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Abstract

We present a general procedure to obtain the Lagrangian and associated Hamiltonian
structure for integrable systems of the Helmholtz type. We present the analysis for
coupled Korteweg-de Vries systems that are extensions of the Korteweg-de Vries
equation. Starting with the system of partial differential equations it is possible to
follow the Helmholtz approach to construct one or more Lagrangians whose station-
ary points coincide with the original system. All the Lagrangians are singular. Follow-
ing the Dirac approach, we obtain all the constraints of the formulation and construct
the Poisson bracket on the physical phase space via the Dirac bracket. We show
compatibility of some of these Poisson structures. We obtain the Gardner ε-deforma-
tion of these systems and construct a master Lagrangian which describe the coupled
systems in the weak ε-limit and its modified version in the strong ε-limit.

Keywords: integrable systems, conservation laws, partial differential equations, rings
and algebras

1. Introduction

The Lagrangian mechanics has a wide range of applications from classical mechanics to

quantum field theory. There are two main reasons to introduce a Lagrangian in order to

describe a physical model. Its stationary points, defined in terms of functional derivatives,

provide the classical equations of motion or classical field equations governing the evolution of

the physical system while the action functional constructed from the Lagrangian provides the

path integral approach to quantum mechanics and quantum field theories. In this chapter, we

analyze several aspects of singular Lagrangians, which are relevant in various areas of physics.

They are essential in the description of the fundamental forces in nature and in the analysis of

integrable systems. In this chapter, we consider recent applications of singular Lagrangians in

the area of completely integrable systems.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The analysis of integrable systems, in particular the Korteweg-de Vries equation and exten-

sions of it [1–16], have provided a lot of interesting results from both mathematical and

physical points of view.

Besides the physical applications of coupled KdV systems at low energies [17–19], one of the

Poisson structures of the KdV equation is related to the Virasoro algebra with central terms.

The latest is a fundamental symmetry of string theory, a proposal for a consistent quantum

gravity theory.

In this chapter, we discuss a general approach based on the Helmholtz procedure to obtain a

Lagrangian formulation and the Hamiltonian structure, starting from the system of time

evolution partial differential equations describing the coupled KdV systems. Once the

Lagrangian, whose stationary points corresponds to the integrable equations, has been

obtained we follow the Dirac approach to constrained systems [20] to obtain the complete set

of constraints and the Hamiltonian structure of the system. We discuss the existence of more

than one Poisson structures associated with the integrable systems. Some of them are compat-

ible Poisson structures and define a pencil of Poisson structures. We also discuss duality

relations among the integrable systems we consider. The extensions of the KdV equation

include a parametric coupled KdV system [21, 22], which we discuss in Section 3. In Section 8,

we present a coupled KdV system arising from the breaking of a N ¼ 1 supersymmetric model

[15]. In Section 11, we discuss an extension of the KdV equation where the fields are valued on

the octonion algebra and the product in the equation is the product on the octonion algebra

[23]. This system has a supersymmetric extension which may be directly related to a model of

the D ¼ 11 supermembrane theory, a relevant sector of M−theory. The latest is a proposal of

unification of all fundamental forces at very high energy.

2. The Dirac procedure for constrained systems

The Dirac approach for constrained systems [20] is a fundamental tool in the analysis of

classical and quantum aspects of a physical theory. From a classical point of view, it provides

a precise formulation of the initial valued problem for a time evolution system of partial

differential equations. The initial data for the initial valued problem, given in terms of a

constrained submanifold of a phase space, defines the physical phase space provided with

the corresponding Poisson structure which gives rise to the canonical quantization of the

system. In field theory, the starting point is a Lagrangian formulation. Its stationary points

determine the classical field equations, generically a time evolution system of partial differen-

tial equations. From the Lagrangian density L, one defines the conjugate momenta

pi; i ¼ 1,…; N; associated with the original independent fields qi; i ¼ 1,…; N; defining the

Lagrangian:

pi ¼
∂L

∂ _qi
: (1)

L is assumed to be a function of _qi and a finite number of spatial derivatives.

Lagrangian Mechanics4



If the Hessian matrix ∂2L
∂ _q i∂ _q j

is singular we cannot express, from the above equation defining the

conjugate momenta, all the _q i velocities in terms of the conjugate momenta.

The system presents then constraints on the phase space defined by the conjugate pairs

ðqi; piÞ, i ¼ 1,…; N: The phase space is provided with a Poisson structure given by

{qi; pj} ¼ δij; {qi; qj} ¼ {pi; pj} ¼ 0: (2)

In general, it is a difficult task to disentangle all the constraints on the phase space associated

with a given Lagrangian. The Dirac approach provides a systematic way to obtain all the

constraints on phase space. Moreover, it determines the Lagrange multipliers associated with

the constraints (eventually after a gauge fixing procedure) in a way that if the constraints are

satisfied initially then the Hamilton equations ensure that they are satisfied at any time. In this

sense, it provides a precise formulation of the initial value problem, the initial data is given by

the set of ðqi; piÞ conjugate pairs satisfying the constraints on phase space. The Hamilton

equations then provide the time evolution of the system. This constrained initial data, with its

associated Poisson structure (also obtained from the Dirac construction) provides the funda-

mental structure to define the canonical quantization of the original Lagrangian.

From the equation defining momenta one obtains, in the case of singular Lagrangian, a set of

constraints φMðq; pÞ ¼ 0, where the argument is a shorthand notation for p; q and their deriv-

atives with respect to the spatial coordinates xa; a ¼ 1,…; k:

Also, by performing a Legendre transformation one gets a Hamiltonian H0 ¼

ðþ∞
−∞

dxH0, where

the Hamilton density is given by

H0 ¼ ∑
i
pi _qi−L, (3)

where L is the Lagrangian density. Then, we obtain a new Hamiltonian H ¼

ðþ∞
−∞

dxH with a

densityH ¼ H0 þ λMφM. The conservation of the constraints, which have to be satisfied at any

time, yields

_φM ¼ {φM; H} ¼ 0: (4)

{φM; H} ¼ 0 may (i) be identically satisfied on the constrained surface φm ¼ 0,

(ii) determine Lagrange multipliers, or

(iii) give new constraints.

In Case (i) or (ii), the procedure ends; in Case (iii), the iteration follows exactly in the same way.

