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Abstract

Osteosarcoma is the most common primary cancer of the bone and third most com-
mon cancer in children and adolescents with approximately 900 new cases annually in 
the United States. A major facet of osteosarcoma is its high level of genomic instability, 
in particular chromosomal instability, which is the result of increased or decreased chro-
mosome number in a cell. Furthermore, pain is the most common symptomatic feature of 
osteosarcoma that lacks effective therapy. Pain in osteosarcoma is relatively more com-
plicated than many other painful conditions requiring a more thorough understanding of 
its etiology, pathobiology, and neurobiology to allow the development of better therapies 
for reducing pain in osteosarcoma patients. Studies are underway to define the diverse 
modalities of presentation, growth, development, metastases, and nociception in osteo-
sarcoma. New data from human studies in combination with data from studies incorpo-
rating transgenic mouse models of osteosarcoma are providing valuable insights into the 
mechanisms underlying the development of both the tumor and the tumor-induced pain. 
These new data will undoubtedly lead to improved prognoses, as well as the develop-
ment of novel therapeutics that will significantly decrease bone cancer pain.

Keywords: osteosarcoma, genetics, pain, bone tumors, pathobiology

1. Introduction

Osteosarcoma is the most common malignant bone tumor found in children and adoles-

cents and is associated with many complications including metastases and intractable can-

cer pain [1, 2]. Typically, the prevalence of osteosarcoma shows a strong relationship with 

skeletal growth. The main incidence peak occurs in the second decade of life and generally 
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is associated with a highly defined phenotype. Osteosarcoma also occurs in elderly adults 
in the sixth and seventh decades of life and is often preceded by certain genetic predis-

positions [3]. Osteosarcomas predominately form in the metaphyses of the long bones in 

the major growth centers such as the distal femur, proximal tibia, and proximal humerus. 

Osteosarcomas are quite aggressive locally but often produce early, lethal systemic metas-

tases [4]. According to the National Cancer Institute, as many as 20% of patients will have 

radiographically detectable metastases at diagnosis, and ultimately nearly 90% of patients 

have radiographically undetectable metastatic lesions, particularly to the lungs [5, 6]. 

However, chest CTs have been estimated to miss nearly 25% of metastatic nodules found 

during thoracotomy, and up to 14% of metastases are not nodular in shape, which compli-

cates the metastatic picture in many patients [7]. With no known precursor to osteosarcoma, 

treatment options are extremely limited. Adjuvant chemotherapy and surgical resection are 

standard therapies, but treatment efficacy still remains poor for over one-third of osteo-

sarcoma patients [5, 8]. Although our understanding of the mechanisms underlying tumor 

development, tumor progression, and metastasis is improving [6, 9–12], the complex nature 

of the bone tumor microenvironment presents unique challenges to identifying novel drug 

targets and treatment strategies.

The most common presenting symptom of osteosarcoma is pain, particularly with activity. 

Osteosarcoma pain can start in adolescence, leading to hospitalization, reduced survival, 

and poor quality of life. Pain in osteosarcoma is unique because of unpredictable and recur-

rent episodes of acute pain due to vaso-occlusive crises (VOC), in addition to chronic pain 

experienced by a majority of adult patients on a daily basis [13]. As detection and survival 

among cancer patients have improved, pain has become an increasing challenge, because 

traditional therapies are often only partially effective [14]. In this regard, the treatment of 

osteosarcoma pain is complicated because long-term treatment choices remain limited and 

generally involve opioids, which impose liabilities of their own including constipation, 

mast cell activation, addiction, and respiratory depression [15]. Moreover, significantly 
larger doses of opioids are required to treat pain in osteosarcoma as compared to other 

acute and chronic pain conditions. Pain can be lifelong in osteosarcoma and may therefore 
influence cognitive function and lead to depression and anxiety, which can in turn promote 
the perception of pain [13]. In general, the treatment of chronic pain remains unsatisfactory, 

perhaps due to the diverse pathobiology in different diseases. Therefore, it is critical to 
understand the mechanisms specific to the genesis of osteosarcoma-related pain to develop 
targeted therapies.

