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Abstract

Fruits and vegetables are important for a healthy diet. However, when eaten raw 
and contaminated with human pathogens (HPs) they may cause a disease outbreak. 
Contamination with HPs can occur along the entire farm-to-fork production chain 
and Salmonella enterica is one of the most common foodborne pathogens. A range of 
biotic and abiotic environmental factors can influence the complex interactions between 
Salmonella and plants. Moreover, the outcome of experiments largely depends on the 
experimental design and parameters or methods employed, and on top, on the accom-
panying plant microbiome and the genetic equipment of the plant and the Salmonella 
strain. Particularly mobile genetic elements contribute to the diversification and adap-
tation of Salmonella to the plant environment. So far, little is known about the key pro-
cesses and factors influencing the attachment and potential internalization of Salmonella 
in plants and the plant specific responses. It is therefore important to better under-
stand the ecology of Salmonella in the soil and plant environment, in order to propose 
practicable recommendations for prevention of foodborne diseases. This also requires 
improved sensitivity and specificity of detection methods. In this chapter, we present 
the current knowledge, research needs, and methodology regarding the complex inter-
actions between Salmonella and plants.

Keywords: Salmonella enterica, plant, biofilm, colonization mechanisms, interaction

1. Introduction

The natural microbiome of plants includes a wide diversity of microorganisms and 

is a key determinant of plant health and productivity, e.g., by supporting the uptake 
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of mineral  nutrients in roots or suppressing pathogen growth and inducing the host-

immune system [1–3]. Due to its relevance, the plant microbiome (totality of microor-

ganisms associated with the plant) is even called the second plant genome. Because 

of the tight interplay between plants and their epiphytic and endophytic microorgan-

isms the terms holobiont and meta-organisms are used as well. The plant microbiome 

is important not only for plant growth and health, but is also positively influencing 

human health [4]. However, besides positive effects on human health plants can also be 

carriers of bacterial HPs.

Salmonella is one of the major causal agents of foodborne gastroenteritis and represents a 

major threat to public health. It is estimated that each year 93.8 million cases of salmonellosis 
occur globally (86% of which foodborne), with 155,000 deaths [5]. Consumption of raw plants 
is more and more recognized as a source for HPs and associated with disease outbreaks in 
several countries. The number of outbreaks linked to fresh produce, spices, and nuts sur-

passed those linked to foods of animal origin [6]. Sources of HPs in the production chain 
and factors contributing to the contamination of fruits and vegetables include for example 
the application of organic fertilizers such as animal manures, contaminated irrigation water, 
insect and animal vectors but also the use of contaminated seeds [7]. Enterobacteriaceae such 

as Erwinia, Serratia, and Pantoea belong to bacteria typically associated with the phyllosphere 

[8–10]. However, it is not completely understood how Salmonella persists in the plant envi-

ronment and which environmental factors trigger its survival. In this chapter, we discuss 
factors influencing the survival of Salmonella in the agricultural environment as well as adap-

tations that allow successful colonization of plants, such as attachment, biofilm formation, 
and internalization.

2. Contamination of fresh produce

Besides contaminated animal products, Salmonella outbreaks are increasingly associated with 

fruits and vegetables. Already on the field, plants may be contaminated via soil or irrigation, 
especially if watered with surface water [11–14]. Salmonella has been shown to persist in vari-

ous ecological niches in soil as well as in irrigation water and fertilizers [15–17]. In this context, 
the watering system and the agricultural practices seem to play a key role in the prevention 

of contamination with human pathogens. For instance, lettuce plants were more likely to be 
contaminated with Escherichia coli when watered using overhead sprinklers when compared 

to subsurface drip or surface furrow irrigation [18]. Besides, even noncontaminated rain‐sized 
water droplets could transfer HPs from contaminated soil or plants to other plants [19].

