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Abstract

In this chapter, a new generalization of the Kumaraswamy distribution, namely the
gamma-Kumaraswamy distribution is defined and studied. Several distributional prop-
erties of the distribution are discussed in this chapter, which includes limiting behavior,
mode, quantiles, moments, skewness, kurtosis, Shannon’s entropy, and order statistics.
Under the classical method of estimation, the method of maximum likelihood estima-
tion is proposed for the inference of this distribution. We provide the results of an
analysis based on two real data sets when applied to the gamma-Kumaraswamy distri-
bution to exhibit the utility of this model.

Keywords: gamma-Kumaraswamy distribution, Renyi’s entropy, reliability parameter,
stochastic ordering, characterizations

1. Introduction

The generalization of a distribution by mixing it with another distribution over the years

has provided a mathematical based way to model a wide variety of random phenomena

statistically. These generalized distributions are effective and flexible models to analyze and

interpret random durations in a possibly heterogeneous population. In many situations,

observed data may be assumed to have come from such a mixture population of two or

more distributions.

Two parameter gamma and a two parameter Kumaraswamy are most popular distribution for

analyzing any lifetime data. Gamma distribution is a well-known distribution, and it has

several desirable properties [1].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



A serious limitation of the gamma distribution, however, is that the distribution function (or

survival function) is not available in a closed form if the shape parameter is not an integer,

thereby it requires some numerical methods to evaluate these quantities. As a consequence,

this distribution is less attractive as compared to Ref. [2], which has nice tractable distribution

function, survival function and hazard function. In this paper, we consider a four parameter

gamma-Kumaraswamy distribution. It is observed that it has many properties which are quite

similar to those of a gamma distribution, but it has an explicit expression for the distribution

function or the survival functions. The major motivation of this chapter is to introduce a

new family of distributions, make a comparative study of this family with respect to a

Kumaraswamy family and a gamma family and provide the practitioner with an addi-

tional option, with a hope that it may have a ‘better fit’ compared to a gamma family or

Kumaraswamy family in certain situations. It is noteworthy to note that the gamma-

Kumaraswamy distribution is a generalization of Kumaraswamy distribution with the

property that it can exhibit various shapes. (Figure 1). This provides more flexibility to

the gamma-Kumaraswamy distribution in comparison with Kumaraswamy distribution in

modeling different data sets. The property of left-skewness is a rare characteristic as it is

not enjoyed by several generalizations of Kumaraswamy distribution. Our proposed

model is different from that of Ref. [3], where the authors have proposed a generalized

gamma-generated distribution with an extra positive parameter for any continuous base-

line G distribution.

Figure 1. GK density plot for some specific parameter values.
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The rest of the paper is organized as follows. In Section 2, we propose the gamma-

Kumaraswamy distribution [GK(α, β, a, b)]. In Section 3, we study various properties of the

GK(α, β, a, b) including the limiting behavior, transformation, and the mode. In Section 4, the

moment generating function, the moments and the mean deviations from the mean and the

median, and Renyi’s entropy are studied. In Section 5, we consider the maximum likelihood

estimation of the GK(α, β, a, b). In Section 6, we provide an expression for the reliability

parameter for two independent GK(α, β, a, b) with different choices for the parameters α and

β but for a fixed choice of the two shape parameters of Kumaraswamy distribution. In Section

7, discussion is made for the moment generating function of the r-th order statistic and also the

limiting distribution of the sample minimum and the sample maximum for a random sample

of size n drawn from GK(α, β, a, b). An application of GK(α, β, a, b) is discussed in Section 8.

Certain characterizations of GK(α, β, a, b) are presented in Section 9. In Section 10, some

concluding remarks are made.

2. The gamma-Kumaraswamy distribution

We consider the following class of gamma-X class of distributions, for which, the parent model

being

f ðxÞ ¼
1

ΓðαÞβα
gðxÞ

G
2
ðxÞ

exp −

gðxÞ

βGðxÞ

 !

GðxÞ

GðxÞ

� �α−1

; x > 0; (1)

where α, β are positive parameters. Also, gðxÞ½GðxÞ� is the density function [cumulative distri-

bution function] of the random variable X. Furthermore, GðxÞ is the survival function of the

associated random variable X.

If X has density Eq. (1), then the random variable W ¼ GðxÞ

GðxÞ
has a gamma distribution with

parameters α, β. The reverse happens to be true as well. Here, we consider G(.) to be the cdf of a

Kumaraswamy distribution with parameters a, b. Then, the cdf of the gamma-Kumaraswamy

(hereafter GK) reduces to

FðxÞ ¼

ð
1−ð1−xaÞb

ð1−xaÞb

0

e−w=βwα−1

ΓðαÞβα
dw ¼ γ1 α;

1−ð1−xaÞb

βð1−xaÞb

 !

