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Abstract

Osteosarcoma (OS) is the most common malignant primary bone tumor in children 
and adolescents and features rapid development, strong metastatic ability, and poor 
prognosis. It has been well established that diverse genetic aberrations and metabolic 
alterations confer the tumorigenesis and development of OS. The intricate metabolism 
and vascularization that contributes to the nutrient and structural support for tumor 
progression should be thoroughly clarified to help us gain novel insights into OS and its 
clinical diagnoses and treatments. With regard to the complex bone extracellular matrix 
(ECM) and local cell populations, we intend to illustrate the interrelationship between 
various microenvironmental signals and the different stages of OS evolution. Solid evi-
dence has noted two crucial factors of the OS microenvironment in the acquisition of 
stem cell phenotypes - transforming growth factor-β1 (TGF-β1) signaling and hypoxia. 
Different cell subtypes in the local environment might also serve as unique contributors 
that interact with each other and communicate with distant cells, thus participating in 
local invasion and metastasis. Proper models have been established and improved to 
reveal the evolutionary footsteps of how normal cells transform into a neoplastic state 
and progress toward malignancy.

Keywords: microenvironment, genetic aberrations, vasculogenesis, niches, models

1. Introduction

Osteosarcoma (OS) is the second highest cause of cancer-related death in children and adoles-

cents. Unfortunately, complete surgical resection fails to eliminate OS due to the early hema-

togenous spread of pulmonary metastases. Despite advanced multi-agent neoadjuvant and 

adjuvant chemotherapies, the clinical outcome for patients with OS unfortunately remains 
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discouraging, and the long-term survival rate for high-grade OS remains poor [1]. It is urgent 

to identify innovative diagnostic and prognostic markers as well as effective therapeutic 
targets.

The vast majority of OS arises in the metaphyseal regions adjacent to physes with a strong 

capacity of proliferation, including the distal femur, proximal tibia, and proximal humerus 

[2]. Evidence has elucidated that the complex etiology of OS is characterized by genomic 

instability, highly abnormal karyotypes, and multiple genomic aberrations with copy num-

ber variations occurring in multiple chromosomes [3, 4]. The story of how OS originates and 

develops is mysterious and is still the subject of exploration on many fronts.

In addition to the complexity of OS cells, the microenvironment of OS is also dynamic and 

variable with a complex bone extracellular matrix (ECM) and diverse populations of local-

ized cells. Regulating various microenvironmental signals and different niches in OS warrant 
attention. Importantly, the OS microenvironment is characterized by abundant transform-

ing growth factor-β1 (TGF-β1) and hypoxia. These conditions induce non-stem-like OS cells 

to adopt cancer stem cell characteristics, which in turn promote tumorigenesis and chemo-

resistance [5]. In addition, identifying distinct metabolic patterns and vascularization in OS 
should be considered in more detail and could provide a potential framework for clinical 

applications.

By reviewing the literature on classical and cutting-edge studies, we will discuss the regula-

tion of microenvironmental signals during OS development and illustrate novel models for 

the study of OS.

2. Cells of origin: tumorigenesis

When a normal cell acquires the first cancer-promoting mutation(s) and initiates neoplasm, 
it is termed as cell of origin. As more information is gathered on the characteristic features of 

cell of origin, it is not difficult to create a clear assessment and better understanding on tumor 
evolution, which may remarkably lead to clinical improvements.

OS was believed to originate from bone mesenchymal stem cells (MSCs) or osteoprogeni-

tors [6]. The deficiency of p53 alone or in combination with pRb in undifferentiated adipose-
derived MSCs (ASCs) or bone marrow-derived MSCs (BM-MSCs) promotes metastatic 

osteoblastic OS development upon intrabone (i.b.) or periosteal (p.) orthotopic inoculation 

in immunodeficient mice [7]. In addition, the protein expression of cyclin-dependent kinase 

inhibitor 2A (CDKN2A)/p16 was identified as a sensitive prognostic marker in OS patients. 
Aneuploidy, translocations, and homozygous loss of the Cdkn2 region might have caused the 

malignant transformation of MSCs, which eventually evolved to OS in xenografted mice [8]. 

These findings proved that MSCs with genetic mutations might eventually develop into OS. 
Moreover, excision of p53-floxed alleles, which are p53 genes flanked by loxP sites that could 
be edited, in the osteoblastic lineage mediated by an osterix (OSX)-Cre transgene would cause 

spontaneous OS in mice. This model traced the cells of origin to osteoprogenitors because the 

excision was driven by the osterix promoter expressed in osteoprogenitor cells [6].
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Nonetheless, there have been some other disputes as to the cell of origin for OS (Figure 1). 

Induced pluripotent stem cells (iPSCs) were generated from fibroblasts obtained from a fam-

ily with Li-Fraumeni syndrome (LFS), a rare autosomal dominant syndrome characterized by 
the occurrence of diverse mesenchymal and epithelial neoplasms at multiple sites. LFS iPSC-
derived osteoblasts (OBs) from these individuals have provided a sophisticated model system 

to study the early stages of OS development and elucidate the pathological mechanism of p53 

mutant-associated OS development [9]. Recent research has provided evidence that pericytes, 

a mesenchymal cell population surrounding endothelial cells, could be a cell of origin for 

benign and malignant mesenchymal neoplasms [10]. Lineage-tracing studies in mice were 

accomplished to reveal sarcomas that are driven by the deletion of p53, and desmoid tumors 

that are driven by a mutation in adenoma polyposis coli (Apc) could be derived from neuron-

glial antigen 2/chondroitin sulfate proteoglycan 4 (Ng2/Cspg)-expressing pericytes. They also 

determined the role of β-catenin dysregulation in the neoplastic phenotype.

The etiology of OS is still vague, while its pathogenesis remains mysterious. Generally, 
tumorigenesis is closely associated with inherited gene defects or mutations and exposure 

to exogenous carcinogens. These factors will affect the mutation rate and continually play a 
role in tumor evolution [11]. In the most likely scenario, the unique properties of OS might be 

related to either the genetic or epigenetic aberrations generated from either the cell of origin 

or components in the bone marrow microenvironment, such as the elevated levels of TGF-
β1 and low oxygen tension. Uncovering the relationship between cytogenetic changes and 
microenvironmental signals in tumorigenesis will provide solutions for tumor eradication.