2. Normal bone development

The bone is a readily adaptive, mineralized tissue that performs diverse functions includ-

ing enabling locomotion, storing nutrients such as phosphate and calcium, and protecting 

soft tissues among many others. Despite its static appearance, osteoclasts and osteoblasts, 

two major cell types abundant throughout bone tissue are constantly remodeling bone. 
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Osteoblasts are the resident bone-producing cells of the body. Osteoblasts are derived 

from a lineage of cells arising from a mesenchymal origin [16], while osteoclasts arise 

from a hematopoietic lineage [17]. The remodeling of the bone is a tightly coupled pro-

cess. From a physiological perspective, distinct differentiation and maturation pathways 
of these two cell types allows for uninterrupted maintenance of bone homeostasis [18]. 

The differentiation process of osteoblasts is often divided in specific stages: mesenchymal 
progenitors, preosteoblasts, and osteoblasts. Similarly, this process also occurs in osteo-

clastogenesis where cells of myeloid origin differentiate into one of four cell types, one 
being osteoclasts [17]. While differentiation stages are useful for cellular identification, 
the maturation process is not well understood. Often, the identities of cells during each 

stage are characterized by expression of various molecular markers highly associated with 

osteoblast development. Markers of cells from mesenchymal origin are not well defined 
and are still a matter of intense debate. Similarly, preosteoblast markers are also difficult 
to identify. These cells are highly heterogeneous in their expression patterns, as this stage 
can encompass various cell types during maturation into osteoblasts, bone-lining cells, 

or osteocytes. However, two common transcription factors, Runt-Related Transcription 

Factor 2 (RUNX2) and later OSTERIX (also known as SP7), are expressed during matura-

tion and are highly associated with maturation of the preosteoblast lineage [19], while 

hematopoietic transcription factor (PU.1), microphthalmia-associated transcription factor 

(MITF), and c-FOS are associated with osteoclast precursors [17].

3. Tumorigenesis

There is currently no known origin to osteosarcoma; however, much research has pointed to 

osteoblasts as the progenitor cell type. The single most shared feature of all osteosarcomas 

histologically is the presence of osteoid matrix, secreted by malignant cells in the growing 

tumor. In addition, the presence and quantity of this matrix do not define the disease, as 
osteosarcomas may be composed of many tissue types including chondroblastic, fibroblastic, 
and osteoblastic [20]. Osteosarcoma has been shown to be associated with loss of key tumor 

suppressor genes such as tumor protein P53 (TP53) and retinoblastoma 1 (RB1) [21], and 

alterations in p53 are associated with reduced event-free survival [22]. Moreover, sporadic 

osteosarcomas are highly associated with mutations in the RB gene. Additionally, germ line 

mutations in the p53 gene predispose patients with Li-Fraumeni syndrome (LFS) to osteosar-

coma [23] with an incidence of up to 12% [24].

4. Chromosomal abnormalities

Despite its well-defined phenotypic characteristics, genetically speaking, osteosarcoma is 
chaotic and disordered. It is often associated with massive chromosomal rearrangements, 

cytogenetic aberrations, and numerous mutations [25]. Numerous cytogenetic and molecu-
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lar studies of osteosarcoma have been conducted in recent years yielding interesting results 

but often with conflicting findings [26]. Many of these studies have limited prognostic and 

diagnostic value and fail to understand the driving events necessary for osteosarcoma 

development. However, the overall infrequency of this disease makes elucidating these 

factors all the more challenging. It has been apparent since early studies that osteosarco-

mas have a significant propensity toward aneuploidy with over 96% of high-grade cases 
being hyperploid [26]. Furthermore, cytogenetic analyses have provided evidence for enor-

mous variation in karyotypic alterations. A major facet of osteosarcoma is its high level 

of genomic instability, in particular chromosomal instability (CIN). CIN can contribute to 

tumor initiation and progression through altering the expression of proto-oncogenes or 

tumor suppressor genes. The rate of gain or loss of entire chromosomes or sections is sig-

nificant in the pathogenesis of osteosarcoma resulting in numerous aberrations and wide 
variability between cells and tumors [27].