At some step, the procedure ends, assuming that there is a finite of physical degrees of

freedom describing the dynamics of the original Lagrangian. In the procedure, a set of

Lagrange multipliers may be determined and others may not. The constraints associated with
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the ones that have been determined are called second class constraints, the other constraints for

which the Lagrange multipliers are not determined are related to first class constraints. The

first class constraints are the generators of a gauge symmetry on the time evolution system of

partial differential equations. A difficult situation may occur in field theory when there is a

combination of first and second class constraints. In order to separate them, one may have to

invert some matrix involving fields of the formulation which may render dangerous non-

localities in the final formulation.

All physical theories of the known fundamental forces in nature are formulated in terms of

Lagrangians with gauge symmetries. All of them have first class constraints in their canonical

formulation. In addition, they may also have second class constraints. In the analysis of field

theories which are completely integrable systems like the ones we will discuss in this chapter

only second class constraint appear. In this case, there are short cut procedures to simplify the

Dirac procedure. However, the richness of the Dirac approach is that from its formulation one

can extrapolate gauge systems which under a gauge fixing procedure reduce to the given

system with second class constraints only. This is one of the main motivations of this chapter,

to establish the Lagrangian and Hamiltonian structure for coupled KdV systems, which may

allow the construction of gauge systems which are completely integrable.

In the case in which the constrained system has second class constraints, Dirac introduced the

Poisson structure on the constrained submanifold in phase space. It determines the “physical”

phase space with its Poisson bracket structure given by the Dirac bracket. They are defined in

terms of the original Poisson bracket {, } on the full phase space by:

{F; G}DB ¼ −{F; φ
M
}{φ

M
; φ

N
}−1{φ

N
; G} (5)

where {φ
M

; φ
N
}−1 is the inverse of the matrix {φ

M
; φ

N
} which, in the case where φ

M
¼ 0 are

second class constraints, is always of full rank.

The difficulty in field theory occurs when the matrix {φ
M

; φ
N
} depends on the fields describing

the theory and its inverse may lead to nonlocalities in the formulation. In our applications,

those difficulties will not be present.

The Dirac bracket of a second class constraint with any other observable is zero. Consequently,

the time conservation of the second class constraints is assured by the construction. For the

same reason, there is no ambiguity on which Hamiltonian is used in determining the time

evolution of observables.

3. A parametric coupled KdV system

Avery interesting and well-known integrable system is the Korteweg-de Vries (KdV) equation.

It arises from a variational principle of a singular Lagrangian. In what follows, we consider an

extension of it. A coupled KdV system formulated in terms of two real differentiable functions

uðx; tÞ and vðx; tÞ given by the following partial differential equations [21]:

Lagrangian Mechanics6



ut þ uux þ uxxx þ λvvx ¼ 0 (6)

vt þ uxvþ vxuþ vxxx ¼ 0 (7)

where λ is a real parameter.

When discussing conserved quantities, we will assume that u and v belong to the real Schwartz

space defined by

C∞↓ ¼ w ∈ C∞ðRÞ= lim
x!�∞

xp
∂
q

∂xq
w ¼ 0; p; q ≥ 0

� �

(8)

When λ ¼ þ1 the system is equivalent to two decoupled KdV equations. When λ ¼ −1 the

system is equivalent to a KdV equation valued on the complex algebra. By a redefinition of v

given by v ! v
ffiffiffiffi

jλj
p the system for λ > 0 reduces to the λ ¼ þ1 case and the system for λ < 0

reduces to the λ ¼ −1 case. The case λ ¼ 0 is an independent integrable system.

The system (6) and (7) for λ ¼ −1 describes a two-layer liquidmodel studied in references [17–19].

It is a very interesting evolution system. It is known to have solutions developing singularities

on a finite time [24]. Also, a class of solitonic solutions was reported in [25] through the Hirota

approach [26] and in [27] via a Bäcklund transformation in the sense of Wahlquist and

Estabrook (WE) [28].

The system (6) and (7) for λ ¼ 0 correspond to the ninth Hirota-Satsuma [6] coupled KdV

system given in Ref. [29] (for the particular value of k ¼ 0) (see also [30]) and is also included in

the interesting study that relates integrable hierarchies with polynomial Lie algebras [31].

4. The Lagrangian associated with the parametric coupled KdV system

In this section, we obtain the Lagrangian and associated Hamiltonian structure of the coupled

KdV system. We present the main results in Ref. [22].

The Lagrangian construction requires the introduction of the Casimir potentials w and y

given by

uðx; tÞ ¼ wxðx; tÞ
vðx; tÞ ¼ yxðx; tÞ:

(9)

The system (6) and (7) rewritten in terms of w and y is given by

wxt þ F½w; y� ¼ 0; F½w; y� ¼ wxwxx þ wxxxx þ λyxyxx
yxt þ G½w; y� ¼ 0; G½w; y� ¼ wxxyx þ yxxwx þ yxxxx:

(10)

We notice that the matrix constructed from the Frechet derivatives of F and G, with respect to

w and y, is self-adjoint. We then conclude from the Helmholtz procedure that

Singular Lagrangians and Its Corresponding Hamiltonian Structures
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L1 ¼ −
1

2
wxwt−

1

2
λyxyt þ

ð1
0

ðwF½μw; μy� þ yλG½μw; μy�Þdμ, (11)

where λ ≠ 0, and

L2 ¼ −
1

2
wxyt−

1

2
wtyx þ

ð1
0

ðyF½μw; μy� þ wG½μw; μy�Þdμ, (12)

for every real value of λ, are two Lagrangian densities which give rise, from a variational

principle to Eqs. (6) and (7).

The Lagrangians associated with Li; i ¼ 1; 2 are given by Liðw; yÞ ¼

ðT
0

dt

ðþ∞
−∞

dxLi; i ¼ 1; 2:

Independent variations of Li, for each i, with respect to w and y give rise to the field

equations

δwLi ¼ 0
δyLi ¼ 0

(13)

which coincide, for each i, with Eqs. (6) and (7). In the above equations δw and δy denote the

Gateaux functional variation defined by

δwLðw; yÞ ¼ lim
e!0

Lðwþ eδw; yÞ−Lðw; yÞ

e

δyLðw; yÞ ¼ lim
e!0

Lðw; yþ eδyÞ−Lðw; yÞ

e

:

(14)

The explicit expressions for L1 and L2 are given by

L1 ¼ −
1

2
wxwt−

1

6
wx

3 þ
1

2
wxx

2
−
λ

2
wxyx

2
−
λ

2
yxyt þ

λ

2
yxx

2
; (15)

L2 ¼ −
1

2
wxyt−

1

2
wtyx−

1

2
w2

xyx−yxwxxx−
λ

6
y3x: (16)

The Lagrangians Li; i ¼ 1; 2, are singular Lagrangians, we thus expect a constrained Hamilto-

nian formulation associated with them. The same happens for the corresponding KdV

Lagrangian that can be obtained from L1 by imposing λ ¼ 0.