Figure 1. Cells of origin in OS. OS initiation is promoted by multiple genetic alterations (e.g., activation of oncogenes or 

inactivation of tumor suppressor genes). 
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2.1. Tumor suppressor genes and oncogenes

OS results from multiple factors and gene aberrations. During the initiation and progres-

sion of OS, diverse oncogenes or tumor suppressor genes cause aberrant expression and 

hence dysregulate cell proliferation, apoptosis, and angiogenesis. Currently, the etiology and 

pathogenesis research on OS mainly focus on these oncogenes, tumor suppressor genes, and 

multidrug-resistant genes.

OS is a malignant bone cancer with severe chromosomal abnormalities and often has muta-

tions of p53 and pRb. Up to 22% of OS patients carry an abnormal TP53 gene, and the allelic 

loss on chromosome 17p13 was confirmed in 75% of patients by a detection of mutation in the 
germ line [12, 13]. Strong evidence also suggested that p53 could regulate the genomic stabil-

ity, proliferation, and immune properties of MSCs. p53 loss of function in MSCs compromises 

osteogenic differentiation and affects bone tumor microenvironment, both of which influence 
the development of OS [14].

A German group generated the first porcine model of OS by introducing oncogenic TP53R167H 

and KRASG12D mutations as well as overexpressing Myc in porcine MSCs. These transformed 

porcine MSCs, with genomic instability and complex karyotypes, had the ability to develop into 

sarcomas upon transplantation into immunodeficient mice [15]. Other models also indicated that 

intrabone or periosteal inoculation of p53−/− or p53−/−RB−/− BM-MSCs or ASCs originated met-
astatic osteoblastic osteosarcoma (OS). Moreover, the subcutaneous (s.c.) coinfusion of p53−/−
RB−/− MSCs together with BMP-2 resulted in appearance of tumoral osteoid areas [7]. pRb and 

p16(INK4a) are crucial G1-checkpoint proteins that maintain the balance of cellular prolifera-

tion. Deletion of p16 expression is significantly associated with decreased survival in a univariate 
analysis. The loss of pRb activation permits the hyper-proliferation of aberrant cells [16].

The progression of health informatics and the comprehensive study of “big data” have 

brought about new insights of genomic research. OS gene expression was first compared in 
gene expression omnibus (GEO) datasets and genomic aberrations in the International Cancer 
Genome Consortium (ICGC) database to identify differentially expressed genes (DEGs) and 
correlate these with both single-nucleotide polymorphisms (SNPs) and copy number variants 

(CNVs) in OS. The functional annotation of SNP- or CNV-associated DEGs was accomplished 
in accordance with gene ontology analysis, pathway analysis, and protein-protein interac-

tions (PPIs). The PPI network analysis showed that chaperonin containing TCP subunit 3 

(CCT3), COP9 signalosome subunit 3 (COPS3), and WW domain-containing E3 ubiquitin-

protein ligase 1 (WWP1) could be candidate driver genes in OS tumorigenesis [17].

Another study performed a microarray-based comparative genomic hybridization (array-

CGH) analysis on genomic DNA isolated from 41 patients with p53 +/− OS and 10 rhabdo-

myosarcoma samples. Results showed either gains or losses in the recurrent copy number, 

and the regions indicated known candidate oncogenes on mouse chromosomes 9 and 15. 
Furthermore, functional assays proved that the matrix metalloproteinase 13 (MMP13) gene, 

the antiapoptoticgenes Birc2 (cIAP1) and Birc3 (cIAP2) are potential oncogenic drivers in the 
chromosome 9A1 amplicon [18].
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2.2. MicroRNAs and their target genes

MicroRNAs (miRNAs) are a class of small, single-stranded RNA molecules ranging from 

18 to 25 nucleotides in length. miRNAs play important roles in proliferation, differentia-

tion, apoptosis, and other cellular activities through posttranscriptional regulation of genes 
[19, 20]. miRNA signatures are detected in diverse types of cancers such as sarcoma, breast 

and prostate cancer [21–23]. Emerging evidence suggests that miRNAs are involved in the 

pathogenesis of OS and could potentially be developed for use as diagnostic biomarkers and 

therapeutic strategies.

Expression profiling of 723 human miRNAs was performed in seven OS specimens. Of the 
miRNAs tested, 38 were differentially expressed ≥ 10-fold (28 under- and 10 overexpressed) 
as shown in Figure 2A. In this analysis, miRNA-mRNA pairings were identified along with 
copy number changes of their corresponding target genes (Figure 2B). Many of the predicted 

gene targets of differentially expressed miRNAs are involved in intracellular signaling path-

ways important for OS, which include the c-Met, Notch, RAS/p21, mitogen-activated protein 
kinase (MAPK), Wnt, and Jun/Fos pathways [24]. For example, GADD45A, a putative target 
of miR-148a, could promote DNA repair and cell cycle arrest via the p38 MAPK and c-Jun 
N-terminal kinase (JNK) pathways. Overexpression of miR-148a contributed to the down-

regulation of GADD45A in OS, which was associated with multidrug resistance [25]. In this 

set of OS specimens, miR-126 was overexpressed and reported to downregulate the expres-

sion of polo-like kinase 2 (PLK2). PLK2 was proven to undergo transcriptional silencing via 

methylation in various cancer types, thus acting as a presumptive tumor suppressor gene [26]. 

Furthermore, miR-126 could stimulate developmental angiogenesis via vascular endothelial 
growth factor (VEGF) signaling [27].

The expression and either genetic or epigenetic alterations of the miR-34 family were exam-

ined in 117 primary OS samples. The miR-34 family was found to be decreased and undergo 
minimal deletions and epigenetic inactivation in OS cells [28]. Mutations in the TP53 gene 

sequence, functional inhibition of p53 protein, and hypermethylation of the miR-34a pro-

moter are all associated with the loss of miR-34a expression in tumors [29]. miR-34a was 

proven to be involved in the drug resistance, proliferation, and metastasis of OS [30, 31]. 