5. Oncogene/tumor suppressor gene dysfunction

The search for specific drivers of osteosarcoma development has stemmed from the early 
cytogenetic and molecular findings. Initial genetic studies sought to identify impor-

tant genes involved in cancers although not necessarily specific to osteosarcoma. These 
early studies have implicated a number of important tumor suppressors, oncogenes, 

and growth factors that are implicated in other sarcomas and carcinomas as well [26]. 

As stated earlier, perhaps the best two characterized examples of this are the tumor sup-

pressor gene TP53 and the retinoblastoma RB1 gene. The location of TP53 on chromosome 

17p13 is an area frequently altered in osteosarcomas and is readily apparent in cytoge-

netic analyses. Alterations in the TP53 gene have significant effects on the downstream 
signaling targets, many of which are normally involved in cell cycle control and apopto-

sis. Gene rearrangements, point mutations, epigenetic modification [28, 29], and/or allelic 

loss can presumably lead to inactivation of normal TP53 function, and these aberrations 

have been associated with the development of osteosarcoma. In a recent study that char-

acterized the genomic landscape of osteosarcoma via whole genome sequencing (WGS), 

the majority of TP53 inactivation in osteosarcoma was found to be due to translocations 

[30]. Furthermore, this study highlights the fact that TP53 mutation is highly prevalent 

in osteosarcoma, with >90% of all tumors containing a mutation in at least one allele, and 

upward of 80% containing mutations in both alleles. In addition to the TP53 gene, associa-

tions between osteosarcoma and RB1 are well recognized as well, especially in patients 

with hereditary retinoblastoma, in which osteosarcoma incidence is 1000 times higher 

than in the general population. The loss of heterozygosity and/or sporadic alterations in 

the RB1 gene is apparent in >60% of osteosarcoma cases, and these genetic changes have 

significant prognostic value [31]. As only these prototypical cancer genes and a few oth-

ers have been definitively implicated in osteosarcoma, there is a pressing need to identify 
more genes and pathways governing its development and metastasis to better treat osteo-

sarcoma patients and their associated pain.
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6. Axonal guidance genes in osteosarcoma

Recently, a new pathway has been identified using the Sleeping Beauty mutagenesis system in 
mice implicating axon guidance genes such as semaphorin-4D (SEMA4D) in osteosarcoma [25]. 

During normal bone homeostasis, osteoclasts express high levels of Sema4d, whereas osteoblasts 

do not. Instead, osteoblasts express its cognate receptor and co-receptor, Plexin B1 (Plxnb1) and 

Erb-B2 receptor tyrosine kinase 2 (Erbb2), respectively. Thus, it is possible that misexpression of 

SEMA4D and MET proto-oncogene, receptor tyrosine kinase (MET) in osteoblasts might give 

rise to a subset of osteosarcomas. Similarly, the tumorigenic properties induced by overexpres-

sion of SEMA4D in human osteosarcoma cells are dependent on MET and ERBB2 levels, which 
has been reported [32]. Previous studies in osteosarcoma showed that high levels of ERBB2 are 

associated with a good outcome and that overexpression of MET can directly transform osteo-

blasts into osteosarcomas [33, 34]. The fact that SEMA4D is a cell surface receptor makes it an 

attractive candidate for novel therapies. This will be addressed later in the chapter.

7. Metastasis

Approximately 20–30% of osteosarcoma patients have overt metastases at diagnosis, and about 

40% of patients will develop lung metastases during the course of treatment [35–37]. Analysis 

of clinical outcomes of patients without overt metastasis at diagnosis prior to the advent of 

chemotherapy demonstrated >90% of patients developed lung metastasis 6–36 months after 

surgical resection, indicating the majority of seemingly nonmetastatic patients actually have 

micrometastatic disease at diagnosis [30]. While it is largely believed that the implementa-

tion of chemotherapy eradicates these developing micrometastases in many cases, these data 

highlight the fact that metastasis is the most important factor associated with poor outcome 

in osteosarcoma [38]. Recent work from Moriarity and colleagues identified many genes that 
promote osteosarcoma development and metastasis through a forward genetic screen in mice 

using the SB transposon-based mutagenesis system. Both classes of genes (oncogenes and 
tumor suppressors) may be critical for development of detectable metastases present at diag-

nosis and/or the ability of latent micrometastases to develop to a detectable level. Subsets of 

genes identified via the SB screen were only present in the metastatic lesions, while others 
were found both in primary tumors and metastases. Among those genes were phosphatase 

and tensin homolog (Pten), glycogen synthase kinase 3 beta (Gsk3b), synaptosome-associated 

protein 23 kDa (Snap23), mitogen-activated protein kinase kinase kinase kinase 3 (Map4k3), 

