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Abstract

Phenolic compounds are secondary metabolites abundant in our diet. These compounds 
may affect positively or negatively the sensory characteristics of food with important 
impacts on color, flavor, and astringency. An adequate consumption of phenolic com‐
pounds may also offer health benefits. After the consumption of fruits, the colon is the 
main site of microbial fermentation, where high molecular weight phenolic compounds 
are transformed into low molecular weight phenolic compounds such as phenolic acids 
or lactone structures by intestinal microbiota, which produce metabolites with biological 
and antioxidant activity, with evidence on health benefits for humans. A large amount 
of different phenolic compounds are responsible for physicochemical and sensory char‐
acteristics of table grapes and wines. Also, sweet cherry (Prunus avium L.) is one of the 
most popular temperate table fruits; they contain flavonoids, flavan‐3‐ols, and flavonols 
in addition to non‐flavonoid compounds. Anthocyanins are the major polyphenols in 
blueberries, and this group of phytochemicals is thought to be responsible for many 
of the health benefits of berry consumption. Therefore, considering the importance of 
red/dark‐colored fruits phenolic composition, the purpose of this chapter is to make a 
review of the most recent publications about these fruits’ phenolic composition and their 
impact on sensorial properties as well as the effect of microorganisms on fruit phenolic 
composition.

Keywords: phenolic compounds, grapes, sweet cherries, blueberries, sensorial 
characteristics
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1. Introduction

Phenolic compounds (phenolic acids, flavonoids, and stilbenes) are today among the most 
important classes of phytochemicals, since they are responsible for disease protection con‐

ferred from diets rich in these compounds [1]. Some fruits with high content of phenolic com‐

pounds, including flavonols, flavones, anthocyanins, and phenolic acids are grapes, sweet 
cherries, and blueberries. Polyphenolic compounds form complexes with salivary proteins, 
playing a role in the sensation of astringency, due to delubrication of oral surfaces. For astrin‐

gency, the tannin molecular weight seems to be important for its perception and to the inter‐

actions with salivary proteins. Flavor and color are also important factors for the selection 
of fruit by consumers. Sweetness and bitterness are mutually suppressed in mixtures, but 
astringency and bitterness tend to be perceived as negative attributes. Polyphenols’ sensory 
properties are related to molecules specific structures, including pigments correlated to fruit 
color [2]. This richness in phenolic compounds is also directly related with the positive effects 
on human health. However, the phenolic composition of the red/dark‐colored fruits depends 
on cultivar, maturity, growing environment, cultural practices, postharvest conditions, and 
processing techniques [3].

2. Phenolic composition of red/dark‐colored fruits

2.1. Phenolic composition of wine grapes and table grapes

Grapevine (Vitis vinifera L.) is the most important Mediterranean fruit crop, used to pro‐

duce wine, table grapes, and raisins. The phenolic compounds in grapes include two classes 
of phenolic compounds: non‐flavonoids and flavonoids. The major C

6
‐C3‐C6

 flavonoids in 
grapes include conjugates of flavonols, quercetin, and myricetin; flavan‐3‐ols (+)‐catechin 
and (‐)‐epicatechin; and malvidin‐3‐O‐glucoside and other anthocyanins. Non‐flavonoids 
include C

6
‐C

1
 hydroxybenzoic acids, and gallic acid, C

6
‐C3 hydroxycinnamates caffeic, caf‐

taric, and p‐coumaric acids; and C
6
‐C3‐C6

 stilbenes trans‐resveratrol, cis‐resveratrol, and trans‐ 

resveratrol glucoside. Polyphenols are a diverse group of secondary metabolites, which exist 
in different grape bunch fraction, such as stems, skins, pulp, and seeds [4–8]. According to 
Pastrana‐Bonilla et al. [6], the average concentration of total phenolic compounds in wine 
grapes is around 2178.8 mg/g gallic acid equivalent, in seeds, 374.6 mg/g gallic acid equiva‐

lent, in skins, and 23.8 mg/g gallic acid equivalent, in pulps. In addition, for table grapes, 
several authors also reported high levels of global and individual phenolic compounds [9]. 

Also for grape raisins, several works reported high levels of phenolic compounds [10, 11]. 

