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Abstract

Huntington’s disease (HD) is a neurodegenerative disorder caused by an expanded CAG 
repeat in the exon-1 of the huntingtin (htt) gene. The presence of mutant htt (mhtt) results 
in multiple physiopathological changes, including protein aggregation, transcriptional 
deregulation, decreased trophic support, alteration in signaling pathways and excitotox-
icity. Indeed, the presence of mhtt induces changes in the activities/levels of different 
kinases, phosphatases and transcription factors that can impact on cell survival. Many 
studies have provided evidence that transcription may be a major target of mhtt, as gene 
dysregulation occurs before the onset of symptoms. The greatest number of downregu-
lated genes in HD has led to test the ability of a large number of compounds to restore 
gene transcription in mouse models of HD. On the other hand, mhtt engenders multiple 
cellular dysfunctions including an increase of pathological glutamate-mediated excito-
toxicity. For that reason, targeting the excess of glutamate has been the goal for many 
promising drugs leading to clinical trials. Although advances in developing effective 
therapies are evident, currently, there is no known cure for HD and existing symptom-
atic treatments are limited.

Keywords: CREB, glutamate, HDAC inhibitors, excitotoxicity, transcriptional 
dysregulation

1. Introduction

Huntington’s disease (HD) is a progressive, fatal, dominantly inherited neurodegenerative 
disorder [1] characterized by motor and cognitive dysfunction. Neuropathologically, HD is 
primarily characterized by neuronal loss in the striatum and cortex [2] together with hip-
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pocampal dysfunction [3]. The disease is caused by an unstable expansion of CAG repeats in 
the huntingtin (htt) protein [4]. Htt is ubiquitously expressed [5, 6] and interacts with proteins 
that cover diverse cellular roles including apoptosis, vesicle transport, cell signaling and tran-

scriptional regulation [7].

Although it is well established that the disease occurs as a consequence of an expanded 
polyglutamine repeats above 35 [4], the pathological mechanisms are not fully understood 
yet. Increasing evidence suggests that in addition to the gain of toxic properties, reduced 
htt physiological activity may render, in part, striatal neurons particularly vulnerable [8, 9]. 
The presence of mutant htt (mhtt) results in multiple pathophysiological changes, includ-

ing protein aggregation, transcriptional dysregulation and chromatin remodeling, decreased 
trophic support, alteration in signaling pathways and disruption of calcium homeostasis and 
excitotoxicity.

Htt functions in transcription are well established. Htt has been shown to interact with a large 
number of transcription factors [10, 11], indicating a role of the protein in the control of gene 
transcription [12]. Htt is also believed to have a prosurvival role. Several in vitro and in vivo 

studies have demonstrated that expression of the full-length protein protected from a variety 
of apoptotic stimuli [13–17]. Currently, there is no known cure for HD and existing symptom-

atic treatments are limited. However, recent advances have identified multiple pathological 
mechanisms involved in the disease, some of which have now become the focus of therapeu-

tic intervention; progressing toward developing safe and effective therapies which eventually 
may be successfully translated into clinical trials. These new prospects offer hope for delaying 
and possibly halting this disease. The aim of this chapter is to describe molecular pathways 
involved in HD, which offer new targets for the development of therapeutics focusing on the 
control of excitotoxicity and transcriptional alterations. Indeed, the presence of mhtt induces 
changes in the activity/levels of different kinases and transcription factors that can impact on 
cell survival and the selective vulnerability of medium spiny neurons in the striatum.

2. Transcriptional dysregulation in HD and potential therapies

Many studies have provided evidence that transcription may be a major target of mhtt [11, 
18–20], as gene dysregulation occurs before the onset of symptoms [21]. Subsequently, a large 
number of studies showed transcriptional abnormalities in HD [21–23].

Initially, it was shown that mhtt establishes abnormal protein-protein interactions with sev-

eral nuclear proteins and transcription factors, recruiting them into aggregates and inhibit-
ing their activity [11, 24] (Figure 1), as occurs with CREB (cyclic-adenosine monophosphate 
(cAMP) response element (CRE) binding protein)-binding protein (CBP) [11, 24]. On the 
other hand, mhtt can also fail to interact with other transcription factors (Figure 1), altering 
their activity which could induce the repression of a large cohort of neuronal-specific genes 
[25, 26]. Mhtt fails to interact with repressor element-1 transcription/NRSE, so then the com-

plex can translocate from the cytoplasm to the nucleus and bind NRSE repressing a large 
cohort of neuronal-specific genes, including the brain-derived neurotrophic factor (bdnf) [26]. 
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Moreover, htt can also interfere in chromatin structure. Histone acetyltransferases (HATs) 
favors gene transcription through the opening of chromatin, whereas histone deacetyltrans-

ferases (HDACs) repress gene transcription through chromatin condensation. Mhtt binds to 
the acetyltransferase domain of some factors, such as CBP and p300/CBP-associated factor, 
blocking their activity [27, 28] (Figure 1).

The greatest number of downregulated genes in HD [21] has led to the initiation of new 
lines of research aimed at testing the ability of a number of compounds to restore gene tran-

scription in mouse models of HD. However, the development of therapies targeting altered 
transcription faces serious challenges, as no single transcriptional regulator has emerged 
as a main factor of the disease. Nevertheless, potential therapeutic advances have emerged 
recently. Some of them include inhibition of HDAC [29, 30], compounds that directly interact 
with DNA [31], as well as drug-targeting proteins involved in the modulation of transcription 
[32, 33] (Figure 1).