Rho GTPase-activating protein 35 (Arhgap35 (Grlf1)), Rho/Rac guanine nucleotide exchange 

factor 18 (Arhgef18), Axin 1 (Axin1), Raf-1 proto-oncogene, serine/threonine kinase (Raf1), and 

ubiquitin-associated protein 2 like (Ubap2l). Interestingly, all of these genes have been previ-

ously implicated in metastasis of other cancers, which supports the conclusion that these genes 

are likely involved in osteosarcoma metastasis [25]. Additionally, bone metastases are also 

highly painful. The ability of osteosarcoma to successfully metastasize relies in part on its abil-

ity to exploit many mechanisms of normal bone remodeling [39]. Two such examples of this 

are the Wnt family of proteins and bone morphogenetic proteins (BMPs), both of which are 
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critical in bone development and are implicated in cancer pain [40, 41]. The evolving physi-

ologic and pathological roles of the Wnt/β-catenin signaling pathway may offer attractive ther-

apeutic targets for novel antagonists and inhibitors for patients with primary and metastatic 

osteosarcoma. Likewise, BMPs are responsible for numerous osteoinductive cellular processes 
including bone growth, differentiation, and matrix maintenance [40]. In vitro examination in 

numerous osteosarcoma cell lines revealed highly abundant expression of BMPs in virtually all 
lines tested [42–44]. Moreover, BMP expression has been found to correlate with metastasis in 
osteosarcoma [45], while overexpression of BMP-9 reduces invasion and migration properties 
of osteosarcoma cells [46]. Conversely, analysis of 47 human osteosarcomas found no correla-

tions between BMP expression and prognostic outcomes [47]. Furthermore, BMPs have also 
been shown to induce bone formation in human osteosarcoma cells [48]. As mentioned earlier, 

osteosarcomas can present with mixed cell lineages and differentiation patterns [20]. These 

studies and others suggest that perhaps BMPs may be expressed at differing levels depending 
on the cellular state, and their presence may offer an attractive therapeutic option for the treat-
ment of osteosarcoma. While the significance of BMP signaling in osteosarcomagenesis is not 
yet fully understood, current research suggests BMPs may play an important role.

8. Characteristics of pain in osteosarcoma

Cancer-induced bone pain is a complex pain state involving a combination of background, 

spontaneous, and incident (movement-evoked) pain [14, 49]. Regional pain alone or in 

 conjunction with a palpable mass are the two main reasons that osteosarcoma patients 

 consult a doctor. Patients with osteosarcoma of the jaws typically present with pain,  swelling, 
 ulceration, or neurological deficit [50], but again pain is a major symptom causing these 

patients to seek medical attention. Currently only about half of patients with cancer-induced 
bone pain experience temporary relief from conventional therapies [51], which stresses the 

need for the development of more effective treatments. Table 1 summarizes some of the types 

of pain experienced by bone cancer patients and animal models of bone cancer pain.

Characteristics of pain Pain phenotyping method

Subjects with OSA Mice with bone tumor

Mechanical allodynia Patients with cancer pain were 
evaluated for mechanical allodynia [52]

Paw withdrawal responses to von 
Frey monofilaments in bone cancer 
mice or rats [1, 53–55]

Heat hyperalgesia Patients with cancer pain were 
evaluated for heat hyperalgesia [52]

Paw withdrawal latency and 
frequency in response to static heat 

stimuli in mice or rats [53, 54, 56]

Movement-evoked pain The use of a pain verbal rating scale 

during movement [57]

Count the number of spontaneous 

flinches of the hind limb in bone 
tumor mice [55]

Note: most human cancer pain studies have employed visual analogue scales (VAS), numerical rating scales, or verbal 
reporting to quantify pain, and thus it is often difficult to compare nociceptive behavioral testing results from cancer 
pain studies using animal models with human cancer pain studies because of the differences in pain assessment.