; 0 < x < 1: (2)

where γ1ðα; zÞ ¼
Γðα; zÞ
ΓðαÞ with Γðα; xÞ ¼

ðx

0

uα−1e−udu is the regularized incomplete gamma func-

tion. So the density and hazard functions corresponding to Eq. (2) are given, respectively, by

f ðxÞ ¼
ab exp −

1−ð1−xaÞb

βð1−xaÞb

� �

ΓðαÞβα
1

ð1−xaÞ2
1−ð1−xaÞb

βð1−xaÞb

 !α−1

xa−1; 0 < x < 1; (3)

and
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hFðxÞ ¼

�

ð1−xaÞ−b−1
�α−1

abxa−1ð1−xaÞb−1 exp
�

−β−1ðð1−xaÞ−b−1Þ
�

βαð1−xaÞbþ1 1−Γ α; 1−ð1−x
aÞb

βð1−xaÞb

� �� � : (4)

The percentile functions for GK distribution: The p th percentile xp is defined by F(xp) = p. From

Eq. (2), we have γ1 α; 1−ð1−x
aÞb

βð1−xaÞb

� �

¼ p. Define Zp ¼
1−ð1−xaÞb

βð1−xaÞb
, then Zp ¼ γ−1

1 ðα;pÞ, where γ−1
1 is the

inverse of regularized incomplete gamma function. Hence, xp ¼
�

1−
�

βð1þ Z1−pÞ
�1=b�1=a

.

In the density equation (3), a, b, and α are shape parameters and β is the scale parameter. It can

be immediately verified that Eq. (3) is a density function. Plots of the GK density and survival

rate function for selected parameter values are given in Figures 1 and 2, respectively.

If X~GK(a, b, α, β), then the survival function of X, S(x) will be

1−γ1 α;
1−ð1−xaÞb

βð1−xaÞb

 !

: (5)

We simulate the GK distribution by solving the nonlinear equation

Figure 2. GK hazard rate function plot for some specific parameter values.
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ð1−uÞ−γ1 α;
1−ð1−xaÞb

βð1−xaÞb

 !

¼ 0; (6)

where u has the uniform (0,1) distribution. Some facts regarding the GK distribution are as

follows:

• If X~GK(a, b, α, β), then Xm~GK(a, b, α, β), ∀m≠0.

• Also, we have the following important result: If X~GK(1, b, α, β), then X1/a~GK(a, b, α, β),

∀a≠0.

• The GK distribution does not possess the reproductive property. In other words, if for any

two X1~GKða1;b1;α1;β1Þ andX2~GKða2;b2;α2;β2Þ, then the distribution of the sum S =X1 +X2

will not be a GK.

The first result provides an important property of the GK distribution for information analysis

is that this distribution is closed under power transformation. The latter result is equally

important because it provides a simple way to generate random variables following the GK

distribution.

3. Properties of GK distribution

The following lemma establishes the relation between GK(α, β, a, b) distribution and gamma

distribution.

Lemma 1. (Transformation): If a random variable X follows a gamma distribution with param-

eters α and β, then Y ¼ 1−ð1−XaÞb

ð1−XaÞb
follows GK(α, β, a, b) distribution.

Proof. The proof follows immediately by using the transformation technique. W

The limiting behaviors of the GK pdf and its hazard function are given in the following theorem.

Theorem 1. The limits GK density function, f(x), and the hazard function, hFðxÞ, are given by

lim
x!0þ

f ðxÞ ¼ lim
x!0þ

hf xð Þ ¼
0; a > 1;b > 1;α > 1
∞; min{a;b} < 1;α < 1;

�

(7)

lim
x!∞

f ðxÞ ¼ lim
x!∞

hf ðxÞ ¼
0; b > 0;α < 1
∞; b < 0;α > 1:

�

(8)

Proof. Straightforward and hence omitted. W

Theorem 2. The mode of the GK distribution is the solution of the equation kðxÞ ¼ 0; where

kðxÞ ¼ ða−1Þ−
2xa

ð1−xaÞ
þ

abxa

ð1−xaÞb
β−1 þ ð

1−ð1−xaÞb

βð1−xaÞb
Þ−1

 !

: (9)

Proof. The derivative of f(x) in Eq. (3) can be written as
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∂

∂x
f ðxÞ ¼

1

βαΓðαÞ

abxa−2

ð1−xaÞ2
exp

�

−β−1ðð1−xaÞ−b−1Þ
� 1−ð1−xaÞb

βð1−xaÞb

 !α−1

kðxÞ: (10)

The critical values of Eq. (10) are the solutions of kðxÞ ¼ 0: W

Next, we discuss the IFR and/or DFR property of the hazard function for the GK distribution.

For this, we will consider the result of Lemma 1. According to Lemma 1, if X~GK(a, b, α, β),

then Y ¼ 1−ð1−XaÞb

ð1−XaÞb
∼Gamma (α, β). In such a case for the random variable Y, the hazard rate

function can be written as

1

rðtÞ
¼

1−FðtÞ

f ðtÞ

¼

ð

∞

t

1

βαΓðαÞ
wα−1 exp ð−w=βÞdw

1

βαΓðαÞ
tα−1 exp ð−t=%betaÞ

¼

ðinfty

t

w
t

� �α−1
exp

�

−1=βðw−tÞ
�

dw

¼

ð

∞

0

1þ u
t

� �α−1
exp ð−1=βuÞdu:

(11)

Therefore, rðtÞ ¼

ð

∞

0

1þ u
t

� �α−1
exp ð−1=βuÞdu

� �−1

. If α > 1, 1þ u
t

� �α−1
is decreasing in t and

hence r(t) is increasing, thereby and has a IFR. If 0 < α < 1, then

1þ u
t

� �α−1
is increasing in t, so r(t) decreases and hence has a DFR. Now, since X is a one-to-one

function of Y, the hazard rate function of X will also follow the exact pattern.