Increasing evidence indicates that CREB is essential for activity-induced gene expres-

sion and memory formation [34]. CBP is a CREB-transcriptional coactivator that enhances 

Figure 1. Mechanisms of transcriptional dysregulation in Huntington’s disease. Different mechanisms by which mhtt 
disrupts normal transcriptional activity and possible therapeutic interventions. (1) Mhtt can bind transcription factors 
(TFs) and sequesters them into mhtt inclusions. (2) Mhtt loses the capacity to bind to transcriptional repressors allowing 
them to get into the nucleus and represses transcription. (3) Transcription depends on the acetylation status of histones, 
regulated by activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Mhtt interaction with 
HATs inhibits proper histone acetylation and causes repression of the transcription. Inhibition of HDAC, compounds 
promoting the detachment of histones from DNA and molecules targeting transcriptional repressors could represent 
promising therapeutic targets in HD.
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CREB-mediated transcription of specific genes [35] and can also act as a HAT allowing gene 
 transcription [36]. Decreased levels of CBP due to sequestration into mhtt aggregates or 
increased degradation have been associated with striatal neurodegeneration in HD [20, 37]. 
Moreover, hippocampal-dependent cognitive deficits have been related to a reduced expres-

sion of CBP and reduced levels of histone acetylation [38]. Consistent with deficits in striatal 
and hippocampal CBP function, either CBP overexpression or HDAC inhibition could repre-

sent therapeutic strategies to improve transcriptional dysregulation. HDAC inhibitors have 
been under study for several years (Figure 1). Indeed, McCampbell et al. [20, 39] demon-

strated that overexpression of CBP reduced polyglutamine-mediated toxicity in neuronal cell 
culture. CBP overexpression reversed the hypoacetylation phenomenon observed in polyglu-

tamine-expressing cell which reduced cell loss. A similar effect was observed when cells were 
treated with HDAC inhibitors demonstrating that altered protein acetylation in neurons could 
play an important role in polyglutamine diseases [39]. Pharmacological treatments using the 
HDAC inhibitors, sodium butyrate and suberoylanilide hydroxamic acid (SAHA), signifi-

cantly improve survival, motor performance, modulate transcription and delay neuropathol-
ogy in the R6/2 transgenic mouse model of HD [29, 40]. In this line, benzamide-type HDAC 
inhibitor 4b, ameliorated motor and behavioral symptoms and corrected transcriptional 
abnormalities in R6/2 and N171-82Q transgenic mice [30, 41]. Moreover, 4b treatment induced 
DNA methylation changes that were inherited to the next generation. First filial generation 
offspring from drug-treated male HD transgenic mice shows significantly improved HD dis-

ease phenotypes compared with the offspring from vehicle-treated male HD transgenic mice 
[42]. Likewise, administration of the HDAC inhibitor trichostatin A (TSA) rescues hippocam-

pal-dependent recognition memory deficits and increases the transcription of selective CREB/
CBP target genes in HdhQ7/Q111 mice [38]. Moreover, more physiological approximations to 
increase CBP levels and reduce HDAC activity have been recently suggested. Moreno et al. 
observed that dietary restriction not only induces the expression of Cbp in WT and YAC128 
mouse model of HD, but also reduces the expression of HDAC. These changes were accom-

panied by changes in the expression of different neuroprotective genes [43]. Table 1 lists the 
different HDAC inhibitors, their specificity and the reported beneficial effects in HD models.

Inhibition of HDAC by 4b was shown not only to affect transcription but also posttranslational 
modification processes which can influence aggregate formation [41]. On the other hand, inhi-
bition of HDAC4 resulted in a delay in cytoplasmic aggregate formation, together with restored 
Bdnf transcript levels, rescued neuronal function and improved phenotype in HD mouse mod-

els, pointing HDAC4 as a novel strategy for targeting htt aggregation [44]. This potential role 
of acetylation in mhtt degradation adds importance to HDAC inhibitors as a therapeutic target 
in HD pathology. These promising results have led to the enrollment of HD patients in clini-
cal trials as HDAC inhibitors are safe and well tolerated [45]. However, these compounds can 
cause some side effects [46]. It is therefore important to improve our knowledge, to be able 
to generate effective and specific HDAC inhibitors. Sirtuins belong to the class III of HDAC 
enzymes and have been a recent focus of therapeutic development for neurodegenerative dis-

ease [47]. Interestingly, activation, instead of inhibition of sirtuins, with their ligand resveratrol, 
was found to be neuroprotective in HD worms [48, 49]. Resveratrol and other potent activators 
of sirtuins have been used in preclinical  trials, but further experiments need to be performed to 
assess the therapeutic potential of these enzyme targets in HD [50].
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Apart from HDAC, other drugs like anthracyclines could produce a beneficial effect in pro-

moting transcription in HD. Anthracyclines are DNA topoisomerase II inhibitors and are 
broadly used in cancer chemotherapeutics [51]. A novel function of these molecules has 
recently been identified. Anthracyclines can induce histone eviction from the DNA [31] mak-

ing it more accessible to the transcriptional machinery and maybe being able to counteract 
the transcriptional inhibition that occurs in HD. Nevertheless, side effects promoted by these 
treatments should be taken in high consideration.

When thinking about potential genes downregulated in HD, Bdnf is considered to be one 
of the principal focuses of attention. BDNF has emerged as the major regulator of neuronal 
 development, synaptic plasticity and neuronal survival and also a key molecular target for drug 
development in HD [9, 52]. When targeting BDNF deficits in HD, different approximations 

HDAC Compound Model Effect Reference

1,2,3,4,5,7,8 and 9 Valproic acid N171-82Q mouse and 
YAC128

↑ Survival [189]

Improve motor performance

↑ BDNF and Hsp70 levels

1,2,3,4,5,7,8 and 9 Sodium butyrate R6/2 mice ↑ Survival [40]

Improve motor performance

↑ Body weight

1,2,3,4,5,7,8 and 9 Phenyl butyrate N171-82Q mouse ↑ Survival [190]

↓ Brain atrophy

↑ Proteasome pathway

↓ Caspase activation

All HDAC TSA HdhQ7/Q111 ↑ CREB target genes [38]

Rescue memory deficits

All HDAC SAHA or vorinostat R6/2 mice Improve motor performance [29, 191]

↑ BDNF levels

↓ mhtt cortical aggregates

3 RGFP966 (benzamide) N171-82Q mouse Improve motor performance [192]

↓ Striatal degeneration

↓ GFAP

1 and 3 HDACi 4b N171-82Q mouse Improve phenotype [41, 42, 30]

and R6/2 mice ↓ mhtt aggregates

Sirtuin Nicotinamide R6/1 mice ↑ BDNF and PGC-1α levels [193]

Improve motor performance

Sirtuin (activation) Resveratrol C. elegans Rescue mhtt toxicity [49]