Table 1. Characteristics of pain in osteosarcoma.
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9. Peripheral and central mechanisms of pain in osteosarcoma

While our knowledge of the mechanisms of bone cancer pain is ever expanding, part of our 

failure to adequately manage osteosarcoma and other forms of bone cancer pain is an inad-

equate understanding of the etiology and mechanisms involved. Cancer-induced bone pain 

is a mixed-mechanism pain state exhibiting elements of inflammatory, neuropathic, and isch-

emic pain, but with distinctive effects on the tissues and nerves in the periphery, as well as 
unique biochemical changes within the spinal cord [14, 58].

9.1. Peripheral mechanisms

As summarized by Falk and colleagues, the biology of cancer-induced bone pain involves a 

complex interplay among the tumor cells, peripheral nerves, and cells of the bone [14]. The 

tumor cells trigger a number of nociceptive and immune responses that ultimately recruit 

inflammatory cells including macrophages, neutrophils, and T cells to the bone resulting 
in release of a plethora of endogenous chemicals acting on bone cells, cancer cells, and 

importantly on primary afferent nerve fibers [59, 60]. Thus, tumor and tumor-associated 

cells in the cancer microenvironment may release various peripheral mediators. These 

include adenosine triphosphate (ATP), formaldehyde, protons, proteases, endothelin, bra-

dykinin, tumor necrosis factor (TNF), and nerve growth factor (NGF) that result in the acti-

vation and/or sensitization of peripheral and central neurons [61, 62]. The complexity of 

this neuroimmune and inflammatory effect on cancer pain has been recently reviewed [63]. 

Ultimately this cascade of events leads to the activation and sensitization of nociceptors, 

the degradation of the bone, and subsequent increased tumor growth [14]. Furthermore, 

studies have shown that cancer cells in the bone induce a highly disorganized sprouting 

of sensory and sympathetic fibers, leading to the formation of small neuromas. These dis-

organized bundles of nerve fibers are thought to contribute to episodes of breakthrough 
pain or even movement-induced pain [64, 65]. In addition to changes in nerve fibers, bone 
tumors in mice have also been shown to be associated with changes in both blood vessels 

and lymphatics, which may facilitate metastasis and which, interestingly, can be altered by 

acupuncture treatment [66].

9.2. Central mechanisms

Both the spinal cord dorsal horn and dorsal root ganglia undergo unique changes induced 
by bone tumors suggesting that the peripheral alterations drive central alterations. Some 

of the bone tumor-induced changes observed in the spinal glial and neurons are distinct, 

but many are reflective of changes seen with other chronic pain states. Thus, tumors are 
associated with increased expression of dynorphin with accompanying spinal astrocyte 

hypertrophy and upregulation of galanin and AF3 [14, 66]. Clearly, the recent identifica-

tion of a vast number of mediators and receptors that contribute to bone cancer-related 

pain, as well as more detailed knowledge of the peripheral and central mechanisms under-

lying the development of bone tumor nociception, will provide novel therapeutic targets 

for treating patients with osteosarcoma pain. Subsets of these targets are discussed in more 

detail below.
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10. Treatment of osteosarcoma

From the discussion above, it is clear that due to the complex nature of osteosarcoma patho-

biology and the neurobiological mechanisms that underlie the development of bone cancer 

pain, it may be necessary to target multiple receptors, mediators, and genes to adequately 

treat osteosarcomas and osteosarcoma-associated pain. Below we review some of the estab-

lished and novel targets for the treatment of osteosarcoma and its associated pain.

10.1. Immunomodulation

10.1.1. Semaphorins

VX15/2503 (Vaccinex, Inc.) is a highly novel, immunomodulatory monoclonal antibody that 

specifically targets SEMA4D (CD100), a receptor and soluble protein from the semaphorin 

family known to be involved in immune modulation [67] and regulation of normal bone for-

mation [68]. Initial interest in this monoclonal antibody was rooted in results indicating that 

immune cell-dependent interactions were in fact responsible for its antitumor activity [67]. 

