-β induction 

are present in the cell prior to viral infection, but only upon viral infection they become 

activate to induce an adequate antiviral response (Honda et al., 2005). IRF3/IRF7 and 

NF-kB activation was already described above, but, unlike NF-kB and IRF-3/IRF-7, 

ATF-2/c-Jun (Activating transcription factor 2/c-Jun) is found in the nucleus and it is not 

able to activate transcription until its activation domain is phosphorylated by a MAPK 

signalling pathway [MAPK signalling pathway can be reviewed at (Jeffrey et al., 2007; 

Munshi and Ramesh, 2013)].  ATF-2 and c-Jun belong to the Fos-Jun family of bZIP 

proteins that possess a basic DNA-binding domain and a coiled-coil leucine zipper 

dimerization domain (Chinenov and Kerppola, 2001). It is important to note that ATF-

2/c-Jun requires the cooperative interactions with the other IFN-β activators to form a 

stable complex with DNA (Ford and Thanos, 2010). 

Interestingly, the oxidative state of the host cell also seems to be important for 

proper IFN-β transcription activation (Ford and Thanos, 2010). Specifically, IRF3 is S-

glutathionylated in non-infected cells but when a viral infection takes place, IRF3 is 

deglutathionylated by glutaredoxin-1 (GRX-1) (Prinarakis et al., 2008). The removal of 

glutathione moiety of IRF3 is necessary for the efficient interaction between IRF3 and 

its transcriptional co-activator CBP/p300 (Prinarakis et al., 2008). Therefore, a 

particular viral infection induces specific signalling cascades that result in post-

translational modifications (S-deglutathionylation and phosphorylation of IRF3/IRF7; 

ATF-2/c-Jun recruitment; removal of IkBα repression from NF-kB), necessary to the 

assembly of NF-kB, IRF3/IRF7 and ATF-2/c-Jun in a nucleic complex named 

“enhanceosome”.  
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For a clear comprehension of how the enhanceosome is assembled, it is first crucial 

to understand the concept of nucleosome and to explore the characteristics of the IFN-

β enhancer regions.  

Nucleosomes are the basic units of eukaryotic chromatin, composed of an histone 

octamer around which ~147bp of DNA is wrapped (Ford and Thanos, 2010). Each 

histone is made of two copies of histone proteins H2A, H2B, H3 and H4; histone tails at 

N-terminus extend from the central structure and are subject of covalent modifications 

like acetylation, phosphorylation and methylation (Kouzarides, 2007). These 

modifications are carried out by enzymes that are specifically recruited to the chromatin 

by regulatory transcriptional proteins and target the underlying genes for transcriptional 

activation or repression (Kouzarides, 2007). Histone modifications can also influence 

the nucleosome stability and provide an additional layer of information to the DNA 

sequence, in order to recruit additional regulatory transcription proteins (Bannister and 

Kouzarides, 2011; Kouzarides, 2007). The strategic nucleosome position throughout 

chromatin in selected genes can play a truly regulatory role in gene expression control; 

specifically, the phasing and the rotational or translational context of a given 

nucleosome can preferentially allow the binding of selected proteins to the adjacent 

DNA sequence, operating as a “gatekeeper” to access the DNA code (Schones et al., 

2008). 

The IFN-β enhancer is a DNA regulatory element of 50bp, localized between -104 

and -55bp upstream of the transcription initiation site; it contains four positive 

regulatory domains (PRDs) named PRDII, PRDIII-I and PRDIV that bind NF-kB, IRFs 

and the ATF-2/c-Jun heterodimer, respectively (Ford and Thanos, 2010; Sato, Tanaka, 

et al., 1998; Visvanathan and Goodbourn, 1989; Wathelet et al., 1998). Together with a 

high mobility group protein A1 (HMGA1), these activators bind cooperatively to DNA 

and form an exceptionally stable complex designated enhanceosome – activating 

transcription from the IFN-β promoter, in response to a given viral infection (Thanos 

and Maniatis, 1995; Wathelet et al., 1998; Yie et al., 1999). None of these activators 

and DNA elements alone are capable of activating transcription, thus, there’s 

something special about this enhancer region that limits the transcriptional potential of 

its positive regulatory elements (Ford and Thanos, 2010). Analysing each PRD of the 

IFN-β enhancer region it is possible to understand how this highly regulated promoter, 

the enhanceosome, operates (Ford and Thanos, 2010). 

PRDII site is recognized and bound by NF-kB transcription factor in the form of 

p50/p65 heterodimer with low affinity (Ford and Thanos, 2010). One of the reasons for 
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this low affinity seems to be an intrinsic bend in PRDII element that needs to be 

unfolded and aligned for a steadier NF-kB binding (Falvo et al., 1995). The chromatin-

associated protein HMGA1 increases greatly the affinity of NF-kB to PRDII site (Falvo 

et al., 1995). HMGA1 is a chromatin architectural protein that alters DNA structure 

upon binding to the minor groove; specifically, in the case of PRDII, HMGA1 reverses 

the intrinsic bend in DNA and creates a more favourable surface for NF-kB binding – 

DNA-induced allostery (Falvo et al., 1995). Thereby, studies and assays isolating 

PRDII site and studying it in and out of its natural context, NF-kB and HMGA1 showed 

to facilitate transcription through their cooperative binding to PRDII at the IFN-β 

enhancer (Falvo et al., 1995; Ford and Thanos, 2010).  

The PRDIV site of IFN-β enhancer binds an ATF-2/c-Jun heterodimer (Panne et al., 

2004).  As in the case of PRDII, PRDIV has an intrinsic bend of ~25o that is reduced to 

about 15o upon binding of HMGA1 (Falvo et al., 1995). The ATF-2/c-Jun binding 

reduces this bend in a way that the helix axis becomes almost straight, with some 

localized distortions required for a cooperative binding (Panne et al., 2004). Once 

again, HMGA1 binding proves to be essential for virus-induced activation of IFN-β gene 

(Falvo et al., 1995; Panne et al., 2004).  

PRDIII-I site is the binding site of IRF3 and IRF7 proteins, yet, IRF1 was the first 

protein that was shown to bind to PRDIII-I (Ford and Thanos, 2010; Fujita et al., 1989). 

However, while IRF1 expression can indeed activate IFN-β transcription, it is not able 

to do it in a way that is consistent with virus activation alone (Reis et al., 1994). On the 

other hand, the IFN-β expression is severely deficient in mouse cells without IRF3 or 

IRF7, and it is pretty much undetectable in IRF3/IRF7 double knockout cells (Sato et 

al., 2000). Remarkably, IRF3 is constitutively expressed, phosphorylated upon viral 

infection and then dimerizes and translocates to the nucleus, while IRF7 is only 

expressed in low levels at first (Sato et al., 2000). Only after secretion of IFN-β, a signal 

cascade is induced to result in the expression of higher levels of IRF7 (Sato et al., 

2000). Despite the differences between mouse and human cells, as well as the 

variability between cell lines, the bigger picture drawn by in vitro binding studies, 

transcription assays in human cells and knockout mouse models points to a model 

where high levels of IRF3 and low levels of IRF7 activate the initial IFN-β transcription 

that is then followed by a secondary stage with high levels of IRF7 expression, not 

requiring IRF3 (Reis et al., 1994; Sato et al., 2000).  
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2.4.4 – IFN-β enhanceosome assembly  

Taking in consideration the data described above, several crystal structures of DNA-

binding domains (DBDs) of proteins found in the enhanceosome have been resolved: 

the NF-kB p50/p65 heterodimer bound to PRDII, IRF1 bound to PRDI, IRF3 bound to 

PRDIII-I, ATF-2/c-Jun and IRF3 bound to a composite of PRDIV-PRDIII as well as 

p50/p65 and IRF7 bound to a composite of PRDI-PRDII (Berkowitz et al., 2002; 

Escalante et al., 1998; Panne et al., 2004, 2007; Qin et al., 2005). Using these 

structures and overlapping them, the entire enhanceosome, with the exception of 

HMGA1, has been deciphered, supporting the aforementioned biochemical models 

(Panne et al., 2007). In particular, ATF-2/c-Jun binds to PRDIV site with ATF-2 

upstream and c-Jun downstream; four IRF molecules are bound to PRDIII-I site in the 

form of IRF3 homodimers or in the form of IRF3/IRF7 heterodimers – two IRF 

molecules bind as a dimer in one side of the DNA helix at the PRDI and PRDIII 

consensus sites and, at the opposite side of the helix, a second IRF dimer binds to 

non-consensus sites traversing the PRDI and PRDIII sites; and lastly, p50/p65 binds to 

PRDII site with p50 subunit upstream and p65 facing the central promoter (Panne et 

al., 2007). 

An interesting feature to take into account during the enhanceosome assembly is 

the role that HMGA1 plays, since the crystal structures and biochemical data conflict at 

this point. HMGA1 binds to DNA at the minor groove through AT-hooks – each HMGA1 

molecule contains three flexible AT-hooks DNA-binding domains (DBDs) (Reeves and 

Beckerbauer, 2001; Yie et al., 1997). An initial HMGA1 molecule binds to PRDIV site 

through its first and second DBDs, while a second HMGA1 binds to PRDII composite 

using its second and third DBDs (see Figure 22) (Yie et al., 1997). Curiously, the 

crystal structures show that one of the HMGA1 binding sites to PRDIV is obstructed by 

IRF7; at the PRDII site, p50/p65 binding distorts the DNA helix in a way that the minor 

groove becomes probably too narrow to accommodate a simultaneous binding to 

HMGA1 as well (Ford and Thanos, 2010). This could lead to the assumption that 

HMGA1 exerts its functions in a “hit and run” mechanism, that is, facilitating the 

enhanceosome assembly but not being present in the final structure (Ford and Thanos, 

2010). However, HMGA1 was observed in the complete form of the enhanceosome, 

making direct contacts with NF-kB and ATF-2 (Yie et al., 1999). Besides, HMGA1 

remains associated with IFN-β promoter from the time NF-kB is initially recruited till the 

end of IFN-β transcription (Ford and Thanos, 2010). Thus, it seems likely that the final 
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enhanceosome structure might be slightly different than the one that crystal resolutions 

have shown so far, or, perhaps, HMGA1 can be retained at the enhancer through 

protein-protein interactions (Ford and Thanos, 2010).  

 

2.4.5 – Enhanceosome apparatus – the pre-initiation complex 

The newly assembled enhanceosome creates a tree-dimensional surface that is 

initially recognized by the co-activator protein PCAF (p300/CBP-associated factor) 

(Agalioti et al., 2000). In spite of the fact that the IFN-β enhancer is directly flanked by 

nucleosomes in both sides, the enhancer sequence itself is nucleosome-free (Agalioti 

et al., 2000). Upon recruitment, PCAF acetylates a small subset of lysines at the 

histone tails of H3 and H4 at the adjacent nucleosomes, specifically the acetylation of 

H4K8 and H3K9 (Agalioti et al., 2002). This event is followed by phosphorylation of 

Ser10 at H3 by an unknown enzyme that, in turn, allows acetylation of H3K14 (Agalioti 

et al., 2002). In in vitro acetylation assays, PCAF reveals low substrate specificity, thus, 

the tree-dimensional configuration of the enhanceosome might position PCAF within 

this pre-initiation complex and convert it from a relatively unspecific enzyme into an 

enzyme with high levels of specificity – proving evidence of how an unique combination 

of activators can result in the generation of a very specific signal (Agalioti et al., 2002).  

The combination of acetylation of histones is then recognized by a specific set of 

factors (Agalioti et al., 2002). At this point, PCAF is released and replaced by CREB-

binding protein (CBP), which is recruited in the form of a complex with the holoenzyme 

RNA polymerase II (Pol II), containing Transcription Factor II E (TFIIE), TFIIH, TFIIF 

and SWI/SNF (SWItch/Sucrose Non Fermentable) (Figure 22) (Agalioti et al., 2002; 

Kim et al., 1998). Despite CBP being able to form a complex with each one of the 

activators of the enhanceosome alone, the tree-dimensional geometry creates a 

contiguous surface that facilitates cooperative binding of CBP with the enhanceosome, 

necessary for the synergic transcription of IFN-β (Merika et al., 1998). 
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Figure 22 – Assembly of the IFN-β enhanceosome. 
a) The naked enhancer DNA with its intrinsic curve. b) A specialized Alu element with a NF-kB 
binding site delivers NF-kB to the IFN-β enhancer. c) NF-kB binds to the IFN-β enhancer 
cooperatively with HMGA1 and reverses the intrinsic bend in the DNA at the PRDII site. d) ATF-
2/c-Jun and IRF3/IRF7 bind in highly cooperative fashion along with NF-kB and HMGA1. e) 
PCAF is recruited to the enhancer and acetylates HMGA1 and histones H3 and H4. f) A CBP-
PolII holoenzyme complex replaces PCAF, SWI/SNF remodels the adjacent nucleosome. g) 
TFIID (TBP) binds and induces nucleosome sliding. h) CBP acetylates HMGA1 and the 
enhanceosome proteins disassociate from the enhancer. (Ford and Thanos, 2010) 
 
 

The IFN-β promoter has a nucleosome positioned on top of the transcription 

initiation site, directly adjacent to the TATA box (Agalioti et al., 2000). This is a common 

arrangement at the promoter that – together with the fact that transcriptional machinery 

cannot operate on nucleosome-bound DNA – underlines the importance of the local 

chromatin structure in the regulation of transcription (Agalioti et al., 2000). In order to 

overcome the barrier presented by the nucleosome positioned at the initiation site, the 

ATP-dependent nucleosome-remodelling SWI/SNF complex is recruited to the 

promoter through the interaction with CBP (Agalioti et al., 2000). The SWI/SNF BRG1 

and BRM subunits possess bromodomains that specifically recognize the acetylated 

forms of the histone tails (Agalioti et al., 2000). The SWI/SNF complex promotes the 
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twisting and “peeling off” the DNA, in order to allow the binding of TFIID (Lomvardas 

and Thanos, 2001). Upon TFIID binding to DNA, a TATA-binding protein (TBP) induces 

a major DNA bending that causes the nucleosome to slide 36bp below its original 

position (Lomvardas and Thanos, 2001). With the TATA box now exposed, the IFN-β 

gene expression events can take place, culminating at this point in the production of 

interferon β proteins. 

 

2.4.6 – The intricate regulation of IFN-α genes 

The IFN-α genes are also transcriptionally induced in response to viral infections in 

a similar way to IFN-β, requiring serine-phosphorylated proteins for its expression (Sato 

et al., 2000). In some ways, IFN-α is less complex than IFN-β gene expression, since 

the only well-characterized enhancer elements that control IFN-α genes contain IRF-

binding sites – with no apparent contribution of NF-kB or ATF-2/c-Jun complexes (Sato 

et al., 2000). The IFN-α genes negative regulation also appears to operate greatly 

through the inhibition of IRF proteins (Levy and Marié, 2005).  

It is not yet clear if the IFN-α genes transcription involves the formation of an 

enhanceosome structure, DNA bending or nucleosome repositioning; it is, however, 

known that a competitive binding between IRF2 and activating members of IRF family 

keep the basal levels of IFNs, observed in the absence of viral infection (Levy and 

Marié, 2005). The repressor Pitx1 homeobox also seems to contribute to the silencing 

of IFN-α gene, through its ability to interact and inhibit IRF3 and IRF7 (Island and 

Mesplede, 2002).     

Despite the deceptive simplicity of a regulatory scheme that only requires one type 

of transcriptional activator, there’s a complexity aspect that is not observed with IFN-β 

(Levy and Marié, 2005). It was discovered that IFN-β and the multigenic family of IFN-α 

are not regulated in unison during a viral infection, and that their differential expression 

is, at least in part, regulated through a positive feedback loop involving the induction of 

IRF proteins (Marié et al., 1998; Sato, Hata, et al., 1998). IFN-β and the mouse IFN-α4 

isotype are induced with early kinetics through the actions of the constitutively 

expressed IRF3 (Marié et al., 1998). On the other hand, enhancers from other 

members of the IFN-α family aren’t able to bind IRF3, but instead, are only activated by 

IRF7 (Levy and Marié, 2005). IRF7, as previously stated in this chapter, is not 

constitutively expressed in most cell lines and its expression is induced by the IFN 
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signaling through the JAK-STAT pathway (Mamane et al., 1999). Thus, in response to 

the initial IFN-β and IFN-α4 secretion through the actions of IRF3, the IRF7 induction 

renders cells sensible to the induction of additional subtypes of IFN-α (commonly 

referred as the non-IFN-α4 subsets of genes), ultimately leading to a robust production 

of several species of IFN-α and a consequent powerful antiviral activity (Marié et al., 

1998; Sato, Hata, et al., 1998). 

 

 

Figure 23 – Schematic model of the IFN gene induction in virus infected cells. 
 A) Activation of immediate-early genes: following virus infection or treatment with dsRNA, a 
coordinate activation of different transcription factors occurs through the activation of distinct 
signalling pathways that lead to virus-induced phosphorylation (P). These factors act 
synergistically at the IFN-β enhanceosome together with the co-activator CBP/p300 and the 
chromatin remodelling protein HMG1. In murine cells, activated IRF3 also upregulates IFN-α4 
gene expression. B) Activation of delayed-type genes: secreted IFN from virus-infected cells 
acts in an autocrine or paracrine fashion through binding to the type I IFN receptor. Activation of 
the JAK-STAT signalling pathway induces the formation of the ISGF3 complex, which leads to 
the expression and activation of IRF7. In turn, IRF7 participates in the induction of delayed-type 
IFNs, resulting in the amplification of IFN gene expression. Transcribed from: (Mamane et al., 
1999) 
 
 

Additional reports have suggested another level of complexity in the regulation of 

IFN-α induction. In the same way that IRF3 and IRF7 presence and activation 

programs the induction of a diversity of IFN-α genes subtypes, other members of the 

IRF family seem to target specific IFN-α isotypes; particularly, it was found that IRF5 

can participate in IFN-α genes induction by certain viruses, such as the Newcastle 
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Disease Virus (NDV), leading to the preferential induction of the human IFNA8 gene 

(Barnes et al., 2001).  