Thus, Sério et al. [12] reported levels of total phenolic compounds from several commercial 
red raisins (namely from Cardinal and Moscatel of Alexandria grape varieties) that ranged 
from 110.8 to 406.9 mg/100 g raisin. Phenolic compounds play an important role in wine 
quality and also in sensorial characteristics of table grapes, such as color, astringency, bit‐
terness, and aroma. However, it is important to note that the phenolic composition of grape 
berries depends on grape variety, environmental factors, and viticultural practices [8, 13–15]. 

Consequently, all these isolated or combined factors will be critical for the composition of 
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grape phenolic compounds, grape variety being one of the most important [16, 17]. Thus, 

genotypic differences among different varieties have a great influence in grape phenolic syn‐

thesis and accumulation during grape fruit maturation and development [18]. However, the 
interaction between the genotype, environment, and management practices heavily influ‐

ences the overall phenolic composition. Recently, Costa et al. [8] analyzed the phenolic com‐

position of several grape varieties cultivated at the same time in two Portuguese regions with 
distinct climatic conditions and reported that in general significantly higher global phenolic 
composition was obtained in the grapes collected in one of the regions. In addition, other 
work recently published [15] analyzed the adaptability of several red grape varieties from 
French origin to the other specific “terroirs” and compare their characteristics with native 
grape varieties. These authors reported that French grape varieties studied showed a higher 
degree of adaptation of the climate and soil conditions from the Portuguese vineyards, espe‐

cially for phenolic composition. Thus, grape phenolic characteristics are strongly influenced 
by environmental conditions specific from each place and consequently each grape variety 
produced in a specific terroir reflects the locality in its chemical composition, including in 
phenolic composition. According to several works, the geological and soil conditions [19], 

vineyard altitude [20], sunlight exposition [21], climate [21, 22], and solar radiation [23] of 
a region are important environmental factors that determine grape phenolic composition. 
Finally, there are also other factors that directly or indirectly may determine the grape pheno‐

lic composition, namely cultivation practices [22], exposure to diseases [24], and the degree 
of grape ripeness [4, 17].

2.2. Phenolic composition of sweet cherry

Cherries are an excellent source of antioxidants, particularly phenolics, such as flavonoids, fla‐

van‐3‐ols, and flavonols in addition to non‐flavonoid compounds such as hydroxycinnamic and 
hydroxybenzoic acids, which are concentrated in the epicarp and mesocarp of the fruit [25, 26]. 

The most abundant phenolic compounds are anthocyanins such as cyanidin‐3‐O‐rutinoside, 

cyanidin‐3‐O‐glucoside, peonidin‐3‐O‐rutinoside and glucoside, as well as pelargonidin‐3‐O‐

rutinoside are the most important anthocyanins in cherries [27]. The total anthocyanin content 

ranged from 6.21 to 94.20 mg cyanidin‐3‐O‐glucoside equivalents/100 g fresh weight in 24 sweet 
cherry cultivars grown on the mountain sides of the Etna volcano (Sicily, Italy) [28]. Other phe‐

nolics in cherries include neochlorogenic acid, p‐coumaroylquinic acid, and chlorogenic acid as 
the main hydroxycinnamic acids [26, 29, 30], the flavonol rutin and the flavan‐3‐ols (+)‐catechin 
and (‐)‐epicatechin (Figure 1) [26, 31]. The total phenol content ranged from 84.96 to 162.21 
mg gallic acid equivalents/100 g fresh weight in 24 sweet cherry cultivars grown in Italy [28]. 

Moreover, several studies reported higher phenolic content [26, 32] and antioxidant activity 
[32] in ripe cherries than in partially ripe. However, other pre‐ and postharvest factors, such 
as rootstock, cultivar, climate, soil type, storage conditions, and processing can significantly 
alter the amounts of bioactive compounds. In fact, levels of chlorogenic acid, neochlorogenic 
acid, p‐coumaric acid, and quercetin‐3‐rutinoside were higher in fruits grown on Weiroot 13 
and PiKu 1 rootstocks compared to MaxMa 14, Weiroot 158, F12/1 and Gisela 5 rootstocks [31]. 