Table 1. HDAC inhibitors and effects of HDAC inhibition in different models of HD.
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have been developed. Several evidence suggest that HDAC inhibitors induce the expression of 
multiple downstream targets that might work collectively to elicit neuroprotective effects, like 
neurotrophins. For instance, it was observed that BDNF was induced by treatment with val-
proic acid, sodium butyrate, or TSA [53, 54]; thus, it is conceivable that restoring BDNF to their 
normal levels is part of the molecular mechanism underlying the beneficial effects elicited by 
HDAC inhibition in various HD models. Moreover, inhibition of HDAC6 increases vesicular 
transport of BDNF in a similar way to the cystamines, compensating for the transport deficit 
in HD [48, 55]. Focusing on BDNF deficits, identification of compounds or small molecules 
capable of antagonizing the repressive action of REST/NRSF in gene transcription has begun 
and represents a rational and promising target to break down with transcriptional repression 
present in HD [33, 56]. To this aim, Cattaneo’s laboratory has developed a cell-based reporter 
assay to monitor re1 activity in brain cells and identify compounds that specifically upregu-

late BDNF expression in HD [57]. It has also been identified a benzoimidazole-5-carboxamide 
derivative that inhibited REST silencing in an RE1-dependent manner, the X5050 compound. 
X5050 targets REST degradation and produces an upregulation of neuronal genes targeted by 
REST. This activity was confirmed in human-induced pluripotent stem cells derived from an 
HD patient and in mice with quinolinate-induced striatal lesions [32].

3. Breaking signaling pathways

Protein kinases/phosphatases regulate most aspects of normal cellular function. Inhibitory or 
stimulatory actions at these signaling pathways strongly affect neuronal function by altering 
the phosphorylation state of target molecules and by modulating gene expression [58]. In fact, 
several kinases and phosphatases have been reported to be altered in HD patients and animal 
models. Some of these kinases altered in HD are closely related to synaptic plasticity, cell 
survival and transcriptional regulation such as cAMP-dependent protein kinase (PKA) [59], 
the kinase Akt [60, 61], the mitogen-activated protein kinases (MAPKs) [62–64] and kinases 

downstream MAPK pathway [65–67]. Furthermore, also several phosphatases are altered in 
HD mouse models. Some examples are the phosphatase calcineurin [68, 69], the PH domain 
and leucine-rich repeat protein phosphatases (PHLPP) [61] and the striatal-enriched protein 
tyrosine phosphatase (STEP) [61]. Therefore, therapies with potential to modulate cell signal-
ing pathways could provide protection against neurodegeneration [70, 71].

3.1. Kinases and downstream targets

Numerous kinase signaling pathways are thought to contribute to HD pathophysiology. They 
are known to counter toxic metabolic changes induced by mhtt and help to maintain neuronal 
survival [72, 73].

3.1.1. Extracellular signal-regulated kinase (ERK)

Transcription of target genes is controlled by a series of transcription factors, which are, in 
turn, regulated by a number of kinases. Among the kinases implicated in HD, those  involving 
ERK signaling cascades are of particular interest [74]). ERK 1/2 is a strong antiapoptotic and 
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prosurvival mediator. Moreover, ERK 1/2 downregulation is linked to neurodegenerative 
conditions [75, 76]. Recent studies using HD mouse and cellular models provide strong evi-
dence that activation of ERK has the neuroprotective effect, while the specific inhibition of 
ERK activation enhances cell death [62, 64, 71]. Supporting the neuroprotective role of ERK 
activation, we have previously reported that enhanced activity of the ERK pathway may par-

ticipate in the reduced neuronal loss observed after quinolinic acid (QUIN) injection in R6/1 
mice (Figure 2) [64]. When injected with QUIN, both WT and R6/1 mice display an increase 
in the phosphorylation of ERK levels, but activation of ERK was more prolonged in resis-

tant R6/1 mice than in susceptible controls [64]. Moreover, inhibition of ERK has been found 
to block the induction of BDNF-regulated genes [77], thus implicating this pathway as an 
important regulator of BDNF-induced transcription. For that reason, the ERK pathway has 
been investigated as a potential neuroprotective modulator of HD pathology [62, 64]. In this 
context, it has been suggested that reduced levels of ERK in the cortex of HD models can lead 
to increased cell dead and reduction in the expression of BDNF. Then, less BDNF is available 
to striatal neurons, which activates, in response, compensatory mechanisms increasing the 
expression of ERK (Figure 2) [62].

Figure 2. Proposed compensatory mechanism activated in the presence of mhtt in response to reduced cell death and 
increased resistance to excitotoxicity in HD mouse models. Decreased BDNF delivery from cortical neurons activates 
compensatory mechanism in striatal neurons by increasing ERK phosphorylation. Reduced STEP and calcineurin activity 
contribute to the maintenance of ERK activity. PHLPP levels are downregulated which contribute to the increased activation 
of Akt. Both ERK and Akt are proposed as a possible mechanisms related to the increase resistance to excitotoxicity observed 
in mouse models of HD, by activating prosurvival pathways (like CREB) and by the inactivation of proapoptotic factors.
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Drugs, targeting the ERK pathway, may provide a basis for developing disease modifying 
therapeutic interventions for HD. Neuroprotective compounds identified using a neuronal 
cell culture model of HD in combination with a library of 1040 biologically active com-

pounds were shown to prevent cell death by activation of ERK and Akt signaling, with the 
ERK pathway playing the major role [78]. More recently, results from another screening 
showed that pizotifen caused transient ERK activation in an immortalized striatal cell line 
expressing mhtt (STHdhQ111/Q111) and inhibition of ERK activation increases cell death 
in this in vitro model. In addition, R6/2 mouse treated with pizotifen showed increased 
activation of ERK in the striatum, reduced neurodegeneration and significantly enhanced 
motor performance [79]. To further test the hypothesis that pharmacological activation of 
ERK might be protective in HD, a polyphenol (fisetin), which was previously shown to 
activate the Ras-ERK cascade [80], was tested in three different models of HD: PC12 cells, 
Drosophila expressing mhtt and the R6/2 mouse model of HD [71]. Fisetin was able to reduce 
the impact of mhtt expression in each model. Likewise, the previously discussed resvera-

trol, a related polyphenol, could also activate ERK and was also protective in HD models 
[71]. Also activation of cannabinoid receptor type 1 protects PC12 and STHdhQ111/111 cells 
from mhtt-induced cell death in an ERK-dependent manner [81, 82]. Additionally, different 
antipsychotic drugs, such as clozapine and olanzapine, also promote and cause an increase 
in ERK phosphorylation [83].