 

2.4.7 – The IFN-dependent JAK-STAT pathway activation and ISG 

production 

All interferons exert their effects by binding to specific surface receptors, leading to 

the activation of signalling pathways that ultimately target the induction of interferon-

stimulated genes (ISGs), whose proteins mediate the antiviral effects (Fensterl and 

Sen, 2009). 

Type I IFNs bind to a common surface receptor know as type I interferon receptor; it 

possesses two subunits, IFNAR1 and IFNAR2 and each one of these subunits 

interacts with a member of the Janus Activated Kinase (JAK) family. IFNAR1 is 

associated with tyrosine kinase 2 (TYK2) while IFNAR2 is associated with JAK1 

(Platanias, 2005). 

The binding of IFN-α or IFN-β to the type I IFN receptor results in the 

autophosphorylation and activation of the associated JAKs, TYK2 and JAK1, that, in 

turn, regulate the phosphorylation and activation of Signal Transducers and Activators 

of Transcription (STATs). STATs are latent cytosolic transcription factors that become 

active upon phosphorylation by the Janus kinases. In response to type I IFN 

stimulation, activated STATs include STAT1, -2, 3 and -5. STAT4 and -6 can also be 

activated by IFN-α but only on certain cell types such as endothelial cells of lymphoid 

cells. Upon phosphorylation by JAKs, the activated STATs can form homo- or 

heterodimers that translocate to the nucleus and initiate transcription by binding to 

specific sites at the ISGs promoters (Platanias, 2005). 

Worthy of note is the formation of the ISG factor 3 complex, composed of the active 

forms of STAT1 and STAT2, together with IRF9. This is an unique complex that binds 

to specific genic elements known as IFN-stimulated response elements (ISREs), 

presented at the promoter region of certain ISGs, thus initiating their transcription. 

Other types of complexes can bind to another type of element, known as Gamma 

interferon Activation Sites (GAS) in other ISGs promoter regions. This is particularly 

important, given that some ISGs only possess ISREs, others just the GAS and others 

can have both, thus, the combination of different STAT complexes allows a differential 

and optimal gene transcription (Platanias, 2005).  
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Figure 24 – Activation of classical JAK-STAT pathways through IFN receptors by type I 
and type II interferons.  
All type I interferons bind a common receptor at the surface of human cells, which is known as 
the type I IFN receptor. This receptor is composed of two subunits, IFNAR1 and IFNAR2, which 
are associated with TYK2 and JAK1 respectively. The type II IFN, IFNγ, binds a distinct cell-
surface receptor, known as the type II IFN receptor, which also has two subunits, IFNGR1 and 
IFNGR2 that are associated with JAK1 and JAK2 respectively. Activation of the JAKs that are 
associated with the type I IFN receptor results in tyrosine phosphorylation of STAT2 and 
STAT1, leading to the formation of STAT1-STAT2-IRF9 complexes, that are known as ISGF3 
complexes. These complexes translocate to the nucleus and bind to ISREs in DNA to initiate 
gene transcription. Both, type I and type II IFNs also induce the formation of STAT1-STAT1 
homodimers that translocate to the nucleus and bind GAS elements that are present in the 
promoter of certain ISGs, thereby initiating the transcription of these genes. N – any nucleotide. 
(Platanias, 2005) 
 
 

 The transcriptional activation of ISGs leads to the production of antiviral effector 

proteins. To date, three antiviral pathways were strongly established: the Protein 
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Kinase K (PKR), the 2-5 OAS/RNaseL system and the Mx proteins (Haller et al., 2006). 

However, other ISGs action mechanisms have been discovered in the past years, such 

as APOBEC3G, ISG15, IFIT1/2/3, viperin (also known as RSAD2), etc. (Schoggins and 

Rice, 2011). 

The dsRNA-activated kinase protein PKR is induced by interferons but it is 

constitutively expressed in low levels in most cell types. Its activation occurs after 

binding of dsRNA inducing its dimerization and auto-phosphorylation. PKR then 

phosphorylates the translation initiator factor eIF-2α, resulting in its cellular and viral 

inhibition. PKR inhibits replication of most RNA viruses such as Vesicular stomatitis 

virus (VSV), Encephalomyocarditis virus (EMCV), West Nile virus (WNV), hepatitis C 

virus (HCV), and DNA viruses such as Herpes simplex virus 1 (HSV-1) (Fensterl and 

Sen, 2009). 

Another type of IFN-induced enzymes is the 2’-5’-oligoadenilatesinthetases (such 

as OAS1) that, upon binding with dsRNA generate 2’-5’-linked AMP oligomers from 

ATP; these activate RNase L which dimerizes and cleaves cellular and viral ssRNA, 

preventing protein expression and occasionally induces apoptosis. This system is the 

main effector against picornaviruses and influenza A viruses. Furthermore, cellular 

cleaved RNAs can amplify the interferon induction serving as ligands of RIG-I. The 

unspecific cleavage of ssRNA can also occur after ISG20 induction, a 3’-

exoribonuclease that inhibits VSV viruses (Fensterl and Sen, 2009). 

Mx1 (a.k.a. MxA) uses a peculiar mechanism by disrupting cell membranes around 

the nucleus, binding to viral nucleocapsids, thus inhibiting viral intracellular trafficking. It 

is the main feature against orthomyxoviruses such as influenza viruses and others 

such as measles virus, VSV, Hantavirus and Semliki Forest virus (Fensterl and Sen, 

2009). 

The nucleic acid-editing APO-BEC3G and -3F are deoxyxytidine deaminases that 

inhibit retroviruses, acting through the introduction of C or U mutations within the viral 

reverse DNA thus, directly interfering with reverse transcription (Fensterl and Sen, 

2009).  

Members of the human gene family ISG56 (IFIT1) are highly induced by IFN, 

dsRNA or viral infection. Four members comprise this gene family, among them the 

IFIT1/ISG56, IFIT2/ISG54, IFIT4/ISG60 and IFIT5/ISG58. They all encode proteins with 

multiple tetratricopeptide motifs which are protein-protein interaction motifs that act in 
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combination. These proteins bind to eIF-3; the binding of P56 proteins to eIF-3 causes 

the inhibition of initiation of protein synthesis (Sen and Sarkar, 2007).  

ISG15 is another human gene highly induced by IFN, dsRNA and viruses. It 

encodes an ubiquitin-like protein named P15 and, like ubiquitin, it binds to target 

proteins by isopeptide linkages between lysine chains of their targets. The functional 

consequences of ISG15ylation are still to be determined; a study revealed that NS1B 

protein of influenza B virus specifically blocks ISGylated proteins suggesting that this 

process allows the virus to evade the effect of ISG15. Another study shows that ISG15 

is the protein that mediates IFN action against HIV-1 morphogenesis; IFNs inhibit the 

HIV-1 virion release without affecting protein synthesis and these effects can be 

mimicked by ectopic expression of ISG15 and its activating enzymes (Sen and Sarkar, 

2007).  

Viperin can interfere with the envelope budding process of cytomegaloviruses 

(HCMV), HCV and influenza by disrupting lipid rafts at the membrane; however, the 

precise action mechanism is yet to be determined (Fensterl and Sen, 2009). 

The number of ISGs is endless and their action mechanisms remain elusive. This 

reveals a special feature of the antiviral immune system: it acts by coordinating the 

actions of several effector molecules with a less powerful effect instead of falling back 

on only a few powerful effectors. Inducing a range of weak effectors in detriment of 

upregulating a small group of powerful genes might in fact be preferable from the host 

perspective, once the latter could result in cellular toxicity (Schoggins and Rice, 2011).  
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3 – Viral strategies of survival – subverting key points in the antiviral RLR 

signalling pathway  

The mechanisms employed by viruses to escape innate immune responses, 

particularly, the type I IFN induction system through detection by cytosolic receptors 

(the RLR signalling pathway) rely in the subversion of key aspects of such pathways. 

The most direct mechanism is to avoid initial detection, via mechanisms that interfere 

with viral recognition. Some viruses count on the circumvention of components of the 

signalling pathways which lead to IFN production and, lastly, others resort to 

mechanisms that inhibit IFN-induced antiviral effector proteins. 

3.1 - Viral mechanisms that subvert viral recognition 

Some viruses are able to hide or degrade their own genomes. For example, tick-

borne encephalitis virus delays cellular signalling by sequestering their RNA molecules 

into membrane compartments at the cytosol, where they cannot be accessed or 

recognized by PRRs (Miorin et al., 2012); the Japanese Encephalitis virus (JEV) can 

also hide its dsRNA in intracellular membranes. Instead of hiding it, Lassa Fever virus 

uses the 3’-5’-exonuclease activity of its nucleoprotein to digest its own dsRNA (Hastie 

et al., 2011), while the C protein of the human parainfluenza type 1 is thought to 

regulate the production of its own RNA in order to prevent it from accumulating within 

the cell (Boonyaratanakornkit et al., 2011).  

RLRs, like other viral detection receptors can be hampered by viruses:  

- The human Respiratory Syncytial virus (RSV) N protein inhibits both RIG-I and 

MDA5 (Lifland et al., 2012) while the HIV protease decreases the cytosolic levels 

of RIG-I, targeting it to lysosomes (Solis et al., 2011);  

- Arenavirus nucleoproteins and Z proteins of the New World Arenaviruses were 

shown to bind to RIG-I and inhibit subsequent downstream signalling (Borrow et 

al., 2010); 

- Toscana virus-derived non-structural proteins (NSs) interact with RIG-I, leading to 

its proteasomal degradation (Gori-Savellini et al., 2013); 

- V proteins of paramyxoviruses promote interactions between RIG-I and LGP2 

(Childs et al., 2012); 

- Several viral proteins (i.e.: Arterivirus NS2 (van Kasteren et al., 2012), Kaposi 

Sarcoma-associated herpesvirus ORF64 (Inn et al., 2011), etc.) target RIG-I 
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through deubiquitinating enzymes (DUBs) that remove K63-linked ubiquitin chains 

from RIG-I, preventing its interaction with MAVS adaptor. 

 

 

Figure 25 – The RLR pathway and viral inhibitors.  
Several viral proteins/factors are capable of influencing and subverting the antiviral response by 
disrupting the RLR pathway in crucial points. DUBs – deubiquitinases; RSV - Respiratory 
Syncytial virus; HIV – Human Immunodeficiency virus; NWA - New World Arenaviruses; KSHV - 
Kaposi Sarcoma-associated herpesvirus; HPV – Human Papilloma virus; Sev – Sendai virus; 
SFTSV - Severe Fever with Thrombocytopenia Syndrome virus. 
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3.2 – Evasion mechanisms of RLR pathway components that lead to IFN 

production 

MAVS adaptor is a common target for antiviral antagonists. PB1-F2 protein of 

influenza A virus binds to the transmembrane domain of MAVS leading to a drop in the 

mitochondrial membrane potential, required for MAVS functions (Varga et al., 2012). 

The coxsackievvirus B3 codes a cysteine protease 3Cpro and hepatitis C virus NS3/4A 

protein both cleave MAVS directly  while HBx protein of hepatitis B virus associates 

with, and blocks MAVS (Kumar et al., 2011; Li et al., 2005; Mukherjee et al., 2011). 

STING is also affected by viral proteins such as the protease complex NS2B3 of 

Dengue virus, cleaving STING in two inactive fragments (Yu et al., 2012). Papain-like 

proteases of human coronavirus NL63 and SARS-CoV that possess DUB and protease 

activities disrupt STING dimerization by increasing its ubiquitination levels (Sun et al., 

2012). 

It has been shown that IRF3 is a target for the viral protein E6 of human papilloma 

virus (HPV); Ronco et al. demonstrated that E6 interacts with IRF3 and compromises 

its ability to transcriptionally activate IFN-β production (Ronco et al., 1998). Talon et al. 

also demonstrated that influenza A prevents IRF3 activation by a mechanism 

dependent upon the viral protein NS1 (Talon et al., 2000). The V protein of Sendai 

virus binds directly to IRF3, jeopardizing its functions (Ye and Maniatis, 2011); Varicella 

zoster virus induces an atypical TBK1-independent IRF3 phosphorylation, blocking the 

downstream dimerization and its activity through the serine-threonine kinase protein 

ORF47 (Vandevenne et al., 2011); ORF61, also from varicella zoster virus, specifically 

interacts with activated and phosphorylated IRF3, using a RING-finger E3 ubiquitin 

ligase domain to ubiquitinate and degrade IRF3 via the proteasomal degradation (Zhu 

et al., 2011). 

Several viral proteins are able to disrupt IRF3 activation via indirect mechanisms, by 

interfering with TBK1 and IKKε kinases. Paulmann et al. demonstrated that infection by 

hepatitis A virus inactivates TBK1 (Paulmann et al., 2008). TBK1 can also activate 

IRF7 inducing the production of IFN-α, and Paulmann group showed that virus-derived 

proteins 2B and 3ABC interact with MAVS and block TBK1 activity (Paulmann et al., 

2008) Their findings also suggest an interaction between 2B and IKKε (Paulmann et 

al., 2008). Despite the exact mechanisms remaining elusive, the NS proteins of Severe 

Fever with Thrombocytopenia syndrome virus (SFTSV) and the HSV-1 y34.5 protein 

associate with and inhibit TBK1 (Ma et al., 2012; Qu et al., 2012). The A59 papain-like 
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protease domain 2 of the protein NSp3 of mouse hepatitis virus was found to 

deubiquitinate TBK1, decreasing its kinase activity, stabilizing it in an inactive 

conformation (Wang et al., 2011). The C6 protein of Vaccinia virus interferes with 

IRF3/IRF7 activation at the level of TBK1/IKKε through interaction with TANK, NAP1 

and SINTBAD proteins (recalling that the contribution of these proteins to antiviral 

signalling is yet not clear) (Unterholzner et al., 2011). The NP proteins of several 

arenaviruses are capable of association with the kinase domain of IKKε, by encoding a 

miRNA known as miR-K12-11 that under regulates the mRNA translation of IKKε 

(Liang et al., 2011; Pythoud et al., 2012).  

IRF7 can also be hampered by viruses: some strains of rotavirus use their NSP1 

protein to cause IRF7 degradation via the proteasome, while other strains target IRF3 

and IRF5, or even the β-TrCP protein, a component of the E3 ubiquitin ligase complex 

that activates NF-kB (Arnold and Patton, 2011). IRF7 is inhibited by competitive 

inhibition with ORF45 of Kaposi's sarcoma-associated herpesvirus (KSHV), which 

hinders IRF7 phosphorylation and activation, since it is more effectively phosphorylated 

by TBK1 and IKKε than IRF7 (Liang et al., 2012). ORF45 can also block IRF7 by 

association with its inhibitory domain, stabilizing auto-inhibitory interactions to keep the 

protein under a closed conformation (Sathish et al., 2011). In macrophages and 

dendritic cells, the VP35 protein of Ebola virus interferes with IRF7 activation through 

the RLR pathway while in plasmacytoid dendritic cells, VP35 does not block IFN 

production, since this cell type activates IRF7 through TLR pathway (Leung et al., 

2011). 

The KSHV express their own IRF proteins (vIRF) that possess a high homology with 

the cell IRFs; vIRF1 and vIRF2 of KSHV inhibit IRF3 and, subsequently impair IFN-β 

production (Devasthanam, 2014). 

It has been reported that the 3C viral protein of poliovirus is able to cleave RelA 

subunit and functionally inactivate NF-kB in HeLa cells; RelA cleavage was also 

demonstrated for other viruses of the poliovirus family, suggesting that RelA cleavage 

can be a conserved characteristic within this virus family (Neznanov et al., 2005). 

Another example of viral disruption of NF-kB involves the V protein of measles virus 

that binds to the nuclear localization signal of RelA, compromising its nuclear 

translocation (Schuhmann et al., 2011). NEMO is also a target of cleavage, since its 

cleaved into inactive fragments by 3Cpro protease of foot-and-mouth disease virus 

(Wang, Fang, Li, et al., 2012). 
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Less understood is the viral action upon ATF2/c-Jun but a viral blockage was 

already described: the VP24 protein of Zaire Ebola virus prevents MAP kinase p38 

phosphorylation (a precursor of ATF2 activation) and subsequent ATF2 activation 

(Halfmann et al., 2011). 

 

3.3 – Inhibitory mechanisms of IFN downstream pathway components and 

IFN-induced effectors  

Targeting the JAK-STAT pathway seems to be a commonly used strategy of viral 

subversion of the host attempts to fight viral replication. This is particularly true for a 

diverse group of viruses that express V and C proteins. The Paramyxovirus including 

measles, mumps and Hendra viruses express V proteins capable of blocking IFN-β 

induction. However, V proteins aren’t exclusive of paramyxoviruses: SV5 product of 

rubella virus has been shown to reduce the half-life of STAT proteins (Ulane and 

Horvath, 2002); V protein of Hendra virus is able to capture STAT proteins in large 

cytosolic complexes and limit their nuclear translocation (Rodriguez et al., 2003); 

measles-infected cells were found to be non-responsive to IFN-α but still responsive to 

IFNγ (Yokota et al., 2003); Yokota et al. investigated this and demonstrated that the V 

protein prevents the phosphorylation of JAK1 and the C protein binds to and 

incapacitates IFNAR1, preventing the IFN-α downstream events(Yokota et al., 2003). 

Likewise, the C proteins also target the JAK-STAT pathway. C protein of Sendai 

virus was shown to inhibit STAT1 phosphorylation (Garcin and Marq, 2003); other 

studies also suggest that C protein of Sendai virus renders cells unresponsive to type I 

and type II interferons – Gotoh et al. found that C proteins interact with the 

phosphorylated forms of STAT1 and STAT2, reducing their ability to form homo- and 

heterodimers (Gotoh et al., 2003). 