Let X and Y be two random variables. X is said to be stochastically greater than or equal to Y

denoted by X ≥
st
Y if PðX > xÞ≥PðY > xÞ for all x in the support set of X.

Theorem 3. Suppose X~GKða1;b1;α;β1Þ and Y~GKða2;b2;α;β2Þ: If β1 > β2, a1 > a2 and b1 < b2. Then

X ≥
st
Y, for integer values of a1 and a2.

Proof. At first, we note that the incomplete gamma function Γðα;xÞ is an increasing

function of x for fixed α. For any real number x∈ð0; 1Þ, β1 > β2; a1 > a2, and b1 < b2, we

have

β−11

�

ð1−xa1Þb1−1
�

≤ β−12

�

ð1−xa2Þb2−1
�

: (12)

This implies that Γ
�

α;β−11

�

ð1−xa1Þb1−1
��

≤Γ

�

α;β−12

�

ð1−xa2Þb2−1
��

. Equivalently, it implies that

PðX > xÞ ≥ PðY > xÞ, and this completes the proof. W

Note: For fractional choices of a1 and a2, the reverse of the above inequality will hold.
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4. Moments and mean deviations

For any r ≥ 1,

EðXrÞ ¼

ð1

0

xrf ðxÞdx

¼
1

ΓðαÞ

ð

∞

0

exp ð−uÞuα−1
�

1−ð1þ uβÞ−1=b
�r=a

du

ðon substitution u ¼
1−ð1−xaÞb

βð1−xaÞb
Þ

¼
1

ΓðαÞ
∑
∞

j¼0
ð−1Þj

r=a

j

 !

ð

∞

0

exp ð−uÞuα−1ð1þ uβÞ−j=bdu

¼
1

ΓðαÞ
∑
∞

j¼0
∑
∞

k¼0
ð−1Þjþk

r=a

j

 !

j=bþ k−1

k

 !

ð

∞

0

exp ð−uÞβkuαþk−1du

¼
βk

ΓðαÞ
∑
∞

j¼0
∑
∞

k¼0
ð−1Þjþk

r=a

j

 !

j=bþ k−1

k

 !

Γðαþ kÞ:

(13)

Upper bounds for the r-th ordermoment: Since
n
k

� �

≤ nk

k! , for 1 ≤ k ≤ n, fromEq. (13), one canwrite

EðXrÞ≤ ðraÞð
j
b þ k−1Þ

� �

þ
βk

ΓðαÞ∑
∞

j¼0∑
∞

k¼0ð−1Þ
jþk ðr=aÞj

j!
ðj=bþk−1Þk

k!

� �

Γðαþ kÞ, provided r/a and j/b+k−1 are

both integers. Employing successively, the generalized series expansion of
�

1−ð1þ βuÞ−1=b
�j=a

, the

characteristic function forX~GKða;b;α;θÞwill be given by [fromEq. (3)]

φXðtÞ ¼
1

ΓðαÞ

ð1

0

eitxf ðxÞdx

¼
1

ΓðαÞ

ð

∞

0

uα−1e−u exp
�

it
�

1−ð1þ βuÞ−1=b
�1=a�

du

on substitution u ¼
1−ð1−xaÞb

βð1−xaÞb

¼
1

ΓðαÞ
∑
∞

j¼0

ð

∞

0

�

it
�

1−ð1þ βuÞ−1=b
�1=a�j

j!
uα−1e−udu

¼
1

ΓðαÞ
∑
∞

j¼0
∑
∞

k1¼0
∑
∞

k2¼0
ð−1Þk1þk2βk2ðitÞj

j=a
k1

� �

k1=b
k2

� �

Γðαþ k2Þ:

(14)

If j/a and k1/b are integers then in Eq. (14), the second and third summations will stop at j/a and

k1/b, respectively.

If we denote the median by T, then the mean deviation from the mean, DðμÞ, and the mean

deviation from the median, DðTÞ, can be written as
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DðμÞ ¼ EjX−μj ¼ 2μGðμÞ−2

ðμ

−∞

xf ðxÞdx: (15)

DðTÞ ¼ EjX−Tj ¼ μ−2

ðT

−∞

xf ðxÞdx: (16)

Now, consider

It ¼

ðt

0

xf ðxÞdx

¼

ðt

0

xab

exp −
1−ð1−xaÞb

βð1−xaÞb

 !

ΓðαÞβα

·

1

ð1−xaÞ2
1−ð1−xaÞb

βð1−xaÞb

 !α−1

xa−1dx:

(17)

Using the substitution u ¼ 1−ð1−xaÞb

βð1−xaÞb
in Eq. (17), we obtain

It ¼
1

ΓðαÞ

ð

1−ð1−taÞb

βð1−taÞb

0

�

1−ð1þ uβÞ−1=b
�1=a

uα−1e−udu

¼
1

ΓðαÞ
∑
∞

j¼0
∑
∞

k¼0
ð−1ÞjβkðitÞj

1=a
j

� �

j=bþ k−1
k

� �

Γðα;
1−ð1−taÞb

βð1−taÞb
Þ,

(18)

where we used successively binomial series expansion.

