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Abstract

Infection caused by more than 1500 serotypes of Salmonella enterica subsp. enterica is 
one of the most common food-borne diseases, prevalent worldwide. Concerning public 
health, Salmonella latent carrier animals represent an important source of transmission 
of the disease. They are responsible for silent introduction of the bacteria into the food 
chain and the environment. Most pathogenesis studies of salmonellosis are focused on 
events that lead to clinical disease. Researchers have been unable to clearly discern the 
interaction between intracellular microorganisms and their resistant hosts in latency. 
However, understanding this interaction is essential for the proper employment of the 
control and eradication strategies. Thus, the objective of this article is to present an over-
view of some important events that occur during the infection cycle of S. enterica in latent 
carriers.

Keywords: Salmonella asymptomatic carrier animals, pathogen-host interaction, 
pathogenisis, public health, intracellular bacteria

1. Introduction

The genus Salmonella belongs to family Enterobacteriaceae, and its classification follows the 
Kauffmann-White scheme, which groups serotypes according to their somatic, flagellar and 
capsular antigens. Serotyping is essential for investigation of outbreaks of salmonellosis, 

contributing to epidemiological surveillance. Currently, the genus consists of two species, 

S. enterica and S. bongori, the first being subdivided into six subspecies, which are designed 
by Roman numeral, containing more than 2500 antigenically distinct serotypes. Of these 

serotypes, around 1500 belong to Salmonella enterica subspecies enterica (I), which colonizes 

the intestinal tract of warm-blooded animals and is responsible for 99% of Salmonella infec-

tions, while the others pertain to other subspecies: salamae (II), arizonae (IIIa), diarizonae (IIIb), 
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houtenae (IV) and indica (VI). Although S. bongori has been determined to be a separate species, 

it was originally designated as subspecies V, which is commonly found in cold-blooded ani-

mals and in the environment [1–3]. After serotyping by Kauffman-White scheme, character-

ization by pulsed-field gel electrophoresis (PFGE) pattern and phage typing provides further 
subtyping [3]. Eventually complete genome sequencing will be the norm as the cost of such 

analysis has come down basically replacing multiple-locus variable-number tandem repeat 

analysis (MLVA) [4].

Most outbreaks of salmonellosis in humans and in domestic animals are caused by a few 

serotypes, which are grouped according to their adaptation to the host. The first group con-

sists of a few host-specific serotypes, which typically cause systemic disease in a single animal 

species or a limited number of phylogenetically-related species. Noteworthy examples are 
S. enterica serotype Typhi and Paratyphi of humans, serotypes Pullorum and Gallinarum of 
birds and serotype Abortusovis of sheep. The second group consists of host-adapted serotypes 

that are associated with one or two animal species that are related to each other; however, 

they may occasionally cause disease in other hosts. Noteworthy examples are S. enterica sero-

type Dublin and serotype Choleraesuis, which are usually associated with severe systemic 

disease in ruminants and pigs, respectively. Finally, the third group consists of a large num-

bers of ubiquitous serotypes, which typically cause gastroenteritis in a wide variety of unrelated 

host species;among these are S. enterica serotype Typhimurium and serotype Enteritidis [5], 

and these are the two most prevalent serotypes in the world [6].

Epidemiologically, infections caused by Salmonella enterica subsp. enterica correspond to the 

most prevalent disease transmitted via food worldwide. This high prevalence is associated 
with the absence of clinical disease in animals that often silently infect herds, contaminate 

food, the environment and thus cause disease in humans. However, historically, studies on 

the pathogenesis of salmonellosis are focused on events leading to clinical manifestations, 

and a few studies are conducted to clarify the interaction between latent microorganisms and 

their resistant hosts.

Certain animal species may develop asymptomatic persistent infection with intermittent 
shedding of Salmonella in their feces over long periods. These animals are called latent carriers. 

Their impact on public health is that the carriers are natural reservoirs of different Salmonella 

serotypes and may be resistance to multiple antimicrobials. Latent Salmonella infections can 

occur in humans [7], in farm animals such as cattle, sheep, pigs and poultry [5], in pets such 

as dogs [8] and in wild animals such as reptiles [9, 10].