The human metapneumovirus reduces JAK1 and TYK2 mRNAs and proteins, 

leading to a diminished IFNAR expression by means of increased internalization, 

possibly due to the loss of TYK2 (Ren et al., 2011). E6 and E7 proteins of HPV 

interfere with STAT1 promoter to block its transcription (Hong et al., 2011); C protein of 

human parainfluenza virus type 1 prevents the nuclear translocation of STAT1, 

physically retain it at the cytosol in perinuclear aggregates associated with endosomal 

markers (Boonyaratanakornkit et al., 2011). vIRF2 of KSHV decreases STAT1 and 

IRF9 levels by compromising the functions of ISGF3 (Mutocheluh et al., 2011). HSV-2 
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causes the selective loss of STAT2 transcripts and proteins in some cell types while in 

others, the STAT2 levels remain constant by their phosphorylation and nuclear 

translocation are inhibited (Kadeppagari et al., 2012). Adenovirus on the other hand 

stabilizes the activated STAT1, capturing it in centres of viral replication, possibly 

through binding to viral DNA (Sohn and Hearing, 2011). Adenovirus also hampers 

dephosphorylation of STAT1 obstructing its interaction with the tyrosine phosphatase 

TC45 (Sohn and Hearing, 2011). 

SOCS proteins are known for their ability to negatively regulate the JAK-STAT 

pathway. Bode et al. demonstrated in HepG2 cells that the core viral protein of HCV 

induces expression of SOCS3 (Bode et al., 2003). Pothlichet et al. revealed that, in 

respiratory epithelial cells infected with influenza A, the expression of SOCS1 and 

SOCS3 is induced (Pothlichet et al., 2008). Besides, expression of SOCS was only 

observed in signalling pathways were RIG-I and IFNAR1 were intact, suggesting that 

this mechanism has a late effect in the course of the infection (Pothlichet et al., 2008). 

Fonseca et al. demonstrated that the antiviral activity requires mono-ubiquitination of 

histone 2B at lysine 120, a post-translational modification associated with 

transcriptionally activated chromatin in both, the ISG regions and their promoter 

regions (Fonseca et al., 2012). They also found that E1A protein of the human 

adenovirus disrupts the hBrel complex, responsible for the mono-ubiquitination of H2B, 

preventing ISGs expression and allowing the escape of the antiviral signalling 

(Fonseca et al., 2012). Another study by Marazzi et al. demonstrated that the NS1 

protein of the H3N2 strain of influenza A virus has a short sequence that mimics the tail 

of the histone H3; this allows histone modification enzymes to act at NS1 protein (NS1 

is acetylated and methylated in infected cells); the modified NS1 associates with the 

elongation complex of transcription PAF1, allowing the virus to sequester the 

elongation machinery (Marazzi et al., 2012). NS1 also disrupts transcriptional 

elongation in antiviral active genes, selectively jeopardizing ISGs expression (Marazzi 

et al., 2012). 

Instead of globally obstructing the ISGs expression, some viruses target specific 

ISGs, such as the HCV infection that upregulates microRNA that decreases the 

expression of IFITM1 (Bhanja Chowdhury et al., 2012); ORF94 of HCMV blocks the 

expression and activity of OAS (Tan et al., 2011). Instead of interfering directly against 

OAS, Mouse Hepatitis Virus (MHV) uses NS2 protein, preventing the activation of 

RNaseL (L. Zhao et al., 2012). NS2A of JEV interacts physically with PKR to prevent its 

activation (Tu et al., 2012); poliovirus overcomes translational inhibition of PKR by 
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cleaving a eukaryotic initiation factor eIF5B, creating a cleavage fragment that is able 

to restore viral translation (White et al., 2011). 

In particular cases, some viruses remarkably explore their host cell resources, using 

particular ISGs to their own advantage. In example, HSV-1 stimulates an isoform of 

MxA by alternative splicing in the absence of type I IFNs; this new isoform associates 

with components of the virion and compartments of nuclear viral replication, increasing 

viral replication (Ku et al., 2011). HCMV is long known for its ability to directly induce 

viperin expression in the absence of IFNs production (Seo, Yaneva, and Cresswell, 

2011). It was recently demonstrated that, through interactions with the viral protein 

vMIA, viperin is relocated to mitochondria where it disrupts the actin cytoskeleton and 

increasing viral infection (Seo, Yaneva, Hinson, et al., 2011). Another curious example 

is the one of rotaviruses in intestinal epithelial cells, where it induces a strong induction 

of the type I IFN response, but, instead of limiting its growth, the IFN signalling 

promotes replication of rotavirus, especially in early stages (Frias et al., 2012). 
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4 – Peroxisome-dependent Antiviral Signalling – via the MAVS adaptor 

 Until recently, mitochondria were the single key organelle implicated in the RLR 

antiviral pathway. Notwithstanding, the results from Dixit et al. (2010) changed this 

perception, as they introduced an unexpected new player into this antiviral signaling 

pathway: the peroxisomes (Dixit et al., 2010).  

4.1 - Discovery of the peroxisomal MAVS adaptor: first insights into this novel 

antiviral signalling platform 

As aforementioned in the Introduction chapter, mitochondria and peroxisomes share 

several features and proteins (Schrader and Yoon, 2007). Among them, Mff and Fis1 

share similarities in their sequence with the MAVS adaptor (Camões et al., 2009; Dixit 

et al., 2010)  Exploring the implications of such similarities, Dixit et al. 2010 reported for 

the first time that MAVS can also be found in peroxisomes. 

The main findings of this study revealed the localization of MAVS proteins anchored 

to the membrane of peroxisomes and a functional signaling pathway that operates 

through peroxisomal MAVS. Such pathway establishes an immediate yet transient 

antiviral response when compared with the mitochondrial MAVS pathway. Furthermore, 

the authors suggest that this novel peroxisomal pathway might result in an ISG 

induction which is independent of type I interferons expression(Dixit et al., 2010).  

The authors developed a strategy to distinguish the subcellular positioning of MAVS 

by generating different MAVS alleles that differ in their localization domain, so that they 

can study the isolated organelle-specific actions of MAVS and observe the different 

outcomes in the antiviral response. By deleting the MAVS localization motif, a MAVS-

Cyto allele was created that was found not co-localize with any organelle, remaining in 

the cytosol; by replacing the localization motif of MAVS with the localization motif of 

peroxin Pex13, a MAVS-Pex allele was created and found to localize exclusively in 

peroxisomes. Two other MAVS alleles were generated by targeting two different 

mitochondrial proteins that reside in the mitochondrial outer membrane, OMP25 and 

Fis1. While the MAVS allele harbouring OMP25 was found to localize in both, 

mitochondria and peroxisomes (thus named MAVS-mimic since it mimics wild-type 

MAVS), the Fis1 allele selectively marked mitochondria, thus named MAVS-Mito (Dixit 

et al., 2010). 
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This system allowed the authors to establish that MAVS signaling occurs from both, 

mitochondria and peroxisomes, and that their actions seem to be complementary to 

each other. By examining the expression of a well-known ISG, viperin, in a model of 

reovirus infection, they observed the different outcomes in the antiviral response in 

cells harbouring the individualized MAVS alleles. In MAVS-Pex cells, viperin 

expression was shown to be rapid but, at the same time, transient, since viperin was 

present in early times of the infection, but its levels decrease over time. On the other 

hand, in MAVS-Mito cells, the viperin expression revealed delayed kinetics, with 

increasing and sustained viperin expression levels over time. This could easily indicate 

that, perhaps, the peroxisomal pathway establishes a first outburst of antiviral effector 

proteins to temporarily block the viral replication while the mitochondrial pathway, 

which takes more time to develop, is capable of inducing a stronger and longer lasting 

antiviral state to clear out the infection completely (Dixit et al., 2010).  

These differences in the ISG induction over the course of a viral infection between 

peroxisome- and mitochondria-localized MAVS pathways prompted the authors to 

assume that more than one mechanism of ISG induction was taking place. As 

previously explained in chapter 2, the mitochondrial MAVS signaling pathway is known 

to induce type I IFN production that, in turn, induces ISG expression. So, as expected, 

MAVS-WT, MAVS-Mimic and MAVS-Mito cells triggered IFN production, but curiously, 

MAVS-Pex cells did not produce any detectable levels of IFNs. Thus, some kind of 

IFN-independent mechanism might be responsible to induce ISG production via the 

peroxisomal MAVS pathway (Dixit et al., 2010).  

 

4.2 - Downstream effectors and correlation with IFN-independent ISG 

induction 

Looking for some of the potential downstream regulators of the peroxisomal MAVS 

pathway, Dixit et al. 2010 found TRAF3 and TRAF6 to be involved in this signaling 

pathway and some reporter genes for the functions of NF-kB and AP-1 were induced, 

as well as an IRF1 reporter and an ISRE that typically reports the activity of IRF3. 

Interestingly, the knockout of either IRF1 or IRF3 greatly compromised the ISG 

induction in MAVS-Pex cells, which might indicate a crucial role of these IRFs in the 

IFN-independent ISG induction via the peroxisomal MAVS pathway (Dixit et al., 2010).  
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These findings by seem to correlate with previous studies that attempted to explore 

the IFN-independent ISG induction pathway. Over the last decade it has been revealed 

that ISG production can actually be induced independently from IFN production, 

through the direct actions of IRF3, which is able to bind directly to the ISREs of the 

promoter regions of ISG genes. This happens in very early stages of the infection 

course and it’s thought to be triggered solely by the entry of viral particles into the host 

cell (particularly, when dealing with enveloped viruses). 

Paladino et al. 2006 came up with an hypothesis for the existence of an IFN-

independent pathway to induce ISGs. For most infections, epithelia and fibroblasts are 

the first to contact with the virus, providing the first barrier of antiviral defence. Given 

the likelihood of these cells to be exposed to low levels of viral particles, epithelia and 

fibroblasts are prepared to respond to this stimulus by activating the constitutively 

expressed IRF3. Such response results in an IRF3-dependent, but IFN-independent, 

induction of a small subset of ISGs which are able to efficiently tackle the low viral load 

that entered the host cell. Subsequently, the host cell becomes efficient in controlling 

the infection within itself, without activating a more elaborate immune response. The 

main advantage of this early response is the prevention of the recruitment of immune 

cells and the secretion of pro-inflammatory cytokines that would most definitely cause 

unnecessary cell and tissue damage. Paladino et al. have also previously 

demonstrated the lack of IFNs and pro-inflammatory cytokines and then verified that 

the IFN-independent response is in fact specific for low levels of viral particles. 

However, if this first line of defence fails to control viral infection, the second line of 

defence comes into action with the production and secretion of IFNs, stimulating a 

more powerful and sustained immune response. The IFN production is crucial in this 

second phase, since it allows intercellular communication with the neighbouring cells in 

an attempt to prevent further viral spread (Paladino et al., 2006). 

 

4.3 - Mitochondria and Peroxisomes: orchestrating an optimal antiviral 

response 

Referring back to the Dixit et al. 2010 study, they went on and analysed expression 

profiles in order to check if in fact the mitochondrial and peroxisomal antiviral 

responses are complementary and if they coincide with the general panel of expression 

of the wild-type MAVS cells.  The profiles of MAVS-WT and MAVS-mimic were 

identical, as expected, and the profiles of MAVS-Pex and MAVS-Mito cells revealed a 
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transcriptome that is different from one another but that overlaps with the profile of 

MAVS-WT. This confirms that mitochondria and peroxisomes operate together to 

produce a maximal antiviral response. Furthermore, despite each organelle-specific 

pathway being capable to produce a functional antiviral response on their own, the 

integrated actions of both pathways produce a much greater and robust antiviral 

response –  demonstrated by the fact that the magnitude of gene expression by MAVS-

WT or MAVS-mimic was always greater than the ones in MAVS-Pex or MAVS-Mito 

individually (Dixit et al., 2010).  

 

Figure 26 – Organelle-specific MAVS signalling. 
The RNA helicases RIG-I or MDA5 detect viral RNA and then interact with MAVS on 

mitochondrial membranes. Detection of viral nucleic acids by these helicases and signalling via 
mitochondrial MAVS induces the expression of type I IFNs and eventually leads to virus control. 
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Dixit et al. 2010 show that MAVS is also present on peroxisomes. Peroxisomal MAVS is 
essential for the rapid expression of antiviral genes named ISGs. This gene expression, which 
is independent of type I IFN production, results in an early but transient antiviral response. 
However, type I IFN induction by the mitochondrial MAVS pathway is necessary for the eventual 
clearance of the virus. The different outcomes observed for the two MAVS pathways may relate 
to the fact that peroxisomal MAVS activates IRF1 in addition to IRF3. It is possible that an IRF1-
IRF3 heterodimer induces expression of ISGs but not type I IFNS. Dixit et al. 2010 results reveal 
that MAVS signalling from both, peroxisomes and mitochondria, is necessary for maximal 
containment of virus replication. Text adapted from: (Sharma and Fitzgerald, 2010) 

 

 

4.4 - The peroxisomal branch of the RLR pathway induces the expression of 

type III interferons 

Despite the IFN-independent ISG induction being a plausible hypothesis for the 

peroxisome-dependent antiviral signalling pathway, – since it has been proven that 

several infections are capable of inducing the expression of ISGs independently from 

the induction of type I interferons – the Kagan group recently published a new 

manuscript that presents peroxisomes as a primary site for the initiation of the 

expression of type III interferons (Odendall et al., 2014).   

This follow-up study started by trying to identify if MAVS-Pex cells were able to 

induce the secretion of any kind of extrinsic antiviral factors or if this pathway is entirely 

dependent upon cell-intrinsic factors, by evaluating STAT1 phosphorylation – a known 

downstream effector of the JAK-STAT pathway – which in turn is primarily stimulated 

by interferons. Interestingly, MAVS-Pex cells activated STAT1 phosphorylation, despite 

their inability to induce type I IFN expression. They established the requirement of 

STAT1 and the related JAK kinases (Jak1 and Jak2) in the peroxisome-dependent 

pathway with several inhibitors and small interfering (si)RNA-mediated knockdown 

studies, by determining their influence in the expression of viperin (Odendall et al., 

2014).  

In fact, they discovered that signalling from peroxisomes is dependent upon the 

actions of the JAK-STAT pathway, in order to create an antiviral cellular state. 

However, a key aspect of their findings was the involvement of Jak2 in the peroxisomal 

pathway, a factor that is not involved in type I IFN signalling. Thus, a valid candidate 

that has the properties of the factor secreted from peroxisomal MAVS which induces 

phosphorylation of Jak2 was found to be the recombinant human IFN-λ1, a type III 

interferon (Odendall et al., 2014).  

They found out that an array of viruses such as reovirus, SeV and dengue virus as 

well as the bacterial pathogen Listeria monocytogenes induce the expression of type III 
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interferons via the RLR pathway in human cells. Their research went on to identify 

which MAVS-downstream components of the RLR pathway were responsible for the 

differential activation of the type I and type III interferon pathway, by evaluating the 

effects of IRF3, IRF7, NF-kB and AP-1 (the known requirements for the IFN-β 

enhanceosome). They discovered that IRF3 and NF-kB are required for the activation 

of the IFNL1 gene promoter (Odendall et al., 2014).  

At this point, they focused their attention in a previous finding, the involvement of 

IRF1 in the peroxisomal-dependent antiviral pathway that was brought to light in their 

2010 study. They now establish that, while the knockout of IRF1 has no influence in the 

IFNB1 mRNA levels (thus inferring no influence in the IFN-β expression), it completely 

abolishes the expression of IFNL1 mRNA after SeV infection, thus stating an important 

role of this transcription factor in the control of the expression of type III interferons 

(Odendall et al., 2014).  

 

The results from these recent studies have revealed a fundamental gap in 

knowledge that involves the peroxisomal role in antiviral responses. Thus, future work 

is mandatory to enlighten the intricacies of the implicated signalling pathways that are 

in play.  
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5 – Discussion and Concluding Remarks 

Taking into account the extensive bibliographic review presented in the previous 

chapters, it is very clear the gap in knowledge between the mitochondrial and 

peroxisomal antiviral pathways. It seems that the focus has been made in the search 

for a better understanding of the viral detection mechanisms – probably because PRRs 

are obvious targets for viral therapies or even the development of new vaccines.  

Accordingly, it is still not clear the exact nature of MDA5 ligands, while RIG-I ligands 

properties that allow PRR detection were rapidly unveiled. The only characteristic that 

seems to make sense is the length of the RNA ligands, but that will likely not be the 

only feature that targets viral genomes to MDA5. Are there any other specificities that 

target viral RNAs to MDA5? And why do their ligands bind weaker to MDA5 than the 

ones that bind to RIG-I (in such way that it was even proposed that MDA5 might need 

the help of LGP2 to enhance the affinity of the long viral RNAs to MDA5)?  

Besides the ligand-specificity aspect of MDA5 in the RLR pathway and, in light with 

the results of Dixit et al., 2010, another question arises:  does MDA5, similarly to RIG-I, 

redirect the RLR pathway to peroxisomes? Are the outcomes of the viral infection 

similar to those induced by RIG-I interaction with MAVS? Some of these questions 

could be addressed using the MAVS mutant alleles strategy developed by Dixit et al. 

2010, where MAVS-Mito and MAVS-Pex cells could be used to separately study the 

influence of the MAVS subcellular localization (mitochondria or peroxisomes) in the 

outcome of the antiviral response, MAVS-WT cells would be a viable model to test the 

antiviral outcome as a whole and MAVS-Cyto cells as a negative control.  A possible 

co-localization between MDA5 and mitochondria or peroxisomes could be analysed by 

immunofluorescence microscopy using MDA5- and organelle-specific antibodies.  