3.1.2. p90 ribosomal s6 kinase (Rsk)

These aforementioned studies suggest that pharmacological intervention at the level of ERK 
activation or downstream ERK may be an appropriate approach in HD therapy. Most com-

mon kinases phosphorylated by ERK1/2 include Rsk and the mitogen- and stress-activated 
protein kinases (MSK) [84, 85]. In this context, we have reported changes in the expression of 
Rsk related to the presence of motor symptoms in HD. Meanwhile, an increase in Rsk pro-

tein levels was observed in the striatum of HdhQ111/Q111 and R6/1 mice at presymptomatic 
stages of the disease [67], they were downregulated in the same models when motor symp-

toms were present [65], indicating that Rsk downregulation is associated with the presence 
of motor impairment, the main clinical feature in HD [2]. Similarly, Rsk levels were increased 
in STHdhQ111/Q111 cells [67], but strongly decreased in postmortem caudal and putamen 
samples from HD patients [65]. Knockdown experiments indicated that Rsk activity exerted a 
protective effect against mhtt-induced cell death in STHdhQ7/Q7 cells transfected with mhtt 
and overexpression of Rsk in R6/1 mice at the onset of motor sympt oms rescues motor impair-

ment, enhanced expression of synaptic markers and increased expression of genes related to 
synaptic plasticity, such as cfos and egr1 [65, 67]. We also observed that downregulation of 
Rsk was due, at least in part, to the depletion of BDNF in HD striatum suggesting that Rsk 
could be a downstream effector of BDNF function. These results place Rsk as a new element 
regulating striatal alteration that leads to motor phenotype in HD, making it a good target for 
neuroprotective therapies in HD.

Different drugs could be used to increase Rsk activation. As a downstream target of ERK 
[84], activation of ERK pathway could result in an activation of Rsk as an effector. In this line, 
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previously proposed drugs could be also useful in promoting Rsk activation. As for ERK acti-
vation, clozapine treatment also increases levels Rsk phosphorylation in the cortex and stria-

tum in an ERK-dependent manner, meanwhile Rsk activation by olanzapine and haloperidol 
is not concomitant with ERK signaling [83]. Although the Rsk pathway can be activated by 
increased ERK activity, more research focusing on specific drugs targeting Rsk should be 
carried out.

3.1.3. Activation of transcription factors: CREB and Elk-1

ERK 1/2 cannot only phosphorylate different kinases, but also some transcription factors such 
as CREB (Figure 2) [86, 87]. But CREB can also be phosphorylated by other kinases as Rsk 
[88–90] and PKA [91]. Once activated, CREB interacts with CBP and CREB-mediated gene 
expression is induced [92]. CREB is a widely expressed transcription factor known to mediate 
stimulus-dependent expression of genes critical for plasticity, growth and survival of neurons 
[93]. Activation of CREB is necessary for synaptic transmission [94] and CREB-mediated gene 
expression is sufficient for the survival of multiple neuronal subtypes [95, 96]. CREB may 
exert this prosurvival effect by regulating the transcription of prosurvival factors, such as 
Bcl-2 and Bdnf [97].

Different studies observed that CREB signaling is compromised in different mouse and 
cellular models of HD and in human HD samples, where the expression of mhtt induces 
aggregation of its coactivator CBP (Figure 2) [11, 28, 98], reduces the levels of cAMP [72] 

and downregulates CRE-mediated transcription of numerous genes [19]. This decrease in 
CREB-induced transcriptional activity is believed to contribute to HD pathogenesis [97]. One 
of the genes regulated by CREB is Bdnf [97]. Reduced CREB-dependent transcription of Bdnf 

is a robust feature of HD pathology. In human samples, BDNF protein and mRNA levels are 
decreased in the frontoparietal cortex [99]. Reduced levels of cortical and striatal BDNF have 
also been reported in multiple mouse models of HD, including R6, N171-82Q, Hdh and YAC-
72 lines [17, 19].

The beneficial effect of restoring CREB phosphorylation has been observed by us and oth-

ers in both excitotoxic and genetic mouse models of HD [100, 101]; thus pathways targeting 
CREB activation can also lead to an increase in BDNF together with cognitive improvements 
in HD models [102]. Furthermore, regulation of possible downstream effectors of BDNF 
function also shows clearly motor improvements together with a restoration of CREB-
mediated gene transcription and expression of synaptic markers in R6/1 mouse model of 
HD [102, 103].

ERK1/2 can also phosphorylate the transcription factor Elk-1, which, together with CREB, 
is considered to be one of the most important transcription factors in neurons [104, 105]. 
In the cortex, Elk-1 is activated after QUIN-induced lesion and has the capacity to prevent 
excitotoxic cell death [106]. Increased phosphorylation of ERK-activated transcription fac-

tors, such as Elk1, has been correlated with increased ERK phosphorylation in R6 striatum 
[107, 108]. However, the expression of c-fos and egr-2, two genes regulated by Elk-1 [109], 
was downregulated in these mice and in STHdhQ111/111 [108]. This downregulation was 
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correlated to a strong decrease in the expression and the phosphorylation of MSK-1 in R6/2 
mice [107], a kinase that phosphorylates the histone H3 and promotes the expression of 
c-Fos [110]. Both MSK-1 and Elk-1 inhibition induced mhtt-specific cell death, with no effect 
on wild-type cells. Moreover, overexpression of MSK-1 restores c-fos expression and pro-

tects striatal cells against neurodegeneration induced by mhtt expression, showing a neu-

roprotective role of this protein in HD [107]. Reinforcing this hypothesis, the inhibition of 
Elk-1 in STHdhQ111/Q111, but not in STHdhQ7/Q7 cells, resulted in a decrease of c-Fos and 

Egr-2 mRNA levels [108].

3.2. Regulating cAMP

To increase activation of CREB, it is also important to take into account the levels of cAMP. 
The major kinase that is in charge of CREB activation is PKA, which in turn needs cAMP to 
be activated [91]. The cAMP signaling pathway has a key role in the neurobiology of learn-

ing and memory and therefore could serve as a target for cognitive enhancers and to reduce 
memory deficits in HD. In support to this idea: (1) reduced levels of cAMP were reported in 
the cerebral spinal fluid of symptomatic HD patients [111] and (2) forskolin, which stimulates 
adenylyl cyclases to produce cAMP from ATP, was able to ameliorate mhtt-induced pheno-

types in PC12 cells [112]. Reduced levels of cAMP were also observed in STHdhQ111/Q111 
striatal cells together with a decreased nuclear localization of CBP [72]. Activation of cAMP/
PKA signaling by forskolin restored a nuclear CBP expression in the mutant striatal cells [72] 

and could partially rescue the loss of neurite outgrowth and cell death due to reduced CRE-
mediated transcriptional activity [112].