We consider first the Lagrangian L1. The conjugate momenta associated with w and y, which

we denote by p and q, respectively, are given by

p ¼
∂L1

∂wt
¼ −

1

2
wx; q ¼

∂L1

∂yt
¼ −

λ

2
yx: (17)

We define

φ1 ≡ pþ
1

2
wx; φ2 ¼ qþ

λ

2
yx: (18)

Lagrangian Mechanics8



Hence, φ1 ¼ φ2 ¼ 0 are constraints on the phase space. We then follow the Dirac procedure to

determine the whole set of constraints. It turns out that these are the only constraints on the

phase space.

The Hamiltonian density may be obtained directly from L1 by performing a Legendre trans-

formation,

H1 ¼ pwt þ qyt−L1: (19)

The Hamiltonian density is then given by

H1 ¼
1

6
w3

x−
1

2
w2

xx þ
λ

2
wxy

2
x−

λ

2
y2xx (20)

and the Hamiltonian by H1 ¼

ðþ∞

−∞

dx H1:

We introduce a Poisson structure on the phase space by defining

fwðxÞ,pðx̂ÞgPB ¼ δðx−x̂Þ
fyðxÞ,qðx̂ÞgPB ¼ δðx−x̂Þ

(21)

with all other brackets between these variables being zero.

From them we obtain

f∂nxwðxÞ, ∂
m
x̂ pðx̂Þg ¼ ∂

n
x∂

m
x̂ fwðxÞ, pðx̂Þg: (22)

It turns out that φ1; φ2 are second class constraints. In fact,

fφ1ðxÞ,φ1ðx̂ÞgPB ¼ δxðx−x̂Þ
fφ1ðxÞ,φ2ðx̂ÞgPB ¼ 0
fφ2ðxÞ,φ2ðx̂ÞgPB ¼ λδxðx−x̂Þ:

(23)

In order to define the Poisson structure on the constrained phase space, we need to use the

Dirac brackets.

The Dirac bracket between two functionals F and G on phase space is defined by

fF; GgDB ¼ fF; GgPB−〈〈fF; φiðx
′Þg

PB
Cijðx

′
; x″Þfφjðx

″Þ,Gg
PB

〉x′〉x″ (24)

where <>x′ denotes integration on x′ from −∞ to þ∞. The indices i; j ¼ 1; 2 and the Cijðx
′; x″Þ

are the components of the inverse of the matrix whose components are fφiðx
′Þ,φjðx

″g
PB
.

This matrix becomes

∂x′δðx
′−x″Þ 0
0 λ∂x′δðx

′−x″Þ

� �

(25)

Singular Lagrangians and Its Corresponding Hamiltonian Structures
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and its inverse is given by

½Cijðx
′
; x″Þ� ¼

ðx′
δðs−x″Þds 0

0
1

λ

ðx′
δðs−x″Þds

2
6664

3
7775: (26)

It turns out, after some calculations, that the Dirac brackets of the original variables are

fuðxÞ,uðx̂ÞgDB ¼ −∂xδðx−x̂Þ; fvðxÞ,vðx̂ÞgDB ¼ −
1

λ
∂xδðx−x̂Þ

fuðxÞ,vðx̂ÞgDB ¼ 0:

(27)

We remind that this Poisson structure has been constructed assuming λ ≠ 0.

From them, we obtain the Hamilton equations, which of course are the same as Eqs. (6) and (7):

ut ¼ fu; H1gDB ¼ −uux−uxxx−λvvx
vt ¼ fv; H1gDB ¼ −uxv−vxu−vxxx:

(28)

We notice that adding any function of the constraints to H1 does not change the result, since the

Dirac bracket of the constraints with any other local function of the phase space variables is zero.

Using the above bracket relations for u and v, we may obtain directly the Dirac bracket of any

two functionals Fðu; vÞ and Gðu; vÞ. We notice that the observables F and Gmay be functionals

of w; y; p, and q, not only of u and v. In this sense, the phase space approach for singular

Lagrangians provides the most general space of observables.

We now consider the action L2 and its associated Hamiltonian structure. In this case, we

denote the conjugate momenta to w and y by p̂ and q̂, respectively. We have

p̂ ¼ −
1

2
yx, q̂ ¼ −

1

2
wx: (29)

In this case, the constraints become

cφ1 ¼ p̂ þ
1

2
yx ¼ 0, cφ2 ¼ q̂ þ

1

2
wx ¼ 0: (30)

The corresponding Poisson brackets are given by

fcφ1ðxÞ,
cφ1ðx

′Þg
PB

¼ 0, fcφ2ðxÞ,
cφ2ðx

′ÞgPB ¼ 0,

fcφ1ðxÞ,
cφ2ðx

′ÞgPB ¼ ∂xδðx−x
′Þ:

(31)

From them, we can construct the Dirac brackets after which some calculations yield the

Poisson structure for the original variables

Lagrangian Mechanics10



fuðxÞ,uðx̂ÞgDB ¼ 0; fvðxÞ,vðx̂ÞgDB ¼ 0;
fuðxÞ,vðx̂ÞgDB ¼ −∂xδðx−x̂Þ: (32)

The Hamiltonian H2 ¼
ðþ∞

−∞

dxH2 is given in terms of the Hamiltonian density

H2 ¼
1

2
w2

xyx þ yxwxxx þ
λ

6
y3x: (33)

The Hamilton equations follow then in terms of the Dirac brackets, they are

ut ¼ fu; H2gDB, vt ¼ fv; H2gDB, (34)

which coincide with the field Eqs. (6) and (7) for any value of λ. We have thus constructed two

Hamiltonian functionals and associated Poisson bracket structures. These two Hamiltonian

structures arise directly from the basic actions L1 and L2. In Section 6, we will construct two

additional Hamiltonian structures by considering a Miura transformation for the coupled

system.