According to Gonçalves et al. [26], the cherry cultivars have the same phenolic pattern, how‐

ever, with large variation on content as presented in Table 1. The  climatic  conditions have great 
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influence on phenolic levels. Indeed, Gonçalves et al. [26] stated that higher temperature and 
solar irradiation favored the biosynthesis of phenolic acids and decreased the content of antho‐

cyanins. However, the phenolic content tends to reach highest levels in the late stage of final 
maturity as refereed by Stöhr et al. [33]. In recent research, the preharvest application of several 
products to improve cherry quality, such as the oxalic acid (2 mM), has been studied, which 
increased anthocyanins, flavonols, neochlorogenic, and chlorogenic acids [34]. All the pheno‐

lic compounds and the antioxidant activity increased in several sweet cherry cultivars during 
cold storage [26, 27, 32, 35]. Also, the level of phenolics in “Canada Giant” and “Ferrovia” 
cherries increased during 8 days of shelf life [36]. Nevertheless, Esti et al. [37] detected a total 

anthocyanin content decrease of 41–52% in two sweet cherry cultivars after 15 days at 1°C and 
95% RH. The use of edible coatings has been used to extend the postharvest storage of cher‐

ries. Petriccione et al. [38] specified that chitosan‐coated sweet cherries presented higher total 
phenolic, flavonoid, and anthocyanin levels. Moreover, increasing health‐promoting properties 
of cherry fruit can be achieved with the addition of methyl salicylate treatment to cherry trees. 
This compound also delays the fruit postharvest senescence process by increasing the activity 
of the enzymes involved in ROS scavenging [39].

Figure 1. HPLC chromatogram of the Van sweet cherry cultivar extracts recorded at 280 nm. Adapted from 
Gonçalves et al. [26].

Cultivar Hydroxycinnamic acids Flavan‐3‐ols Flavonols Anthocyannis

NcAc pCqAC CAc Cat Epi Rut cy‐3‐glu cy‐3‐rut pn‐3‐glu plg‐3‐rut pn‐3‐rut

Burlat 23.8 24.7 3.8 7.2 6.7 4.8 23.2 44.6 <1.0 <1.0 2.1

Saco 153.5 12.2 9.8 10.5 10.3 11.8 5.1 38.6 n.d. <1.0 <1.0

Summit 34.4 27.5 7.2 5.8 8.2 3.1 2.4 26.0 <1.0 <1.0 <1.0

Van 65.6 5.6 4.8 3.5 4.5 4.0 3.4 28.2 <1.0 <1.0 1.5

NcAc, neochlorogenic acid; pCqAC, p‐coumaroylquinic acid; CAc, chlorogenic acid; Cat, catechin; Epi, epicatechin; Rut, 
Rutin; cy‐3‐glu, cyanidin‐3‐O‐glucoside; cy‐3‐rut, cyanidin‐3‐O‐rutinoside; pn‐3‐glu, peonidin‐3‐O‐glucoside; plg‐3‐rut, 
pelargonidin‐3‐O‐rutinoside; pn‐3‐rut, peonidin‐3‐O‐rutinoside; n.d., not detected.
Adapted from Gonçalves et al. [26].

Table 1. Content of several phenolic compounds in four sweet cherry cultivars (mg /100g fresh weight).

Phenolic Compounds - Natural Sources, Importance and Applications264



Almost all phenolic compounds in sweet cherry show strong antioxidant activity [35, 40, 41]. 

Adequate consumption of phenolic compounds may offer health benefits that include inhibi‐
tion of tumor cells growth [41], inhibition of inflammation [42], and protection against neu‐

rodegenerative diseases [43]. According to Matias et al. [44], a phenolic‐rich extract derived 
from sweet cherries could be an attractive candidate to formulate an agent for the prevention 
of oxidative stress‐induced disorders such as intestinal inflammation disorders. In spite of the 
large variations in the phenolic compounds content observed among several cherry cultivars, 
the levels of health‐promoting compounds are relevant to human health. Sweet cherries might 
therefore be considered as a functional food [41]. In fact, cyanidin‐3‐O‐rutinoside can slow 
down the absorption of carbohydrates by the inhibition of α‐glucosidase which may there‐

fore be useful as inhibitor to prevent or treat diabetes mellitus [45]. Cyanidin‐3‐O‐glucoside 
showed cardioprotective effects by reducing blood lipid levels in rats [46]. The oxygen radical 
absorbance capacity (ORAC) assay indicated that the fruit of all genotypes possessed consid‐

erable antioxidant activity [28]. Moreover, several cherry cultivars were effective in inhibiting 
human cancer cells derived from colon (HT29) and stomach (MKN45) [41]. Finally, cherry 
phenolic, mainly anthocyanins, also protects neuronal PC 12 cells from cell‐damaging oxida‐

tive stress (antineurodegenerative activity). However, this protection is dose‐dependent [43].