Latent carrier animals are therefore natural reservoirs of Salmonella and are responsible for the 

silent intermittent introduction of the pathogen into the food chain and the environment, hin-

dering control strategies. Thus, increasing our knowledge regarding the interaction of intra-

cellular pathogen Salmonella with their host is essential for the development of an efficient 
strategy for control. In this mini-review, we present some important events that occur during 

the infection cycle of S. enterica leading to latent carriers, including the mechanisms of inva-

sion of the host cells, bacterial multiplication and persistence in intracellular compartments, 

and intermittent shedding of the pathogen in the feces.
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2. Pathogenesis of Salmonella enterica: the role of Salmonella pathogenicity 

islands (SPIs)

The pathogenesis of salmonellosis depends on a combination of several factors, including the 

components of bacterial virulence, the infective dose, route of infection, the genetic makeup 

and the immune status of the host [11]. All of these variables can influence the immunologi-
cal responses of the host, resulting in different degrees of inflammation that confer an acute, 
moderate, chronic or even asymptomatic nature to the disease [12].

Infection by S. enterica has the following characteristics: the ability to interact with entero-

cytes leading to diarrhea (Salmonella-induced enteritis), the invasion of non-phagocytic cells 
and the ability to survive and proliferate within the phagocytes, resulting in systemic disease 

[13]. These characteristics are determined by multiple virulence factors encoded in Salmonella 

pathogenicity islands (SPIs) comprising large and unstable segments of the bacterial genome 
of pathogenic organisms. These SPIs are absent in related non-pathogenic organisms and that 
were acquired by horizontal gene transfer as SPIs G + C content is lower than Salmonella genes 

[14]. SPIs are conserved in several strains; differences may have implications in host specific-

ity [15]. Currently, 16 pathogenicity island of Salmonella encoding distinct virulence factors 

are described, according to pathogenicity island database, PAI DB (http://www.paidb.re.kr), 
with different distributions among the various Salmonella species, subspecies and serotypes. 

SPI-1 and SPI-2 (both are about 40 kb in length) are the most studied and are present in all 
subspecies of S. enterica [13, 14, 16]. SPI-1 contains the genes responsible for the bacterial inva-

sion of the host epithelium [17, 18], whereas SPI-2 is responsible for bacterial survival and 
multiplication within eukaryotic cells, including macrophages [19, 20].

Studies of SPIs help in understanding the mechanisms of bacterial virulence, and they may 
also be useful to clarify the phylogenetic relationships among species [21, 22]. Phylogenetic 
studies indicated that the gene sequences present in SPI-1 were acquired by lateral gene trans-

fer before the diversification between S. enterica and S. bongori. In turn, the acquisition of the 

SPI-2 genes present in S. enterica occurred after speciation but before the diversification of the 
groups (I, II, IIIa, IIIb, IV, VI and VII); therefore, SPI-2 is present in all S. enterica subspecies 

but is absent in S. bongori species [22].

The virulence mechanisms of Salmonella serotypes are studied in different animal models, 
depending on the type of clinical manifestation. To study the pathogenesis of typhoid fever (a 
systemic disease), strains of susceptible mice (e.g., Balb/c) experimentally infected with sero-

type Typhimurium are used. However, in this experimental model, the mice do not develop 
diarrhea, and therefore, mice are not used to study the pathogenesis of enteritis. In contrast, 

the experimental infection of calves with the same serotype results in enteric disease, and 
therefore, this experimental model is used to study Salmonella-induced enteritis [23].

According to the animal model, the virulence genes required for systemic infection differ 
from those genes responsible for the enteritis caused by Salmonella. This result is observed by 

analyzing mutant phenotypes of serotype Typhimurium in experimental infection of mice 
and calves, which are used to study systemic and enteric infections, respectively. Mutations in 
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SPI-2 result in a significant attenuation of systemic disease in mice, while in calves, the sever-

ity of intestinal lesions shows only modest attenuation. In contrast, mutations that prevent the 
expression of the SPI-1 type III secretion system (T3SS) or of effector proteins translocated by 
the system result in an avirulent strain with consequent the absence of diarrhea in calves [23].

2.1. SPI-1-mediated invasion of host cells

After oral infection, a proportion of the Salmonella organisms survives the low stomach pH 

and reaches the distal ileum and cecum, where they invade the epithelial cells and M cells, 

mediated by a T3SS encoded by the SPI-1 [24, 25]. The T3SS allows some of the enteropatho-

genic bacteria to adhere to the epithelial surface and inject effector proteins that cross the 
membrane of the host cells, causing cellular injury [26]. Through this system, Salmonella trans-

locates effector proteins encoded by genes present in the SPI-1 as well as genes in independent 
loci of the SPI-1 that promote a chain of events in the host cell to allow pathogen invasion [13]. 