Sarcomas occur at a high frequency in p53-deficient mice and patients with Li-Fraumeni 
syndrome (LFS). The overexpression of c-Met in these tumors suggested that the miR-34-
p53-c-Met axis could comprise a regulatory gene network that cooperatively controls tumor 

progression in OS [32].

As one of the common target of miR-34a, c-Met is encoded by the MET oncogene, which is 

the receptor for hepatocyte growth factor (HGF). This receptor is overexpressed in a variety 
of human malignancies and stimulates cell proliferation, local invasion, and distant migration 

[33]. Researchers transformed OBs into malignant cells characterized with OS properties via 

overexpression of MET [34]. HGF-c-Met signals can activate the downstream signals of RAS/
MAPK and PI3K-Akt, which enhances the drug resistance of OS and promotes the motility 

and proliferation of sarcoma cells [35, 36].
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3. Osteosarcoma stem cells and dedifferentiation

Cancer stem cells (CSCs) are characterized by self-renewal, pluripotency, and increased cell 

plasticity. Some OS cells expressed specific surface markers of MSCs such as Stro-1, CD105, 
and CD44 [37]. Other evidences suggested that single-cell suspensions were able to form sar-

cospheres in anchorage-independent and serum-free conditions. These spheroids showed 

increased expression of the pluripotency-associated genes OCT4, NANOG, and SOX2 com-

pared with adherent cells [38].

Figure 2. miRNA signature and relevant target genes in OS. (A) Differentially expressed miRNAs more than 10-fold 

in OSs relative to OBs in at least four tumor samples are listed. (B) Genomic status and relative expression of relevant 
target genes. 
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The currently embraced notion assumes that CSCs are critical for the recurrence and metas-

tasis of malignancies, and common chemo- and radiotherapies are ineffective at killing CSCs. 
Thus, there is a need to explore the characteristics of CSCs in OS. CSCs isolated from OS are 

able to self-renew, sustain tumor generation, and confer metastatic potential and drug resis-

tance [39]. The enhanced chemoresistance of the CSC subpopulation appears to be related to 

a more tolerant DNA repair ability [40] as well as an increased drug efflux capacity due to the 
high expression of ATP-binding cassette (ABC) transporters such as P-glycoprotein (MDR-1) 
and the breast cancer-resistant protein (BCRP/ABCG2) [41]. Developing CSC-targeted thera-

pies could yield exciting new approaches for clinical application. The inhibition of ABC trans-

porters is able to sensitize OS-derived sarcospheres to doxorubicin [42]. The nuclear factor 

κB (NF-κB) inhibitor BRM270 can specifically target the SaOS-2 stemlike cell population to 
undergo apoptosis [43].

Normal cells and cancer cells can acquire stem-like properties by several dedifferentiation 
inducers, including transcriptional networks involving key transcription factors (e.g., Oct4, 

Sox2, Nanog), miRNAs (e.g., let-7, miR-200 family), microenvironmental signals (e.g., hypoxia, 
inflammation, autocrine/paracrine oncogenic signaling pathways), epigenetic modifications 
(e.g., DNA demethylation, histone acetylation/methylation), and metabolic reprogramming [44].

Our group has demonstrated the role of the microenvironment and the intracellular context 

of OS on dedifferentiation. TGF-β1 and hypoxia are crucial factors that induce OS cells toward 
a CSC phenotype, which is characterized by the ability to self-renew and pluripotency. The 

dedifferentiated cells induced by TGF-β1 and hypoxia could differentiate into vascular endo-

thelial-like cells (CD31 positive) in either a 3D culture system or xenografts. These cells could 
also form lipid droplets in an adipogenic differentiation medium. Gene set enrichment analy-

sis (GSEA) revealed that gene alterations during the process of dedifferentiation are closely 
correlated with chemoresistance and metastasis in OS patients [5].

3.1. TGF-β1

The expression level of TGF-β1 is related to the metastatic potential of OS patients [45]. 

TGF-β1 suppressed miR-143 expression through a SMAD2/3-dependent mechanism and 
collaboratively upregulated the expression of versican to promote OS cell migration and 

invasion in vitro [46]. Blockage of the TGF-β1 autocrine loop inhibited OS cell proliferation 
and enhanced chemotherapy sensitivity, which might serve as a viable clinical treatment 

[47]. The tumor suppressor p16(INK4) inhibited the paracrine pro-migratory effect on OS 
stromal fibroblasts through the inhibition of TGF-β1 expression/secretion via an ERK1/2-
dependent pathway [48].

OS cells can secrete factors that initiate osteoclast-mediated bone destruction, which coin-

cides with TGF-β1 release from the bone matrix. It was suggested that OS cells might secrete 
TGF-β1 to maintain the stemness of MSCs and promote the production of pro-tumorigenic 
cytokines [49]. Elevated secretion of TGF-β1 by MSCs under hypoxic conditions could pro-

mote the growth, motility, and invasiveness of breast cancer cells [50]. This result indicated a 

possible link between TGF-β1 signaling and hypoxia.
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High TGF-β1 expression occurs in many other types of cancer and is related to the state of 
ECM, angiogenesis, and immune escape [51]. The activation of TGF-β1 signaling triggers the 
epithelial-mesenchymal transition (EMT) and ensures that the transformed cancer cells pos-

sess a stronger capacity of self-renewal, tumorigenesis, and chemo-/radioresistance [52]. In 

OS or other tumor types, solid evidence suggests that TGF-β1 is responsible for promoting 
stemness [5, 53]. The TGF-β1 inhibitor SB525334 significantly inhibited the migration and 
invasion of sphere-forming stemlike cells [54]. In an OS mouse model, either overexpression 

of the natural TGF-β/SMAD signaling inhibitor SMAD7 in OS cells or treatment with the 
TGF-β receptor inhibitor SD208 affected the microarchitectural parameters of the bone and 
inhibited lung metastasis [55]. The natural alkaloid halofuginone, an inhibitor of the TGF-β/
Smad3 cascade, specifically hindered OS progression against lung metastatic dissemination 
[56]. All of these studies revealed that blocking TGF-β resulted in the repression of the tumori-
genic potential of OS cell lines, tumor-associated bone remodeling, and the development of 

metastasis, highlighting TGF-β1 as a promising therapeutic target.