2.3. Phenolic composition of blueberries

Blueberries are flowering plants of the genus Vaccinium with dark‐purple berries, whose 
anthocyanins are considered to be nature's most potent antioxidants [47]. The genus Vaccinium 

belongs to the Ericaceae family [48] and includes many popular berries consumed around the 

world including blueberries, huckleberries, cranberries, lingonberries, and bilberries [49]. Of 
the more than 400 species in the genus Vaccinium, highbush, lowbush, and rabbiteye blue‐

berries (V. corymposum L., V. augustifolium Ait., and V. ashei Reade, respectively) are of high 
economic importance [50]. In fact, in recent years the production of these fruits has increased 
rapidly in Europe and across the globe, as a result of the recognition of their high nutritive 
value, characteristic taste, and flavor but also due to recent press regarding the health benefits 
of fresh berries consumption [51, 52]. Over 89,820 acres of land are growing cultivated blue‐

berries with an estimated annual production of 280,000 tons [53]. Blueberries are both a food 
product and a dietary supplement, consumed not only as fresh fruits but also as frozen fruits, 
or in dried or preserved form in bakery products. Blueberry anthocyanins are used as a natu‐

ral food colorant [54] and blueberry extract can be used as a prebiotic [49]. The fruit quality 
traits and the phytochemical content of blueberries are of increasing importance to research‐

ers in the field of food and health [55]. Blueberries are a source of vitamins, minerals, dietary 
fiber, phenolics, and flavonoids and they are very low in fat and sodium [56]. Anthocyanins, 
which provide blueberry with their characteristic colors, are the major polyphenols in blue‐

berries and this group of phytochemicals is thought to be responsible for many of the health 
benefits of berry consumption [57]. The anthocyanins detected in blueberries are 3‐glycosidic 
derivatives of cyanidin, delphinidin, malvidin, petunidin, and peonidin [49]. Nevertheless, 
anthocyanins vary in their quantity and composition among genotypes and also depend on 
the environmental growth conditions, postharvest storage conditions, and the method of 
analysis. Anyway, malvidin‐3‐glucoside and malvidin‐3‐galactoside have been found to be 
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the two most predominant anthocyanins in many cases [58]. Blueberries also contain varying 
amounts of other polyphenols, and chlorogenic acid is particularly high as compared with 
other food sources [59]. It is accompanied by small amounts of quercetin glycosides [60].

3. Impact of fruit phenolic compounds on sensorial characteristics

Regarding fruit's oral sensory characteristics, there are six oral sensory attributes of fruit: 
sourness, sweetness, bitterness, spiciness, aroma, and astringency. For many people, the oral 
sensory properties of fruit have a great impact on their choice, acceptability, and consump‐

tion. Phenolic compounds, apart from possessing valuable biological properties, impart a 
high sensory activity to foods [61]. They are closely associated with the sensory and nutri‐
tional quality of fresh and processed plant foods and may affect positively or negatively 
the sensory characteristics of food with impacts on color, flavor, and astringency. This 
impact becomes important for consumer's acceptance, so that health‐promoting products 
can be palatable and largely consumed [2]. Fruit preservation also influences the quantity 
and quality of fruits’ phenolic content. For instances, during thawing of fruits, oxidation of 
phenolic compounds takes place and is negatively correlated with the acceptance level of 
fruits [62]. However, in a study comparing different pretreating processes of strawberries, 
samples with the highest phenolic content were also the most pleasant ones [63]. Specific 
structures are described to be related to polyphenols’ sensory properties, namely color per‐

ception. Color, in fruits, is derived from natural pigments that change through plant rip‐