5. A pencil of Poisson structures for the parametric coupled KdV system

We have then constructed two Lagrangian densities Li; i ¼ 1; 2; we may now introduce a real

parameter k and define a parametric Lagrangian density

Lk ¼ kL1 þ ð1−kÞL2: (35)

The field equations obtained from the corresponding Lagrangian Lk ¼
ðT

0

dt

ðþ∞

−∞

dxLk are equiv-

alent to Eqs. (6) and (7) in the following cases: If λ < 0 for any k. If λ ¼ 0; for k ≠ 1: If λ > 0 for

k ≠ 1
1þ

ffiffiffi

λ
p and k ≠ 1

1−
ffiffiffi

λ
p . From now on, we will exclude these particular values of k.

The parametric Lagrangian Lk is singular for any value of k (excluding the above mentioned

particular cases). The corresponding phase space formulation contains constraints, which are

determined by the use of the Dirac procedure. We denote p and q the conjugate momenta

associated with w and y, respectively. From their definition, we obtain the primary constraints.

φ1≡
k

2
wx þ

ð1−kÞ
2

yx þ p ¼ 0 (36)

φ2≡
λk

2
yx þ

ð1−kÞ
2

wx þ q ¼ 0: (37)

We may then define the Hamiltonian density Hk through the Legendre transformation, we get
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Hk ¼ pwt þ qyt−Lk ¼ kH1 þ ð1−kÞH2: (38)

We now follow the Dirac algorithm to determine the complete set of constraints. It turns out

that these are the only constraints in the formulation.

The Poisson brackets of the constraints obtained from the canonical Poisson brackets of the

conjugate pairs are

fφ1ðxÞ,φ1ðx̂ÞgPB ¼ k∂xδðx−x̂Þ

fφ2ðxÞ,φ2ðx̂ÞgPB ¼ λk∂xδðx−x̂Þ

fφ1ðxÞ,φ2ðx̂ÞgPB ¼ ð1−kÞ∂xδðx−x̂Þ:

(39)

Hence, they are second class constraints. We will denote by fgkDB the Dirac bracket

corresponding to the parameter k. We then proceed to calculate the Dirac brackets of the

original fields u and v.

We obtain

fuðxÞ,uðx̂ÞgkDB ¼
λk

−λk2 þ ð1−kÞ2
∂xδðx−x̂Þ

fvðxÞ,vðx̂ÞgkDB ¼
k

−λk2 þ ð1−kÞ2
∂xδðx−x̂Þ

fuðxÞ,vðx̂ÞgkDB ¼
1−k

−λk2 þ ð1−kÞ2

�

−∂xδðx−x̂Þ
�

:

(40)

where the denominator is different from zero for the values of kwe are considering. The above

brackets define the Poisson structure of the corresponding Hamiltonian

Hk ¼

ðþ∞

−∞

dxHk: (41)

The Hamilton equations

ut ¼ fu; HkgDB

vt ¼ fv; HkgDB
(42)

coincide, as expected, with the coupled Eqs. (6) and (7).

In Section 3, we constructed two Poisson structures for the coupled system (6) and (7). We now

show they are compatible. It follows, for any two functionals F and G that

fF; GgkDB ¼
−λk

−λk2 þ ð1−kÞ2
fF; Gg1DB þ

1−k

−λk2 þ ð1−kÞ2
fF; Gg0DB; (43)

where fF; Gg1DB, corresponding to k ¼ 1, and fF; Gg0DB, corresponding to k ¼ 0, are the two

Dirac brackets structures obtained in Section 3. In particular, for any λ≠0; 1 and k ¼ 1
1−λ, we get

Lagrangian Mechanics12



fF; Ggk
DB

¼ fF; Gg1
DB

þ fF; Gg0
DB

, (44)

which implies that any linear combination of fF; Gg1
DB

and fF; Gg0
DB

, for any λ≠0; 1, is a Poisson

bracket. That is, the two Poisson structures obtained in Ref. [22], corresponding to k ¼ 1 and

k ¼ 0, are compatible.

For the particular value of λ ¼ 0, and any k≠1 we obtain

fF; Ggk
DB

¼
k

2ð1−kÞ2
fF; Gg

1
2

DB
þ

1−2k

ð1−kÞ2
fF; Gg0

DB
: (45)

For k ¼ 2
5 the two coefficients on the right-hand member of Eq. (45) are equal. It implies that the

Poisson structures for k ¼ 1
2 and k ¼ 0 are compatible.

We have thus constructed a pencil of Poisson structures, except for λ ¼ 1, for which the

coupled system reduces to two decoupled KdV equations.

6. The Miura transformation for the parametric coupled KdV system

It is well known that the KdV equation admits two Hamiltonian structures, one of them is

a particular case of our previous construction. It is obtained by considering only the uðx; tÞ

field, imposing vðx; tÞ ¼ 0: In this case, the two previous Hamiltonians structures reduce to

only one and there is no pencil of Poisson structures. The second Hamiltonian structure

for the KdV equation arises from a Miura transformation, which is also a particular case of

the following construction. The corresponding Miura transformation for our coupled sys-

tem becomes

u ¼ μ
x
−
1

6
μ2

−
λ

6
ν2

v ¼ νx−
1

3
μν:

(46)

and the modified KdV system (MKdVS)

μ
t
þ μ

xxx
−
1

6
μ2μ

x
−
λ

6
ν2μ

x
−
λ

3
μννx ¼ 0

νt þ νxxx−
1

6
μ2νx−

λ

6
ν2νx−

1

3
μνμ

x
¼ 0:

(47)

It is interesting that from Eq. (47), following the Helmholtz procedure, which is also valid

for the MKdVS system, we obtain two singular Lagrangians densities L
M

i
; i ¼ 1; 2,

expressed in terms of the Casimir potentials σ; ρ where μ ¼ σx; ν ¼ ρ
x
:

Singular Lagrangians and Its Corresponding Hamiltonian Structures
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L
M

1 ¼ −
1

2
σtσx−

λ

2
ρ
t
ρ
x
−
1

2
σxσxxx−

λ

2
ρ
x
ρ
xxx

þ
1

72
σx

4 þ
λ2

72
ρ
x

4 þ
λ

12
ρ2
x
σ2
x

(48)

and

L
M

2 ¼ −
1

2
σtρx

−
1

2
σxρt

−σxxxρx
þ

1

18
σx

3ρ
x
þ

λ

18
ρ
x

3σx, (49)

Eq. (48) being valid only for λ≠0.