Another function of the SPI-1 is related to hydroelectrolyte imbalance caused by the effector 
protein SopB, which stimulates the secretion of chloride ions (Cl−) through its inositol phos-

phatase activity, thereby leading to loss of fluid into the intestinal lumen [27] (Figure 1).

Once in contact with the intestinal epithelium, the effector proteins SopE, SopE2 and SopB 
(encoded by genes outside of SPI-1) are translocated to the interiors of enterocytes and M cells 
via the SPI-1 T3SS. These proteins activate certain GTPases within the host cell, such as Cdc42, 
Rac-1 and Rho, causing a rearrangement of the actin cytoskeleton called membrane ruffling [28], 

which is stabilized by the SipA and SipC effector proteins. Furthermore, they also activate the 
MAP kinase (mitogen-activated protein kinase) pathway, thereby destabilizing tight junctions. 
Consequently, bacteria can penetrate into the host cell through the apical membrane in a pro-

cess called macropinocytosis or cross the intercellular space until reaching the lamina propria. 

This destabilization of tight junctions also allows for the transmigration of polymorphonuclear 

cells (PMNs) from the basolateral space to the apical surface. However, this transmigration can 
occur independently from the destabilization of tight junctions when mediated by the bacterial 

protein SopA [29]. Once inside the cell, the effector protein SptP modulates the inactivation of 
the GTPases Cdc42 and Rac-1, thus resulting in the end of the membrane ruffling [30].

Signaling via MAP kinase, in addition to promoting the destabilization of tight junctions, also 
activates the transcription factors AP-1 (activator protein-1) and NF-κB (nuclear factor- κB), 
which leads to the synthesis of pro-inflammatory interleukin (IL)-8 by PMN leukocytes, thus 
acting as a chemotactic factor for neutrophils [29].

During the invasion of macrophages, the bacterium injects the effector protein SipB, which is 
encoded by SPI-1, inducing the intracellular activation of caspase-1 by resident macrophages. 
Caspase-1 induces apoptosis of infected macrophages resulting in Salmonella escape from 

these cells. Caspase-1 also cleaves the pro-inflammatory cytokines IL-1β and IL-18 to produce 
bioactive cytokines that further enhance the local inflammatory response, causing infiltration 
by PMN phagocytes and internalization of the bacterium by these cells [31, 32]. The intracel-

lular medium provides a favorable environment for the bacteria to multiply [33], and once 

the invasion process is concluded, the bacteria are transported from the gastrointestinal tract 

to systemic organs.
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There is an alternative SPI-1-independent invasion mechanism in which S. enterica does not 

interact with M cells but is engulfed by dendritic cells that open the tight junctions between 

epithelial cells, thereby carrying the bacteria to systemic organs [34].

2.2. SPI-2-mediated intracellular multiplication

The ability of S. enterica to survive inside phagocytes and to replicate in Salmonella-containing 

vacuoles (SCV) in a variety of eukaryotic cells is dependent on another T3SS that is encoded 
by SPI-2 [22, 35, 36]. This characteristic can lead to systemic infection [20].

Soon after entry by means of macropinocytosis, Salmonella is internalized into a phagosome 

formed by the membrane ruffling that later fuses with lysosomes, thereby originating the SCV 

Figure 1. Effector proteins (gray arrows) ejected by type III secretion system encoded in SPI-1 and their actions for 
Salmonella invasion of host cells. Salmonella penetrates at the apical space causing the membrane ruffling. It is mediated 
by SopE, SopE2 and SopB proteins, which promote activation of host GTPases, causing a rearrangement of the actin 
cytoskeleton that is stabilized by SipA and SipC proteins. Salmonella can also cross the basolateral space through 

destabilization of the tight junctions, also mediated by SopE, SopE2 and SopB proteins (by activation of MAP kinase 
pathway) and by SopA protein. These events contribute to the activation of chemotactic factors of neutrophils. Once 
inside the cell, Salmonella promotes the end of the membrane ruffling by inactivation of host GTPases by SptP protein. 
During the invasion of resident macrophages, SipB protein induces the intracellular activation of caspase-1, causing 
apoptosis and enhancing the local inflammatory response. This event contributes to the escape of Salmonella from the 