By using Eqs. (2) and (18), the mean deviation from the mean and the mean deviation from the

median are, respectively, given by

DðμÞ ¼ 2μ

Γ α;
1−ð1−maÞb

βð1−maÞb

 !

ΓðαÞ
−2Iμ:

DðMÞ ¼ mu−2IM:

(19)

4.1. Entropy

One useful measure of diversity for a probability model is given by Renyi’s entropy. It is

defined as IRðρÞ ¼ ð1−ρÞ−1log
�

ð

f ρðxÞdx
�

, where ρ > 0 and ρ ≠ 1. If a random variable X has a

GK distribution, then we have

f ρðxÞ ¼
ab

ΓðαÞβα

� �ρ

exp −
ρð1−ð1−xaÞbÞ

βð1−xaÞb

 !

·

1

ð1−xaÞ2ρ
1−ð1−xaÞb

βð1−xaÞb

 !ρðα−1Þ

xρða−1Þ (20)

Next, consider the integral
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ð1

0

f ρðxÞdx ¼ ab
ΓðαÞβα

� �ρ

ρ−1

ð

∞

0

uα−1 exp ð−uÞ
�

1−ð1þ βu1=ρÞ−1=b
�1=a

du

ðon substitution u ¼ 1−ð1−xaÞb

βð1−xaÞb

� �ρ

Þ:

(21)

Now, using successive application of the generalized binomial expansion, we can write

�

1−ð1þ βu1=ρÞ−1=b
�1=a

¼ ð−1Þρ−1 ∑
∞

j¼0
∑
∞

k¼0
ð−1Þj

ρ−1
j

� �

1=bþ k−1
k

� �

βkuk=ρ: (22)

Hence, the integral in Eq. (21) reduces to

ð1

0

f ρðxÞdx ¼ ab
ΓðαÞβα

� �ρ

ρρα−kð−1Þρ−1 ∑
∞

j¼0
∑
∞

k¼0
ð−1Þ

j
ρ−1
j

� �

1=bþ k−1
k

� �

βkΓðραþ kÞ ¼ δðρ;α;β;a;bÞ, say

(23)

Therefore, the expression for the Renyi’s entropy will be

IRðρÞ ¼ ð1−ρÞ−1log
�

δðρ;α;β;a;bÞ
�

(24)

5. Maximum likelihood estimation

In this section, we address the parameter estimation of the GK(α, β, a, b) under the classical set

up. Let X1, X2, …, Xn be a random sample of size n drawn from the density Eq. (3). The log-

likelihood function is given by

ℓ ¼ −α log β−n log ΓðαÞ þ n log aþ n log bþ ða−1Þ∑
n

i¼1
log Xi

−∑
n

i¼1

1−ð1−Xa
i Þ

b

βð1−Xa
i Þ

b
−2∑

n

i¼1
logð1−Xa

i Þ þ ðα−1Þ∑
n

i¼1
log

1−ð1−Xa
i Þ

b

βð1−Xa
i Þ

b

 !

:

(25)

The derivatives of Eq. (13) with respect to α, β, a, and b are given by

∂

∂α
ℓ ¼ −nlog β−Ψ ðαÞ þ ∑

n

i¼1
log

1−ð1−Xa
i Þ

b

βð1−Xa
i Þ

b

 !

; (26)

where Ψ ðαÞ ¼ ∂
∂α logΓðαÞ,

∂

∂β
ℓ ¼ −

α

β
þ β−2 ∑

n

i¼1

1−ð1−Xa
i Þ

b

βð1−Xa
i Þ

b
−ðα−1Þlog

1−ð1−Xa
i Þ

b

βð1−Xa
i Þ

b

 ! !

: (27)
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∂

∂a
ℓ ¼

n

a
þ ∑

n

i¼1
logXi þ 2∑

n

i¼1
Xa

i ð1−X
a
i Þ−1logXi

þ
bðα−1Þ

β
∑
n

i¼1

1−ð1−Xa
i Þ

b

βð1−Xa
i Þ

b

 !−1
Xa

i logXi

ð1−Xa
i Þ

bþ1
−
1

β
∑
n

i¼1

Xa
i logXi

ð1−Xa
i Þ

bþ1

(28)

∂

∂b
ℓ ¼

n

b
þ
1

β
−1þ ∑

n

i¼1
logð1−Xa

i Þ 1−
α−1

β

� �

1−ð1−Xa
i Þ

b

ð1−Xa
i Þ

b

 ! !

: (29)

The MLEs α̂, β̂; â, and b̂ are obtained by setting Eqs. (26−29) to zero and solving them

simultaneously.