Each of them has a Poisson structure that follows from the Dirac approach. The Dirac

brackets, for the original fields u; v in the coupled system (6) and (7) are given by

fuðxÞ,uðx̂Þg
DB

¼ ∂xxxδðx−x̂Þ þ
1

3
uxδðx−x̂Þ þ

2

3
u∂xδðx−x̂Þ

fvðxÞ,vðx̂Þg
DB

¼
1

λ
∂xxxδðx−x̂Þ þ

1

3λ
uxδðx−x̂Þ þ

2

3λ
u∂xδðx−x̂Þ

fuðxÞ,vðx̂Þg
DB

¼
1

3
vxδðx−x̂Þ þ

2

3
v∂xδðx−x̂Þ,

(50)

which is the Poisson structure associated with L
M

1 and

fuðxÞ,uðx̂Þg
DB

¼
λ

3
vxδðx−x̂Þ þ

2λ

3
v∂xδðx−x̂Þ

fvðxÞ,vðx̂Þg
DB

¼
1

3
vxδðx−x̂Þ þ

2

3
v∂xδðx−x̂Þ

fuðxÞ,vðx̂Þg
DB

¼ ∂xxxδðx−x̂Þ þ
1

3
uxδðx−x̂Þ þ

2

3
u∂xδðx−x̂Þ,

(51)

the Poisson structure associated with L
M

2 .

The corresponding Hamiltonian densities HM

1 and H
M

2 are given in terms of the fields u and

v by

H
M

1 ¼ v
2−u2

H
M

1 ¼ −uv:

(52)

The Hamilton equations obtained from these Hamiltonian structures coincide, of course, with

Eqs. (6) and (7).

From these two Poisson structures, we may construct a pencil of Poisson structures as we

described in the previous section, see Ref. [22] for the details of the construction. We notice

that L
M

1 and L
M

2 in the construction are of the same dimension. It is then not possible to

construct a hierarchy of higher order Hamiltonians from them. The same occurs with L1 and

L2. However, the two pencils are of different dimensions and we may obtain from them a

hierarchy of higher order Hamiltonians which extends the hierarchy of the KdV equation.
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7. A duality relation among the Lagrangians of the parametric coupled

KdV system

We consider a generalization of the Gardner construction for the KdV equation. The Gardner

transformation for the system (6) and (7) is given by

u ¼ rþ εrx−
1

6
ε2ðr2 þ λs2Þ (53)

v ¼ sþ εsx−
1

3
ε2rs, (54)

where ε is a real parameter and rðx; tÞ, sðx; tÞ are the fields which describe the Gardner

ε-deformation. The Gardner equations are

rt þ rxxx þ rrx þ λssx−
1

6
ε2½ðr2 þ λs2Þrx þ 2λrssx� ¼ 0 (55)

st þ sxxx þ rsx þ srx−
1

6
ε2½ðr2 þ λs2Þsx þ 2rsrx� ¼ 0: (56)

Any solution of Eqs. (55) and (56) define through Eqs. (53) and (54) a solution of the system (6),

(7).

ðþ∞
−∞

dx rðx; tÞ and

ðþ∞
−∞

dx sðx; tÞ are conserved quantities of the system (55) and (56). Assuming a

formal power series on ε of the solutions of Eqs. (55) and (56) and inverting Eqs. (53) and (54),

one obtains an infinite sequence of conserved quantities for the system (6), (7). It is an integra-

ble system in this sense.

If we consider the ε ! 0 limit for the Gardner transformation Eqs. (53), (54) and Gardner

Eqs. (55) and (56), we get the original system (6) and (7). On the other side, if we

redefine

μ ≡ εr (57)

ν ≡ εs (58)

and rewrite Eqs. (53) and (54), we get

u ¼
μ

ε
þ μ

x
−

1

6
μ2

−

1

6
λν2 (59)

v ¼
ν

ε
þ νx−

1

3
μν: (60)

Taking the limit ε ! ∞ we obtain
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û ¼ μx−
1

6
μ2

−

1

6
λμ2 (61)

v̂ ¼ νx−
1

3
μν (62)

which is exactly the Miura transformation. In the same limit, we obtain from Eqs. (55), (56) the

Miura equations given by Eq. (47).

We now construct using the Helmholtz approach a master Lagrangian for the Gardner equa-

tions. The master Lagrangians, there are two of them, are ε dependent and following the above

limits we obtain all the Lagrangian structures we discussed previously. The KdV coupled system

and the modified KdV coupled system are then dual constructions corresponding to the weak

coupling limit ε ! 0 and to the strong coupling limit ε ! ∞ respectively, of the master construc-

tion. A direct relation of these two systems arises from the present construction.

We introduce the Casimir potentials

r ¼ wx; s ¼ yx (63)

and using the Helmholtz approach we obtain the Lagrangian densities

LG1 ¼ −

1

2
wxwt−

1

6
ðwxÞ

3 þ
1

2
ðwxxÞ

2
−

λ

2
wxðyxÞ

2
−

λ

2
yxyt þ

λ

2
ðyxxÞ

2

−

1

6
ε2 −

1

12
ðwxÞ

4
−

λ

2
ðwxÞ

2ðyxÞ
2

� �

þ
ε2

72
λ2ðyxÞ

4
;

(64)

LG2 ¼ −

1

2
wxyt−

1

2
wtyx−

1

2
ðwxÞ

2yx−yxwxxx−
λ

6
ðyxÞ

3

þ
1

18
ε2ðwxÞ

3yx þ
1

18
ε2λðyxÞ

3wx:

(65)

If we take the weak coupling limit ε ! 0 we obtain

lim
ε!0

LG1 ¼ L1 ; lim
ε!0

LG1 ¼ L2 (66)

where L1 and L2 were defined in Section 3.