3.2. Hypoxia

The hypoxic niche plays a vital role in regulating tumor cell behavior. During tumor prolifera-

tion, oxygen is unable to diffuse completely throughout the tumor. On the other hand, if newly 
formed blood vessels cannot reach the tumor region, these results in an imbalance between 

oxygen consumption and acquisition and creates a hypoxic microenvironment. Hypoxia-
inducible factors (HIFs) are associated with the maintenance of cellular oxygen equilibrium 
and hypoxia adaptation when oxygen levels cannot meet the demand [57]. Hypoxic signaling 
promotes the expression and function of HIF-1α and HIF-2α.

It has been reported that in OS, HIF-1α is associated with drug resistance and/or radiore-

sistance via either activation of Bcl-2 proapoptotic family-induced AMP-activated protein 

kinase (AMPK) signaling or an autophagy mechanism [58]. The downregulation of HIF-1α 
suppresses OS cell growth by inducing apoptosis [59], and the HIF-1α/CXCR4 pathways 
contribute to metastasis in human OS cells [60]. A recent meta-analysis has suggested that 

overexpression of HIF-1α is a predictive factor for poor outcomes in OS and could serve as a 
promising prognostic biomarker to predict the outcome of OS patients [61, 62].

HIF-2α plays a role in the maintenance of stem cell properties in both normal and cancer stem 
cells [63, 64]. It has been indicated that the long noncoding RNA (lncRNA) TCONS_00004241, 
also known as HIF-2α promoter upstream transcript (HIF2PUT), was associated with the 
sphere-forming capacity of CD133-positive OS stem cells. Overexpression of HIF2PUT 
markedly decreased the percentage of CD133-expressing cells in the MG-63 OS cell line and 
impaired their proliferation, migration, and self-renewal capacities [65]. These results suggest 

that HIF2PUT and the HIF-2α axis could provide a hypoxia-mediated therapeutic strategy to 
targeting stemlike cells in OS.

HIF is highly expressed in CSCs in various types of cancer, and blockade of either HIF-1α or 
HIF-2α activity would significantly attenuate the proliferation and self-renewal of CSCs [66]. 

Targeting the hypoxic microenvironment could be a possible therapeutic strategy to eradicate 

the CSC population in malignant tumors including OS. Researchers exposed highly metastatic 
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mouse OS cells to hyperbaric oxygen and measured the cell viability. Cell proliferation was 

significantly suppressed under hyperbaric oxygen conditions, and a hyperbaric oxygen treat-
ment in combination with carboplatin exhibited significant synergy in the suppression of cell 
proliferation. Concomitant hyperbaric oxygen enhanced the chemotherapeutic effects of car-

boplatin on both tumor growth and lung metastasis and reduced the mortality of OS-bearing 

mice. These findings suggested that the concomitant treatment of hyperbaric oxygen plus 
carboplatin could be an efficient therapeutic strategy for OS treatment [67].

4. Glycolysis in osteosarcoma

Metabolic reprogramming is considered to be a prominent hallmark in cancer [68]. In the 

1920s, Otto Warburg found that cancer cells were prone to glycolysis even under aerobic con-

ditions, while most of the surrounding normal cells underwent oxidative phosphorylation. 

This phenomenon, known as the “Warburg effect,” has been confirmed in cancers from dif-
ferent tissues [69]. Although ATP productivity via glycolysis is lower than that via oxidative 

phosphorylation, glycolysis provides tumor cells with a stronger adaptability to a hypoxic 

environment caused by the lack of vasculature. Furthermore, glycolysis intermediates can 
provide precursors such as lipids, proteins, and nucleotides for the synthesis of macromol-

ecules needed for proliferation [70].

The oxidative phosphorylation levels in different OS cell lines (LM7, 143B, SaOS-2, and HOS) 
were evaluated compared with those in noncancerous counterpart osteoblastic hFOB cells. 
The results showed that two of the OS cell lines (SaOS-2 and HOS) were actively respiring, 
whereas LM7 and 143B were highly glycolytic. Further analysis of the mitochondrion in the 
latter cell lines indicated mitochondrial swelling, depolarization, and membrane permeabili-
zation, all of which could explain their reliance on glycolysis [13].

In OS, glycolysis might be caused by either gene mutation or a hyperactivated metabolic 

pathway. For example, the tumor suppressor p53, which is well characterized in safeguard-

ing the body from developing OS [71], is important in the maintenance of the cytochrome 

C oxidase complex. The dysfunction of p53 can lead to reduced oxygen consumption from 

mitochondrial respiration and enhanced glycolysis [72]. The PI3K-Akt-mTOR pathway, a key 

oncogenic pathway in multiple human cancers that promotes glucose metabolism and cell 

proliferation, is frequently hyperactivated in OS and leads to glycolysis [73, 74].

Although the significance of glycolysis in OS is still under investigation, its value regarding 
clinical diagnosis and treatment has already been proven. 18F-Fluorodeoxyglucose (FDG)-
positron emission tomography/computed tomography (PET/CT) has emerged as a promising 

tool for the diagnosis and prognosis for OS based on its ability to quantify glucose consump-

tion. In several studies, patients with OS had undergone 18F-FDG PET/CT scans to measure 
imaging parameters such as the maximum standardized uptake value, metabolic tumor vol-

ume, and total lesion glycolysis both before and after chemotherapy. Significant differences 
between nonresponding tumors and responding lesions were observed and therefore could be 

used as predictors of the histological response to chemotherapy and patient survival [75, 76].
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Lactate dehydrogenase A (LDHA) is a key enzyme involved in anaerobic glycolysis and converts 
pyruvate into lactate. It is upregulated in OS compared to normal OB cells (hFOB1.19). LDHA 
inhibition could decrease lactate production, inhibit cell proliferation and invasion in vitro, and 

compromise tumorigenesis in vivo [77]. 2-Deoxy-D-glucose (2DG), a glucose analogue, can be 
used as a glycolysis inhibitor which decreases lactate production, enhances oxidative phosphor-

ylation, inhibits the metastatic phenotype in vitro, and delays metastasis in an orthotopic post-

surgical model [78]. 2-DG is also used in combination with either adriamycin (ADR) or paclitaxel 
in animal models for the treatment of human OS and non-small-cell lung cancer [79].