3.2.1. Role of phosphodiesterases

Different studies [113] suggest that phosphodiesterase (PDE) inhibitors might be good can-

didates for enhancing CREB activation. PDE inhibitors prevent the breakdown of cAMP 
to 5′-AMP, prolonging the activation of protein kinases that promote phosphorylation of 
CREB [114]. It has been shown that the expression of different PDEs is altered in the stria-

tum [115, 116] and hippocampus [38] of HD mouse models. The use of drugs that main-

tains CREB phosphorylated, like the specific PDE4 and 10 inhibitors rolipram and T10, 
decreases striatal cell loss after the injection of QUIN in an excitotoxic model of HD [100, 
117]. Following this research, the same group reported that administration of rolipram in 
R6/2 mice enhanced the expression of both phosphorylated CREB and BDNF in striatal 
neurons and ameliorated neurodegeneration, decreased mhtt inclusions preventing the 
sequestration of CBP, reduced microglia activation and rescue motor function [118, 119]. 
Likewise, beneficial effects of PDE inhibition on cognitive function were also observed in 
the hippocampus of HD mouse model [101]. We recently observed that papaverine, which is 
considerably selective for PDE10A, could improve spatial and object recognition memories 
in R6/1 mice and significantly increase phosphorylation of CREB and cAMP levels in the 
hippocampus [101].

Although PDE10A has been proposed as a therapeutic target for HD based on the obser-

vation that pharmacologic inhibition of PDE10A in transgenic HD mice significantly 
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improved behavioral and neuropathologic abnormalities [101, 119], some conflicts appear 
when focusing on HD patients. Earlier work had shown that striatal PDE10A levels in 
HD mice already decline to minimal levels before onset of motor symptoms [115, 116]. In 
humans, decreased PDE10A levels were found in postmortem striatal tissue [115] and in 

PET studies from Huntington’s disease patients with significant striatal atrophy [120] and  

premanifest Huntington’s disease gene carriers [121, 122]. It is unclear how the alteration  
of PDE10A expression is related to the neuropathological out-standing networks. Depletion 
of PDE10A in HD striatum would at first sight seem hard to reconcile with a beneficial 
effect of PDE10A inhibitors in HD. However, a recent study reported a dramatic increase in 
PDE10A levels in the perikarya of striatal medium spiny neurons [123] and moreover, we did 
not observe changes in the expression of this protein in the hippocampus of R6/1 mice com-

pared to controls [101]. Taking together all these results, it is important to determine whether 
PDE10A levels are affected in HD patients and in in vivo models of HD in the different brain 
areas and if these alterations are functionally significant in order to choose PDE10A inhibitors 
for use in clinical trials in HD.

3.2.2. Role of G protein couple receptors

G protein-coupled receptors (GPCRs) constituted a large family of receptors coupled to  
G proteins that activated two main signaling pathways: cAMP and phosphatidylinositol path-

ways [124]. GPCRs are involved in many diseases and are also the target of approximately 
40% of all modern medicinal drugs [125].

In order to increase the levels of cAMP, molecules targeting GPCRs could be useful. Depending 
on the subunit of G protein that the receptors are coupled, they can activate (Gα

s
) or inacti-

vate (Gαi/o) adenylate cyclases [125]. Therefore, drugs targeting the activation of Gα
s
-coupled 

receptors or the inhibition of Gαi/o-coupled receptors would result in an increase in the levels 
of cAMP and probably in turn an increase in the activation of CREB. In line with this idea, we 
have recently demonstrated that fingolimod (FTY720) treatment improves synaptic plasticity 
and memory in the R6/1 mouse model of HD, through regulation of BDNF signaling [103]. 
FTY720 targets GPCRs Gαi/o SP1 receptor and inhibits it [126]. Between the different effects 
of SP1 receptor activation there is a reduction on cAMP as Gαi/o inhibits adenylate cyclases 
[127]. Therefore, inhibition of SP1 receptor could result in increased levels of cAMP. Indeed, 
FTY720 treatment increased cAMP levels and promoted phosphorylation of CREB in the hip-

pocampus of R6/1 mice [103].

Another approximation to increase cAMP levels is inducing the activation of Gα
s
-coupled 

receptor. Prostaglandin (PG) receptors are well-known GPCRs [128]. EP2 prostaglandin 
receptor is known to stimulate cAMP and activation of the transcription factor CREB [129]. 
EP2 receptor activation is associated with neuroprotection and hippocampal-dependent syn-

aptic plasticity [130] and can lead to the induction of BDNF [102, 131]. In terms of HD, we 
have recently shown that chronic treatment of R6/1 mice with misoprostol, an EP2 receptor 
agonist, ameliorated hippocampal-dependent long-term memory deficits in these animals 
[102]. Importantly, misoprostol treatment promoted the expression of hippocampal BDNF 
and increased cAMP levels, together with a recovery in the expression of different synaptic 
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markers. All these data suggest that mhtt leads to alterations of CRE-mediated gene transcrip-

tion and reinforce the idea of a beneficial effect of increasing gene expression mediated by 
CREB could be a good therapeutic approach in HD.