macrophages and internalization of the bacteria in PMN phagocytes. The hydroelectrolyte imbalance is caused by SopB 
protein through inositol phosphatase activity which stimulates the secretion of chloride ions (Cl−).
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[29]. Inside of the SCV, the T3SS encoded by SPI-2 is activated using luminal acid pH, translo-

cating the effector proteins across the phagosome membrane (Figure 2). The effector protein 
SipC prevents the fusion of the SCV with vesicles containing NADPH oxidase (nicotinamide 
adenine dinucleotide phosphate-oxidase) and inducible nitric oxide synthase (iNOS), hindering 
the action of reactive oxygen intermediates (ROS) and reactive nitrogen intermediates (RNS) 
[13]. The effector proteins SifA and PipB2 contribute to the formation of Salmonella-induced 

filaments (SIF) along microtubules, while the effector proteins SseF and SseG aggregate the 
SCV-adjacent microtubules. In addition, an accumulation of actin occurs around the SCV that 

is mediated by the SspH2, SpvB and SseI proteins. These events contribute to the matura-

tion and stabilization of SCV [29]. As a consequence, S. enterica becomes even more protected 

against RNS and ROS and against the potent antimicrobial activity of peroxynitrite, which is 
generated by the RNS and ROS reactions. These mechanisms represent a specific adaptation of 
S. enterica to the intracellular environment, especially phagocytes. Thus, the bacteria can mul-

tiply inside the phagocytic cells, transported via circulation and cause systemic infection [14].

Figure 2. Effector proteins (gray circles) ejected by type III secretion system encoded in SPI-2 and their actions for 
Salmonella survival inside of phagocytes and its replication in Salmonella-containing vacuoles (SCV). The translocation 
of SipC protein avoids the antimicrobial activities of reactive oxygen intermediates and reactive nitrogen intermediates 
by prevention of fusion of NADPH oxidase and iNOS vesicles. This antimicrobial activity by the host cell is stronger 
but prevented by the accumulation of actin around the SCV promoted by SspH2, SpvB and Ssel proteins. These events 
contribute to maturation of SCV. SifA and PipA proteins contribute to the tubular structures known as Salmoniella-

induced filaments formed along the microtubule motors; in addition, SseF and SseG cause microtubules aggregation 
adjacent to SCV. These events interfere the molecular motors that drive the cellular trafficking, which transport vesicles 
and organelles within the cell.
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3. Natural resistance mechanism to infection by S. enterica: the role of 

Nramp1 glycoprotein

The resistance mechanisms of host to infection by S. enterica are multigenic. Studies in mice 

have emphasized the locus encoding glycoprotein natural resistance-associated macrophage 

protein-1 (Nramp1), which has been considered the key for the innate host response to intra-

cellular pathogens [37]. This protein belongs to a family of proteins highly conserved in evo-

lution, with homology among mammals, insects and bacteria suggesting an important role in 

all living organisms [38].

Nramp1 is a transmembrane glycoprotein and divalent metal ion symporter that deprives 

intracellular pathogens of these metals by removing mainly Fe++ and Mn++ from the luminal 

space of the phagosomal and lysosomal vesicles. Because iron and other divalent cations are 
cofactors for vital enzymes, S. enterica expresses a series of carriers that compete with the host 
cell for traces of these divalent metals within the phagosomes [39]. This Nramp1 glycopro-

tein is encoded by the gene Slc11a1 (Solute carrier family 11 member 1, first named as Ity gene), 
on chromosome 1 in mice [37]. A single substitution of glycine for aspartate at position 169 

results in susceptibility to systemic infection by S. enterica in the mice [40]. Consequently, 

mice that have two Slc11a1 Asp 169 alleles are significantly more susceptible to lethal Salmonella 

infections and are therefore being used in studies to clarify the host-pathogen relationships 

in acute systemic infection. In turn, mice carrying the wild-type locus Slc11a1+/+ can be used to 

study the pathogenesis of chronic infections that are often asymptomatic [41].