As a heterogeneous entity with multicomponent interactions, the progression of OS depends 

upon reciprocal interactions between the neoplastic cells and the dynamic microenviron-

ment. Tumor microenvironments include ECM, immune cells, endothelial cells, pericytes, 

fibroblasts, MSCs, adipocytes, and other components [80, 81]. Recent studies have described 

metabolic coupling among stromal cells such as cancer-associated fibroblasts (CAFs), adipo-

cytes, immune cells, and neoplastic cells [82–90]. Glycolytic CAFs can provide nutrients such 
as lactates and ketones as fuel for tumor cells [82–84]. Adipocytes produce free fatty acids 
and promote fatty acid oxidation in tumor cells [85]. MSCs cocultured with OS cells can lead 

to metabolic reprogramming in both MSCs and neoplastic cells as described by the Warburg 

effect. After coculturing, MSCs underwent a metabolic shift toward aerobic glycolysis with 
increased lactate production and efflux due to the upregulation of monocarboxylate trans-

porter-4 (MCT-4). In the meantime, OS cells would utilize lactate by increasing MCT-1 expres-

sion to enhance mitochondrial biogenesis and oxidative phosphorylation. Interestingly, these 

MSC-activated SaOS-2 and HOS cells also acquired an increased migratory capacity [91].

5. Angiogenesis and vasculogenic mimicry

Vascularization plays an important role in tumor survival and progression. Angiogenesis and 

vasculogenic mimicry (VM) have been demonstrated to be the two major processes in the 

development of tumor vascularization system, which supplies cancer cells with blood.

The growth, invasion, and metastasis of solid tumors require an adequate blood supply to 

transport nutrition and oxygen as well as metabolic waste and carbon dioxide [68, 92]. Tumors 

have their own vascular system, which is, however, highly abnormal and different from the 
normal vasculature with respect to organization, structure, and function.

OS is a type of malignant bone tumor with abundant blood vessels, indicating the prominent 

functions of the vasculature in OS progression. Increased vasculature could be a poor prog-

nostic factor in human OS [93]. Similarly, a decrease in the number of vessels was shown to 

significantly reduce primary OS growth in a mouse model [94]. Here, we intend to summarize 
the theoretical and clinical findings in OS angiogenesis and VM.

5.1. Angiogenesis in OS

Angiogenesis is a dynamic and programmed process in which new capillaries sprout from 

preexisting vessels, and is induced by different triggers (e.g., hypoxia) that modulate a broad 
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range of molecular mechanisms manipulating tip cells and stalk cells [95]. Angiogenesis 

firstly demonstrated its correlation to tumor growth by inserting a transparent chamber into 
mouse ears [96]. Subsequently, in vitro tumor-induced angiogenesis was established with a 

wound chamber [97].

Clinical studies on OS angiogenesis are highly controversial. The first clinical discussion on 
the relationship between angiogenesis and long-term outcomes of patients with OS was pub-

lished in 2001 [98]. A retrospective immunohistochemical study was performed on biopsy 

specimens from non-metastatic OS patients with CD34 antibody staining and quantified the 
average intratumoral microvessel density (MVD) per field, but results showed no correlation 
with long-term outcome in patients with non-metastatic OS. Additionally, angiogenesis was 

correlated with the overall and disease-free survival as well as the metastasis rates because 

patients with a higher MVD had a shorter survival time and a higher metastatic rate [99]. 

However, the quantification and analysis have been hampered by heterogeneous OS vascu-

larization and non-standardized methods in detecting microvessels and small study cohorts. 

Recent study applied highly standardized whole-slide imaging to overcome these limitations. 

Intratumoral vascularization was quantified at the time of diagnosis in whole sections from 
a multicenter cohort of 131 osteosarcoma patients. The results suggested that patients with 
low OS vascularization have a prolonged survival and good response to neoadjuvant chemo-

therapy [100]. Moreover, inhibition of angiogenesis in murine OS by the angiogenic inhibitor 

TNP470 indicated an antitumor ability with higher cancer cell death rate and an effective sup-

pression of pulmonary metastasis in an OS mouse model [101].

Vascular endothelial growth factor (VEGF), a homo-dimeric protein also known as VEGFA, 
is a key trigger to induce either physiological or pathological angiogenesis including OS 

[102]. Elevated expression of VEGF in primary OS notably promotes angiogenesis, increases 
the local MVD and perimeter, and subsequently leads to a prominently higher rate (p < 0.05) 
of pulmonary metastasis. These findings correlate with a worse outcome in terms of the dis-

ease-free survival and overall survival in untreated patients [103, 104]. Furthermore, patients 
with serum VEGF > 1000 pg/ml had significantly worse survival than patients with levels 
< 1000 pg/ml (p = 0.002) despite the lack of a link between serum VEGF levels and the tumor 
volume as well as the sensitivity to preoperative chemotherapy [105]. The transcription level 

of VEGF isoform variants and VEGF receptors (Flt-1 and KDR) was detected in 30 OS sam-

ples. Interestingly, the cell-retained VEGF isoforms VEGF165 and VEGF189 might be critical 
for neovascularization in OS, while the soluble VEGF121 isoform is insufficient to stimulate 
neovascularization in this type of neoplasm [106]. This also indicated that only specific types 
of VEGF isoforms have the ability to induce OS angiogenesis. Orthotopic injection of human 
OS cells with either high or low VEGF expression into severe combined immunodeficient 
mice uncovered that high VEGF-expressing OS cells developed more malignant xenografts 
with earlier neoplasm formation, larger tumor size, more frequent invasion to the peritu-

moral tissue, and a higher rate of lung metastasis [107]. VEGF blockade by sFlt1 in a murine 
model partially abrogated the angiogenesis and delayed VEGF-promoted tumor growth 
[108]. In view of the substantial influence of VEGF in OS progression, molecular regulation 
of VEGF in tumorigenesis and progression of OS has been studied in recent years. STAT3 
has been determined as an important upstream regulator in VEGF expression, while the 
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PI3K-Akt pathway has been suggested as the main signaling cascade downstream of VEGF 
that mediates OS angiogenesis [109, 110]. Several studies also showed that members of the 

interleukin (IL) family, such as IL-6 and IL-17, could induce VEGF expression and promote 
angiogenesis in OS [111, 112]. The CXCL12-CXCR4 axis has additionally been demonstrated 
to be involved in promoting VEGF expression [113]. As opposed to the factors mentioned 

above, miR-145 targets VEGF and inhibits angiogenesis as well as the invasion and metasta-

sis of OS cells [114].