ening. Chlorophylls (green), carotenoids (yellow, orange, and red), anthocyanins (red and 
blue), flavonoids (yellow), and betalains (red) are the primary pigments responsible for fruit 
color [64]. Also, water‐soluble brown‐, gray‐, and black‐colored pigments may occur due 
to enzymatic and non‐enzymatic browning reactions [65]. Many polyphenol pigments in 
plants are reactive anthocyanins, yellow flavanols, and flavones [66]. Anthocyanins can be 
used in food industry to color food. The six anthocyanins that can be found in the following 
red/dark‐colored fruits are cyanidin (cherries, blackcurrants, raspberries, and elderberries), 
delphinidin (blackcurrants and blueberries), malvidin (grapes), pelargonidin (strawberries 
and radishes), peonidin (cranberries), and petunidin (blueberries)—Figure 2. Due to their 

water solubility, anthocyanins are applicable for dyeing low pH systems. Increasing pH 
leads to a lesser color intensity and a bluer tone appears at pH higher than 4.5, giving its 
bluish color to blackcurrant. Proanthocyanidins react with anthocyanins to form new red 
pigments [68]. Loss or stabilization of color and increases in the range of available hues are 
resulted by the conversion of anthocyanins to other compounds during food processing [2]. 

The color of fruits is a sensory attribute that can really change consumers’ fruit acceptance. It 
is considered the most important product‐intrinsic sensory cue leading the sensory expecta‐

tions that the consumer holds concerning the foods that they may consume [69] and, accord‐

ing to Piqueras‐Fizman et al. [70], humans’ experience of taste/flavor is determined by the 
expectations that they often generate prior to tasting. Consumers inspect fruits, visually, 
before deciding on whether or not to buy them. People associate certain colors with certain 
flavors. For instances, red/dark fruit coloring also appears to be a particularly good inducer 
of sweetness [71].
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Gavrilova et al. [72] studied the phenolic profile of four blueberry varieties (V. corymbosum 

L., cv. Toro, Legacy, Duke, and Bluecrop) and two varieties (Rosenthal and Rovada) of red 
currants (Ribes rubrum L.) and black currants (R. nigrum L.) cultivated in Macedonia. They 
found that anthocyanins comprised the highest content of total phenolic compounds in cur‐

rants (>85%), namely in the dark (black) currents, and lower and variety dependent in blue‐

berries (35–74%). Hydroxycinnamic acid derivatives comprised 23–56% of total phenolics in 
blueberries and 1–6% in currants (Table 2). Besides bitterness, astringency, and color, some 
volatile polyphenols are strong odorants [66]. However, in dark‐colored fruits, phenolic com‐

pounds present an almost insignificant role in fruit flavor profile. In raspberry fruit (Rubus 

idaeus L.), phenolic compounds only represent 1% of the total flavor compounds (Figure 3), 

whose concentration varies between “trace amount” and 0.3 mg/kg [73]. Nevertheless, in wild 
berries, several volatile phenolic compounds were identified by Honkanen et al. [73], such 

as 2‐methoxy‐4‐vinylphenol, 2‐methoxy‐5‐vinylphenol, 3,4‐dimethoxybenzaldehyde, and 4‐
vinylsyringol, none of which have been reported in cultivated varieties [74]. An important fact 

Figure 2. Anthocyanins in red/dark‐colored fruits. Adapted from Just the Berries [67].
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stated by Honkanen et al. [73] is that with the exception of ionones, the amounts of individual 
volatile compounds in wild raspberries were generally three to four times higher than in the 
cultivated varieties. Moreover, the higher amounts of volatile compounds, in wild raspberry, 
may have contributed to their characteristic aroma. Also, the increased berry size, hybridiza‐

tion, and/or fertilization lead to worsening in the aroma profile of cultivated raspberries.

Plant‐based phenol compounds, flavonoids, isoflavones, terpenes, and glucosinolates are 
almost bitter and astringent [75]. These substances provide defense against predators by 
making the plants unpalatable [75]. But also humans reject foods that are perceived to be 
excessively bitter [76]. Flavonoid phenols have been indicated as the main responsible for the 
taste of bitterness and the mouth‐fell sensation of astringency in several types of fruits and 
in beverages [2, 77]. Several works suggested that some polyphenols can be responsible for 
the bitterness of fruits even if they are present in very low concentrations [78]. The bitterness 
and astringency of red wines and red/dark‐colored fruits are mainly given by the flavanols. 
The mechanisms through which bitter taste perception occurs are not well understood; how‐

ever, it is known that these mechanisms involve the activation of distinct human bitter taste 
receptors [77, 78]. While lower‐molecular‐weight phenolic compounds tend to be likely bitter, 
higher‐molecular‐weight polymers are perceived as astringent. Astringency or drying/puck‐

ering mouth‐feel detectable throughout the oral cavity is due to a complex reaction between 
polyphenols and proteins of the mouth and saliva [79]. Interaction between tannins and saliva 
proteins plays an important role in astringency perception in wine [80]; however, the physi‐
ological and physicochemical mechanisms for this phenomenon are not fully understood and 
more studies focusing on this subject must be done in wines and fruits.