4. Cycle of neurotoxicity

Ultimately, excitotoxicity contributes to neuronal degeneration in many acute as well as 
chronic central nervous system diseases [132]. Polyglutamine expansion produces a hyper-

activation of N-methyl-D-aspartate receptor (NMDAR and kainite receptors) [133]; stabilizes 
NMDA receptors in the postsynaptic membrane [134]; inhibits the uptake and release of glu-

tamate at the synapses [135]; and can also sensitize the inositol (1,4,5)-triphosphate receptor 
type 1 located in the membrane of the endoplasmatic reticulum [136]. In addition, mhtt can 
contribute to excitotoxicity by decreasing the expression of the major astroglial glutamate 
transporter (GLT-1) [137], which reduces the glutamate uptake (Figure 3) [138]. All these 
alterations promote glutamate-mediated excitotoxicity by a massive increase of intracellular 
Ca2+, which affect the calcium homeostatic mechanism [139] and lead to deleterious conse-

quences. Imbalance in the calcium homeostasis has been previously reported in different HD 
mice [140–142] that it is in agreement with consistent changes in the expression levels of many 
Ca2+ signaling proteins [143]. Moreover, different proteins involved in neuronal Ca2+ signaling 
have been proposed as attractive targets for developing therapies for HD [144]. Excitotoxicity 
and mhtt expression also promote the activation/inhibition of several pathways regulated 
by different kinases and phosphatases [74, 145]. In the following lines, we will review some 
of the mechanism implicated in this excitotoxic process that occurs in HD, together with the 
prosurvival mechanism activated in HD brains to fight against this process. Moreover, we 
will discuss about potential and new state-of-the-art therapies to fight neurodegeneration and 
reduce excitotoxicity.

4.1. Fighting glutamate

4.1.1. NMDA receptors

Alterations in proteins involved in glutamatergic signaling have been reported in mouse 
models of HD [146, 147]. Since the main hypothesis underlying striatal neurodegeneration 
in HD has been excitotoxicity, due in part to increase in glutamate release, NMDA receptors 
were the first glutamate receptors studied. At early stages of the disease, when cognitive and 
plasticity alterations are detected, no changes in the protein levels of any NMDAR subunit 
are observed in the striatum and hippocampus of HD mouse models [148–150]. Conversely, 
HD mouse models do not respond to intrastriatal NMDAR agonists (Figure 2) [141, 149, 151]; 

which support the idea that signaling downstream the receptor is affected in HD [152] and 

contributes to synaptic plasticity impairment. Not only the expression of these receptors is 
important, but also their location. Stimulation of synaptic NMDAR conveys the synaptic 
activity-driven activation of the survival-signaling protein ERK and triggers an increase in 
nuclear calcium, leading to the activation of the transcription factor CREB and the production 
of the survival-promoting protein BDNF [153]. In contrast, global or extrasynaptic NMDAR 
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stimulation decreases ERK and CREB activation and BDNF production, promoting cell death 
(Figure 3) [153].

4.1.2. Glutamate transporters

On the other hand, not only glutamate receptors but also glutamate transporters are altered in 
HD, such as the vesicular glutamate transporter 1 (VGluT1) [154] that contributes to the imbal-
ance of glutamate in neurons could play a role in cell dysfunction in HD. Presynaptic expres-

sion of VGluT1 contributes to the proper expression of other synaptic proteins and reduced 
levels of this glutamate transporter, as occurs in the striatum of R6 mice [154, 155], can disrupt 
cortico-striatal synaptic transmission [154, 156]. The expression of glutamate transporters is 
also altered in glial cells. GLT-1 is the major molecule responsible for the clearing of glutamate 
from synaptic cleft [157], making it an attractive therapeutic target. Reduced mRNA levels of 
GLT-1 and decreased glutamate uptake have been described in HD postmortem brains [22] 

as well as in R6/2 mice [137], suggesting decreased glutamate removal at synapses in HD. 

Figure 3. Changes in glutamate regulatory system in the presence of mutant huntingtin. In the presence of mhtt, there 
is an increase in the levels of glutamate together with an imbalance in the levels of synaptic and extrasynaptic NMDAR. 
Increased activation of extrasynaptic NMDAR leads to neuronal death by inhibition of ERK and the activation of the 
transcription factor CREB. Moreover, there is a downregulation/dysfunction of the glial glutamate transporter (GLT-
1), which leads to an increase in glutamate at the synaptic cleft. Reduced VgluT1 transporter also affects glutamate 
recruitment into the synaptic vesicles contributing to deficits in synaptic transmission. Different drugs to modulate these 
mechanisms are shown.
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Moreover, alterations in the palmitoylation of this transporter were detected, which can alter 
its function [158]. In addition, strategies aiming at the upregulation of GLT-1, like ceftriaxone 
treatment [159], attenuate some behavioral alterations in the R6/2 mice model (Figure 3) [160].

4.1.3. Strategies to decrease glutamate excitotoxicity

Drugs inhibiting glutamate neurotransmission [161, 162], glutamate antagonists [163] and 

blockade of NMDAR [164, 165] have been used for the first time to attempt for blocking 
the excess of glutamate at the synapse. Riluzole and amantadine are two antiglutamatergic 
therapies that have been investigated in rigorous trials in HD [162]. Moreover, riluzole is 
already marketed for the treatment of amyotrophic lateral sclerosis. Riluzole is a drug that 
inhibits glutamate release and the current evoked by the stimulation of excitatory amino 
acid receptors [166]. Treatment of R6/2 mice with riluzole showed positive effects in reduc-

ing the progression of neurological abnormalities in this mice model of HD [161]. Specific 
blockade of NMDAR has been also extensively studied, but accuracy has to be taken into 
account. Drugs like memantine are shown to inhibit NMDAR [164, 165, 167], but their ben-

eficial effects depend on the right dose. At high concentrations, memantine blocks synaptic 
and extrasynaptic NMDAR, inducing neuronal death, as NMDAR once at the synapse can 
activate prosurvival pathways [167]. When used in a lower dose, memantine can specifically 
block extrasynaptic NMDAR producing a potential therapeutic effect in mouse models of 
HD [164, 165]. A new technique to combat the glutamate exposure developed recently is the 
blood glutamate scavenging system (Braintact) [168, 169]. Braintact is developing a platform 
solution that overcomes the excess glutamate level in blood by using a new approach devel-
oping drugs that remain in the blood circulation and boost a natural mechanism that reduces 
glutamate levels in the bloodstream and leads to lowering of glutamate concentrations in the 
brain (Figure 3).

Although common strategy is to treat with NMDA glutamate antagonist for reducing exci-
totoxicity, their clinical viability has not been proven [162]. Some agents showed efficacy in 
terms of motor dysfunction, but no treatment has been identified as appropriated. Moreover, 
many present treatments considerable side effects or effects in cognitive improvement were 
not even considered. Therefore, there is a need to continue the research on antiglutamatergic 
drugs in HD for the treatment of excitotoxicity. Also cellular pathways and drugs trying to 
enhance or inhibit these cellular pathways related to survival will be discussed further in this 
section.