Early preclinical studies have determined that high concentrations of SEMA4D are expressed 

at the invasive border of many human cancers and that this border restricts the antitumor 

cell infiltrate from effectively combating the growing tumor. Treatment with anti-SEMA4D 

restores the inhibited immune response leading to reduced tumor burden and delayed growth 

in animal models. Furthermore, anti-SEMA4D blockade results in phase I clinical trials of 42 

adult patients with advanced solid tumors have been well tolerated with many exhibiting 

stable disease over various treatment regimens. Antibody therapy targeting SEMA4D has also 

been shown to reduce tumor growth in a xenograft model of soft tissue sarcoma (STS) when 

combined with antibody therapy for vascular endothelial growth factor (VEGF) [69].

10.2. Intracellular signaling pathway inhibitors

10.2.1. Hedgehog (Hh)

While encompassing diverse functions such as tissue homeostasis and embryonic devel-

opment, Hedgehog (Hh) signaling is highly complex and not completely understood [70]. 

Signaling through its receptor Patched-1 (PTCH), Smoothened is activated and promotes 
subsequent downstream signaling pathway of the Hedgehog (Hh) pathway [71]. This acti-

vation has been implicated in many cancers including osteosarcoma where aberrant activa-

tion increases cell proliferation but can be reduced through inhibition of the signaling [72]. 

Hedgehog inhibitors have been successfully tested in clinical trials of other cancers such as 

chondrosarcoma [73, 74], carcinoma [75], and medulloblastoma [76] providing solid evidence 

for consideration as a novel therapeutic in osteosarcoma.

10.2.2. Mammalian target of rapamycin (mTOR)

The mammalian target of rapamycin (mTOR) is a protein kinase that regulates cell survival 

and proliferation [77]. Due to its diverse functions, mTOR is implicated in many cancers mak-

ing it an attractive target in treating tumors, including osteosarcoma. In one recent study, 
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activated mTOR was visualized in osteosarcoma and the staining positively correlated to 

metastasis and necrosis [78]. Targeted inhibition of the signaling pathway of mTOR has been 

shown to reduce metastatic behavior in a mouse model of osteosarcoma [79] as well as human 

xenograft models [80]. Current and future clinical trials using mTOR inhibitors may prove 

therapeutically fruitful in the treatment of osteosarcoma [81].

10.3. Tyrosine kinase receptors

10.3.1. Human epidermal growth factor receptor 2 (HER2)

HER2 is a member of the human epidermal growth factor receptor family. Located on chromo-

some 17, activation and overexpression have been implicated in a number of cancers includ-

ing osteosarcoma. HER2 is overexpressed in ~40% of osteosarcomas and has been found to 

occur more frequently in metastatic patients [82]. Expression was also found to correlate with 

decreased tumor necrosis and event-free survival [83]. Chimeric antigen receptor (CAR)-

modified T cells have been shown to kill HER2-positive osteosarcoma cells in xenograft and 

metastatic mouse models [84].

10.3.2. Vascular endothelial growth factor (VEGF)

VEGF expression has been shown to involve in osteosarcoma [85], correlated with overall 

survival [86] and implicated in metastatic development [82]. A recent paper by Zhou and col-

leagues found anti-VEGF strategies to be antiangiogenic in osteosarcoma [69]. Interestingly, 

SEMA4D blockade enhanced the anticancer activity of anti-VEGF treatment that provides a 

viable adjunct to VEGF therapy alone. While discussed above, development of a highly novel 

monoclonal antibody to SEMA4D is underway and may provide further insight into targeting 

VEGF-resistant tumors as well as associated malignancies.

11. Treatment of osteosarcoma pain

With a growing population of patients receiving inadequate treatment for intractable bone 

cancer pain, new targets need to be considered to better address this largely unmet clini-
cal need for improving their quality of life. In general, while there are a variety of meth-

ods that are used to treat bone cancer pain, including bisphosphonates, radiation therapy, 

chemotherapy, hormone therapy, and surgery, the clinical treatment of bone cancer pain 

still focuses on the three-step program. This program was established by the World Health 

Organization and includes NSAIDs and narcotics as therapeutic treatment options. 