Red currants Black currants Blueberries

Compounds (total) Rosenthal Rovada Rosenthal Rovada Toro Legacy Duke Bluecrop

Phenolic compounds. 18.05

±

0.58

17.97
±

0.31

207.77
±

1.14

187.69
±

1.84

94.60

±

0.93

137.74
±

1.05

113.02
±

1.28

120.14

±

1.02

Anthocyanins 15.93
±

0.95

14.73
±

0.29

180.44

±

3.59

162.83
±

2.46

56.35
±

1.04

68.55

±

2.35

83.64
±

3.16

41.99

±

0.25

Flavonols 1.89

±

0.08

0.48

±

0.005

7.36
±

0.57

6.95

±

0.92

2.28

±

0.80

5.17
±

0.03

3.41
±

0.16

6.08

±

0.45

Flavan‐3‐ols n.d. 1.60

±

0.002

13.35
±

0.90

11.02

±

1.23

2.85

±

0.54

1.75
±

0.07

n.d. 4.52

±

0.43

Hydroxycinnamic acid 

derivatives
0.23
±

0.002

1.16

±

0.10

6.62

±

0.18

6.89

±

0.24

33.12
±

1.78

62.27
±

1.97

25.97
±

3.21

67.54
±

3.03

n.d., not detected.

Table 2. Contents of phenolic compounds in red currants (Ribes rubrum L.), black currants (Ribes nigrum L.), 

and blueberries (Vaccinium corymbosum L.) determined by HPLC‐DAD and expressed in mg per 100 g fresh 
weight±SD (n = 3). Adapted from Gavrilova et al. [72].
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Total concentration, mean degree of polymerization [81], subunit composition, and distribu‐

tion [82] are some of the variables related to tannins, highly correlated with the perception of 
astringency in fruits. Tannins vary in size, from dimers up to oligomers, with more than 30 
subunits [83]. Polymer size affects astringency correlating positively with the perception of 
astringency [84]. Increased galloylation can be responsible for increased “abrasiveness” while 
trihydroxylation of the B‐ring can decrease it [85]. As referred by He et al. [86], the synthesis of 
astringent substances controlled by a variety of structural and regulatory genes must be stud‐

ied. Moreover, these authors state that “(…) cloning and functional identification of genes, in 

Figure 3. Volatile compounds reported in raspberry fruit (Rubus idaeus L.) according to chemical class. Adapted from 
Aprea et al. [74].
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the astringency metabolic pathway, and their spatio‐temporal expression patterns as well as 
tannin biosynthesis‐related transcription factor genes must be considered in future work to 
finally make it possible to control fruit astringent substances quantitatively (…)”[86].

4. Effect of microorganisms on fruit phenolic compounds

After the consumption of fruits, the colon is the main site of microbial fermentation, where 
high molecular weight phenolic compounds are transformed into low molecular weight phe‐

nolic compounds such as phenolic acids or lactone structures by intestinal microbiota. The 

human healthy adult gut microbiota already identified can be classified into three dominant 
phyla: Bacteroidetes, Firmicutes and Actinobacteria. This highly complex and diverse bacterial 
ecosystem is mainly composed by a dominant group(> 109 Colony Forming Units (CFU)/g) of 
anaerobic bacteria, including genera Bacteroides, Eubacterium, Bifidobacterium, Peptostreptococcus, 

Precursors Major metabolites Bacteria Ref.