To isolate the MDA5-MAVS protein interactions, a co-immunoprecipitation of MDA5 

with mitochondrial MAVS in MAVS-Mito cells or peroxisomal MAVS in MAVS-Pex cells 

could be performed. For the quantification of the MDA5-mediated signalling in the 

antiviral outcome in all types of MAVS alleles cells, ISG expression would have to be 

analysed by an Western blotting procedure, using a target for a specific ISG (i.e.: 

viperin, that’s been shown to be induced in either MAVS-Mito and MAVS-Pex cells 

(Dixit et al., 2010)).  
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The contradicting role of LGP2 did not go unnoticed and has also been extensively 

pursued. It has been clarified that for certain types of viral infections it can exert 

positive regulatory roles (e.g.: encephalomyocarditis, vaccinia,and mengo viruses) 

while for others (e.g.: paramyxovirus Sendai, vesicular stomatitis, Newcastle disease, 

and influenza A viruses), it negatively regulates the RIG-I/MDA5 pathway (Zhu et al., 

2014). Thus, it would be very interesting to study what stimulates LGP2 to exert a 

positive or negative role given a viral infection, or even if there is a particular feature to 

LGP2 or if there are any LGP2-interacting proteins that turns the regulatory role of 

LGP2 into a positive one or into a negative one.   

By revealing that the subcellular localization of MAVS (mitochondria or 

peroxisomes) re-directs the downstream signalling pathways and influence the 

subsequent antiviral responses, Dixit et al. 2010 shed a light into a novel aspect about 

signal transduction pathways: the compartment-specific signalling. Are there key 

elements in signalling pathways that rely on specific organelle localization in order to 

properly exert their functions? Can those pathways be re-directed to other organelles 

(where such key elements would be potentially located) and would they produce 

different responses? Those are some of the challenges worthy of being pursued in a 

near future.  

The involvement of peroxisomes in immune responses might not have come as a 

total surprise, considering the fact that, mitochondria, the housekeeper of the cell and 

the most metabolic diverse organelle, participates in immunity, and shares several 

components and mechanisms with peroxisomes. However, the downstream signalling 

pathway implicating peroxisomes remains poorly studied.  

Therefore, and based on the MAVS interacting partners in the well-established 

mitochondrial pathway, studies regarding the downstream components in the 

peroxisomal pathway are required. Such studies could be carried out in a model of 

MAVS-Pex cells infected with dsRNA viruses that are acknowledged to induce a 

powerful RIG-I activation (as it is the case of the reovirus or Sendai virus). Separate 

expression analysis  would be performed for each and every component that is known 

to act downstream of mitochondrial MAVS (i.e.: TRAF2/6, TRAF3, NF-kB, IRF3, etc.) 

and, as controls for the level of expression of such components, these analyses would 

also have to be performed in infected MAVS-WT cells (positive control) and in non-

infected cells (negative control). Quantification of the expression levels of every single 

component could be evaluated by Western Blot analysis.  
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Another aspect worthy of note regarding these two particular innate immunity 

signalling pathways is the discovery of their potential regulators. Most of the host 

regulators involved in the mitochondrial antiviral pathway were discussed in previous 

chapters and, as expected, the list kept growing over the years. Fluctuating between 

positive or negative regulation actions, a never ending array of molecules, proteins, etc. 

help to put together the complex puzzle of this pathway. Similar studies could be 

performed targeting the peroxisomal branch of the RLR signalling pathway, perhaps 

starting with some of the most well-known regulators of the mitochondrial branch.  

The fact that viruses have developed strategies to evade, subvert and survive within 

the host, manipulating cellular machinery to its own advantage and replication, has 

been thoroughly investigated in several models of infection. For example, it was 

recently found that vMIA (an anti-apoptotic protein encoded by cytomegalovirus) which 

localizes at mitochondria, actually disrupts the MAVS signalling pathway by promoting 

mitochondrial fragmentation (Castanier and Arnoult, 2011; Poncet et al., 2006). Thus, it 

would be interesting to explore whether and how the peroxisomal MAVS signalling is a 

target of vMIA. Potential morphological changes in peroxisomes morphology (such as 

fragmentation and/or elongation) could be determined by immunostaining (in MAVS-

Pex cells with previously transfected vMia) peroxisomes and vMIA through 

immunofluorescence microscopy. 

Another example of a viral protein that directly influences the RLR pathway through 

mitochondrial MAVS is the hepatitis C virus ns3/4a protein, which has been shown to 

directly cleave MAVS, removing it from mitochondria (Li et al., 2005). The challenge 

would be to determine if ns3/4a also cleaves the peroxisomal MAVS and what are the 

effects on the expression of antiviral defence factors such as the ISGs. By 

overexpressing ns3/4a in MAVS-Pex cells and analysing it in different time points 

(through fluorescence microscopy) it could be determined if MAVS “loses” its 

peroxisomal localization and the cleavage could be further confirmed by 

immunoblotting the cleavage products. The implications in the outcome of an infection 

would be determined by quantification of the ISG production. 

The possibilities are endless. Perhaps other organelles possess an immunological 

role, apart from their metabolic functions. As such, the study of host-pathogen 

interactions presents itself as a field with great potential for understanding, not only the 

implicated antiviral signalling pathways, but also the subcellular localization of such 

pathways and to unveil novel therapeutic targets that can be used for the development 

of new and more effective medical treatments. 



 
 
Universidade de Aveiro                                            Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

 

114           Mariana Guedes 
 

 

 

 

 

 

 

 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   115 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
Universidade de Aveiro                                            Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

 

116           Mariana Guedes 
 

 

 

 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   117 
 

7 - Bibliography 

 

Adelberg, J. M. (2007). Jawetz, Melnick, & Adelberg’s Medical Microbiology. (S. A. 
Brooks, Geo F.; Carroll, Karen C.; Butel, Janet S.; Morse, Ed.) (24th ed.). The 
McGraw-Hill Companies. 

Agalioti, T., Chen, G., and Thanos, D. (2002). Deciphering the transcriptional histone 
acetylation code for a human gene. Cell, 111(3), 381–92. 

Agalioti, T., Lomvardas, S., Parekh, B., Yie, J., Maniatis, T., and Thanos, D. (2000). 
Ordered recruitment of chromatin modifying and general transcription factors to 
the IFN-beta promoter. Cell, 103(4), 667–78. 

Alberts, B. (2008). Molecular Biology of the Cell. The Yale Journal of Biology and 
Medicine. 

Albrecht, T., Almond, J., Alfa, M., Alton, G., Aly, R., Asher, D., Baron, E., et al. (1996). 
Medical Microbiology. (S. Baron, Ed.) (4th ed.). 

Allen, I., Moore, C., Schneider, M., and Lei, Y. (2011). NLRX1 protein attenuates 
inflammatory responses to infection by interfering with the RIG-I-MAVS and 
TRAF6-NF-κB signaling pathways. Immunity, 34(6), 854–865. Elsevier Inc. doi: 
10.1016/j.immuni.2011.03.026 

De Andrea, M., Ravera, R., Gioia, D., Gariglio, M., and Landolfo, S. (2002). The 
interferon system: an overview. European Journal of Paediatric Neurology, 6, 
A41–A46. doi: 10.1053/ejpn.2002.0573 

Arimoto, K., Konishi, H., and Shimotohno, K. (2008). UbcH8 regulates ubiquitin and 
ISG15 conjugation to RIG-I. Molecular immunology, 45, 1078–1084. doi: 
10.1016/j.molimm.2007.07.021 

Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T., and Shimotohno, K. 
(2007). Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. 
Proceedings of the National Academy of Sciences of the United States of 
America, 104(18), 7500–5. doi: 10.1073/pnas.0611551104 

Arnold, M. M., and Patton, J. T. (2011). Diversity of interferon antagonist activities 
mediated by NSP1 proteins of different rotavirus strains. Journal of virology, 85(5), 
1970–9. doi: 10.1128/JVI.01801-10 

Au, W. C. (1998). Characterization of the Interferon Regulatory Factor-7 and Its 
Potential Role in the Transcription Activation of Interferon A Genes. Journal of 
Biological Chemistry, 273(44), 29210–29217. doi: 10.1074/jbc.273.44.29210 

Au, W. C., Moore, P. a, Lowther, W., Juang, Y. T., and Pitha, P. M. (1995). 
Identification of a member of the interferon regulatory factor family that binds to 
the interferon-stimulated response element and activates expression of interferon-
induced genes. Proceedings of the National Academy of Sciences of the United 
States of America, 92(25), 11657–61. 

Backert, S., Feller, S. M., and Wessler, S. (2008). Emerging roles of Abl family tyrosine 
kinases in microbial pathogenesis. Trends in biochemical sciences, 33(2), 80–90. 
doi: 10.1016/j.tibs.2007.10.006 



 
 
Universidade de Aveiro                                            Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

 

118           Mariana Guedes 
 

Baker, M., Frazier, A., Gulbis, J., and Ryan, M. (2007). Mitochondrial protein-import 
machinery: correlating structure with function. Trends in cell biology, 17(9). doi: 
10.1016/j.tcb.2007.07.010 

Balachandran, S., Thomas, E., and Barber, G. N. (2004). A FADD-dependent innate 
immune mechanism in mammalian cells. Nature, 432(7015), 401–5. doi: 
10.1038/nature03124 

Baltimore, D. (1971). Expression of animal virus genomes. Bacteriological reviews, 
35(3), 235–41. 

Bannister, A. J., and Kouzarides, T. (2011). Regulation of chromatin by histone 
modifications. Cell research, 21(3), 381–95. Nature Publishing Group. doi: 
10.1038/cr.2011.22 

Barnes, B. J., Moore, P. a, and Pitha, P. M. (2001). Virus-specific activation of a novel 
interferon regulatory factor, IRF-5, results in the induction of distinct interferon 
alpha genes. The Journal of biological chemistry, 276(26), 23382–90. doi: 
10.1074/jbc.M101216200 

Belgnaoui, S. M., Paz, S., and Hiscott, J. (2011). Orchestrating the interferon antiviral 
response through the mitochondrial antiviral signaling (MAVS) adapter. Current 
opinion in immunology, 23(5), 564–72. Elsevier Ltd. doi: 10.1016/j.coi.2011.08.001 

Bellingham, J., Gregory-Evans, K., and Gregory-Evans, C. Y. (1998). Mapping of 
human interferon regulatory factor 3 (IRF3) to chromosome 19q13.3-13.4 by an 
intragenic polymorphic marker. Annals of human genetics, 62(Pt 3), 231–4. doi: 
10.1046/j.1469-1809.1998.6230231.x 

Benjamin, R., Sharma, S., Zou, W., Sun, Q., Grandvaux, N., Julkunen, I., Hemmi, H., et 
al. (2004). Activation of TBK1 and IKKepsilon Kinases by Vesicular Stomatitis 
Virus Infection and the Role of Viral Ribonucleoprotein in the Development of 
Interferon Antiviral Immunity. J. Virol., 78(19), 10636–10649. doi: 
10.1128/JVI.78.19.10636 

Berkowitz, B., Huang, D.-B., Chen-Park, F. E., Sigler, P. B., and Ghosh, G. (2002). The 
x-ray crystal structure of the NF-kappa B p50.p65 heterodimer bound to the 
interferon beta -kappa B site. The Journal of biological chemistry, 277(27), 24694–
700. doi: 10.1074/jbc.M200006200 

Bhanja Chowdhury, J., Shrivastava, S., Steele, R., Di Bisceglie, A. M., Ray, R., and 
Ray, R. B. (2012). Hepatitis C virus infection modulates expression of interferon 
stimulatory gene IFITM1 by upregulating miR-130A. Journal of virology, 86(18), 
10221–5. doi: 10.1128/JVI.00882-12 

Van der Bliek, A. M., Shen, Q., and Kawajiri, S. (2013). Mechanisms of mitochondrial 
fission and fusion. Cold Spring Harbor perspectives in biology, 5(6), 1–16. doi: 
10.1101/cshperspect.a011072 

Bode, J. G., Ludwig, S., Ehrhardt, C., Albrecht, U., Erhardt, A., Schaper, F., Heinrich, 
P. C., et al. (2003). IFN-alpha antagonistic activity of HCV core protein involves 
induction of suppressor of cytokine signaling-3. FASEB journal : official publication 
of the Federation of American Societies for Experimental Biology, 17(3), 488–90. 
doi: 10.1096/fj.02-0664fje 

Boonyaratanakornkit, J., Bartlett, E., Schomacker, H., Surman, S., Akira, S., Bae, Y.-
S., Collins, P. L., et al. (2011). The C proteins of human parainfluenza virus type 1 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   119 
 

limit double-stranded RNA accumulation that would otherwise trigger activation of 
MDA5 and protein kinase R. Journal of virology, 7(4), e28382. doi: 
10.1128/JVI.01297-10 

Borrow, P., Martínez-Sobrido, L., and de la Torre, J. C. (2010). Inhibition of the type I 
interferon antiviral response during arenavirus infection. Viruses, 2(11), 2443–80. 
doi: 10.3390/v2112443 

Bozym, R. a, Delorme-Axford, E., Harris, K., Morosky, S., Ikizler, M., Dermody, T. S., 
Sarkar, S. N., et al. (2012). Focal adhesion kinase is a component of antiviral RIG-
I-like receptor signaling. Cell host & microbe, 11(2), 153–66. Elsevier Inc. doi: 
10.1016/j.chom.2012.01.008 

Bürckstümmer, T., Baumann, C., Blüml, S., Dixit, E., Dürnberger, G., Jahn, H., 
Planyavsky, M., et al. (2009). An orthogonal proteomic-genomic screen identifies 
AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nature immunology, 
10(3), 266–72. doi: 10.1038/ni.1702 

Caillaud, A., and Hovanessian, A. (2005). Regulatory serine residues mediate 
phosphorylation-dependent and phosphorylation-independent activation of 
interferon regulatory factor 7. Journal of Biological …, 280(18), 17671–17677. 

Camões, F., Bonekamp, N. a, Delille, H. K., and Schrader, M. (2009). Organelle 
dynamics and dysfunction: A closer link between peroxisomes and mitochondria. 
Journal of inherited metabolic disease, 32(2), 163–80. doi: 10.1007/s10545-008-
1018-3 

Castanier, C., and Arnoult, D. (2011). Mitochondrial localization of viral proteins as a 
means to subvert host defense. Biochimica et biophysica acta, 1813(4), 575–83. 
Elsevier B.V. doi: 10.1016/j.bbamcr.2010.08.009 

Castanier, C., Garcin, D., Vazquez, A., and Arnoult, D. (2010). Mitochondrial dynamics 
regulate the RIG-I-like receptor antiviral pathway. EMBO reports, 11(2), 133–8. 
doi: 10.1038/embor.2009.258 

Castanier, C., Zemirli, N., Portier, A., Garcin, D., Bidère, N., Vazquez, A., and Arnoult, 
D. (2012). MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the 
proteasome is involved in type I interferon production after activation of the 
antiviral RIG-I-like receptors. BMC biology, 10(1), 44. BioMed Central Ltd. doi: 
10.1186/1741-7007-10-44 

Childs, K., Randall, R., and Goodbourn, S. (2012). Paramyxovirus V proteins interact 
with the RNA Helicase LGP2 to inhibit RIG-I-dependent interferon induction. 
Journal of virology, 86(7), 3411–21. doi: 10.1128/JVI.06405-11 

Chinenov, Y., and Kerppola, T. (2001). Close encounters of many kinds: Fos-Jun 
interactions that mediate transcription regulatory specificity. Oncogene, 2438–
2452. 

Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., 
Olsen, J. V, et al. (2009). Lysine acetylation targets protein complexes and co-
regulates major cellular functions. Science, 325(5942), 834–40. doi: 
10.1126/science.1175371 

Cooper, G. (2000). The Cell: A Molecular Approach (2nd ed.). Sunderland (MA): 
Sinauer Associates. 



 
 
Universidade de Aveiro                                            Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

 

120           Mariana Guedes 
 

Cui, S., Eisenächer, K., Kirchhofer, A., Brzózka, K., Lammens, A., Lammens, K., Fujita, 
T., et al. (2008). The C-terminal regulatory domain is the RNA 5’-triphosphate 
sensor of RIG-I. Molecular cell, 29(2), 169–79. doi: 10.1016/j.molcel.2007.10.032 

Delille, H. K., Alves, R., and Schrader, M. (2009). Biogenesis of peroxisomes and 
mitochondria: linked by division. Histochemistry and cell biology, 131(4), 441–6. 
doi: 10.1007/s00418-009-0561-9 

Devasthanam, A. S. (2014). Mechanisms underlying the inhibition of interferon 
signaling by viruses. Virulence, 5(2), 270–277. doi: 10.4161/viru.27902 

Diao, F., Li, S., Tian, Y., Zhang, M., Xu, L.-G., Zhang, Y., Wang, R.-P., et al. (2007). 
Negative regulation of MDA5- but not RIG-I-mediated innate antiviral signaling by 
the dihydroxyacetone kinase. Proceedings of the National Academy of Sciences 
of the United States of America, 104(28), 11706–11. doi: 
10.1073/pnas.0700544104 

Dixit, E., Boulant, S., Zhang, Y., Lee, A. S. Y., Odendall, C., Shum, B., Hacohen, N., et 
al. (2010). Peroxisomes are signaling platforms for antiviral innate immunity. Cell, 
141(4), 668–81. doi: 10.1016/j.cell.2010.04.018 

Dixit, E., and Kagan, J. C. (2013). Intracellular pathogen detection by RIG-I-like 
receptors. Advances in immunology (1st ed., Vol. 117, pp. 99–125). Elsevier Inc. 
doi: 10.1016/B978-0-12-410524-9.00004-9 

Ernster, L., and Schatz, G. (1981). Mitochondria: a historical review. The Journal of cell 
biology, 91(3), 227–255. 