4.2. Role of kinases

Increasing our understanding on the pathways behind the excitotoxic events and neuronal 
dead occurring in HD is necessary in order to identify targets downstream glutamate recep-

tors cascade that may represent useful therapeutic strategies do reduce or halt neuronal 
dysfunction. Alterations in numerous signal transduction pathways and aberrant activity 
of specific kinases have been identified in multiple cell and mouse models of HD, as well as 
in human HD brain. Unbalanced activities within these pathways provide a potential mech-

anism for many of the pathological events associated with HD. Aberrant kinase signaling 
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regulation in HD has a wide range of effects on multiple pro and antiapoptotic kinases, 
resulting in the activation of compensatory mechanisms to fight excitotoxicity or prodeath 
mechanisms triggered by excitotoxicity [74].

4.2.1. ERK

The ERK pathway is a strong mediator of antiapoptotic and prosurvival signaling. Although 
both protective and deleterious roles have been proposed for ERK activation in neuronal cells 
[170], recent studies using mhtt-expressing cells provide strong evidence that activation of 
ERK is neuroprotective, while specific inhibition of ERK enhances cell death [62]. The phos-

phorylation of ERK activates neuroprotective factors [62, 107] and inactivates proapoptotic 

mediators by phosphorylation [171]. Data derived from cell culture experiments showed that 
ERK is activated in response to mhtt and increases cell survival [62]. The ERK pathway is 
also upregulated in several transgenic animal models of HD. Significant ERK activation was 
observed in the striatum of R6/1 and R6/2 mouse (Figure 2) [64, 107]. The timing of ERK acti-
vation in HD mice supports the hypothesis that the ERK pathway might not be involved in 
a primary pathological process, but rather that it is a compensatory mechanism activated in 
response to mhtt and could participate in delaying striatal cell death because R6 mice show 
no significant cell loss [172]. Accordingly and as previously mentioned, ERK pathway activa-

tion in response to mhtt may participate in the reduced neuronal loss observed after QUIN 
injection in R6/1 mice (Figure 2) [64]. Moreover, changes in ERK levels and activation can 
modulate transcription in HD what triggers, in part, the neuroprotective role of ERK medi-
ated by its downstream effectors.

Checking on the ERK mechanism along the different sections, we can conclude that ERK has a 
prosurvival role in the presence of mhtt, which can be achieved by the activation/inactivation 
of different proteins promoting survival and transcriptional regulation of protective genes. 
Therefore, ERK activation might provide a novel therapeutic approach to prevent neuronal 
dysfunction in HD.

4.2.2. AKT

The AKT signaling pathway has been extensively characterize in models of HD and its 
activation is considered to be antiapoptotic and neuroprotective in different models of 
acute and chronic neurodegeneration [72, 173]. A primary mechanism of AKT-mediated 
neuroprotection is by its phosphorylation and inactivation of proapoptotic machinery [61, 
72, 174].

In HD, the AKT pathway has been proposed as a crucial neuroprotective pathway, because 
it is one of the serine/threonine kinases that phosphorylate Ser421 of mhtt, attenuating its 
toxicity [174]. Activation of the AKT pathway has been determined in several cells and mouse 
models of HD. Increased levels of phosphorylated AKT were observed in the striatum of 
full-length and exon-1 mouse models and also in striatal cells expression mhtt [61, 72]. We 
observed that enhanced AKT signaling correlates with decreased expression of PH domain 
 leucine-rich repeat protein phosphatase (PHLPP), a phosphatase that dephosphorylates 
AKT (Figure 2) [61]. PHLPP1 protein levels were reduced in the striatum of HdhQ111/Q111, 
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R6 and Tet/HD94 mouse models of HD as well as in the putamen of HD patients. In addi-
tion, we showed that intrastriatal QUIN injection in R6/1, but not in control, mice upregu-

lates the phosphorylated AKT protein levels, which can contribute to the absence of striatal 
cell death observed in these animals after an excitotoxic injury [61, 151]. This increase in the 
phosphorylated AKT is still detected at later stages of the neurodegenerative process, offer-

ing together with phospho-ERK, a mechanistic explanation to the small amount of neuronal 
death observed in these HD models (Figure 2). In accordance with our results, AKT prevents 
neuronal death induced by mhtt [174] and increasing AKT expression has beneficial effects 
on Drosophila models of HD [175]. Thus, on the basis of these results, it is not too daring 
to suggest that use of therapeutic approaches focusing on AKT prosurvival pathway could 
delay neuronal death in HD.

4.3. Role of phosphatases

Concomitantly to kinases, several Ser/Thr protein phosphatases activate to counteract the 
effect of kinases. They are of particular interest in this respect as several phosphatases are 
altered in HD mouse models [145] and, most importantly, in the caudate/putamen of HD 
patients [176]. Many of these altered phosphatases in HD play a role in memory and plasticity 
phenomena and then this imbalance likely contributes to synaptic alterations and cognitive 
impairment in HD.

4.3.1. Striatal-enriched protein tyrosine phosphatase (STEP)

Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase 
involved in neuronal signal transduction. STEP is enriched in the striatum and plays an 
important role in synaptic plasticity through the opposition to synaptic strengthening [177]. 
We and others recently reported reduced STEP protein levels in the striatum and increased 
inactivity in different HD mouse models [64]. Reduced STEP activity in HD can lead to an 
increase in the activity of the NMDAR [178]. Additionally, STEP has been implicated in 
susceptibility to cell death through the modulation of ERK1/2 signaling pathway, as we 
have previously reviewed [64]. The STEP pathway is severely downregulated in the pres-

ence of mhtt and participates in compensatory mechanisms activated by striatal neurons 
that lead to resistance to excitotoxicity (Figure 2) [64]. When injected with QA, R6/2 mice 
displayed a greater increase in STEP inactivation compared to WT together with decreased 
neuronal death, but overexpression of STEP in R6/2 animals increased QUIN-induced 
cell death [64]. Moreover, it has been suggested that an increase in STEP activation at the 
synapse in YAC128 mice together with calpain activation contributes to altered NMDAR 
localization (increased extrasynaptic localization of GluN2B receptors) and increases exci-
totoxicity [179].