The interaction between the surface receptors of macrophages and microbial ligands results 

in the internalization of the microorganism into a phagosome. However, this young phago-

some is not able to digest its contents, thus requiring a maturation process involving fusion 

and fission events with endosomes and lysosomes. During the maturation process, phago-

somes containing S. enterica acquire vacuolar ATPases that acidify the phagosome lumen. In 
an acidic pH, Nramp1 removes Fe++ and other divalent cations from the inside of phago-

somes. Concomitantly, in the presence of functional protein Nramp1, the host cell expresses 
the mannose-6-phosphate receptor (M6PR), which is responsible for interacting with vesicles 
containing NADPH oxidase and iNOS. This interaction generates positive feedback for the 
transcription of high levels of iNOS mRNA [39]. In susceptible mice (Slc11a1Asp 169), the phago-

somes containing S. enterica are negative for M6PR receptors, and therefore, the production 
of iNOS is lower than in hosts that have the wild-type locus Slc11a1+/+ [36]. Thus, Nramp1 has 

proven to be very important to control the exponential growth of Salmonella during the early 

stages of systemic infection [23, 42].

4. Infection cycle of S. enterica in latent carriers

In asymptomatic carrier animals, the study of the infection cycle of Salmonella was described 

using C57Bl/6-Bcgr (Slc11a1+/+) mice as a resistant mouse model inoculated orally with a high 
dose of Salmonella serotype Enteritidis [43]. The animals developed an intermittent infection 
cycle in the gastrointestinal tract during 4 weeks of study, with interspersed periods of 
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intra- and extracellular spread of the infection, which featured three distinct stages over the 
course of the cycle (Figure 3): (I) the initial stage represented by intracellular invasion and bac-

terial multiplication in the intestine, inducing transient damage to the intestinal mucosa and 

shedding of the pathogen in the feces. A rapid clearance of a large fraction of the inoculums 

was observed during the first 48 h postinoculation (PI); (II) the intermediate stage, the initial 

period of bacterial sequestration by the mononuclear phagocyte system (MPS) in which the 
pathogen was detected only within intracellular compartments. In this period, a transient 

exponential growth of the remaining intracellular bacteria occurred 2–4 d PI followed by a 
suppression of bacterial growth, establishing a plateau phase until 15 d PI. The intracellular 
multiplication in the MPS coincided with the IFNγ production; and finally (III) the intermit-

tent shedding stage, the Salmonella persists sub-clinically in the tissues (spleen and cecum) with 
recurrence of intracellular bacterial growth that coincided with the intermittent excretion in 
feces, characterizing a latent infection.

Figure 3. Distribution of S. enteritidis in feces (fecal and ileo-cecal content) and tissues (blood, spleen, liver, mesenteric 
lymph nodes and different parts of the intestine—jejunum, ileum and cecum) at different times after intragastric 
inoculation with 5 × 108 cfu in C57Bl/6-Bcgr (Slc11a1+/+) mice as a resistant mouse model. These numbers are represented 
as mean ± SD of three animals (in duplicate). (I) Initial stage of infection, when Salmonella invades the intestinal mucosa 

and it is also eliminated in feces. (II) Intermediate stage marks the initial period of mononuclear phagocyte system (MPS) 
sequestration. Salmonella is found intracellular in the intestine but it is not being eliminated to the environment through 

feces. (III) Intermittent elimination stage of Salmonella, common in a resistant animal model, based on [43].
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In pigs, by applying a Markov statistical model, Ivanek et al. [44] were able to distinguish dif-

ferent stages during the dynamic shedding of Salmonella in feces and their immune response. 

In this model, the intermittent shedding of the pathogen was clear. The authors characterized 
the following stages: (i) latency, when pigs were negative for the shedding of Salmonella imme-

diately after the challenge; (ii) continuous shedding, with continuous shedding of the pathogen 

in the feces; (iii) non-intermittent shedding—when Salmonella was not being shed in the feces; 

(iv) intermittent shedding—when the bacteria were again shed in the feces; and (v) recovery. The 

authors observed that the stages could vary depending on the infecting dose and the serotype 

involved in the infection.

Thus, independent of the animal model, in latent carriers, there is a period during which 

Salmonella stays hidden in an intracellular compartment, and it is not being eliminated. It can 

mask the diagnosis of the positive animals. This “Salmonella’s hiding-place” may function as 

a strategic site of bacteria multiplication and, consequently, elimination of high numbers of 

pathogens in the environment. So, it is very important to identify the sites of bacterial coloni-

zation in different latent carriers.