Escalante, C. R., Yie, J., Thanos, D., and Aggarwal, a K. (1998). Structure of IRF-1 
with bound DNA reveals determinants of interferon regulation. Nature, 391(6662), 
103–6. doi: 10.1038/34224 

ExPASy. (2014). ViralZone. Retrieved March 17, 2014, from 
http://viralzone.expasy.org/ 

Falvo, J. V, Thanos, D., and Maniatis, T. (1995). Reversal of intrinsic DNA bends in the 
IFN beta gene enhancer by transcription factors and the architectural protein HMG 
I(Y). Cell, 83(7), 1101–11. 

Fan, T.-J., Han, L.-H., Cong, R.-S., and Liang, J. (2005). Caspase Family Proteases 
and Apoptosis. Acta Biochimica et Biophysica Sinica, 37(11), 719–727. doi: 
10.1111/j.1745-7270.2005.00108.x 

Fensterl, V., and Sen, G. C. (2009). Interferons and viral infections. BioFactors (Oxford, 
England), 35(1), 14–20. doi: 10.1002/biof.6 

Fernandes-Alnemri, T., Yu, J.-W., Datta, P., Wu, J., and Alnemri, E. S. (2009). AIM2 
activates the inflammasome and cell death in response to cytoplasmic DNA. 
Nature, 458(7237), 509–13. Nature Publishing Group. doi: 10.1038/nature07710 

Fonseca, G. J., Thillainadesan, G., Yousef, a F., Ablack, J. N., Mossman, K. L., 
Torchia, J., and Mymryk, J. S. (2012). Adenovirus evasion of interferon-mediated 
innate immunity by direct antagonism of a cellular histone posttranslational 
modification. Cell host & microbe, 11(6), 597–606. Elsevier Inc. doi: 
10.1016/j.chom.2012.05.005 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   121 
 

Ford, E., and Thanos, D. (2010). The transcriptional code of human IFN-beta gene 
expression. Biochimica et biophysica acta, 1799(3-4), 328–36. Elsevier B.V. doi: 
10.1016/j.bbagrm.2010.01.010 

Frias, A. H., Jones, R. M., Fifadara, N. H., Vijay-Kumar, M., and Gewirtz, A. T. (2012). 
Rotavirus-induced IFN-β promotes anti-viral signaling and apoptosis that modulate 
viral replication in intestinal epithelial cells. Innate immunity, 18(2), 294–306. doi: 
10.1177/1753425911401930 

Friedman, C. S., O’Donnell, M. A., Legarda-Addison, D., Ng, A., Cárdenas, W. B., 
Yount, J. S., Moran, T. M., et al. (2008). The tumour suppressor CYLD is a 
negative regulator of RIG-I-mediated antiviral response. EMBO reports, 9(9), 930–
6. doi: 10.1038/embor.2008.136 

Fujita, T., Kimura, Y., and Miyamoto, M. (1989). Induction of endogenous IFN-α and 
IFN-β genes by a regulatory transcription factor, IRF-1. Nature. 

Gack, M. U., Nistal-Villán, E., Inn, K.-S., García-Sastre, A., and Jung, J. U. (2010). 
Phosphorylation-mediated negative regulation of RIG-I antiviral activity. Journal of 
virology, 84(7), 3220–9. doi: 10.1128/JVI.02241-09 

Gack, M. U., Shin, Y. C., Joo, C.-H., Urano, T., Liang, C., Sun, L., Takeuchi, O., et al. 
(2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated 
antiviral activity. Nature, 446(7138), 916–920. doi: 10.1038/nature05732 

Garcin, D., and Marq, J. (2003). The amino-terminal extensions of the longer Sendai 
virus C proteins modulate pY701-Stat1 and bulk Stat1 levels independently of 
interferon signaling. Journal of virology. doi: 10.1128/JVI.77.4.2321 

Ghosh, S., and Hayden, M. S. (2008). New regulators of NF-kappaB in inflammation. 
Nature reviews. Immunology, 8(11), 837–48. doi: 10.1038/nri2423 

Gilmore, T. (2014). NF-kB Transcription Factors. Retrieved January 28, 2014, from 
http://www.bu.edu/nf-kb/ 

Gitlin, L., Barchet, W., Gilfillan, S., Cella, M., Beutler, B., Flavell, R. a, Diamond, M. S., 
et al. (2006). Essential role of mda-5 in type I IFN responses to 
polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. 
Proceedings of the National Academy of Sciences of the United States of 
America, 103(22), 8459–64. doi: 10.1073/pnas.0603082103 

Gori-Savellini, G., Valentini, M., and Cusi, M. G. (2013). Toscana virus NSs protein 
inhibits the induction of type I interferon by interacting with RIG-I. Journal of 
virology, 87(12), 6660–7. doi: 10.1128/JVI.03129-12 

Gotoh, B., Takeuchi, K., Komatsu, T., and Yokoo, J. (2003). The STAT2 activation 
process is a crucial target of Sendai virus C protein for the blockade of alpha 
interferon signaling. Journal of virology. doi: 10.1128/JVI.77.6.3360 

Guo, B., and Cheng, G. (2007). Modulation of the interferon antiviral response by the 
TBK1/IKKi adaptor protein TANK. The Journal of biological chemistry, 282(16), 
11817–26. doi: 10.1074/jbc.M700017200 

Häcker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L.-C., Wang, G. G., 
Kamps, M. P., et al. (2006). Specificity in Toll-like receptor signalling through 
distinct effector functions of TRAF3 and TRAF6. Nature, 439(7073), 204–7. doi: 
10.1038/nature04369 



 
 
Universidade de Aveiro                                            Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

 

122           Mariana Guedes 
 

Halfmann, P., Neumann, G., and Kawaoka, Y. (2011). The Ebolavirus VP24 protein 
blocks phosphorylation of p38 mitogen-activated protein kinase. The Journal of 
infectious diseases, 204 Suppl(Suppl 3), S953–6. doi: 10.1093/infdis/jir325 

Hall, J. E. (2010). Guyton and Hall Textbook of Medical Physiology. Physiology (12th 
ed., p. 1120). Saunders. 

Haller, O., Kochs, G., and Weber, F. (2006). The interferon response circuit: induction 
and suppression by pathogenic viruses. Virology, 344(1), 119–30. doi: 
10.1016/j.virol.2005.09.024 

Hastie, K. M., Kimberlin, C. R., Zandonatti, M. A., MacRae, I. J., and Saphire, E. O. 
(2011). Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3’ to 
5' exonuclease activity essential for immune suppression. Proceedings of the 
National Academy of Sciences of the United States of America, 108(6), 2396–401. 
doi: 10.1073/pnas.1016404108 

Hayakawa, S., Shiratori, S., Yamato, H., Kameyama, T., Kitatsuji, C., Kashigi, F., Goto, 
S., et al. (2011). ZAPS is a potent stimulator of signalling mediated by the RNA 
helicase RIG-I during antiviral responses. Nature Immunology, (12), 37–44. 

Hayden, M. S., and Ghosh, S. (2008). Shared principles in NF-kappaB signaling. Cell, 
132(3), 344–62. doi: 10.1016/j.cell.2008.01.020 

Hemler, M. E. (2005). Tetraspanin functions and associated microdomains. Nature 
reviews. Molecular cell biology, 6(10), 801–11. doi: 10.1038/nrm1736 

Hemmi, H., Takeuchi, O., Sato, S., Yamamoto, M., Kaisho, T., Sanjo, H., Kawai, T., et 
al. (2004). The roles of two IkappaB kinase-related kinases in lipopolysaccharide 
and double stranded RNA signaling and viral infection. The Journal of 
experimental medicine, 199(12), 1641–50. doi: 10.1084/jem.20040520 

Hiscott, J. (2007a). Convergence of the NF-kappaB and IRF pathways in the regulation 
of the innate antiviral response. Cytokine & growth factor reviews, 18(5-6), 483–
90. doi: 10.1016/j.cytogfr.2007.06.002 

Hiscott, J. (2007b). Triggering the innate antiviral response through IRF-3 activation. 
The Journal of biological chemistry, 282(21), 15325–9. doi: 
10.1074/jbc.R700002200 

Honda, K., Takaoka, A., and Taniguchi, T. (2006). Type I interferon gene induction by 
the interferon regulatory factor family of transcription factors. Immunity, 25(3), 
349–60. doi: 10.1016/j.immuni.2006.08.009 

Honda, K., Yanai, H., Takaoka, A., and Taniguchi, T. (2005). Regulation of the type I 
IFN induction: a current view. International immunology, 17(11), 1367–78. doi: 
10.1093/intimm/dxh318 

Hong, S., Mehta, K. P., and Laimins, L. a. (2011). Suppression of STAT-1 expression 
by human papillomaviruses is necessary for differentiation-dependent genome 
amplification and plasmid maintenance. Journal of virology, 85(18), 9486–94. doi: 
10.1128/JVI.05007-11 

Horner, S. M., Liu, H. M., Park, H. S., Briley, J., and Gale, M. (2011). Mitochondrial-
associated endoplasmic reticulum membranes (MAM) form innate immune 
synapses and are targeted by hepatitis C virus. Proceedings of the National 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   123 
 

Academy of Sciences of the United States of America, 108(35), 14590–5. doi: 
10.1073/pnas.1110133108 

Hornung, V., Ablasser, A., Charrel-Dennis, M., Bauernfeind, F., Horvath, G., Caffrey, D. 
R., Latz, E., et al. (2009). AIM2 recognizes cytosolic dsDNA and forms a caspase-
1-activating inflammasome with ASC. Nature, 458(7237), 514–8. Nature 
Publishing Group. doi: 10.1038/nature07725 

Hornung, V., Ellegast, J., Kim, S., Brzózka, K., Jung, A., Kato, H., Poeck, H., et al. 
(2006). 5’-Triphosphate RNA is the ligand for RIG-I. Science, 314(5801), 994–7. 
doi: 10.1126/science.1132505 

Hou, F., Sun, L., Zheng, H., Skaug, B., Jiang, Q.-X., and Chen, Z. J. (2011). MAVS 
forms functional prion-like aggregates to activate and propagate antiviral innate 
immune response. Cell, 146(3), 448–61. Elsevier Inc. doi: 
10.1016/j.cell.2011.06.041 

Hoving, J. C., Wilson, G. J., and Brown, G. D. (2014). Signalling C-type lectin 
receptors, microbial recognition and immunity. Cellular microbiology, 16(2), 185–
94. doi: 10.1111/cmi.12249 

Huang, J., Liu, T., Xu, L.-G., Chen, D., Zhai, Z., and Shu, H.-B. (2005). SIKE is an IKK 
epsilon/TBK1-associated suppressor of TLR3- and virus-triggered IRF-3 activation 
pathways. The EMBO journal, 24(23), 4018–28. doi: 10.1038/sj.emboj.7600863 

Inn, K.-S., Lee, S.-H., Rathbun, J. Y., Wong, L.-Y., Toth, Z., Machida, K., Ou, J.-H. J., 
et al. (2011). Inhibition of RIG-I-mediated signaling by Kaposi’s sarcoma-
associated herpesvirus-encoded deubiquitinase ORF64. Journal of virology, 
85(20), 10899–904. doi: 10.1128/JVI.00690-11 

International Committee on Taxonomy of Viruses. (2013). Virus Taxonomy: 2013 
Release. July 2013. Retrieved March 17, 2014, from 
http://ictvonline.org/virusTaxonomy.asp 

Ishikawa, H., and Barber, G. N. (2008). STING is an endoplasmic reticulum adaptor 
that facilitates innate immune signalling. Nature, 455(7213), 674–8. doi: 
10.1038/nature07317 

Island, M., and Mesplede, T. (2002). Repression by homeoprotein pitx1 of virus-
induced interferon a promoters is mediated by physical interaction and trans 
repression of IRF3 and IRF7. Molecular and cellular biology, 22(20), 7120–7133. 
doi: 10.1128/MCB.22.20.7120 

Islinger, M., and Schrader, M. (2011). Peroxisomes. Current biology : CB, 21(19), 
R800–1. doi: 10.1016/j.cub.2011.07.024 

Jacobs, J. L., and Coyne, C. B. (2013). Mechanisms of MAVS Regulation at the 
Mitochondrial Membrane. Journal of molecular biology. Elsevier B.V. doi: 
10.1016/j.jmb.2013.10.007 

Jeffrey, K. L., Camps, M., Rommel, C., and Mackay, C. R. (2007). Targeting dual-
specificity phosphatases: manipulating MAP kinase signalling and immune 
responses. Nature reviews. Drug discovery, 6(5), 391–403. doi: 10.1038/nrd2289 

Jia, Y., Song, T., Wei, C., Ni, C., Zheng, Z., Xu, Q., Ma, H., et al. (2009). Negative 
regulation of MAVS-mediated innate immune response by PSMA7. Journal of 



 
 
Universidade de Aveiro                                            Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

 

124           Mariana Guedes 
 

immunology (Baltimore, Md. : 1950), 183(7), 4241–8. doi: 
10.4049/jimmunol.0901646 

Jiang, H., and Fisher, P. B. (1993). Use of a sensitive and efficient subtraction 
hybridization protocol for the identification of genes differentially regulated during 
the induction of differentiation in human melanoma cells. Mol. Cell. Different., 1(3), 
285–299. 

Jiang, X., Kinch, L. N., Brautigam, C. a, Chen, X., Du, F., Grishin, N. V, and Chen, Z. J. 
(2012). Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 
activates antiviral innate immune response. Immunity, 36(6), 959–73. Elsevier Inc. 
doi: 10.1016/j.immuni.2012.03.022 

Jin, L., Hill, K. K., Filak, H., Mogan, J., Knowles, H., Zhang, B., Perraud, A.-L., et al. 
(2011). MPYS is required for IFN response factor 3 activation and type I IFN 
production in the response of cultured phagocytes to bacterial second 
messengers cyclic-di-AMP and cyclic-di-GMP. Journal of immunology (Baltimore, 
Md. : 1950), 187(5), 2595–601. doi: 10.4049/jimmunol.1100088 

Jin, L., Waterman, P. M., Jonscher, K. R., Short, C. M., Reisdorph, N. a, and Cambier, 
J. C. (2008). MPYS, a novel membrane tetraspanner, is associated with major 
histocompatibility complex class II and mediates transduction of apoptotic signals. 
Molecular and cellular biology, 28(16), 5014–26. doi: 10.1128/MCB.00640-08 

Johnsen, I. B., Nguyen, T. T., Bergstroem, B., Fitzgerald, K. a, and Anthonsen, M. W. 
(2009). The tyrosine kinase c-Src enhances RIG-I (retinoic acid-inducible gene I)-
elicited antiviral signaling. The Journal of biological chemistry, 284(28), 19122–31. 
doi: 10.1074/jbc.M808233200 

Jounai, N., Takeshita, F., Kobiyama, K., Sawano, A., Miyawaki, A., Xin, K.-Q., Ishii, K. 
J., et al. (2007). The Atg5 Atg12 conjugate associates with innate antiviral immune 
responses. Proceedings of the National Academy of Sciences of the United States 
of America, 104(35), 14050–5. doi: 10.1073/pnas.0704014104 

Kadeppagari, R.-K., Sanchez, R. L., and Foster, T. P. (2012). HSV-2 inhibits type-I 
interferon signaling via multiple complementary and compensatory STAT2-
associated mechanisms. Virus research, 167(2), 273–84. Elsevier B.V. doi: 
10.1016/j.virusres.2012.05.010 

Kanneganti, T.-D. (2010). Central roles of NLRs and inflammasomes in viral infection. 
Nature reviews Immunology, 10(10), 688–98. Nature Publishing Group. doi: 
10.1038/nri2851 

Van Kasteren, P. B., Beugeling, C., Ninaber, D. K., Frias-Staheli, N., van Boheemen, 
S., García-Sastre, A., Snijder, E. J., et al. (2012). Arterivirus and nairovirus 
ovarian tumor domain-containing Deubiquitinases target activated RIG-I to control 
innate immune signaling. Journal of virology, 86(2), 773–85. doi: 
10.1128/JVI.06277-11 

Kato, H., Takeuchi, O., Mikamo-Satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, 
A., et al. (2008). Length-dependent recognition of double-stranded ribonucleic 
acids by retinoic acid-inducible gene-I and melanoma differentiation-associated 
gene 5. The Journal of experimental medicine, 205(7), 1601–10. doi: 
10.1084/jem.20080091 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   125 
 

Kawai, T., and Akira, S. (2011). Toll-like receptors and their crosstalk with other innate 
receptors in infection and immunity. Immunity, 34(5), 637–50. Elsevier Inc. doi: 
10.1016/j.immuni.2011.05.006 

Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K. J., et al. 
(2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon 
induction. Nature immunology, 6(10), 981–8. doi: 10.1038/ni1243 

Kayagaki, N., Phung, Q., Chan, S., Chaudhari, R., Quan, C., O’Rourke, K. M., Eby, M., 
et al. (2007). DUBA: a deubiquitinase that regulates type I interferon production. 
Science, 318(5856), 1628–32. doi: 10.1126/science.1145918 

Kim, M., and Yoo, J. (2008). Active caspase-1-mediated secretion of retinoic acid 
inducible gene-I. The Journal of Immunology, (181), 7324–73. 

Kim, T. K., Kim, T. H., and Maniatis, T. (1998). Efficient recruitment of TFIIB and CBP-
RNA polymerase II holoenzyme by an interferon-beta enhanceosome in vitro. 
Proceedings of the National Academy of Sciences of the United States of 
America, 95(21), 12191–6. 

Kindt, T. J., Osborne, B. A., and Goldsby, R. A. (2007). Kuby Immunology (6th ed.). W. 
H. Freeman & Company. 