If we redefine

σ ¼ εw ; ρ ¼ εy
L
M
G1 ¼ ε2LG1 ; L

M
G2 ¼ ε2LG2

(67)

and take the strong coupling limit ε ! ∞, we get

lim
ε!∞

L
M
G1ðσ; ρÞ ¼ L

M
1 ðσ; ρÞ

lim
ε!∞

L
M
G2ðσ; ρÞ ¼ L

M
2 ðσ; ρÞ,

(68)
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where LM
1 and LM

2 were defined in Section 5. Consequently, all the Lagrangian structure and

the associated Hamiltonian structure of the coupled system (6), (7) arises from the master

Lagrangians. They can also be combined to a unique master Lagrangian depending on a

parameter k as was done in Section 4. The field equations of the master Lagrangians are the

Gardner equations, the spatial integral of rðx; tÞ and sðx; tÞ define an ε-deformed conserved

quantity of the Gardner equations which implies an infinite sequence of conserved quantities

of the original coupled KdV system (6), (7).

8. Hamiltonian structure for a KdV system valued on a Clifford algebra

In this section, we continue the discussion of the Lagrangian and Hamiltonian structures for

the coupled KdV systems. We discuss a coupled system arising from the breaking of the

supersymmetry on the N ¼ 1 supersymmetric KdV equation. The details of this system may

be found in Ref. [15]. The system is formulated in terms of a real valued field uðx; tÞ and a

Clifford algebra valued field ξðx; tÞ. The field ξðx; tÞ is expressed in terms of an odd number of

generators ei; i ¼ 1,… of the Clifford algebra

ξ ¼ ∑
∞

i¼1
ϕiei þ ∑

ijk
ϕijkeiejek þ⋯ (69)

where

eiej þ ejei ¼ −2δij, (70)

and ϕi; ϕijk;… are real valued fields. We define by ξ the conjugate of ξ,

ξ ¼ ∑
∞

i¼1
ϕiei þ ∑

ijk
ϕijkekejei þ⋯ (71)

where ei ¼ −ei. We denote by PðξξÞ the projector of the product ξξ to the identity element of

the algebra

PðξξÞ ¼ ∑
∞

i¼1
ϕ2
i þ ∑

ijk
ϕ2
ijk þ⋯ (72)

We proposed in Ref. [15] the following coupled KdV system arising from the breaking of the

supersymmetry in the N ¼ 1 supersymmetric equation [9]:

ut ¼ −uxxx−uux−
1

4
ðPðξξÞÞx

ξt ¼ −ξxxx−
1

2
ðξuÞx:

(73)
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In distinction to the N ¼ 1 supersymmetric KdV equation the coupled system (73) has only a

finite number of local conserved quantities,

Ĥ 1
2
¼

ðþ∞

−∞

ξdx;

Ĥ1 ¼

ðþ∞

−∞

udx;

V≡Ĥ3 ¼

ðþ∞

−∞

�

u2 þ PðξξÞ
�

dx;

M≡Ĥ5 ¼

ðþ∞

−∞

−

1

3
u3−

1

2
uPðξξÞ þ ðuxÞ

2 þ PðξxξxÞ

	 


dx:

(74)

It is interesting to remark that the following nonlocal conserved charge of Super KdV [32] is also

a nonlocal conserved charge for the system (73), in terms of the Clifford algebra valued field ξ,

ð

∞

−∞

ξðxÞ

ðx

−∞

ξðsÞdsdx: (75)

However, the nonlocal conserved charges of Super KdV in Ref. [33] are not conserved by the

system (73). For example,

ð

∞

−∞

uðxÞ

ðx

−∞

ξðsÞdsdx: (76)

is not conserved by Eq. (73).

The system (73) has multisolitonic solutions. In Ref. [34], we showed that the soliton solution is

Liapunov stable under perturbation of the initial data.

9. The Lagrangian and Hamiltonian structure of the Clifford valued

system

We introduce the Casimir potentials w and η defined by

u ¼ wx and ξ ¼ ηx: (77)

We notice, as in the previous sections, that Eq. (73) may be expressed as stationary points of a

singular Lagrangian constructed following the Helmholtz approach. We denote

Pðw; ηÞ ¼ wxxxx þ wxwxx þ
1

4
ðPðηxηxÞÞx

Qðw; ηÞ ¼ ηxxxx þ
1

2
ðwxηxÞx

(78)

The Lagrangian becomes L ¼

ðT

0

dt

ðþ∞

−∞

dxL in terms of the Lagrangian density L given by

Lagrangian Mechanics18



L ¼
1

2
wxwt þ

1

2
ðPðηxηtÞ−

ð1

0

wPðμw; μηÞdμ−

ð1

0

PðQðμw; μηÞηÞdμ: (79)

From the Lagrangian L, we may construct its Hamiltonian structure using the Legendre

transformation. We denote ðp; σÞ the conjugate momenta to ðw; ηÞ:

p :¼
∂L

∂ð∂twÞ
¼

1

2
wx ¼

1

2
u

σ :¼
∂L

∂ð∂tηÞ
¼

1

2
ηx ¼

1

2
ϕ:

(80)

Eq. (80) describes constraints on the phase space.

Performing the Legendre transformation we obtain the Hamiltonian of the system

H ¼

ðþ∞

−∞

dx
�

pwt þ PðσηtÞ−L
�

(81)

where H ¼ 1
2 Ĥ5 in (74).

Following the Dirac approach, the conservation of the primary constraints (80) determines the

Lagrange multipliers associated with the constraints (80). There are no more constraints on the

phase space. It turns out that both constraints are second class ones. The Poisson structure of

the constrained Hamiltonian is then determined by the Dirac brackets, see Ref. [15] for the

details. We identify by an index i the independent components of a field η or σ valued on the

Clifford algebra. We may rewrite the constraints as

v :¼ p−
1

2
wx

vi :¼ σi−
1

2
ηix:

(82)

Introducing vI :¼ ðv; viÞ, we then have

fvIðxÞ, vJðx
′Þg ¼ −δIJ∂xδðx−x

′Þ: (83)

The Poisson structure of the constrained Hamiltonian is then determined by the Dirac brackets

[20]. For any two functionals on the phase space F and G, the Dirac bracket is defined as

fF; GgDB :¼ fF; Gg−〈〈fF; vIðx
′ÞgfvIðx

′Þ,vJðx
″Þg

−1
〉x′fvJðx

″Þ,Gg〉x″ , (84)

where

〈fvIðx
′Þ,vJðx

″Þg
−1
gðx″Þ〉x″ ¼ −δIJ

ðx′

−∞

gð~xÞd~x: (85)

We then have
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fuðxÞ,uðyÞgDB ¼ ∂xδðx; yÞ,
fϕiðxÞ,ϕjðyÞgDB

¼ δij∂xδðx; yÞ,
fuðxÞ,ϕiðyÞgDB

¼ 0:

(86)

Consequently,

∂tu ¼ fu; HgDB ¼ −
1

2
ðu2Þx−uxxx−

λ

4
ðϕ2

i Þx

∂tϕi ¼ fϕi; Hg
DB

¼ −ϕixxx−
λ

2
ðuϕiÞx,

(87)

where H is given by the last conserved quantity in Eq. (74) and can be directly expressed in

terms of u and ξ.