To estimate the model parameters, numerical iterative techniques must be used to solve these

equations. We may investigate the global maxima of the log likelihood by setting different

starting values for the parameters. The information matrix will be required for interval estima-

tion. The elements of the 4 + 4 total observed information matrix (since expected values are

difficult to calculate), Jðθ
!
Þ ¼ Jr;sðθ

!
Þ (for r;s ¼ α;β;a;b), can be obtained from the authors under

request, where θ
!
¼ ðα, β;a;bÞ. The asymptotic distribution of ð

^
θ
!
−θ
!
Þ is N4ð0

!
;KðθÞ−1Þ, under the

regularity conditions, where KðθÞ ¼ E
�

Jðθ
!
Þ
�

is the expected information matrix, and Jð
^
θ
!
Þ−1 is

the observed information matrix. The multivariate normal N4ð0
!

;KðθÞ−1Þ distribution can be

used to construct approximate confidence intervals for the individual parameters.

5.1. Simulation study

In order to assess the performance of the MLEs, a small simulation study is performed using the

statistical software R through the package (stats4), command MLE. The number of Monte Carlo

replications was 20,000 For maximizing the log-likelihood function, we use the MaxBFGS subrou-

tine with analytical derivatives. The evaluation of the estimates was performed based on the

following quantities for each sample size; the empirical mean squared errors (MSEs) are calculated

using the R package from the Monte Carlo replications. The MLEs are determined for each

simulated data, say, ðα̂ i;β̂ i;âi;b̂iÞ for i ¼ 1; 2;…; 20; 000, and the biases and MSEs are computed by

biashðnÞ ¼
1

20000
∑

20000

i¼1
ðĥi−hÞ, (30)

and

MSEhðnÞ ¼
1

20000
∑

20000

i¼1
ðĥi−hÞ

2
; (31)

for h ¼ α;β;a;b. We consider the sample sizes at n = 100, 200, and 500 and consider different

values for the parameters . The empirical results are given in Table 1. The figures in Table 1

indicate that the estimates are quite stable and, more importantly, are close to the true values for

these sample sizes. Furthermore, as the sample size increases, the MSEs decrease as expected.
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6. Reliability parameter

The reliability parameter R is defined as R ¼ PðX > YÞ, where X and Y are independent

random variables. For a detailed study on the possible applications of the reliability parameter,

an interested reader is suggested to look at Ref. [4, 5]. If X and Y are two continuous and

independent random variables with the cdf’s F1ðxÞ and F2ðyÞ and their pdf’s f 1ðxÞ and f 2ðyÞ,
respectively, then the reliability parameter R can be written as

R ¼ PðX > YÞ ¼

ð

∞

−∞

F2ðtÞf 1ðtÞdt: (32)

Theorem 4. Let X~GK(a, b, α1, β1) and Y~(a, b, α2, β2), then

R ¼ ∑
∞

p¼0

ð−1Þp

p!ðα2 þ pÞΓðα1Þ

β1
β2

� �pþα2

Γðα1 þ α2 þ pÞ: (33)

Proof: From Eqs. (2) and (3), we have

Sample size Actual value Bias MSE

n α β a b α̂ β̂ â b̂ α̂ β̂ â b̂

100 0.5 0.5 2 4 −0.417 −0.419 0.355 −0.393 0.051 0.046 0.053 0.97

0.5 0.5 3 5 −0.773 0.324 −0.214 −0.342 0.018 0.042 0.098 0.626

0.7 0.8 4 3 0.489 −0.246 −0.623 0.482 0.015 0.121 0.106 0.167

0.9 0.7 6 4 0.188 0.979 −0.509 0.056 0.048 0.022 0.044 0.114

1 1.5 0.9 0.6 0.178 −0.498 −0.429 −0.545 0.427 0.028 0.092 0.495

1.5 2 0.6 0.8 −0.084 −0.363 −0.405 −0.220 0.953 0.018 0.073 0.572

200 0.5 0.5 2 4 .072 0.361 0.049 0.073 0.022 0.023 0.024 0.313

0.5 0.5 3 5 0.518 0.184 0.084 0.115 0.008 0.022 0.045 0.578

0.7 0.8 4 3 0.316 0.159 0.050 −0.329 0.006 0.059 0.044 0.158

0.9 0.7 6 4 0.137 −0.049 0.131 −0.032 0.018 0.010 0.020 0.095

1 1.5 0.9 0.6 0.125 0.475 0.086 0.242 0.064 0.013 0.028 0.147

1.5 2 0.6 0.8 0.034 0.173 0.224 −0.150 0.401 0.008 0.036 0.432

500 0.5 0.5 2 4 −0.046 −0.028 −0.036 −0.047 0.009 0.011 0.011 0.084

0.5 0.5 3 5 −0.051 −0.111 −0.035 0.002 0.004 0.010 0.022 0.018

0.7 0.8 4 3 −0.0730 −0.052 0.046 −0.022 0.004 0.031 0.024 0.036

0.9 0.7 6 4 −0.102 −0.02 −0.098 −0.023 0.008 0.005 0.010 0.021

1 1.5 0.9 0.6 −0.078 −0.052 −0.017 0.003 0.027 0.007 0.012 0.015

1.5 2 0.6 0.8 0.007 −0.069 0.066 −0.085 0.136 0.004 0.015 0.013

Table 1. Bias and MSE of the estimates under the maximum likelihood method.
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R ¼