F
la

v
o

n
o

id
s

Myricetin 2‐(3,5‐Dihydroxyphenyl) acetic acid
2‐(3‐Hydroxyphenyl) acetic acid

Clostridium orbiscidens, 

Eubacterium 

oxidoreducens

[90–92]

Quercetin 3‐(3,4‐Dihydroxyphenyl) propionic acid
3‐(3‐Hydroxyphenyl)propionic acid

[91–93]

Kaempferol 2‐(4‐Hydroxyphenyl)propionic acid
2‐(3,4‐Dihydroxyphenyl)acetic acid
2‐(3‐Hydroxyphenyl)acetic acid

[90]

F
la

v
a
n

‐3
‐o

ls

Catechin 3‐(3‐Hydroxyphenyl)propionic acid
5‐(3',4'‐Dihydroxyphenyl)‐γ‐valerolactone

Clostridium coccoides, 

Bifidobacterium spp.

[94–97]

Epicatechin 5‐(3,4‐Dihydroxyphenyl) valeric acid
3‐(3,4‐Dihydroxyphenyl)propionic acid

Epigallocatechin 5‐(3',4'‐Dihydroxypheny[l)‐γ‐
valerolactone
5‐(3',5'‐Dihydroxyphenyl)‐γ‐valerolactone

A
n

th
o

cy
a
n

in
s Malvidin 3,4‐Dimethoxybenzoic acid Lactobacillus (plantarum, 

casei, acidophilus LA‐5) 

Bifidobacterium lactis 
BB‐12

[98, 99]

Cyanidin 3,4‐Dihydroxybenzoic acid

Peonidin 3‐Methoxy4‐hydroxybenzoic acid

Pelargonidin 4‐Hydroxybenzoic acid

N
on

‐fl
av

on
oi

ds

H
y

d
ro

x
y

ci
n

n
a
m

a
te

s Caffeic, ferulic, and 
p‐coumaric acids linked 

to a quinic acid to form, 
respectively, caffoylquinic 
feruloylquinic, and p‐

coumaroylquinic acids

3‐Hydroxyphenyl propionic acid
Benzoic acid 

3‐(4‐Hydroxyphenyl) propionic acid 
Vanillin

Escherichia coli, 

Bifidobacterium lactis, 
Lactobacillus gasseri

[100–102]

Table 3. Major metabolites resulting by phenolic compounds (flavonoids and non‐flavonoids) biodegradation and 
bacteria implicated in their transformation (adapted from Marín et al. [88]).
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Ruminococcus, Clostridium and Propionibacterium, and sub‐dominant groups (< 109CFU/g), 
of bacteria of the Enterobacteriaceae family, especially E. coli, and the genera Streptococcus, 

Enterococcus, Lactobacillus, Fusobacterium, Desulfovibrio and Methanobrevibacter [89]. Thus, the 

microbial metabolism (Table 3) of most of the phenolic classes such as flavonoids, isoflavo‐

noids, lignans, phenolic acids, and tannins may produce metabolites with biological activity, 
presenting increased antioxidant activity, with evidence on health benefits for consumers. As 
most dietary polyphenolic compounds occur in glycosylated form in plants [87], for acquiring 
bioactivity in human body after being absorbed at enterocytes, these compounds must suffer 
various intestinal transformations, including the activities of digestive and microbial enzymes 
[88]. After cleavage of sugar responsible for glycosylation, the final absorbed compounds 
enter the vein circulation toward liver (Figure 4). Other enzymatic transformations occur from 
the liver to other organs, including digestive tract or via blood being excreted by urine [88].

Figure 4. Absorption and metabolism routes for dietary polyphenols and their derivatives in humans. Adapted from 
Marín et al. [88].
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5. Final remark

Red/dark‐colored fruits are considered healthy and nutritious, the major potential health benefits 
being a reduced risk for cardiovascular and neurodegenerative diseases. Phytochemicals from 
red/dark‐colored fruits are also shown to prevent body weight gain, lower blood cholesterol, and 
reduce cancer risk. Nevertheless, further rigorous, prospective studies are needed in order to bet‐
ter understand the benefits included in red/dark‐colored fruits in our diet. There is also an emer‐

gent interest in the study of red/dark‐colored fruits astringency because of the healthy properties 
of astringent substances found in red/dark‐colored fruits including antibacterial, antiviral, anti‐
inflammatory, antioxidant, anticarcinogenic, antiallergenic, hepatoprotective, and vasodilating. 
The role of phenolic compounds and their metabolites as prebiotics, contributing to beneficial 
gastrointestinal health effects by modulating gut microbial balance with the simultaneous inhibi‐
tion of pathogens and stimulation of beneficial bacteria, should also be highlighted.
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