Kishore, N., Huynh, Q. K., Mathialagan, S., Hall, T., Rouw, S., Creely, D., Lange, G., et 
al. (2002). IKK-i and TBK-1 are enzymatically distinct from the homologous 
enzyme IKK-2: comparative analysis of recombinant human IKK-i, TBK-1, and 
IKK-2. The Journal of biological chemistry, 277(16), 13840–7. doi: 
10.1074/jbc.M110474200 

Koleske, A. J. (2006). Abl Family Kinases in Development and Disease. Molecular 
Biology Intelligence Unit. New York, NY: Springer New York. doi: 10.1007/978-0-
387-68744-5 

Komuro, A., Bamming, D., and Horvath, C. M. (2008). Negative regulation of 
cytoplasmic RNA-mediated antiviral signaling. Cytokine, 43(3), 350–8. doi: 
10.1016/j.cyto.2008.07.011 

Komuro, A., and Horvath, C. M. (2006). RNA- and virus-independent inhibition of 
antiviral signaling by RNA helicase LGP2. Journal of virology, 80(24), 12332–42. 
doi: 10.1128/JVI.01325-06 

Koshiba, T., Yasukawa, K., Yanagi, Y., and Kawabata, S. (2011). Mitochondrial 
membrane potential is required for MAVS-mediated antiviral signaling. Science 
signaling, 4(158), ra7. doi: 10.1126/scisignal.2001147 

Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693–
705. doi: 10.1016/j.cell.2007.02.005 

Kowalinski, E., Lunardi, T., McCarthy, A. a, Louber, J., Brunel, J., Grigorov, B., Gerlier, 
D., et al. (2011). Structural basis for the activation of innate immune pattern-
recognition receptor RIG-I by viral RNA. Cell, 147(2), 423–35. Elsevier Inc. doi: 
10.1016/j.cell.2011.09.039 

Koyama, S., Ishii, K. J., Coban, C., and Akira, S. (2008). Innate immune response to 
viral infection. Cytokine, 43(3), 336–41. doi: 10.1016/j.cyto.2008.07.009 



 
 
Universidade de Aveiro                                            Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

 

126           Mariana Guedes 
 

Ku, C.-C., Che, X.-B., Reichelt, M., Rajamani, J., Schaap-Nutt, A., Huang, K.-J., 
Sommer, M. H., et al. (2011). Herpes simplex virus-1 induces expression of a 
novel MxA isoform that enhances viral replication. Immunology and cell biology, 
89(2), 173–82. Nature Publishing Group. doi: 10.1038/icb.2010.83 

Kubota, T., Matsuoka, M., Chang, T.-H., Tailor, P., Sasaki, T., Tashiro, M., Kato, A., et 
al. (2008). Virus infection triggers SUMOylation of IRF3 and IRF7, leading to the 
negative regulation of type I interferon gene expression. The Journal of biological 
chemistry, 283(37), 25660–70. doi: 10.1074/jbc.M804479200 

Kumar, M., Jung, S. Y., Hodgson, A. J., Madden, C. R., Qin, J., and Slagle, B. L. 
(2011). Hepatitis B virus regulatory HBx protein binds to adaptor protein IPS-1 and 
inhibits the activation of beta interferon. Journal of virology, 85(2), 987–95. doi: 
10.1128/JVI.01825-10 

Leung, L. W., Park, M.-S., Martinez, O., Valmas, C., López, C. B., and Basler, C. F. 
(2011). Ebolavirus VP35 suppresses IFN production from conventional but not 
plasmacytoid dendritic cells. Immunology and cell biology, 89(7), 792–802. doi: 
10.1038/icb.2010.169 

Levy, D. E., and Marié, I. J. (2005). HOW VIRUSES ELICIT INTERFERON - Triggering 
the innate immune response to viral infection. Modulation of Host Gene 
Expression and Innate Immunity by Viruses (pp. 19–34). Springer. 

Li, S., Zheng, H., Mao, A.-P., Zhong, B., Li, Y., Liu, Y., Gao, Y., et al. (2010). 
Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated 
deubiquitination of TRAF3 and TRAF6. The Journal of biological chemistry, 
285(7), 4291–7. doi: 10.1074/jbc.M109.074971 

Li, X.-D., Sun, L., Seth, R. B., Pineda, G., and Chen, Z. J. (2005). Hepatitis C virus 
protease NS3/4A cleaves mitochondrial antiviral signaling protein off the 
mitochondria to evade innate immunity. Proceedings of the National Academy of 
Sciences of the United States of America, 102(49), 17717–22. doi: 
10.1073/pnas.0508531102 

Liang, D., Gao, Y., Lin, X., He, Z., Zhao, Q., Deng, Q., and Lan, K. (2011). A human 
herpesvirus miRNA attenuates interferon signaling and contributes to 
maintenance of viral latency by targeting IKKε. Cell research, 21(5), 793–806. 
Nature Publishing Group. doi: 10.1038/cr.2011.5 

Liang, Q., Fu, B., Wu, F., Li, X., Yuan, Y., and Zhu, F. (2012). ORF45 of Kaposi’s 
sarcoma-associated herpesvirus inhibits phosphorylation of interferon regulatory 
factor 7 by IKKε and TBK1 as an alternative substrate. Journal of virology, 86(18), 
10162–72. doi: 10.1128/JVI.05224-11 

Lifland, A. W., Jung, J., Alonas, E., Zurla, C., Crowe, J. E., and Santangelo, P. J. 
(2012). Human respiratory syncytial virus nucleoprotein and inclusion bodies 
antagonize the innate immune response mediated by MDA5 and MAVS. Journal 
of virology, 86(15), 8245–58. doi: 10.1128/JVI.00215-12 

Lin, R., Heylbroeck, C., Pitha, P. M., and Hiscott, J. (1998). Virus-dependent 
phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, 
transactivation potential, and proteasome-mediated degradation. Molecular and 
cellular biology, 18(5), 2986–96. 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   127 
 

Lin, R., Mamane, Y., and Hiscott, J. (1999). Structural and functional analysis of 
interferon regulatory factor 3: localization of the transactivation and autoinhibitory 
domains. Molecular and cellular biology, 19(4), 2465–74. 

Lin, R., Mamane, Y., and Hiscott, J. (2000). Multiple regulatory domains control IRF-7 
activity in response to virus infection. The Journal of biological chemistry, 275(44), 
34320–7. doi: 10.1074/jbc.M002814200 

Lin, R., Yang, L., Nakhaei, P., Sun, Q., Sharif-Askari, E., Julkunen, I., and Hiscott, J. 
(2006). Negative regulation of the retinoic acid-inducible gene I-induced antiviral 
state by the ubiquitin-editing protein A20. The Journal of biological chemistry, 
281(4), 2095–103. doi: 10.1074/jbc.M510326200 

Ling, A., Soares, F., Croitoru, D. O., Tattoli, I., Carneiro, L. a M., Boniotto, M., Benko, 
S., et al. (2012). Post-transcriptional inhibition of luciferase reporter assays by the 
Nod-like receptor proteins NLRX1 and NLRC3. The Journal of biological 
chemistry, 287(34), 28705–16. doi: 10.1074/jbc.M111.333146 

Liu, S., Chen, J., Cai, X., Wu, J., Chen, X., Wu, Y.-T., Sun, L., et al. (2013). MAVS 
recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. eLife, 
2, e00785. doi: 10.7554/eLife.00785 

Liu, X.-Y., Chen, W., Wei, B., Shan, Y.-F., and Wang, C. (2011). IFN-induced TPR 
protein IFIT3 potentiates antiviral signaling by bridging MAVS and TBK1. Journal 
of immunology (Baltimore, Md. : 1950), 187(5), 2559–68. doi: 
10.4049/jimmunol.1100963 

Liu, X.-Y., Wei, B., Shi, H.-X., Shan, Y.-F., and Wang, C. (2010). Tom70 mediates 
activation of interferon regulatory factor 3 on mitochondria. Cell research, 20(9), 
994–1011. Nature Publishing Group. doi: 10.1038/cr.2010.103 

Lodish, H. F., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., and James, D. 
(2008). Molecular Cell Biology. Book (Vol. 5). doi: 10.1016/S1470-8175(01)00023-
6 

Lomvardas, S., and Thanos, D. (2001). Nucleosome sliding via TBP DNA binding in 
vivo. Cell, 106(6), 685–96. 

Loo, Y.-M., and Gale, M. (2011). Immune signaling by RIG-I-like receptors. Immunity, 
34(5), 680–92. Elsevier Inc. doi: 10.1016/j.immuni.2011.05.003 

Luo, D., Ding, S. C., Vela, A., Kohlway, A., Lindenbach, B. D., and Pyle, A. M. (2011). 
Structural insights into RNA recognition by RIG-I. Cell, 147, 409–422. doi: 
10.1016/j.cell.2011.09.023 

Ma, Y., Jin, H., Valyi-Nagy, T., Cao, Y., Yan, Z., and He, B. (2012). Inhibition of TANK 
binding kinase 1 by herpes simplex virus 1 facilitates productive infection. Journal 
of virology, 86(4), 2188–96. doi: 10.1128/JVI.05376-11 

Makeyev, A., and Liebhaber, S. (2002). The poly (C)-binding proteins: a multiplicity of 
functions and a search for mechanisms. Rna, (8), 265–278. doi: 
10+1017+S1355838202024627 

Mamane, Y., Heylbroeck, C., Génin, P., Algarté, M., Servant, M. J., LePage, C., 
DeLuca, C., et al. (1999). Interferon regulatory factors: the next generation. Gene, 
237(1), 1–14. 



 
 
Universidade de Aveiro                                            Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

 

128           Mariana Guedes 
 

Marazzi, I., Ho, J., Kim, J., and Manicassamy, B. (2012). Suppression of the antiviral 
response by an influenza histone mimic. Nature, 483(7390), 428–33. doi: 
10.1038/nature10892 

Marié, I., Durbin, J. E., and Levy, D. E. (1998). Differential viral induction of distinct 
interferon-alpha genes by positive feedback through interferon regulatory factor-7. 
The EMBO journal, 17(22), 6660–9. doi: 10.1093/emboj/17.22.6660 

Matsui, K., Kumagai, Y., Kato, H., Sato, S., Kawagoe, T., Uematsu, S., Takeuchi, O., et 
al. (2006). Cutting edge: Role of TANK-binding kinase 1 and inducible IkappaB 
kinase in IFN responses against viruses in innate immune cells. Journal of 
immunology (Baltimore, Md. : 1950), 177(9), 5785–9. 

McWhirter, S. M., Fitzgerald, K. a, Rosains, J., Rowe, D. C., Golenbock, D. T., and 
Maniatis, T. (2004). IFN-regulatory factor 3-dependent gene expression is 
defective in Tbk1-deficient mouse embryonic fibroblasts. Proceedings of the 
National Academy of Sciences of the United States of America, 101(1), 233–8. 
doi: 10.1073/pnas.2237236100 

Meager, A. (2006). The interferons: characterization and application. 

Merika, M., Williams, a J., Chen, G., Collins, T., and Thanos, D. (1998). Recruitment of 
CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of 
transcription. Molecular cell, 1(2), 277–87. 

Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., 
and Tschopp, J. (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway 
and is targeted by hepatitis C virus. Nature, 437(7062), 1167–72. doi: 
10.1038/nature04193 

Michallet, M.-C., Meylan, E., Ermolaeva, M. a, Vazquez, J., Rebsamen, M., Curran, J., 
Poeck, H., et al. (2008). TRADD protein is an essential component of the RIG-like 
helicase antiviral pathway. Immunity, 28(5), 651–61. doi: 
10.1016/j.immuni.2008.03.013 

Mikkelsen, S. S., Jensen, S. B., Chiliveru, S., Melchjorsen, J., Julkunen, I., Gaestel, M., 
Arthur, J. S. C., et al. (2009). RIG-I-mediated activation of p38 MAPK is essential 
for viral induction of interferon and activation of dendritic cells: dependence on 
TRAF2 and TAK1. The Journal of biological chemistry, 284(16), 10774–82. doi: 
10.1074/jbc.M807272200 

Miorin, L., Albornoz, A., Baba, M. M., D’Agaro, P., and Marcello, A. (2012). Formation 
of membrane-defined compartments by tick-borne encephalitis virus contributes to 
the early delay in interferon signaling. Virus research, 163(2), 660–6. Elsevier B.V. 
doi: 10.1016/j.virusres.2011.11.020 

Moore, C. B., Bergstralh, D. T., Duncan, J. a, Lei, Y., Morrison, T. E., Zimmermann, A. 
G., Accavitti-Loper, M. a, et al. (2008). NLRX1 is a regulator of mitochondrial 
antiviral immunity. Nature, 451(7178), 573–7. doi: 10.1038/nature06501 

Mukherjee, A., Morosky, S. a, Delorme-Axford, E., Dybdahl-Sissoko, N., Oberste, M. 
S., Wang, T., and Coyne, C. B. (2011). The coxsackievirus B 3C protease cleaves 
MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLoS 
pathogens, 7(3), e1001311. doi: 10.1371/journal.ppat.1001311 

Mukherjee, A., Morosky, S. a, Shen, L., Weber, C. R., Turner, J. R., Kim, K. S., Wang, 
T., et al. (2009). Retinoic acid-induced gene-1 (RIG-I) associates with the actin 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   129 
 

cytoskeleton via caspase activation and recruitment domain-dependent 
interactions. The Journal of biological chemistry, 284(10), 6486–94. doi: 
10.1074/jbc.M807547200 

Munshi, A., and Ramesh, R. (2013). Mitogen-Activated Protein Kinases and Their Role 
in Radiation Response. Genes & cancer, 4(9-10), 401–408. doi: 
10.1177/1947601913485414 

Mutocheluh, M., Hindle, L., Aresté, C., Chanas, S. a, Butler, L. M., Lowry, K., Shah, K., 
et al. (2011). Kaposi’s sarcoma-associated herpesvirus viral interferon regulatory 
factor-2 inhibits type 1 interferon signalling by targeting interferon-stimulated gene 
factor-3. The Journal of general virology, 92(Pt 10), 2394–8. doi: 
10.1099/vir.0.034322-0 

Nakhaei, P., Mesplede, T., Solis, M., Sun, Q., Zhao, T., Yang, L., Chuang, T.-H., et al. 
(2009). The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS 
signaling pathway by targeting TRAF3 for degradation. PLoS pathogens, 5(11), 
e1000650. doi: 10.1371/journal.ppat.1000650 

Neznanov, N., Chumakov, K. M., Neznanova, L., Almasan, A., Banerjee, A. K., and 
Gudkov, A. V. (2005). Proteolytic cleavage of the p65-RelA subunit of NF-kappaB 
during poliovirus infection. The Journal of biological chemistry, 280(25), 24153–8. 
doi: 10.1074/jbc.M502303200 

Nguyen, H., Hiscott, J., and Pitha, P. M. (1997). The growing family of interferon 
regulatory factors. Cytokine & growth factor reviews, 8(4), 293–312. 

Odendall, C., Dixit, E., Stavru, F., Bierne, H., Franz, K. M., Durbin, A. F., Boulant, S., et 
al. (2014). Diverse intracellular pathogens activate type III interferon expression 
from peroxisomes. Nature immunology, (June). Nature Publishing Group. doi: 
10.1038/ni.2915 

Ohta, A., and Nishiyama, Y. (2011). Mitochondria and viruses. Mitochondrion, 11(1), 1–
12. Elsevier B.V. and Mitochondria Research Society. doi: 
10.1016/j.mito.2010.08.006 

Okabe, Y., Sano, T., and Nagata, S. (2009). Regulation of the innate immune response 
by threonine-phosphatase of Eyes absent. Nature, 460(7254), 520–4. Nature 
Publishing Group. doi: 10.1038/nature08138 

Onoguchi, K., Onomoto, K., Takamatsu, S., Jogi, M., Takemura, A., Morimoto, S., 
Julkunen, I., et al. (2010). Virus-infection or 5’ppp-RNA activates antiviral signal 
through redistribution of IPS-1 mediated by MFN1. PLoS pathogens, 6(7), 
e1001012. doi: 10.1371/journal.ppat.1001012 

Oshiumi, H., Matsumoto, M., Hatakeyama, S., and Seya, T. (2009). Riplet/RNF135, a 
RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction 
during the early phase of viral infection. The Journal of biological chemistry, 
284(2), 807–17. doi: 10.1074/jbc.M804259200 

Oshiumi, H., Miyashita, M., Inoue, N., Okabe, M., Matsumoto, M., and Seya, T. (2010). 
The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune 
responses to RNA virus infection. Cell host & microbe, 8(6), 496–509. Elsevier 
Inc. doi: 10.1016/j.chom.2010.11.008 

Paladino, P., Cummings, D. T. D., Noyce, R. S., and Mossman, K. L. (2006). The IFN-
independent response to virus particle entry provides a first line of antiviral 



 
 
Universidade de Aveiro                                            Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

 

130           Mariana Guedes 
 

defense that is independent of TLRs and retinoic acid-inducible gene I. J. 
Immunol., (25). 