However, as we learn more about the mechanisms responsible for cancer pain and the 

genetic basis for the development of osteosarcomas, there are several areas that offer hope 
for the development of novel treatments for bone cancer pain. It is important to point out 

that bone cancer pain can be treated by both systemic and local administration of drugs as 

well as alternative medical approaches. The obvious advantage of peripheral targets is the 

reduced potential for CNS side effects, such as the sedation and nausea that often accom-

pany opiate analgesics.
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11.1. Cytokines

Pain is a complex trait, and thus, the influence of genetics on pain sensitivity and the effi-

cacy of analgesics are an ongoing challenge. A recent study found that polymorphisms in 

the Interleukin 1 Beta (IL-1β) family have a significant influence on cytokine serum levels 
and maximum pain intensity in cancer patients, as well as affecting cancer proliferation 
[87]. IL-1β has been shown to be expressed in astrocytes and microglia and in nociceptive 
dorsal root ganglion neurons [88] and thus may represent a target for the treatment of 

cancer pain.

11.2. TRPV1 receptors

TRP channels were first identified in Drosophila [89], and TRPV1 denotes the transient receptor 
potential channel family number 1 and was the first mammalian TRP channel to be cloned [90]. 

Capsaicin and other TRPV1 agonists selectively stimulate nociceptive neurons, and thus while 
it induces pain, it is possible to treat pain by boosting analgesic pathways [91]. In this regard the 

use of the TRPV1 agonist, resiniferatoxin (RTX), to block cancer pain has recently been reviewed 
[92]. In human cancer patients, RTX was given by intrathecal injection into the lumbar cistern, 

and all patients experienced substantial analgesia without significant side effects. In addition, 
a recent study has shown that cancer cells undergo numerous metabolic changes that include 

increased glutamine catabolism and overexpression of the enzyme glutaminase, which medi-

ates glutaminolysis. This produces large pools of intracellular glutamate [93]. This is coupled 

to an upregulation of the plasma membrane antiporter, system x
c
−. System x

c
− is an amino acid 

antiporter that typically mediates the exchange of extracellular l-cystine and intracellular l-glu-

tamate across the cellular plasma membrane. The exchange-mediated export of l-glutamate is 

particularly important within the nervous system, since it represents a non-vesicular route of 

release through which glutamate can participate in either neuronal signaling or in excitotoxic 

pathology. With respect to osteosarcomas, the excess glutamate is released directly from the 

cancer cells and can act on peripheral glutamate receptors located on nerve fibers. It is known 
that glutamate receptors can modulate peripheral TRPV1 receptors [78]. Thus, the released glu-

tamate converges on peripheral afferent nerve terminals to transmit nociceptive signals through 
TRPV1. Activation of TRPV1 receptors can ultimately initiate central sensitization in response 
to tumor-released glutamate [93]. Thus, using RTX to block peripheral TRPV1 channels would 
block this excess glutamate effect on TRPV1 and reduce both tumor-induced peripheral and 
central sensitization.

11.3. Opioid receptors

Three members of the opioid receptor family were cloned in the early 1990s, including the 

delta-opioid receptor (DOR1), the mu-opioid receptor (MOR1), and the kappa-opioid receptor 

(KOR1) [94]. These three receptors and their corresponding peptide systems are significantly 
implicated in antinociceptive processes. Opiates have long been the mainstay of treatment for 

chronic bone cancer pain. However, there is increasing pressure to ensure that prescribing 

opioid analgesics is minimized to reduce not only the risk of dependence and illicit diver-

sion but also the potential harms associated with tolerance, side effects, and complications, 
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since opioid doses required for bone cancer patients are associated with adverse side effects 
further diminishing their quality of life [95]. This has often led to opiate underdosing [96]. 