Endostatin, a 20 kDa fragment of collagen XVIII, is a member of a group of endogenous 
anti-angiogenic proteins activated by proteolytic processing. Endostatin inhibits endothe-

lial cell proliferation, migration, and invasion by modifying 12% of the human genome to 
downregulate pathological angiogenesis without exerting side effects, which makes this 
protein a broad-spectrum angiogenesis inhibitor. Anti-angiogenic therapy by endostatin 

was performed in OS-burdened mice models [115, 116]. Notably, the number of pulmonary 

metastatic lesions was lower, and the size of the pulmonary metastatic lesions was smaller 

in the group treated with endostatin compared to control group. Thus, anti-angiogenic 

therapy might be a potential treatment for OS because it provides patients with a promis-

ing improvement to their prognosis, although anti-angiogenic therapies cannot thoroughly 

cure OS [117].

5.2. Vasculogenic mimicry

Apart from the important role of angiogenesis in OS vessel network formation, VM has 

emerged as another effective pathway in OS vascular development. VM is defined as a type 
of vasculature-like lumen formed by tumor cells and the extracellular matrix instead of by 

endothelial cells and becomes incorporated into the tumor blood microcirculation. It was 

first reported in melanoma and identified by CD34-negative and periodic acid-Schiff (PAS)-
positive staining in which red blood cells could be detected [118].

VM also has been detected in OS in vivo and in vitro. Immunohistochemical staining for 

endothelial cell marker CD34, OB-related marker osteocalcin, and PAS was performed on OS 

clinical samples. VM channels were confirmed in OS specimens in which the channel wall was 
positive for osteocalcin and PAS but negative for CD34 [119]. Further investigation by using 
the Kaplan-Meier survival analysis found that the present rate of VM in OS patients after 

preoperative chemotherapy was correlated with both the overall survival (p = 0.011 and 0.040) 
and metastasis-free survival (p = 0.002 and 0.045). Additionally, as a strong mediating factor in 
vascular formation, inhibition of VEGF by siRNA in the human OS cell line MG-63 could sup-

press VM formation in vitro [103]. Furthermore, vascular endothelial-cadherin (VE-cadherin) 
seems to be critical in the formation of VM. After knocking down VE-cadherin, OS cells could 

not form OS-generated endothelial-like networks in vitro [120].

Notably, unlike the typical CD31⁻/CD34⁻/PAS⁺ VM, our group found that osteosarcoma 

stem cells (OSCs) had the capability to construct a CD31-positive vascular network de novo 
either under hypoxia or upon VEGFA induction [5]. This neo-VM subtype was formed by 

a type of vascular endothelial cell-like cells that transdifferentiated from OSCs as shown 
in Figure 3. 
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6. Stromal niche: bone marrow mesenchymal stem cell

OS is more often found in the distal femur and proximal tibia, which are also the major milieu 

of bone marrow MSCs. MSCs are a heterogeneous subpopulation of adult stem cells with 

immunomodulatory properties and a potential to differentiate into several tissue-specific 
cells such as OBs, adipocytes, and chondrocytes [121].

It is widely accepted that the tumor microenvironment is correlated with tumorigenesis and 

cancer progression. Since MSCs are one of the important components in the OS microen-

vironment, many studies have investigated the contribution of bone marrow MSCs to OS 

growth and progression. MSCs isolated from primary OS tissue, which show no neoplastic 

features, are similar to their bone marrow counterparts with regard to morphology, specific 
gene expression, and differentiation potential. Exogenous MSCs could target the OS site and 
promote OS growth and progression in a mouse xenograft model [122]. Similar results were 

also found in a rat model [123]. IL-6 secreted by MSCs could activate STAT3 signaling in OS 

Figure 3. Differentiation potential of OSCs into vascular endothelial-like cells and formed vasculature-like network. 
During the transdifferentiation, vessel-like sprouts appeared around the outermost region of the OSCs (arrowhead), 
followed by the appearance of numerous branches (arrow). These branches extended out from the spheres and 

eventually formed a vasculature-like network. The dotted line and arrowhead show the region of the OSCs. The arrow 

indicates the vasculature-like network which is formed by vascular endothelial-like cells. High magnification image of 
the vasculature-like network is shown as an inset. Scale bar = 100 μm. 
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cells, which in turn augment cell proliferation, migration, invasion, and pulmonary metas-

tasis [124]. Interestingly, IL-6/STAT3 signaling could also respond to MSCs to enhance drug 

resistance. MSC-conditioned medium could improve the survival of U-2 OS and SaOS-2 cells 

and reduce apoptosis in the presence of therapeutic concentrations of either doxorubicin or 

cisplatin via the IL-6/STAT3 signaling pathway by increasing the expression of multidrug-

resistant protein (MRP) and MDR-1 and decreasing the expression of caspase 3/7 activity and 
annexin V binding. Furthermore, the proliferation and progression of neoplastic cells need 
to be initiated and induced by certain pro-tumor cytokines secreted by MSCs. Therefore, OS 

cells could inhibit MSC differentiation into OBs via the TGF-β/Smad2/3 signaling pathway to 
promote the secretion of cytokines from MSCs [49].