ð1

0

γ1 α2;
1−ð1−taÞb

β2ð1−t
aÞb

 ! ab exp −
1−ð1−taÞb

β1ð1−t
aÞb

� �

Γðα1Þβ
α
1

·

1

ð1−taÞ2
1−ð1−taÞb

β1ð1−t
aÞb

 !α1−1

ta−1dt: (34)

Using the series expansion for the incomplete gamma function γ1ðk;xÞ ¼ xk∑∞p¼0
ð−xÞp

k!ðkþpÞ, and

using the substitution u ¼ 1−ð1−taÞb

β1ð1−t
aÞb
, Eq. (34) reduces to

R ¼ ∑
∞

p¼0

ð−1Þp

p!ðα2 þ pÞΓðα1Þ

uβ1
β2

� �pþα2

uα1−1 exp ð−uÞdu

¼ ∑
∞

p¼0

ð−1Þp

p!ðα2 þ pÞΓðα1Þ

β1
β2

� �pþα2

Γðα1 þ α2 þ pÞ:

(35)

Hence the proof. W

7. Order statistics

Here, we derive the general r-th order statistic and the large sample distribution of the sample

minimum and the sample maximum based on a random sample of size n from the GK(α, β, a, b)

distribution. The corresponding density function of the r-th order statistic,Xr:n; from Eq. (3) will be

f Xr:n
ðxÞ ¼

1

Bðr;n−rþ 1Þ
ðFðxÞÞr−1ð1−FðxÞÞn−rf ðxÞ

¼
f ðxÞ

Bðr;n−rþ 1Þ
∑
r−1

j¼0
ð−1Þj

r−1
j

� �

Γðα;β−1
1−ð1−xar:nÞ

b

ð1−xar:nÞ
b Þ

ΓðαÞ

0

B

@

1

C

A

n−rþj

· Ið0 < x < 1Þ:

(36)

Using the series expression for the incomplete gamma function: γ1ðα;xÞ ¼ ∑∞k¼0
e−xðxÞαþk

αðαþ1Þ⋯ðαþkÞ, the

pdf of Xr:n can be written as

f r:nðxÞ ¼
1

Bðr;n−rþ 1Þ
f ðxÞ∑

r−1

j¼0
ð−1Þj

r−1

j

� �

∑
∞

k¼0

exp −
1−ð1−xar:nÞ

b

βð1−xar:nÞ
b

� �

1−ð1−xar:nÞ
b

βð1−xar:nÞ
b

� �αþk

ΓðαÞαðαþ 1Þ⋯ðαþ kÞ

0

B

@

1

C

A

n−rþj

¼
f ðxÞ

Bðr;n−rþ 1Þ
∑
r−1

j¼0
∑
∞

k1

⋯ ∑
∞

kn−rþj¼0
ð−1Þjþsk r−1

j

� �

exp −ðn−rþ jÞ
1−ð1−xar:nÞ

b

βð1−xar:nÞ
b

 !

·

1−ð1−xar:nÞ
b

ð1−xar:nÞ
b

� �skþðn−rþjÞα

ðΓðαÞÞn−rþjβskþðn−rþjÞαpk

¼
1

Bðr;n−rþ 1Þ
∑
n−r

j¼0
∑
∞

k1

⋯ ∑
∞

kn−rþj¼0
ð−1Þjþsk r−1

j

� �

·

Γðsk þ ðrþ jÞαÞ

ðΓðαÞÞn−rþjpk
f ðxjsk þ ðn−rþ jÞα;β;a;bÞ,

(37)
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where sk ¼ ∑
n−rþj

i¼1
ki and pk ¼ ∏

n−rþj

i¼1
ðki þ αÞ:

From Eq. (37), it is interesting to note that the pdf of the r-th order statistic Xr:n can be

expressed as an infinite sum of the GK pdf ’s.

8. Application

Here, we consider two well-known illustrative data sets which are used to show the efficacy of

the GK distribution. For details on these two data sets [6, 7], the second data set in Table 2 is from

Ref. [8], and it represents the fatigue life of 6061-T6 aluminum coupons cut parallel with the

direction of rolling and oscillated at 18 cycles per second. The GK distribution is fitted to the first

data set and compared the result with the Kumaraswamy, gamma-uniform [9], and beta-Pareto

[10]. These results are reported in Table 3. The results show that gamma-uniform, GK distribu-

tions provide adequate fit to the data. Figure 3 displays the empirical and the fitted cumulative

distribution functions. This figure supports the results in Table 3. A close look at Figure 3

indicates that GK distribution provides better fit to the left tail than the gamma-uniform distri-

bution. This is due to the fact that GK distribution can have longer left tail (Figure 3).