It is important to note that while opioids are routinely used to treat tumor-induced bone 

pain, Parreca’s lab has shown that sustained morphine use increases pain, osteolysis, bone 
loss, and spontaneous fracture, as well as markers of neuronal damage in DRG cells and the 

expression of pro-inflammatory cytokines in a rodent model of bone cancer [97]. More recent 

studies indicate that morphine contributes to chemoresistance via expanding the population 

of cancer stem cells, promotes tumor angiogenesis, and promotes tumor growth, thereby 

revealing a novel role of morphine and providing some new guidelines for the clinical use of 

morphine [98, 99]. It is also worth noting that treatment guidelines tend to consider morphine 

and morphine-like opioids comparable and interchangeable in the treatment of chronic can-

cer pain, but individual responses can vary. A recent clinical trial found that while there were 

no significant analgesic differences among morphine, oxycodone, transdermal fentanyl, or 
buprenorphine, the dose escalation was greater with fentanyl and switches, and discontinu-

ations were more frequent with morphine [100]. Interestingly, this study identified groups 
of patients that were nonresponders to opiate treatment ranging from 11.5% (morphine) to 

14.4% (buprenorphine). Thus, subsets of patients that do not respond to opiates are found in 

the general population, and like nonresponders for acupuncture analgesia (discussed below), 

these patients should be considered for alternative treatments. Finally, cannabis may be used 

both to treat chronic cancer pain and importantly to significantly reduce opiate usage. Thus, 
a 2011 clinical trial that examined the administration of vaporized plant cannabis in chronic 

cancer pain patients on a daily regimen of morphine or oxycodone reported that inhaled 

 cannabis augments the analgesic effect of opioids [101].

11.4. Complementary/alternative therapies

Controlling cancer pain is an important part of the palliative care of cancer patients. Although 

conventional medicine has well-established guidelines to systemically control cancer-related 

pain, over half of cancer patients still suffer from pain as indicated above. Pharmacological 
therapeutic approaches are not always sufficient and may produce serious side effects. Thus 
these limitations have led to the use of complementary and alternative medicine approaches. 

While acupuncture has been around for thousands of years, it is only recently that it has been 

evolving as a promising approach to relieve chronic cancer pain [102, 103]. A recent study has 

shown that acupuncture and related therapies are effective in reducing pain and fatigue and 
in improving quality of life when compared with conventional intervention alone among can-

cer patients [104]. On the other hand, a subgroup analysis of five randomized controlled trials 
(RCTs) that evaluated acupuncture’s effect on cancer pain did not include cancer-induced 
bone pain, because none of the studies made any reference to bone pain [105]. At this point in 

time, there is not convincing evidence that acupuncture significantly reduces cancer pain in 
the human literature. That being said there are several studies using animal models of can-

cer bone pain that suggest that acupuncture can reduce bone tumor-induced pain including 

osteosarcoma-induced pain [1, 106, 107]. The animal data suggest that electroacupuncture 

can alleviate bone cancer pain, at least in part by suppressing IL-1β expression and by alter-

ing nerve innervation and the vasculature of osteosarcoma. However, the acupuncture treat-
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ment schedule can effect tumor growth, and therefore the sequence of acupuncture treatment 
must be determined carefully [66]. Clearly, more clinical research is required to address 

whether acupuncture can reproducibly reduce pain in human osteosarcoma patients without 

unwanted tumor-related consequences.

12. Conclusion

Despite advances in our knowledge of osteosarcoma biology, development, metastasis, and 

its associated pain, the current treatment options have not changed over the last four decades 

and continue to rely on tumor resection and nonspecific combination chemotherapy, which 
results in a dismal 5-year survival rate of 0–29% for patients with clinically detectable metas-

tases [38, 108]. Additionally, severe lack of knowledge regarding osteosarcoma metastasis 

hinders advancement of clinical treatment in pediatric patients. With limited human samples 

available, animal models hold promise for further understanding of the biology, pathways, 

and treatment options for osteosarcoma patients. While each model has its specific limita-

tions, the collective insight into the genetics has proven extremely fruitful. With the advent 

of novel genetic engineering approaches, future studies will be instrumental in better model-
ing of the disease and uncovering new and valuable information. While conventional che-

motherapy and surgical resection remain the mainstays of osteosarcoma treatment, when 

these approaches are used in combination with the above novel therapies, this will lead to 

prolonged if not remissive prognoses as well as significantly decreased pain for osteosarcoma 
patients in the future.
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