Panne, D., Maniatis, T., and Harrison, S. C. (2004). Crystal structure of ATF-2/c-Jun 
and IRF-3 bound to the interferon-beta enhancer. The EMBO journal, 23(22), 
4384–93. doi: 10.1038/sj.emboj.7600453 

Panne, D., Maniatis, T., and Harrison, S. C. (2007). An atomic model of the interferon-
beta enhanceosome. Cell, 129(6), 1111–23. doi: 10.1016/j.cell.2007.05.019 

Paulmann, D., Magulski, T., Schwarz, R., Heitmann, L., Flehmig, B., Vallbracht, A., and 
Dotzauer, A. (2008). Hepatitis A virus protein 2B suppresses beta interferon (IFN) 
gene transcription by interfering with IFN regulatory factor 3 activation. The 
Journal of general virology, 89(Pt 7), 1593–604. doi: 10.1099/vir.0.83521-0 

Paun, A; Pitha, P. M. (2007). The IRF family, revisited. Biochimie, 89(6-7), 744–53. doi: 
10.1016/j.biochi.2007.01.014 

Paz, S., Vilasco, M., Arguello, M., Sun, Q., Lacoste, J., Nguyen, T. L.-A., Zhao, T., et 
al. (2009). Ubiquitin-regulated recruitment of IkappaB kinase epsilon to the MAVS 
interferon signaling adapter. Molecular and cellular biology, 29(12), 3401–12. doi: 
10.1128/MCB.00880-08 

Paz, S., Vilasco, M., Werden, S. J., Arguello, M., Joseph-Pillai, D., Zhao, T., Nguyen, 
T. L.-A., et al. (2011). A functional C-terminal TRAF3-binding site in MAVS 
participates in positive and negative regulation of the IFN antiviral response. Cell 
research, 21(6), 895–910. Nature Publishing Group. doi: 10.1038/cr.2011.2 

Perry, A. K., Chow, E. K., Goodnough, J. B., Yeh, W.-C., and Cheng, G. (2004). 
Differential requirement for TANK-binding kinase-1 in type I interferon responses 
to toll-like receptor activation and viral infection. The Journal of experimental 
medicine, 199(12), 1651–8. doi: 10.1084/jem.20040528 

Pinton, P., Giorgi, C., and Pandolfi, P. P. (2011). The role of PML in the control of 
apoptotic cell fate: a new key player at ER-mitochondria sites. Cell death and 
differentiation, 18(9), 1450–6. Nature Publishing Group. doi: 10.1038/cdd.2011.31 

Platanias, L. C. (2005). Mechanisms of type-I- and type-II-interferon-mediated 
signalling. Nature reviews. Immunology, 5(5), 375–86. doi: 10.1038/nri1604 

Poncet, D., Pauleau, A.-L., Szabadkai, G., Vozza, A., Scholz, S. R., Le Bras, M., 
Brière, J.-J., et al. (2006). Cytopathic effects of the cytomegalovirus-encoded 
apoptosis inhibitory protein vMIA. The Journal of cell biology, 174(7), 985–96. doi: 
10.1083/jcb.200604069 

Pothlichet, J., Chignard, M., and Si-Tahar, M. (2008). Cutting Edge: Innate Immune 
Response Triggered by Influenza A Virus Is Negatively Regulated by SOCS1 and 
SOCS3 through a RIG-I/IFNAR1-Dependent Pathway. The Journal of 
Immunology, 180(4), 2034–2038. doi: 10.4049/jimmunol.180.4.2034 

Prinarakis, E., Chantzoura, E., Thanos, D., and Spyrou, G. (2008). S-glutathionylation 
of IRF3 regulates IRF3-CBP interaction and activation of the IFN beta pathway. 
The EMBO journal, 27(6), 865–75. doi: 10.1038/emboj.2008.28 

Pythoud, C., Rodrigo, W. W. S. I., Pasqual, G., Rothenberger, S., Martínez-Sobrido, L., 
de la Torre, J. C., and Kunz, S. (2012). Arenavirus nucleoprotein targets interferon 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   131 
 

regulatory factor-activating kinase IKKε. Journal of virology, 86(15), 7728–38. doi: 
10.1128/JVI.00187-12 

Qin, B. Y., Liu, C., Srinath, H., Lam, S. S., Correia, J. J., Derynck, R., and Lin, K. 
(2005). Crystal structure of IRF-3 in complex with CBP. Structure (London, 
England : 1993), 13(9), 1269–77. doi: 10.1016/j.str.2005.06.011 

Qu, B., Qi, X., Wu, X., Liang, M., Li, C., Cardona, C. J., Xu, W., et al. (2012). 
Suppression of the interferon and NF-κB responses by severe fever with 
thrombocytopenia syndrome virus. Journal of virology, 86(16), 8388–401. doi: 
10.1128/JVI.00612-12 

Rajput, A., Kovalenko, A., Bogdanov, K., Yang, S.-H., Kang, T.-B., Kim, J.-C., Du, J., et 
al. (2011). RIG-I RNA helicase activation of IRF3 transcription factor is negatively 
regulated by caspase-8-mediated cleavage of the RIP1 protein. Immunity, 34(3), 
340–51. Elsevier Inc. doi: 10.1016/j.immuni.2010.12.018 

Ramos, H. J., and Gale, M. (2011). RIG-I like receptors and their signaling crosstalk in 
the regulation of antiviral immunity. Current opinion in virology, 1(3), 167–76. 
Elsevier B.V. doi: 10.1016/j.coviro.2011.04.004 

Rebsamen, M., Vazquez, J., Tardivel, A., Guarda, G., Curran, J., and Tschopp, J. 
(2011). NLRX1/NOD5 deficiency does not affect MAVS signalling. Cell death and 
differentiation, 18(8), 1387. Nature Publishing Group. doi: 10.1038/cdd.2011.64 

Reeves, R., and Beckerbauer, L. (2001). HMGI/Y proteins: flexible regulators of 
transcription and chromatin structure. Biochimica et biophysica acta, 1519(1-2), 
13–29. 

Reis, L. F., Ruffner, H., Stark, G., Aguet, M., and Weissmann, C. (1994). Mice devoid 
of interferon regulatory factor 1 (IRF-1) show normal expression of type I 
interferon genes. The EMBO journal, 13(20), 4798–806. 

Ren, J., Kolli, D., Liu, T., Xu, R., Garofalo, R. P., Casola, A., and Bao, X. (2011). 
Human metapneumovirus inhibits IFN-β signaling by downregulating Jak1 and 
Tyk2 cellular levels. PloS one, 6(9), e24496. doi: 10.1371/journal.pone.0024496 

Ribeiro, D., Castro, I., Fahimi, H. D., and Schrader, M. (2012). Peroxisome morphology 
in pathology. Histology and histopathology, 27(6), 661–76. 

Ribet, D., and Cossart, P. (2010). Pathogen-mediated posttranslational modifications: 
A re-emerging field. Cell, 143(5), 694–702. Elsevier Inc. doi: 
10.1016/j.cell.2010.11.019 

Richez, C., Barnetche, T., Miceli-Richard, C., Blanco, P., Moreau, J.-F., Rifkin, I., and 
Schaeverbeke, T. (2010). Role for interferon regulatory factors in autoimmunity. 
Joint, bone, spine : revue du rhumatisme, 77(6), 525–31. doi: 
10.1016/j.jbspin.2010.08.005 

Rodriguez, J., Wang, L., and Horvath, C. (2003). Hendra virus V protein inhibits 
interferon signaling by preventing STAT1 and STAT2 nuclear accumulation. 
Journal of virology, 77(21), 1–6. doi: 10.1128/JVI.77.21.11842 

Ronco, L. V. L., Karpova, A. Y., Vidal, M., and Howley, P. M. (1998). Human 
papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and 
inhibits its transcriptional activity. Genes & Development, 12(13), 2061–2072. doi: 
10.1101/gad.12.13.2061 



 
 
Universidade de Aveiro                                            Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

 

132           Mariana Guedes 
 

Rothenfusser, S., Goutagny, N., DiPerna, G., Gong, M., Monks, B. G., Schoenemeyer, 
A., Yamamoto, M., et al. (2005). The RNA helicase Lgp2 inhibits TLR-independent 
sensing of viral replication by retinoic acid-inducible gene-I. The Journal of 
Immunology, (175), 5260–5268. 

Saha, S. K., Pietras, E. M., He, J. Q., Kang, J. R., Liu, S.-Y., Oganesyan, G., 
Shahangian, A., et al. (2006). Regulation of antiviral responses by a direct and 
specific interaction between TRAF3 and Cardif. The EMBO journal, 25(14), 3257–
63. doi: 10.1038/sj.emboj.7601220 

Saito, T., Hirai, R., Loo, Y.-M., Owen, D., Johnson, C. L., Sinha, S. C., Akira, S., et al. 
(2007). Regulation of innate antiviral defenses through a shared repressor domain 
in RIG-I and LGP2. Proceedings of the National Academy of Sciences of the 
United States of America, 104(2), 582–7. doi: 10.1073/pnas.0606699104 

Saito, T., Owen, D. M., Jiang, F., Marcotrigiano, J., and Gale, M. (2008). Innate 
immunity induced by composition-dependent RIG-I recognition of hepatitis C virus 
RNA. Nature, 454(7203), 523–7. doi: 10.1038/nature07106 

Sanada, T., Takaesu, G., Mashima, R., Yoshida, R., Kobayashi, T., and Yoshimura, A. 
(2008). FLN29 deficiency reveals its negative regulatory role in the Toll-like 
receptor (TLR) and retinoic acid-inducible gene I (RIG-I)-like helicase signaling 
pathway. The Journal of biological chemistry, 283(49), 33858–64. doi: 
10.1074/jbc.M806923200 

Sasai, M., Shingai, M., Funami, K., Yoneyama, M., Fujita, T., Matsumoto, M., and 
Seya, T. (2006). NAK-associated protein 1 participates in both the TLR3 and the 
cytoplasmic pathways in type I IFN induction. Journal of immunology (Baltimore, 
Md. : 1950), 177(12), 8676–83. 

Sathish, N., Zhu, F. X., Golub, E. E., Liang, Q., and Yuan, Y. (2011). Mechanisms of 
autoinhibition of IRF-7 and a probable model for inactivation of IRF-7 by Kaposi’s 
sarcoma-associated herpesvirus protein ORF45. The Journal of biological 
chemistry, 286(1), 746–56. doi: 10.1074/jbc.M110.150920 

Sato, M., Hata, N., Asagiri, M., Nakaya, T., Taniguchi, T., and Tanaka, N. (1998). 
Positive feedback regulation of type I IFN genes by the IFN-inducible transcription 
factor IRF-7. FEBS letters, 441(1), 106–10. 

Sato, M., Suemori, H., Hata, N., Asagiri, M., Ogasawara, K., Nakao, K., Nakaya, T., et 
al. (2000). Distinct and essential roles of transcription factors IRF-3 and IRF-7 in 
response to viruses for IFN-alpha/beta gene induction. Immunity, 13(4), 539–48. 

Sato, M., Tanaka, N., Hata, N., Oda, E., and Taniguchi, T. (1998). Involvement of the 
IRF family transcription factor IRF-3 in virus-induced activation of the IFN-beta 
gene. FEBS letters, 425(1), 112–6. 

Satoh, T., Kato, H., Kumagai, Y., Yoneyama, M., Sato, S., Matsushita, K., Tsujimura, 
T., et al. (2010). LGP2 is a positive regulator of RIG-I- and MDA5-mediated 
antiviral responses. Proceedings of the National Academy of Sciences of the 
United States of America, 107(4), 1512–7. doi: 10.1073/pnas.0912986107 

Schlee, M., and Hartmann, G. (2010). The chase for the RIG-I ligand--recent advances. 
Molecular therapy : the journal of the American Society of Gene Therapy, 18(7), 
1254–62. Nature Publishing Group. doi: 10.1038/mt.2010.90 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   133 
 

Schlee, M., Roth, A., Hornung, V., Hagmann, C. A., Wimmenauer, V., Barchet, W., 
Coch, C., et al. (2009). Recognition of 5’ triphosphate by RIG-I helicase requires 
short blunt double-stranded RNA as contained in panhandle of negative-strand 
virus. Immunity, 31(1), 25–34. Elsevier Ltd. doi: 10.1016/j.immuni.2009.05.008 

Schmidt, A., and Schwerd, T. (2009). 5′-triphosphate RNA requires base-paired 
structures to activate antiviral signaling via RIG-I. Proceedings of the National 
Academy of Sciences of the United States of America, 106(29). 

Schoggins, J. W., and Rice, C. M. (2011). Interferon-stimulated genes and their 
antiviral effector functions. Current opinion in virology, 1(6), 519–25. Elsevier B.V. 
doi: 10.1016/j.coviro.2011.10.008 

Schones, D. E., Cui, K., Cuddapah, S., Roh, T.-Y., Barski, A., Wang, Z., Wei, G., et al. 
(2008). Dynamic regulation of nucleosome positioning in the human genome. Cell, 
132(5), 887–98. doi: 10.1016/j.cell.2008.02.022 

Schrader, M., and Fahimi, H. D. (2008). The peroxisome: still a mysterious organelle. 
Histochemistry and cell biology, 129(4), 421–40. doi: 10.1007/s00418-008-0396-9 

Schrader, M., and Yoon, Y. (2007). Mitochondria and peroxisomes: are the “big 
brother” and the “little sister” closer than assumed? BioEssays : news and reviews 
in molecular, cellular and developmental biology, 29(11), 1105–14. doi: 
10.1002/bies.20659 

Schuhmann, K. M., Pfaller, C. K., and Conzelmann, K.-K. (2011). The measles virus V 
protein binds to p65 (RelA) to suppress NF-kappaB activity. Journal of virology, 
85(7), 3162–71. doi: 10.1128/JVI.02342-10 

Sen, G. C., and Sarkar, S. N. (2007). The interferon-stimulated genes: targets of direct 
signaling by interferons, double-stranded RNA, and viruses. Current topics in 
microbiology and immunology, 316, 233–50. 

Seo, J. Y., Yaneva, R., and Cresswell, P. (2011). Viperin: a multifunctional, interferon-
inducible protein that regulates virus replication. Cell host & microbe, 10(6), 534–
9. Elsevier Inc. doi: 10.1016/j.chom.2011.11.004 

Seo, J. Y., Yaneva, R., Hinson, E. R., and Cresswell, P. (2011). Human 
cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity. 
Science, 332(6033), 1093–7. doi: 10.1126/science.1202007 

Seth, R. B., Sun, L., Ea, C.-K., and Chen, Z. J. (2005). Identification and 
characterization of MAVS, a mitochondrial antiviral signaling protein that activates 
NF-kappaB and IRF 3. Cell, 122(5), 669–82. doi: 10.1016/j.cell.2005.08.012 

Sharma, S., and Fitzgerald, K. a. (2010). Viral defense: it takes two MAVS to Tango. 
Cell, 141(4), 570–2. doi: 10.1016/j.cell.2010.04.043 

Sharma, S., TenOever, B. R., Grandvaux, N., Zhou, G.-P., Lin, R., and Hiscott, J. 
(2003). Triggering the interferon antiviral response through an IKK-related 
pathway. Science, 300(5622), 1148–51. doi: 10.1126/science.1081315 

Soares, F., Tattoli, I., Wortzman, M., Arnoult, D., Philpott, D., and Girardin, S. (2012). 
NLRX1 does not inhibit MAVS-dependent antiviral signalling. Innate Immun., (19), 
438–48. 



 
 
Universidade de Aveiro                                            Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

 

134           Mariana Guedes 
 

Sohn, S.-Y., and Hearing, P. (2011). Adenovirus sequesters phosphorylated STAT1 at 
viral replication centers and inhibits STAT dephosphorylation. Journal of virology, 
85(15), 7555–62. doi: 10.1128/JVI.00513-11 

Solis, M., Nakhaei, P., Jalalirad, M., Lacoste, J., Douville, R., Arguello, M., Zhao, T., et 
al. (2011). RIG-I-mediated antiviral signaling is inhibited in HIV-1 infection by a 
protease-mediated sequestration of RIG-I. Journal of virology, 85(3), 1224–36. 
doi: 10.1128/JVI.01635-10 

Song, T., Wei, C., Zheng, Z., Xu, Y., Cheng, X., Yuan, Y., Guan, K., et al. (2010). c-Abl 
tyrosine kinase interacts with MAVS and regulates innate immune response. 
FEBS letters, 584(1), 33–8. Federation of European Biochemical Societies. doi: 
10.1016/j.febslet.2009.11.025 

Sumpter, R., Loo, Y., Foy, E., and Li, K. (2005). Regulating intracellular antiviral 
defense and permissiveness to hepatitis C virus RNA replication through a cellular 
RNA helicase, RIG-I. Journal of Virology, 79(5), 2689–2699. doi: 
10.1128/JVI.79.5.2689 

Sun, L., Xing, Y., Chen, X., Zheng, Y., Yang, Y., Nichols, D. B., Clementz, M. a, et al. 
(2012). Coronavirus papain-like proteases negatively regulate antiviral innate 
immune response through disruption of STING-mediated signaling. PloS one, 
7(2), e30802. doi: 10.1371/journal.pone.0030802 

Sun, W., Li, Y., Chen, L., Chen, H., You, F., Zhou, X., Zhou, Y., et al. (2009). ERIS, an 
endoplasmic reticulum IFN stimulator, activates innate immune signaling through 
dimerization. Proceedings of the National Academy of Sciences of the United 
States of America, 106(21), 8653–8. doi: 10.1073/pnas.0900850106 

Sun, Y. W. (1997). Rig-I, a human homolog gene of RNA helicase, is induced by 
retinoic acid during the differentiation of acute promyelocytic leukemia cell. Thesis, 
Shanghai Institute of Hematology, Shanghai Second Medical University. 

Sun, Z., Ren, H., Liu, Y., Teeling, J. L., and Gu, J. (2011). Phosphorylation of RIG-I by 
casein kinase II inhibits its antiviral response. Journal of virology, 85(2), 1036–47. 
doi: 10.1128/JVI.01734-10 

Suthar, M. S., Ramos, H. J., Brassil, M. M., Netland, J., Chappell, C. P., Blahnik, G., 
McMillan, A., et al. (2012). The RIG-I-like receptor LGP2 controls CD8(+) T cell 
survival and fitness. Immunity, 37(2), 235–48. doi: 10.1016/j.immuni.2012.07.004 

Takahashi, K., Kawai, T., and Kumar, H. (2006). Roles of caspase-8 and caspase-10 in 
innate immune responses to double-stranded RNA. The Journal of Immunology, 
(176), 4520–4524. 