Basic helix-loop-helix (bHLH) transcription factors belong to the third largest family of recog-

nized transcription factors in the human genome and are essential regulators of development 

and differentiation via DNA-binding elements known as E boxes. DNA binding of bHLH pro-

teins is restricted by heterodimerization with inhibitors of DNA binding (IDs). ID ubiquitina-

tion by ubiquitin-specific peptidase 1 (USP1) has been demonstrated to not only be necessary 
for the proliferation of several OS cell lines but also sufficient to prevent normal mesenchymal 
cell differentiation and sustain the cells in a stemlike state [125]. Meanwhile, a recent study 

uncovered a phenomenon of functional mitochondrial transfer from bone marrow stromal cells 

to acute myeloid leukemia (AML) cells during chemotherapy, which confers survival advan-

tages for AML cells [126]. Altogether, preventing the differentiation of MSCs into OBs might 
remodel the bone microenvironment and provide OS cells with a more suitable survival niche.

As a vital component of the OS environment, MSCs might play a critical role in OS malig-

nancy and could be a potential target in cancer therapy.

7. Emerging role: exosomes

Tumor cell function not only depends on self-regulation but also requires a significant assis-

tance from the microenvironment to support growth and help with immune escape and 

motility through the local area. Approximately 15–20% of patients diagnosed with OS are 
observed as having detectable metastasis via X-ray examination. Additionally, more than 30% 
of patients will develop metachronous lung metastases, which makes clinical treatment more 

challenging [127, 128]. There is an urgent need for more studies on the early diagnosis of dis-

tant metastasis of OS. In recent years, more researchers have focused their concentration on 

an emerging role of extracellular vesicles, also referred to as exosomes, in cancer metastasis.

Exosomes are extracellular vesicles that originate within microvesicular bodies and are shed 

from plasma membrane with sizes in the range from 30 to 100 nm [129, 130]. Exosomes are 

unilamellar vesicles composed of a lipid bilayer and have a homogenous cup-shaped appear-

ance based on scanning electron microscopy [131, 132]. The contents of exosomes are var-

ied and heavily depend on the originating cells, but these are broadly considered to include 

 proteins, mRNAs, miRNAs, lipids, and carbohydrates [133]. Exosomes have been recognized 

as important to intercellular communication among tumor cells [134]. However, related 
papers focusing on exosomes in OS are scarce and limited.
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Exosomes isolated from the multidrug-resistant human OS cell line MG-63DXR30 by differ-

ential centrifugation of the culture media could be taken up into secondary cells and induce 

a doxorubicin-resistant phenotype, suggesting that exosomes play a potential critical role in 

transferring the multidrug-resistant phenotype [135]. A systematic comparison of the pro-

teomes, exosomes, and exosome-free fractions was performed in MG-63, U-2 OS, and SaOS-2 
cells. The results showed that OS cells can secrete different exosomes involved in angio-

genesis, cell adhesion, and migration [136]. Additionally, it has been indicated that Notch-

activating factors can be delivered to the murine muscle cells by exosomes from the murine 

OS cell line K7M2 and specifically increase Notch signaling pathway activation [137]. The 

urokinase plasminogen activator (uPA) is a serine protease involved in ECM degradation and 

plays a significant role in the progression and metastasis of various solid tumors including 
the breast, lung, prostate, pancreas, ovary, kidney, and colon [138]. The levels of uPA and the 

uPA receptor (uPAR) were exclusively elevated in metastatic OS cells. These metastatic OS 

cells secrete both an active soluble form and an exosome-encapsulated form of uPA to drive 

the migration or metastatic conversion of OS cells [139]. Other research demonstrated that 

exosomes secreted by human MSCs could exhibit antiapoptotic function or cell-protective 

function to increase OS survival under serum starvation conditions [140]. Exosomes may also 

be a neo-drug vector for OS treatment. For example, synthetic miR-143 can be enveloped in 
exosomes and transferred to OS cells exhibiting that the delivery of miR-143 via exosomes 
could significantly reduce the migration of OS cells [141].

In the future, research of the effects of exosome should be focused on its constituents in OS. 
As these microvesicles are involved in tumor progression, they might be the promising tar-

gets for cancer therapy. We could possibly identify tumor antigens to improve the diagnosis 

and prognosis of OS if exosome contents are associated to different levels of aggressiveness. 
Importantly, exosomes are easily isolated from the peripheral blood and other bodily fluids 
and could be used as a noninvasive diagnostic tool [142–144].

8. Mimicking the bone microenvironment

To reveal the process in detail that normal cells take to evolve to a neoplastic state and 

their subsequent progression to metastasis, proper research models need to be established. 

Establishment of an OS research model has always been challenging. Researchers initially 

used transgenic technology to reedit key genes in mice [145], but since then great strides have 

been made for the establishment and improvement of various OS animal models [6–10, 15, 

146]. Despite all this, animal models and patient tissues are often limited by the availability of 

test subjects, feasibility of the testing procedure, and maintaining viable tissue. Furthermore, 
there are important ethical concerns regarding the compassion for experimental animals that 

may suffer pain or discomfort during the study. In vitro models have the advantage of easier 
availability and operability as well as reducing time and monetary costs.

Traditional two-dimensional cultures are most commonly used for the in vitro study of 

mammalian cells and have made remarkable contributions to scientific discovery. Even so, 
cultivation either on plastic dishes or in flasks rarely recapitulates the conditions of cell activi-
ties in vivo. The limitations of flat culturing regarding the cellular microenvironment have 
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prompted the use of three-dimensional (3D) cultures [147]. The advantages of 3D cell culture 

include better mimicry of the cell-cell interactions and of the intricate microenvironment. In 
recent years, zebrafish models have been generated as a comprehensive stand-in for malig-

nancy research and are especially appealing for OS because of their similarities to human 

osteogenesis [148–152]. More high-tech models are being created with the rapid development 

of engineering techniques. It is promising that these novel technologies could be applied in 

drug testing as well as other physiological and biochemical studies with the goal of replacing 

animal models to reduce the use of experimental animals.