In addition, to check the goodness-of-fit of all statistical models, several other goodness-of-fit

statistics are used and are computed using computational package Mathematica. The MLEs

are computed using N maximize technique as well as the measures of goodness-of-fit statistics

including the log-likelihood function evaluated at the MLEs (l), Akaike information criterion

(AIC), corrected Akaike information criterion (AICC), consistent Akaike information criterion

(CAIC), the Anderson-Darling (A*), the Cramer-von Mises (W*), and the Kolmogrov-Smirnov

(K-S) statistics with their p values to compare the fitted models. These statistics are used to

evaluate how closely a specific distribution with cdf (2) fits the corresponding empirical

distribution for a given data set. The distribution with better fit than the others will be the one

having the smallest statistics and largest p value. Alternatively, the distribution for which one

70 90 96 97 99 100 103 104 104 105

107 108 108 108 109 109 112 112 113 114

114 114 116 119 120 120 120 121 121 123

124 124 124 124 124 128 128 129 129 130

130 130 131 131 131 131 131 132 132 132

133 134 134 134 134 134 136 136 137 138

142 142 144 144 145 146 148 148 149 151

151 152 155 156 157 157 157 157 158 159

162 163 163 164 166 166 168 170 174 196

212

Table 2. Fatigue life of 6061-T6 aluminum data.
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obtains the smallest of each of these criteria (i.e., AIC, AICC, K-S, etc.) will be most suitable

one. The mathematical equations of those statistics are given by

• AIC ¼ −2ℓðθ̂Þ þ 2q

• AICC ¼ AICþ 2qðqþ1Þ
n−q−1

• CAIC ¼ −2ℓðθ̂Þ þ 2qn
n−q−1

• A�
0 ¼

2:25
n2

þ 0:75
n þ 1

� �

−n− 1
n∑

n
i¼1ð2i−1Þlog

�

zið1−zn−iþ1Þ
�� �

• W�
0 ¼

0:5
n þ 1

� �

zi−
2i−1
2n

� �2
þ 1

12n

h i

• K−S ¼ Max i
n −zi;zi−

i−1
n

� �

,

where ℓðθ̂Þ denotes the log-likelihood function evaluated at the maximum likelihood esti-

mates, q is the number of parameters, n is the sample size and zi ¼ cdf ðyiÞ, the yi ’s being the

ordered observations.

Lieblein and Zelen [6] proposed a five parameter beta generalized Pareto distribution and

fitted the data in Table 4 and compared the result with beta-Pareto and other known distribu-

tions. The results of fitting beta generalized Pareto and beta-Pareto from Ref. [8] are reported in

Table 4 along with the results of fitting the Pareto (IV) and GK distributions to the data. The KS

value from Table 4 indicates that the GK distribution provides the best fit. The fact that GK

Distribution Kumaraswamy Gamma-uniform Beta-Pareto Gamma-Kumaraswamy

Parameter estimates â ¼ 0:653 α̂ ¼ 7:528 ĉ ¼ 5:048 α̂ ¼ 7:891

b̂ ¼ 1:1182 β̂ ¼ 2:731 β̂ ¼ 0:401 β̂ ¼ 0:785

â ¼ 6:49 θ̂ ¼ 6:417 â ¼ 5:352

b̂ ¼ 0:932 b̂ ¼ 1:735

Log likelihood −162.34 −116.58 −113.36 −113.25

AIC 217.38 119.45 167.78 107.85

AICC 218.36 120.37 168.91 108.43

CAIC 218.36 120.37 168.91 108.43

A�
0 12.164 0.5951 1.3125 0.4282

W�
0 2.8937 0.0931 0.1317 0.04893

K-S 0.5290 0.09521 0.4245 0.0492

K-S p-value 0.0000 0.9140 0.8374 0.9978

Table 3. Goodness of fit of deep-groove ball bearings data.
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distribution has the least number of parameters than beta generalized Pareto and beta-Pareto

adds an extra advantage over them. Figure 4 displays the empirical and the fitted cumulative

distribution functions. This figure supports the results in Table 4.

Figure 3. cdf for fitted distributions of the endurance of deep-groove ball bearings data.

Distribution Kumaraswamy Beta-Pareto Beta generalized Pareto gamma-Kumaraswamy

Parameter estimates δ̂ ¼ 0:235 α̂ ¼ 485:470 α̂ ¼ 12:112 α̂ ¼ 4:87

γ̂ ¼ 2:4926 β̂ ¼ 162:060 β̂ ¼ 1:702 β̂ ¼ 3:352

k̂ ¼ 0:3943 μ̂ ¼ 40:564 â ¼ 1:1722

θ̂ ¼ 3:910 k̂ ¼ 0:273 b̂ ¼ 2:0154

θ̂ ¼ 54:837

Log likelihood −572.39 −517.33 −457.85 −417.36

AIC 1018.83 925.30 925.70 878.45

AICC 1018.956 926.01 926.84 879.63

CAIC 1018.956 926.01 926.84 879.63

A
�

0 4.1745 1.0083 0.6584 0.4921

W
�

0 0.6739 0.2827 0.1195 0.0822

K-S 0.4723 0.091 0.070 0.064

K-S p-value 0.000 0.248 0.537 0.736

Table 4. Parameter estimates for the fatigue life of 6061-T6 aluminum coupons data.
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9. Characterization of GK distribution

In this section, we present characterizations of GK distribution in terms of the ratio of two

truncated moments. For the previous works done in this direction, we refer the interested

readers to Glänzel [11–14] and Hamedani [15–17]. For our characterization results, we employ

a theorem due to Ref. [11], see for further details. The advantage of the characterizations given

here is that cdf F need not have a closed form. We present here a corollary as a direct

application of the theorem discussed in details in Ref. [11].