Takahasi, K., Kumeta, H., Tsuduki, N., Narita, R., Shigemoto, T., Hirai, R., Yoneyama, 
M., et al. (2009). Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-
terminal domains: identification of the RNA recognition loop in RIG-I-like 
receptors. The Journal of biological chemistry, 284(26), 17465–74. doi: 
10.1074/jbc.M109.007179 

Takahasi, K., Yoneyama, M., Nishihori, T., Hirai, R., Kumeta, H., Narita, R., Gale, M., 
et al. (2008). Nonself RNA-sensing mechanism of RIG-I helicase and activation of 
antiviral immune responses. Molecular cell, 29(4), 428–40. doi: 
10.1016/j.molcel.2007.11.028 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   135 
 

Takaoka, A., Wang, Z., Choi, M. K., Yanai, H., Negishi, H., Ban, T., Lu, Y., et al. 
(2007). DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate 
immune response. Nature, 448(7152), 501–5. doi: 10.1038/nature06013 

Takeuchi, O., and Akira, S. (2008). MDA5/RIG-I and virus recognition. Current opinion 
in immunology, 20(1), 17–22. doi: 10.1016/j.coi.2008.01.002 

Tal, M. C., Sasai, M., Lee, H. K., Yordy, B., Shadel, G. S., and Iwasaki, A. (2009). 
Absence of autophagy results in reactive oxygen species-dependent amplification 
of RLR signaling. Proceedings of the National Academy of Sciences of the United 
States of America, 106(8), 2770–5. doi: 10.1073/pnas.0807694106 

Talaro, K. (2002). Foundations in Microbiology (4th ed.). The McGraw−Hill Companies. 

Talon, J., Horvath, C. M., Polley, R., Basler, C. F., Muster, T., Palese, P., and Garcia-
Sastre, A. (2000). Activation of Interferon Regulatory Factor 3 Is Inhibited by the 
Influenza A Virus NS1 Protein. Journal of Virology, 74(17), 7989–7996. doi: 
10.1128/JVI.74.17.7989-7996.2000 

Tan, J. C. G., Avdic, S., Cao, J. Z., Mocarski, E. S., White, K. L., Abendroth, A., and 
Slobedman, B. (2011). Inhibition of 2’,5'-oligoadenylate synthetase expression and 
function by the human cytomegalovirus ORF94 gene product. Journal of virology, 
85(11), 5696–700. doi: 10.1128/JVI.02463-10 

Tang, E. D., and Wang, C.-Y. (2009). MAVS self-association mediates antiviral innate 
immune signaling. Journal of virology, 83(8), 3420–8. doi: 10.1128/JVI.02623-08 

Temin, H. M. (1985). Review Reverse Transcription in the Eukaryotic Genome: 
Retroviruses, Pararetroviruses, Retrotransposons, and Retrotranscripts. 
Mollecular Biology and Evolution, 2(6), 455–468. 

Tenoever, B. R., Ng, S.-L., Chua, M. a, McWhirter, S. M., García-Sastre, A., and 
Maniatis, T. (2007). Multiple functions of the IKK-related kinase IKKepsilon in 
interferon-mediated antiviral immunity. Science, 315(5816), 1274–8. doi: 
10.1126/science.1136567 

Thanos, D., and Maniatis, T. (1995). Virus induction of human IFN beta gene 
expression requires the assembly of an enhanceosome. Cell, 83(7), 1091–100. 

The Science Picture Company. (2014). The Science Picture Company. Retrieved 
March 20, 2014, from http://www.sciencepicturecompany.com/ 

Tu, Y.-C., Yu, C.-Y., Liang, J.-J., Lin, E., Liao, C.-L., and Lin, Y.-L. (2012). Blocking 
double-stranded RNA-activated protein kinase PKR by Japanese encephalitis 
virus nonstructural protein 2A. Journal of virology, 86(19), 10347–58. doi: 
10.1128/JVI.00525-12 

Ulane, C. M., and Horvath, C. M. (2002). Paramyxoviruses SV5 and HPIV2 Assemble 
STAT Protein Ubiquitin Ligase Complexes from Cellular Components. Virology, 
304(2), 160–166. doi: 10.1006/viro.2002.1773 

Unterholzner, L., Sumner, R. P., Baran, M., Ren, H., Mansur, D. S., Bourke, N. M., 
Randow, F., et al. (2011). Vaccinia virus protein C6 is a virulence factor that binds 
TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7. PLoS pathogens, 
7(9), e1002247. doi: 10.1371/journal.ppat.1002247 



 
 
Universidade de Aveiro                                            Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

 

136           Mariana Guedes 
 

Uzri, D., and Gehrke, L. (2009). Nucleotide sequences and modifications that 
determine RIG-I/RNA binding and signaling activities. Journal of virology, 83(9), 
4174–84. doi: 10.1128/JVI.02449-08 

Vandevenne, P., Lebrun, M., El Mjiyad, N., Ote, I., Di Valentin, E., Habraken, Y., Dortu, 
E., et al. (2011). The varicella-zoster virus ORF47 kinase interferes with host 
innate immune response by inhibiting the activation of IRF3. PloS one, 6(2), 
e16870. doi: 10.1371/journal.pone.0016870 

Varga, Z. T., Grant, A., Manicassamy, B., and Palese, P. (2012). Influenza virus protein 
PB1-F2 inhibits the induction of type I interferon by binding to MAVS and 
decreasing mitochondrial membrane potential. Journal of virology, 86(16), 8359–
66. doi: 10.1128/JVI.01122-12 

Venkataraman, T., Valdes, M., Elsby, R., Kakuta, S., Caceres, G., Saijo, S., Iwakura, 
Y., et al. (2007). Loss of DExD/H box RNA helicase LGP2 manifests disparate 
antiviral responses. The Journal of immunology, 178(10), 6444–55. 

ViralZone. (2014). The Baltimore classification of viruses. Retrieved March 17, 2014, 
from http://viralzone.expasy.org/all_by_species/254.html 

Visvanathan, K. V, and Goodbourn, S. (1989). Double-stranded RNA activates binding 
of NF-kappa B to an inducible element in the human beta-interferon promoter. The 
EMBO journal, 8(4), 1129–38. 

Vitour, D., Dabo, S., Ahmadi Pour, M., Vilasco, M., Vidalain, P.-O., Jacob, Y., Mezel-
Lemoine, M., et al. (2009). Polo-like kinase 1 (PLK1) regulates interferon (IFN) 
induction by MAVS. The Journal of biological chemistry, 284(33), 21797–809. doi: 
10.1074/jbc.M109.018275 

Wang, D., Fang, L., Li, K., Zhong, H., Fan, J., Ouyang, C., Zhang, H., et al. (2012). 
Foot-and-Mouth Disease Virus 3C Protease Cleaves NEMO To Impair Innate 
Immune Signaling. Journal of Virology, 86(17), 9311–9322. doi: 
10.1128/JVI.00722-12 

Wang, G., Chen, G., Zheng, D., Cheng, G., and Tang, H. (2011). PLP2 of mouse 
hepatitis virus A59 (MHV-A59) targets TBK1 to negatively regulate cellular type I 
interferon signaling pathway. PloS one, 6(2), e17192. doi: 
10.1371/journal.pone.0017192 

Wang, P., Arjona, A., Zhang, Y., Sultana, H., Dai, J., Yang, L., LeBlanc, P. M., et al. 
(2010). Caspase-12 controls West Nile virus infection via the viral RNA receptor 
RIG-I. Nature immunology, 11(10), 912–9. doi: 10.1038/ni.1933 

Wang, P., Yang, L., Cheng, G., Yang, G., Xu, Z., You, F., Sun, Q., et al. (2013). 
UBXN1 interferes with Rig-I-like receptor-mediated antiviral immune response by 
targeting MAVS. Cell reports, 3(4), 1057–70. The Authors. doi: 
10.1016/j.celrep.2013.02.027 

Wang, Y., Tong, X., Omoregie, E. S., Liu, W., Meng, S., and Ye, X. (2012). Tetraspanin 
6 (TSPAN6) negatively regulates retinoic acid-inducible gene I-like receptor-
mediated immune signaling in a ubiquitination-dependent manner. The Journal of 
biological chemistry, 287(41), 34626–34. doi: 10.1074/jbc.M112.390401 

Wang, Y., Tong, X., and Ye, X. (2012). Ndfip1 negatively regulates RIG-I-dependent 
immune signaling by enhancing E3 ligase Smurf1-mediated MAVS degradation. 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   137 
 

Journal of immunology (Baltimore, Md. : 1950), 189(11), 5304–13. doi: 
10.4049/jimmunol.1201445 

Wathelet, M. G., Lin, C. H., Parekh, B. S., Ronco, L. V, Howley, P. M., and Maniatis, T. 
(1998). Virus infection induces the assembly of coordinately activated transcription 
factors on the IFN-beta enhancer in vivo. Molecular cell, 1(4), 507–18. 

Weaver, B. K., Kumar, K. P., and Reich, N. C. (1998). Interferon regulatory factor 3 and 
CREB-binding protein/p300 are subunits of double-stranded RNA-activated 
transcription factor DRAF1. Molecular and cellular biology, 18(3), 1359–68. 

Wen, C., Yan, Z., Yang, X., Guan, K., Xu, C., Song, T., Zheng, Z., et al. (2012). 
Identification of tyrosine-9 of MAVS as critical target for inducible phosphorylation 
that determines activation. PloS one, 7(7), e41687. doi: 
10.1371/journal.pone.0041687 

West, A. P., Shadel, G. S., and Ghosh, S. (2011). Mitochondria in innate immune 
responses. Nature reviews. Immunology, 11(6), 389–402. Nature Publishing 
Group. doi: 10.1038/nri2975 

White, J. P., Reineke, L. C., and Lloyd, R. E. (2011). Poliovirus switches to an eIF2-
independent mode of translation during infection. Journal of virology, 85(17), 
8884–93. doi: 10.1128/JVI.00792-11 

Wilkins, C., and Gale, M. (2010). Recognition of viruses by cytoplasmic sensors. 
Current opinion in immunology, 22(1), 41–7. Elsevier Ltd. doi: 
10.1016/j.coi.2009.12.003 

Xu, L., Xiao, N., Liu, F., Ren, H., and Gu, J. (2009). Inhibition of RIG-I and MDA5-
dependent antiviral response by gC1qR at mitochondria. Proceedings of the 
National Academy of Sciences of the United States of America, 106(5), 1530–5. 
doi: 10.1073/pnas.0811029106 

Xu, L.-G., Wang, Y.-Y., Han, K.-J., Li, L.-Y., Zhai, Z., and Shu, H.-B. (2005). VISA is an 
adapter protein required for virus-triggered IFN-beta signaling. Molecular cell, 
19(6), 727–40. doi: 10.1016/j.molcel.2005.08.014 

Yang, K., Shi, H., Qi, R., and Sun, S. (2006). Hsp90 regulates activation of interferon 
regulatory factor 3 and TBK-1 stabilization in Sendai virus-infected cells. Molecular 
Biology of the Cell, 17(March), 1461–1471. doi: 10.1091/mbc.E05 

Yang, P., An, H., Liu, X., Wen, M., Zheng, Y., Rui, Y., and Cao, X. (2010). The 
cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon 
via a beta-catenin-dependent pathway. Nature immunology, 11(6), 487–94. 
Nature Publishing Group. doi: 10.1038/ni.1876 

Ye, J., and Maniatis, T. (2011). Negative regulation of interferon-β gene expression 
during acute and persistent virus infections. PloS one, 6(6), e20681. doi: 
10.1371/journal.pone.0020681 

Yie, J., Liang, S., Merika, M., and Thanos, D. (1997). Intra- and intermolecular 
cooperative binding of high-mobility-group protein I(Y) to the beta-interferon 
promoter. Molecular and cellular biology, 17(7), 3649–62. 

Yie, J., Merika, M., Munshi, N., Chen, G., and Thanos, D. (1999). The role of HMG I(Y) 
in the assembly and function of the IFN-beta enhanceosome. The EMBO journal, 
18(11), 3074–89. doi: 10.1093/emboj/18.11.3074 



 
 
Universidade de Aveiro                                            Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

 

138           Mariana Guedes 
 

Yokota, S., Saito, H., Kubota, T., Yokosawa, N., Amano, K., and Fujii, N. (2003). 
Measles virus suppresses interferon-alpha signaling pathway: suppression of Jak1 
phosphorylation and association of viral accessory proteins, C and V, with 
interferon-alpha receptor complex. Virology, 306(1), 135–46. 

Yoneyama, M., and Fujita, T. (2008). Structural mechanism of RNA recognition by the 
RIG-I-like receptors. Immunity, 29(2), 178–81. doi: 10.1016/j.immuni.2008.07.009 

Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, 
E., et al. (2005). Shared and unique functions of the DExD/H-box helicases RIG-I, 
MDA5, and LGP2 in antiviral innate immunity. The Journal of immunology, 175(5), 
2851–8. 

Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., 
Taira, K., et al. (2004). The RNA helicase RIG-I has an essential function in 
double-stranded RNA-induced innate antiviral responses. Nature immunology, 
5(7), 730–7. doi: 10.1038/ni1087 

Yoneyama, M., Suhara, W., Fukuhara, Y., Fukuda, M., Nishida, E., and Fujita, T. 
(1998). Direct triggering of the type I interferon system by virus infection: activation 
of a transcription factor complex containing IRF-3 and CBP/p300. The EMBO 
journal, 17(4), 1087–95. doi: 10.1093/emboj/17.4.1087 

Yoshida, R., Takaesu, G., Yoshida, H., Okamoto, F., Yoshioka, T., Choi, Y., Akira, S., 
et al. (2008). TRAF6 and MEKK1 play a pivotal role in the RIG-I-like helicase 
antiviral pathway. The Journal of biological chemistry, 283(52), 36211–20. doi: 
10.1074/jbc.M806576200 

You, F., Sun, H., Zhou, X., Sun, W., Liang, S., Zhai, Z., and Jiang, Z. (2009). PCBP2 
mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. 
Nat. Immunol ., 10, 1300–1308. 

You, F., Sun, H., Zhou, X., Sun, W., Liang, S., Zhai, Z., and Jiang, Z. (2009). PCBP2 
mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. 
Nature immunology, 10(12), 1300–8. Nature Publishing Group. doi: 
10.1038/ni.1815 

Young, J., Hoogenraad, N., and Hartl, F. (2003). Molecular chaperones Hsp90 and 
Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell, 112, 
41–50. 

Yu, C.-Y., Chang, T.-H., Liang, J.-J., Chiang, R.-L., Lee, Y.-L., Liao, C.-L., and Lin, Y.-
L. (2012). Dengue virus targets the adaptor protein MITA to subvert host innate 
immunity. PLoS pathogens, 8(6), e1002780. doi: 10.1371/journal.ppat.1002780 

Zeng, W., Sun, L., Jiang, X., Chen, X., Hou, F., Adhikari, A., Xu, M., et al. (2010). 
Reconstitution of the RIG-I pathway reveals a signaling role of unanchored 
polyubiquitin chains in innate immunity. Cell, 141(2), 315–30. Elsevier Ltd. doi: 
10.1016/j.cell.2010.03.029 

Zhang, M., Wu, X., Lee, A. J., Jin, W., Chang, M., Wright, A., Imaizumi, T., et al. 
(2008). Regulation of IkappaB kinase-related kinases and antiviral responses by 
tumor suppressor CYLD. The Journal of biological chemistry, 283(27), 18621–6. 
doi: 10.1074/jbc.M801451200 

Zhao, L., Jha, B. K., Wu, A., Elliott, R., Ziebuhr, J., Gorbalenya, A. E., Silverman, R. H., 
et al. (2012). Antagonism of the interferon-induced OAS-RNase L pathway by 



 
 
Universidade de Aveiro                                             Mitochondria and Peroxisomes: role within  

cellular antiviral defense 

 

  

Mariana Guedes   139 
 

murine coronavirus ns2 protein is required for virus replication and liver pathology. 
Cell host & microbe, 11(6), 607–16. Elsevier Inc. doi: 10.1016/j.chom.2012.04.011 

Zhao, T., Yang, L., Sun, Q., Arguello, M., Ballard, D. W., Hiscott, J., and Lin, R. (2007). 
The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory 
factor signaling pathways. Nature immunology, 8(6), 592–600. doi: 
10.1038/ni1465 

Zhao, Y., Sun, X., Nie, X., Sun, L., Tang, T.-S., Chen, D., and Sun, Q. (2012). COX5B 
regulates MAVS-mediated antiviral signaling through interaction with ATG5 and 
repressing ROS production. PLoS pathogens, 8(12), e1003086. doi: 
10.1371/journal.ppat.1003086 

Zhong, B., Yang, Y., Li, S., Wang, Y.-Y., Li, Y., Diao, F., Lei, C., et al. (2008). The 
adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor 
activation. Immunity, 29(4), 538–50. Elsevier Inc. doi: 
10.1016/j.immuni.2008.09.003 

Zhong, B., Zhang, Y., Tan, B., Liu, T.-T., Wang, Y.-Y., and Shu, H.-B. (2010). The E3 
ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination 
and degradation. Journal of immunology (Baltimore, Md. : 1950), 184(11), 6249–
55. doi: 10.4049/jimmunol.0903748 

Zhou, X., You, F., Chen, H., and Jiang, Z. (2012). Poly(C)-binding protein 1 (PCBP1) 
mediates housekeeping degradation of mitochondrial antiviral signaling (MAVS). 
Cell research, 22(4), 717–27. Nature Publishing Group. doi: 10.1038/cr.2011.184 

Zhu, H., Zheng, C., Xing, J., Wang, S., Li, S., Lin, R., and Mossman, K. L. (2011). 
Varicella-zoster virus immediate-early protein ORF61 abrogates the IRF3-
mediated innate immune response through degradation of activated IRF3. Journal 
of virology, 85(21), 11079–89. doi: 10.1128/JVI.05098-11 

Zhu, Z., Zhang, X., Wang, G., and Zheng, H. (2014). The Laboratory of Genetics and 
Physiology 2: Emerging Insights into the Controversial Functions of This RIG-I-
Like Receptor. BioMed research international, 2014, 960190. doi: 
10.1155/2014/960190 

Zygote Media Group Inc. (2014). 3DScience.com. Retrieved March 20, 2014, from 
http://www.3dscience.com/ 

 

 