In order to select STEP as a potential therapeutic target in HD different aspects have to be 
taken in consideration. In HD, STEP downregulation is initially neuroprotective to mhtt-
induced glutamate excitotoxicity [64], but a decrease in synaptic plasticity and cognitive 
impairment still occurs. On the other hand, increased STEP activation produces alterations 

Huntington's Disease - Molecular Pathogenesis and Current Models52



in the trafficking of NMDA and AMPA receptors, dephosphorylating them and producing 
an excessive internalization of these receptors which decreases synaptic plasticity [177]. On 
the basis of this evidence, a suitable expression of STEP might be a good therapeutic strategy 
in different neurodegenerative diseases. Pharmacological inhibition of STEP by a recently 
discovered inhibitor, TC-2153, reversed cognitive deficits in a mouse model of Alzheimer’s 
disease, where STEP levels are increased [180]. But the effect of STEP activation is still not 
clear in a model like R6/1 mice, where STEP levels are reduced.

4.3.2. Calcineurin

The role of protein phosphatases in the cascade of events triggered during excitotoxic cell death 
has not been extensively studied, but some protein phosphatases, such as Ca2+-dependent 

calcineurin, were found to contribute to excitotoxicity (because its inhibition is neuroprotec-

tive [181]). Calcineurin is a ser/thr protein phosphatase activated physiologically by calcium/
calmodulin and it is highly expressed in the brain [182]. Calcineurin plays an important role 
in synaptic plasticity and learning and memory [183]. Interestingly, it is enriched in MSNs 
[182] and thus variations in its expression levels/activity can seriously alter their function. 
Some studies have shown that activation of calcineurin promotes apoptosis and pharmaco-

logical inhibition of calcineurin reduces the activation of excitotoxic molecules and decreases 
cell death after different toxic insults [184, 185].

Calcineurin levels are reduced in R6 and Tet-HD94 mice striatum [19, 69] and lower calcineu-

rin activity has been shown in the striatum of YAC128 mice at 12 months of age (Figure 2)  

[186]. Inhibition of calcineurin with FK-506 drastically reduced cell death in an excitotoxic 
model of HD [69]. Moreover, calcineurin levels were downregulated during the progression 
of the disease in R6/1 mice and the induction of calcineurin after QUIN injection in these 
excitotoxicity-resistant mice [151] was lower than that in control animals [69]. These finding 
suggested that altered calcineurin activity contributes to the excitotoxic resistance observed 
in R6/1 mouse models (Figure 2). On the contrary, in HdhQ111/Q111 mice calcineurin activity 
was shown to be increased in the cortex [187] and higher expression and activity of calcineu-

rin was also observed in STHdhQ111/111 cells [68]. These cells presented increased vulner-

ability to NMDAR stimulation, which was associated with higher calcineurin protein levels 
and activity [68] (Table 2).

However, controversial data have been reported about the role of calcineurin in HD. Although 
decreased calcineurin activity increases resistance to excitotoxicity [69] and high levels of cal-
cineurin increase mhtt toxicity [68, 186, 187], it has been shown that inhibitors of calcineurin 
accelerates the neurological phenotype in R6/2 mice [188], which are resistant to excitotoxic-

ity [151]. Moreover, decreased calcineurin activity appears when pathological symptoms are 
present in these animals and not in presymptomatic stages [69], suggesting a dual role of 
calcineurin during the progression of the disease and a possible involvement of this protein 
in the striatal neuronal dysfunction. Therefore, like it is occurring with STEP, it is reasonable 
to suggest that a therapy targeted to maintain normal levels of calcineurin could represent a 
good approach to delay neuronal dysfunction in HD.
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5. Discussion

As we have seen in this chapter, many pathways are interconnected and related between 
them, even making a “cycle.” This “cycle” could be used for developing therapies that maybe 
targeting one or several proteins which can modify different pathogenic events. As an exam-

ple, when increasing activation of some kinases, excitotoxicity can be counteracted and at the 
same time promote the activation of transcription factors that can burst transcription. Then, 
different expressed genes can contribute to further fight against excitotoxicity completing the 
“cycle.” But, the development of therapies targeting altered transcription or modulation of 
cell signaling pathways face difficult challenges as, nowadays, no single transcriptional regu-

lator has been identified as a main player of the disease. Nevertheless, potential therapeutic 
advances have recently emerged. Some of them include the inhibition of HDAC, compounds 

Model Calcineurin 

change

Age Susceptibility to 

excitotoxicity

Age Reference

Cellular models STHdhQ7/Q111 Increased Increased [68]

YAC128 primary 
cortical neurons

Not reported Increased [186]

YAC72 primary 
striatal neurons

Not reported Increased [194]

Exon-1 mouse 
models

R6/1 Decreased 16 weeks Decreased 8 weeks [69, 141]

R6/1: BDNF−/+ Decreased 12 weeks Decreased 12 weeks [69, 150]

R6/2 Decreased 10 weeks and 
earlier

Decreased 3 weeks [141, 195]

Tet/HD94 Decreased 22 months Not reported [69]

N171-82Q Not reported Decreased 15 weeks [149]

Full-length 
models

YAC72 Not reported Increased 6 and 10 months [194]

YAC128 No change 3 months Increased 1.3–6 months [186, 196]

Reduced 12 months Decreased 10–18 months [186, 21]

Knock-in  
models

HdhQ111/Q111 Increased 12 months Not reported [187]

HdhQ7/Q111 Increased 12 months Not reported

FVB/CAG140−/+ Not reported Decreased 12 months [197]

FVB/CAG140+/+ Not reported Decreased 4 months

C57Bl/6/
CAG140−/+

Not reported Decreased 4 months

C57Bl/6/
CAG140+/+

Not reported Decreased 4 months

Human samples Decreased [69]

Table 2. Changes in calcineurin levels and resistance to excitotoxicity in different HD mouse and cellular models.
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that directly interact with DNA and drugs targeting proteins involved in the modulation of 
transcription, representing promising therapies to protect against neurodegeneration. Also 
drugs inhibiting glutamate/NMDAR neurotransmission or glutamate scavenging systems 
have been used as a first attempt to block the excess of glutamate at the synapse. Altogether, 
these findings show us that although HD is a disease cause by a single gene mutation, multi-
factorial drug treatments could be applied in order to reduce or delay the symptoms and open 
a wide spectrum of research fields to reach the final cure to this de
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