The site of bacterial colonization in persistent infections varies according to serotype and 

host species. In humans, serotype Typhi expresses proteins encoded by SPI-7 that inhibit the 
detection of pathogens by the innate immune system of the host. Thus, the bacteria can spread 

systemically, colonizing macrophages in the liver, spleen and bone marrow. In the liver, 

Salmonella serotype Typhi can be found latent in the gallbladder, making the host an asymp-

tomatic carrier. Intermittently, the bacteria are transported from the gallbladder into the small 
intestine through the bile and excreted in the feces [7]. In mice, the mesenteric lymph nodes 

are the colonization site of serotype Typhimurium [41]. In birds, Salmonella serotype Pullorum 
can be found latent in the spleen, ovary and oviduct of chickens [45], and S. Enteritidis can 

infect the ovaries of healthy hens, contaminating the eggs prior to shell formation [46]. In 

snakes, there is strong evidence that different serotypes of Salmonella also colonize the ovary, 

spreading bacteria to their offspring vertically [47].

In asymptomatic animals, the cecum plays an important role as a reservoir for longer peri-

ods of shedding [48–51]. Research using resistant mice orally challenged with high doses 

of Salmonella serotype Enteritidis [43], and we demonstrate that bacteria reach the cecum in 

the early stages of infection (12 h to 2 days PI) and remain for long periods from 5 days PI, 
functioning as a reservoir of bacterial multiplication, causing the shedding of Salmonella in the 

intestinal lumen intermittently. The small intestine does not have this reservoir role, since the 
bacterial colonization in jejune and ileum occurred only in 1–4 days PI. Spleen is another site 
of Salmonella reservoir; from the moment that bacteria reached the MPS, they stayed in spleen 
for long periods (Figure 4).

In chickens, the cecum is also a site for long-lasting carriage of S. Enteritidis, both in suscep-

tible and resistant animals [52]. In asymptomatic carriers, it represents a public health and 

food protection concerns because the cecum may function as a “strategic site” of Salmonella 

proliferation, releasing bacteria to the environment intermittently.
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The mechanism of persistence of Salmonella in the cecum is not well established. Probably, it is 
associated with the physiological environment and less peristalsis of this part of the intestine. 

Upon entry into the large intestine, the bacteria remain longer in the cecum due to fewer peri-

staltic movements. Despite the production of short-chain fatty acids by resident microbiota 
due to the intense local fermentation, the pH in the cecal environment remains above 6.3, 

higher than the inhibitory level for Salmonella multiplication [53].

5. Role of IFNγ in controlling of S. enterica growth

During intestinal infection, Salmonella-host interactions result in different degrees of inflam-

mation related to the levels of cytokines produced [12], which may trigger changes in the 

composition of the intestinal microbiota. A reduction in symbionts or an increase in patho-

bionts is usually observed during inflammatory processes, reflecting the diversity of the 
intestinal microbiota [54]. In gastroenteritis caused by Salmonella in susceptible hosts, the pro-

duction of interferon gamma (IFNγ) in the early stage of intestinal inflammation may alter the 

Figure 4. Course of S. enteritidis in C57Bl/6-Bcgr (Slc11a1+/+), a resistant mouse model. Salmonella rapidly reaches the 

cecum in the early stage of the infection between 12 and 48 h postinoculation (PI) and remains in this organ as an 
important reservoir for 5 days PI, with increasing bacteria multiplication. The presence of bacteria in the cecum seems 
to be associated with its extracellular multiplication in the intestinal content and intermittent shedding in the feces. The 
colonization of the small intestine occurs during the first 4 days PI. In this period, Salmonella penetrates the intestinal 

mucosa, causing different degrees of degeneration of the microvilli, which is reversible (membrane ruffling). This 
mechanism is mediated by effector proteins translocated by T3SS encoded in SPI-1. Intracellular multiplication of the 
bacteria in mononuclear phagocyte system (MPS) occurs from 3 days PI. The exact route of Salmonella dissemination 

from intestine to MPS is unclear, but from the moment that bacteria reach the MPS, they remain in spleen, causing 
splenomegaly by 10 days PI. The intracellular multiplication in MPS coincides with the production of IFNγ, which 

restricts the replication of intracellular Salmonella.
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lumen conditions, causing an imbalance in the ecology of the resident microbiota that favors 

 competition for pathogen growth and intestinal colonization [55–57]. In latent carriers, how-

ever, S. enterica can invade the intestinal mucosa and colonize the intestine without triggering 

a strong immune response, remaining in equilibrium with the resident microbiota [58].