10. Positiveness of the Hamiltonian for the Clifford valued system

An interesting property of the Hamiltonian H of the Clifford coupled system (73) is its a priori

positiveness. In fact,

Ĥ3 þ Ĥ5 ¼ ∥ðu; ξÞ∥2H1
þ
ðþ∞

−∞

−
1

3
u3−

1

2
uPðξξÞ

	 


dx (88)

where the Sobolev norm ∥∥H1
is defined by

∥ðu; ξÞ∥2H1
:¼

ðþ∞

−∞

½u2 þ PðξξÞ þ ux
2 þ PðξxξxÞ�dx: (89)

We also noticed that

Ĥ3 ¼ ∥ðu; ξÞ∥2
L2

(90)

where ∥∥L2 is the L
2 norm.

We then have

Ĥ3 þ Ĥ5 ≥ ∥ðu; ξÞ∥2H1
−
1

2

ðþ∞

−∞

juj
�

u2 þ PðξξÞÞdx: (91)

We now use the bound

supjuj ≤ ∥u∥H1
ffiffiffi

2
p ≤

∥ðu; ξÞ∥H1
ffiffiffi

2
p , (92)

to obtain

Ĥ3 þ Ĥ5 ≥ ∥ðu; ξÞ∥2H1
−

1

2
ffiffiffi

2
p ∥ðu; ξÞ∥H1

∥ðu; ξÞ∥L2 : (93)
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Consequently,

Ĥ3 þ Ĥ5 þ
1

4
ffiffiffi

2
p

	 
2

Ĥ3 ≥ ∥ðu; ξÞ∥H1
−

1

4
ffiffiffi

2
p ∥ðu; ξÞ∥

L
2

	 
2

≥0: (94)

Finally,

Ĥ5 ≥ − 1þ 1

4
ffiffiffi

2
p

	 
2
 !

Ĥ3, (95)

Hence, for a normalized state satisfying ∥ðu; ξÞ∥
L
2 ¼ 1, we have

Ĥ5 ≥ − 1þ 1

4
ffiffiffi

2
p

	 
2
 !

: (96)

The Hamiltonian is then manifestly bounded from below in the space of normalized L2

configurations and it is thus physically admissible.

The property of the Hamiltonian is relevant from the physical point of view. In particular, in

showing that the soliton solution of the Clifford coupled system is Liapunov stable. The

stability analysis follows ideas introduced in Ref. [35] for the KdV equation. It is based on the

use of the conserved quantities of the system. It is interesting that only the first few of them, in

the case of the KdV equation, are needed. In the case of the Clifford coupled system these are

all the local conserved quantities of the system.

11. The KdVequation valued on the octonion algebra

A famous theorem by Hurwitz establishes that the only real normalized division algebras are

the reals R, the complex C, the quaternions ℍ, and the octonions O. In particular, these division

algebras are directly related to the existence of super Yang-Mills in several dimensions: 3, 4, 6,

and 10 dimensions [36]. The octonion algebra may be explicitly used in the formulation of

superstring theory in 10 dimensions and in the supermembrane theory in 11 dimensions,

relevant theories in the search for a unified theory of all the known fundamental forces in

nature.

The extension of the KdV equation to a partial differential equation for a field valued on a

octonion algebra is then an interesting goal [23].

We showed in the previous sections that an extension of the KdV equation to the field valued

on a Clifford algebra give rise to a coupled system with Liapunov stable soliton solution but

without an infinite sequence of local conserved quantities.

In the present section, we analyze the KdV extension where the field is valued on the octonion

algebra. The system shares several properties of the original real KdV equation. It has soliton

solutions and also has an infinite sequence of local conserved quantities derived from a
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Bäcklund transformation and a bi-Lagrangian and bi-Hamiltonian structure [23]. We will

show in this section the construction of the bi-Lagrangian structure.

The octonion algebra contains as subalgebras all other division algebras, hence our construc-

tion may be reduced to any of them.

The KdVequation on the octonion algebra can be seen as a coupled KdV system, as we will see

it has some similarities to the construction in the previous sections. However, it is invariant

under the exceptional Lie group G2, the automorphisms of the octonions, and under the

Galileo transformations. Those symmetries are not present in the model constructed on a

Clifford algebra.

We denote u ¼ uðx; tÞ a function with domain in R ·R valued on the octonionic algebra. If we

denote ei; i ¼ 1,…; 7 the imaginary basis of the octonions, u can be expressed as

uðx; tÞ ¼ bðx; tÞ þ B
!

ðx; tÞ (97)

where bðx; tÞ is the real part and B
!

¼ ∑7
i¼1Biðx; tÞei its imaginary part.

The KdV equation formulated on the algebra of octonions, or simply the octonion KdV

equation, is given by

ut þ uxxx þ
1

2
ðu2Þ

x
¼ 0, (98)

when B
!

¼ 0
!

it reduces to the scalar KdV equation. In terms of b and B
!

the equation can be

reexpressed as

bt þ bxxx þ bbx−∑
7

i¼1
BiBix ¼ 0, (99)

ðBiÞt þ ðBiÞxxx þ ðbBiÞx ¼ 0: (100)

Eq. (98) is invariant under the Galileo transformation given by

~x ¼ xþ ct;

~t ¼ t;

~u ¼ uþ c

(101)

where c is a real constant.