8.1. Extracellular matrix

ECM is a collection of extracellular molecules that provides structural and biochemical sup-

port to the surrounding cells and therefore plays a vital role in cell adhesion, cell commu-

nication, and maintenance of function. In the case of the bone, the organic portion of ECM 

primarily comprises type I collagen secreted by OB lineage cells, while calcium phosphate in 

the form of hydroxyapatite composes its mineralized portion. Bone ECM provides a scaffold 
for mineral storage and regulates OB lineage and osteoclast lineage cell function and differ-

entiation of MSCs to OBs [153]. The usage of bone ECM in tissue engineering and biological 

studies has attracted attention [154, 155]. Porcine cartilage was decellularized, solubilized, and 

then methacrylated, and ultraviolet (UV) photocrosslinked to create methacrylated solubilized 

decellularized cartilage hydrogels. These hydrogels were characteristically similar to native 

cartilage tissue and could support ECM production. Additionally, these hydrogels supported 

the growth of rat bone marrow-derived MSCs that were encapsulated in the gel networks and 

caused significant upregulation of chondrogenic genes [156]. Bone-like ECM synthesized by 

OBs was used to enhance the osteoblastic differentiation of MSCs in vitro [157], and decellu-

larized cartilage ECM was applied as a treatment for osteochondral defects [158].

Our group has generated tissue-derived bone ECM from humans, mice, and rats and established 

an OS model that could mimic an intact OS environment in vitro by injecting OS cells into bone 

ECM. Bone ECM is soaked in cell-cultured medium after decalcification and decellularization, 
and OS cells are injected into ECM and cultured under complete medium. As shown in Figure 4, 

bone ECM provides a scaffold for OS cell proliferation and shows amazing biocompatibility.

Figure 4. HE staining of mouse bone ECM after injecting MNNG/HOS (unpublished data). Scale bar = 100 μm. 
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8.2. Zebrafish: an in vivo model for OS research

Zebrafish is an important and widely used vertebrate model in scientific research. In recent 
years, they have become a useful model for cancer and other diseases due to their straight-

forward genome information with abundantly conserved regions homologous with those 

in human beings, their small size and ease of manipulation, and their transparent bodies 

which make observation of organ systems easy. Compared to the 3D model, zebrafish can 
address the issue of maturation, which is a virtually insurmountable barrier of in vitro 

development.

As a multifunctional model, zebrafish with genetic modifications have been used in a large 
number of experiments. Transgenic zebrafish with a GFP-tagged vasculature provide an 
advanced approach for the study of angiogenesis and cancer metastasis and can easily be 

observed by either light microscopy (Figure 5) or laser confocal microscopy. Furthermore, leu-

kemia, melanoma, pancreatic adenocarcinoma, intestinal hyperplasia, and other types of solid 

tumor have been studied in zebrafish models, which are stable and effective assay method for 
investigating pathogenesis.

An OS xenograft zebrafish model has also been reported recently [159]. Since OS probably 

originates from MSCs mutated in the process of differentiation toward OBs, one group injected 
two MSC cell lines, after 8 months of culturing, and found that the cells gained a malig-

nant transformation. The results found that transformed MSCs formed an OS mass, induced 

angiogenesis, and migrated through the bodies of the embryos of zebrafish, which was not 
observed in the normal MSC controls. Whole-genome analysis indicated higher expression of 

matrix metalloproteinase 19 (MMP-19) and erythroblastosis virus E26 oncogene homologue 1  
(Ets-1) in the mutated cells compared to normal cells. Furthermore, upon investigation the 
host response, zebrafish embryos injected with transformed MSCs showed decreased expres-

sion of immune response-related genes, especially major histocompatibility complex class I 

(MHC-I), compared to embryos injected with normal MSCs. The above experiments also 
reproduced tumorigenesis, progression of OS, including angiogenesis, migration, and metas-

tasis in vivo and identified potential molecular regulators by using a zebrafish model.

Figure 5. The FLK+-GFP zebrafish showed a green vasculature system photographed by light sheet microscopy (unpublished 
data). Scale bar = 100 μm. 
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Zebrafish is also a useful tool for screening for OS therapeutic drugs. The development of 
metastases is still the major cause of death of patients with OS as well as other cancers. Ezrin, 

the prototypical ezrin/radixin/moesin (ERM) protein family member, is associated with the 

actin cytoskeleton and the plasma membrane. Ezrin has been demonstrated to be a vital pro-

tein related to cancer metastasis. Microinjection of ezrin small-molecule inhibitors, NSC305787 
and NSC668394, into zebrafish embryos prominently inhibited cell mobility during embry-

onic development. The results supported an approach using ezrin protein as a putative target 

molecule in OS therapy [160].

8.3. Other novel OS models

With their advantages of in vivo vascularization and an immune system, animal models can 

be instrumental for executing drug screens and studying the etiology of OS. Apart from the 

cell-of-origin transgenic models and the zebrafish models mentioned above, there are more 
novel therapeutic interventions in various models that have already been reported or are in 

current veterinary clinical trials [161].

OS is an aggressive primary bone cancer with highly metastatic capacity, and the develop-

ment of pulmonary metastases is the most common reason for treatment failure. K7M3 cells 

were injected into the tibia of wild-type BALB/c mice to induce a primary bone tumor or 

into the tail vein of wild-type BALB/c and gld mice to form pulmonary metastases [162]. 

To assess the importance of Fas in the process of OS lung metastasis, two animal models 
for lung metastases were generated through intravenous injection or subcutaneous injec-

tion in mice, and those proved the efficacy of aerosol gemcitabine (GCB) which targets Fas 
pathway [163].

The assessment of the safety issue of a regional aerosol GCB delivery and evaluation of the 
effect of GCB on Fas pathway in lung metastasis of OS-bearing dogs further confirmed clinical 
and pathological findings in mice [164]. The clinical and pathological findings in mice were 
further confirmed and extended in a canine model, which supports the notion that aerosol-
ized gemcitabine may be useful against the pulmonary metastasis of OS and can allay patient 

tolerability concerns to a certain extent.

9. Conclusion

Multiple genomic aberrations together with abnormal activation of receptor kinases greatly con-

tribute to the complex etiology of OS. There is no escaping the fact that in many respects, micro-

environmental signals can either support or interrelate with tumor cells to regulate the biological 

behavior of OS. Although the remodeling systems established heretofore still require more precise 

characterization in vivo with respect to the extent of recapitulation, the utilization of physiological 

and biochemical studies can eventually be applied to clinical pharmacokinetic studies and evalu-

ations of therapeutic efficiency. To gain exact and further insight on the cross talk between tumor 
cells and the microenvironment, both in vivo and in vitro novel models should be created and 

applied in research.
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