IFNγ plays a crucial role in resistance to systemic infection by S. enterica. This cytokine con-

trols the growth of pathogens both in the initial [59, 60] and late stages of the disease [41], and 

its absence results in septicemia. High levels of IFNγ as well as of its mediator IL-12 contrib-

ute to resistance to infection in different animal species [61]. Mice with chronic asymptomatic 

infection by Salmonella serotype Typhimurium develop symptoms after treatment with anti-

IFNγ antibodies [41]. In birds, the IFNγ gene expression is lower in susceptible animals than 
in resistant animals [61].

IFNγ is produced specifically in response to systemic infection and correlates with bactere-

mia and pathogen invasion of the cells of the mononuclear phagocyte system, such as the 

lymphoid tissue associated with the intestine (mesenteric lymph nodes and Peyer’s patches), 
spleen and liver. Its production is essential to restrict bacterial intracellular multiplication, 

thereby contributing to the establishment of a plateau phase during the growth cycle of 

Salmonella serotype Enteritidis in asymptomatic mice [43].

When antigen-specific acquired immunity is triggered, the IFNγ titer in serum begins to 
decrease [11]. However, even in the presence of high titers of specific circulating antibodies, 
some Salmonella serotypes are capable of causing persistent infections in a host for long peri-

ods. This adaptive immune response seems to be important to reduce the number of extracel-
lular bacteria; however, bacteria that are present within macrophages survive both the innate 

and adaptive immune responses, and the host ultimately becomes a latent carrier [41].

6. Gene expression in latent Salmonella

Zoonotic intracellular pathogens that can cause latent carriers pose a unique public health 

problem. The ability of such carrier animals to shed pathogens without showing any clinical 

signs of infection can make outbreak control challenging and the potential of transmission to 

humans a serious public health concern. Before identifying these carriers, we need to under-

stand the mechanism of bacterial invasion of the host cells and follow the process of estab-

lishing a persistent state of infection. SPI 1 encodes for genes hilA and invF, which allow the 
bacteria to enter, survive, and replicate within the host cells [62]. Once the pathogen enters 

the host cells, glycine cleavage protein subunit P (gcvP) has been shown to be a potential 
key player in the transition from acute to chronic infection [63–65]. The activity of gcvP has 
been shown to increase dramatically in other important zoonotic infections like tuberculosis 

[66, 67] and leishmaniasis [68]. Understanding the pathogenesis of the invasion, intracellular 

replication, and the transition to latent carrier state in Salmonella would potentially lay the 

groundwork for the development of a control, treatment and eventual eradication strategies. 

We are just starting to understand potential genes involved in the transition from active to 
latent stage of infection in case of intracellular pathogens. There is very little information 
in case of Salmonella, but in case of M. tuberculosis, glycine dehydrogenase activity increases 
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tenfold upon entering a state of persistence. Another indicator that its metabolism is vital to 

persistence is the fact that mutants that are deficient in isocitrate lyase, an enzyme involved 
in the glyoxylate pathway, cannot cause chronic latent infections [67]. We have some pre-

liminary results from our long-term cell culture Salmonella infection model (unpublished per-

sonal communication). It shows that AceA the gene that codes for isocitrate lyase, which is the 

first step in the glyoxylate shunt, is over expressed. Even on day 1, the expression levels are 
elevated, but not significantly more than any of the other genes. However, on day 10 and day 
30 post infection,. AceA expression level on day 30 goes up dramatically. This has biological 
plausibility since it is the first step in the glyoxylate pathway. Such gene expression studies of 
lymph node biopsies on a herd basis or at slaughter might allow us to detect chronic/persis-

tent Salmonella infections.

7. Conclusions

Despite host’s activation of anti-inflammatory and antimicrobial responses, Salmonella can 

establish asymptomatic persistent infections, leading to intermittent high-level shedding of 
the bacteria in feces. This host-pathogen balance leads to serious problems for public health 

because asymptomatic animals latently carry the infection for long periods with intermittent 
cycles of shedding of the pathogen in feces. This outcome is epidemiologically important 

because false-negative Salmonella isolation results can be generated if the diagnostic test is 

performed during the period when the animal is not shedding the pathogen.
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