Additionally, Eq. (98) is invariant under the automorphisms of the octonions, that is, under the

group G2. If under an automorphism

u ! φðuÞ (102)

then

u1u2 ! φðu1u2Þ ¼ φðu1Þφðu2Þ (103)
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and consequently

½φðuÞ�t þ ½φðuÞ�xxx þ
1

2

�

½φðuÞ�2
�

x
¼ 0: (104)

12. The Gardner formulation for the octonion valued algebra KdV

equation

Associated with the real KdV equation, there is a Gardner ε-transformation and a Gardner

equation which allows to obtain in a direct way the corresponding infinite sequence of con-

served quantities. There exists a generalization of this approach for the KdV valued on the

octonion algebra. The generalized Gardner transformation, expressed in terms of a new field

rðx; tÞ valued on the octonion is given by

u ¼ rþ εrx−
1

6
ε2r2: (105)

The generalized Gardner equation is then

rt þ rxxx þ
1

2
ðrrx þ rxrÞ−

1

12

�

ðr2Þrx þ rxðr
2Þ
�

ε2 ¼ 0 (106)

where ε is a real parameter.

If rðx; tÞ is a solution of the generalized Gardner equation (106), then uðx; tÞ is a solution of the

octonion algebra valued KdV equation (98). It has been shown in Ref. [23] that

ðþ∞

−∞

Re½rðx; tÞ�dx

is a conserved quantity of Eq. (106). We can then invert Eq. (105), assuming a formal ε-

expansion of the solution rðx; tÞ, to obtain an infinite sequence of conserved quantities for the

KdV equation valued on the octonion algebra.

13. The master Lagrangian for the KdVequation valued on the octonion

algebra

We may now use the Helmholtz procedure to obtain a Lagrangian density for the generalized

Gardner equation. The master Lagrangian formulated in terms of the Casimir potential sðx; tÞ,

rðx; tÞ ¼ sxðx; tÞ, (107)

is

LεðsÞ ¼

ðtf

ti

dt

ðþ∞

−∞

LεðsÞdx (108)

where the Lagrangian density is given by
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LεðsÞ ¼ Re −

1

2
sxst−

1

6
ðsxÞ

3 þ
1

2
ðsxxÞ

2 þ
1

72
ε
2ðsxÞ

4

� �

: (109)

The Lagrangian density LεðsÞ is invariant under the action of the exceptional Lie group G2.

Independent variations with respect to s yields

δLεðsÞ ¼ Re −

1

2
ðδsÞxst−

1

2
sxðδsÞt−

1

6

�

ðδsÞxðsxÞ
2 þ sxðδsÞxsx þ ðsxÞ

2ðδsÞx

�

� �

þ Re
1

2

�

ðδsÞxxsxx þ ðδsÞxxsxx

�

þ
1

72
ε
2
�

ðδsÞxðsxÞ
3 þ sxðδsÞxðsxÞ

2 þ ðsxÞ
2ðδsÞxsx þ ðsxÞ

3ðδsÞx

�

� �

:

(110)

Using properties of the octonion algebra we obtain from the stationary requirement δLεðsÞ ¼ 0

the generalized Gardner equation (106).

In the calculation the property to be a division algebra of the octonions is explicitly used.

If we take the limit e ! 0, we obtain a first Lagrangian for the KdV equation valued on the

octonion algebra,

LðwÞ ¼

ðtf

ti

dt

ðþ∞

−∞

dxRe −

1

2
wxwt−

1

6
ðwxÞ

3 þ
1

2
ðwxxÞ

2

� �

: (111)

Independent variations with respect to w yields, using u ¼ wx, the octonionic KdV equa-

tion (98). If we consider the following redefinition

s ! ŝ ¼ εs
LεðsÞ ! ε

2
LεðŝÞ

(112)

and take the limit e ! ∞ we obtain

lim
e!∞

e
2
LeðŝÞ ¼ L

MðŝÞ, (113)

where

L
MðŝÞ ¼ Re −

1

2
ŝxŝt þ

1

2
ðŝxxÞ

2 þ
1

72
ðŝxÞ

4

� �

: (114)

We get in this limit the generalized Miura Lagrangian

LMðŝÞ ¼

ðtf

ti

dt

ðþ∞

−∞

dxLMðŝÞ: (115)

The Miura equation is then obtained by taking variations with respect to ŝ, we get

r̂t þ r̂xxx−
1

18
ðr̂Þ3x ¼ 0; r̂ ≡ ŝx, (116)
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while the Miura transformation arises after the redefinition process, it is u ¼ r̂x−
1
6 r̂

2
:

Any solution of the Miura equation, through the Miura transformation, yields a solution of the

KdV equation valued on the octonion algebra. Since LεðsÞ is invariant under G2, the same occurs

for LðwÞ and L
MðŝÞ, and consequently for the equations arising from variations of them.

The Lagrangian formulation of the octonionic KdVequation may be used as the starting step to

obtain the Hamiltonian structure of the octonion algebra valued KdV equation.

14. Conclusions

We analyzed the relevance of the Dirac approach for constraint systems applied to singular

Lagrangians. Several interesting theories are described by singular Lagrangians, notoriously

the gauge theories describing the known fundamental forces in nature. In this chapter, we

emphasized its relevance in the formulation of completely integrable field theories. We

discussed extensions of the Korteweg-de Vries equation in different contexts. All these exten-

sions, together with the KdVequation, allow a construction of a Lagrangian and a Hamiltonian

structure arising from the application of the Helmholtz procedure. That is, starting with a time

evolution partial differential system we construct, following the Helmholtz procedure, a

Lagrangian associated with it. We present the construction of several Lagrangians and their

corresponding Hamiltonian structures associated with the coupled KdV systems. All of them

are characterized by second class constraints. The physical phase space is obtained by the

determination of the complete set of constraints and the corresponding Dirac brackets. We

established the relation between the several constructions by obtaining a pencil of Poisson

structures. The application includes systems with an infinite sequence of conserved quantities

together with a system with finite number of conserved quantities but presenting soliton

solutions with nice stability properties. The final application is an extension of the KdV

equation to the case in which the fields are valued on the octonion algebra. We constructed a

master formulation from which two dual Lagrangian formulations are obtained , one

corresponding to the KdV valued on the octonions and the other one corresponding to the

extension of the modified KdV equation to fields valued on the octonions.

One important extrapolation of the analysis we have presented is the construction of gauge

theories describing completely integrable systems. In fact, it is natural to extend the analysis by

constructing a gauge theory which under a gauge fixing procedure reduces to the completely

integrable systems of the KdV type we have discussed.
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