Corollary 1. Let X : Ω ! ð0; 1Þ be a continuous random variable and let

hðxÞ ¼ βα−1ð1−xaÞbðα−2Þþ1½1−ð1−xaÞb�1−α and gðxÞ ¼ hðxÞ exp −
1−ð1−xaÞb

βð1−xaÞb

� �

for x∈ð0; 1Þ: Then X has

pdf (3) if and only if the function η defined in Theorem 5 has the form

ηðxÞ ¼
1

2
exp −

1−ð1−xaÞb

βð1−xaÞb

 !

; 0 < x < 1: (38)

Proof. Let X has pdf (3), then

�

1−FðxÞ
�

E½hðXÞ j X ≥ x� ¼
1

βα−1ΓðαÞ
exp −

1−ð1−xaÞb

βð1−xaÞb

 !

; 0 < x < 1; (39)

Figure 4. cdf for fitted distributions of the fatigue life of 6061-T6 Aluminum data.
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and

�

1−FðxÞ
�

E½gðXÞ j X ≥ x� ¼
1

2βα−1ΓðαÞ
exp −2

1−ð1−xaÞb

βð1−xaÞb

 !( )

; 0 < x < 1; (40)

and finally

ηðxÞhðxÞ−gðxÞ ¼ −
hðxÞ

2
exp −

1−ð1−xaÞb

βð1−xaÞb

 !

< 0; f or 0 < x < 1: (41)

Conversely, if η is given as above, then

s′ðxÞ ¼
η′ðxÞ hðxÞ

ηðxÞ hðxÞ−gðxÞ
¼

ab

β
xa−1ð1−xaÞ−ðbþ1Þ

; 0 < x < 1; (42)

and hence

sðxÞ ¼
1

β
ð1−xaÞ−b; 0 < x < 1: (43)

Now, in view of Theorem 5, X has pdf (3).

Corollary 2. Let X : Ω ! ð0; 1Þ be a continuous random variable and let h(x) be as in Proposi-

tion 1. Then, X has pdf (3) if and only if there exist functions g and η defined in Theorem 5

satisfying the differential equation

η′ðxÞhðxÞ

ηðxÞhðxÞ−gðxÞ
¼

ab

β
xa−1ð1−xaÞ−ðbþ1Þ

; 0 < x < 1: (44)

Remarks 1. (a) The general solution of the differential equation in Corollary 1 is

ηðxÞ ¼ exp
1−ð1−xaÞb

βð1−xaÞb

 !

−

ð

ab

β
xa−1ð1−xaÞ−ðbþ1Þ exp −

1−ð1−xaÞb

βð1−xaÞb

 !

�

hðxÞ
�

−1

gðxÞdxþD

" #

; (45)

for 0 < x < 1, where D is a constant. One set of appropriate functions is given in Proposition 1

with D = 0

(b) Clearly, there are other triplets of functions (h, g, η) satisfying the conditions of Theorem 5.

We presented one such triplet in Proposition 1.

10. Concluding remarks

A special case of the gamma-generated family of distributions, the gamma-Kumaraswamy

distribution, is defined and studied. Various properties of the gamma-Kumaraswamy distribu-

tion are investigated, including moments, hazard function, and reliability parameter. The new
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model includes as special sub-models the gamma and Kumaraswamy distribution. Also, we

provide various characterizations of the gamma-Kumaraswamy distribution. An application

to a real data set shows that the fit of the new model is superior to the fits of its main sub-

models. As future work related to this univariate GK model, we will consider the following:

• A natural bivariate extension to the model in Eq. (1) would be

f ðx;yÞ∝
gðx;yÞ

ΓðαÞβαG
2
ðx;yÞ

exp −

gðx;yÞ

βbarGðx;yÞ

� �

gðx;yÞ

βbarGðx;yÞ

� �α−1

; x > 0;y > 0: (46)

In this case, exact evaluation of the normalizing constant would be difficult to obtain, even

for a simple analytic expression of a baseline bivariate distribution function,G(x, y). Numer-

ical methods such as Monte Carlo methods of integration might be useful here. We will

study and discuss structural properties of such a bivariate GK model.

• Extension of the proposed univariate GK model to multivariate GK models and discuss the

associated inferential issues. It is noteworthy to mention that classical methods of estima-

tion, such as for example, maximum likelihood method of estimation might not be a good

strategy because of the enormous number of model parameters. An appropriate Bayesian

inference might be the only remedy. In that case, wewill separately study two different cases

of estimation: (a) with non-informative priors and (b) with full conditional conjugate priors

(Gibbs sampling). Since the GK distribution is in the one parameter exponential family, a

reasonable choice for priors for α and βmight well be gamma priors with appropriate choice

of hyper-parameters. For prior choices of the parameters that are from the baseline G(.)

distribution function, a data-driven prior approach will be more suitable.

• A discrete analog of the univariate GK model with a possible application in modeling rare

events.

• Construction of a new class of GK mixture models by adopting Marshall-Olkin method of

obtaining new distribution.
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