Organic fertilizers like manure, biogas plant digestates and sewage sludge offer an additional 
route for contamination of fresh produce. Similarly, animals like birds, game, mice, or insects 

can contribute to the contamination of fresh produce directly or indirectly via feces or irriga-

tion water [7, 14, 20]. Often underestimated are soil particles, which can be carried by the 
wind over long distances and contribute to the transient of microbiome between plants [8]. 
Hence, wind-caused spread of HPs should also be considered. Contaminated plant residues 

might constitute additional risk if incorporated into soil before the planting of next crop. 
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The infection of plants is essentially dependent on the ability of HPs to survive and persist 

in the agricultural environment. Salmonella, for example, was shown to survive in soil for 
more than 200 days if the soil was fertilized [21, 22]. The survival of diverse bacteria newly 
introduced into soil has been subject of research for many years [23], and the mechanisms that 

govern this process, compared often to microbial invasion, were described in many studies 

(recently reviewed by [24]). In order to survive in the soil, HPs need to find an adequate eco-

logical niche in which they can establish. Furthermore, their ability to do so and to survive for 

extended time increased when the indigenous microbial community was reduced as a result 
of, for example, sterilization [25]. In addition, the survival of microorganisms that success-

fully invaded the soil is highly dependent on the environmental heterogeneity [26–28].

Contamination of fresh produce with HPs like Salmonella, can occur before the harvest and 

also along the whole production chain [11, 14]. Since the epidemiological investigations start 

very often long time after the contamination or the harvest, it is very challenging to assess 

whether the contamination took place in the field or occurred “post‐harvest” during the pro-

cessing. Consequently in the majority of cases, the information available does not necessarily 

reveal the real causes of contamination [29].

3. Epidemiology of Salmonella in agricultural systems

Fresh produce contaminated with Salmonella can easily trigger a salmonellosis outbreak, and 

despite the difficulties with identification, in the past years fresh produce were repeatedly 
identified as the outbreak source. Among the outbreaks in the USA, Salmonella is the lead-

ing cause of the fresh produce‐originated foodborne diseases [30]. The available data are 
depending on the procedures and records in particular countries. At least 12 large, fresh pro-

duce-related Salmonella outbreaks have been reported since 2010, an overview of international 
outbreaks with more than 100 associated cases is presented in Table 1.

Although fruits and vegetables were identified as source of human pathogens, it is not clear 
whether the plants were colonized in the field or during processing. Salmonella may live 

epiphytically or be internalized through wounds, the root system, stomata, or hydathodes 
(see below). Additionally, Salmonella can be entrapped in fruits or seeds after contamination 

of flowers [31, 32]. Moreover, large outbreaks can be destructive to consumer's confidence 
which results in economic losses [33, 34]. Therefore, the research on the ecology of HPs like 

Salmonella in relation to farming and harvesting practices is very important for human health 

and also for the economy.

4. Factors influencing the survival of Salmonella in soil

Successful establishment of human pathogenic bacteria in soil depends on a variety of biotic 

and abiotic factors (see Figure 1 for an overview). Numerous studies, carried out under dif-

ferent conditions, showed that among them are weather or atmospheric conditions like tem-
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perature, UV radiation, and moisture content of the soil [7, 35]. In general, temperature has 
an important effect on growth and decay rates of bacteria. Most studies examined the influ-

ence of temperature on survival of enteric bacteria under isothermal conditions, showing a 

generally reduced survival of Salmonella in soil with increasing temperature and, accordingly 

a better persistence in soil at lower temperatures [36, 37]. Semenov et al. [38] analyzed how 
temperature fluctuations affect Salmonella enterica serovar Typhimurium (S. Typhimurium) 

in cow manure and demonstrated increased decay rates with increasing amplitudes of daily 

oscillations. Besides temperature, water availability is a key factor for Salmonella to survive in 

the environment. Humidity in soil depends on rainfall and watering as well as on evaporation. 

Soil moisture also depends on soil properties like clay content or pore size. In general, it seems 
that survival of Salmonella in soil is promoted by high humidity while water shortage has a 

detrimental influence on persistence, probably due to drought stress [39–41]. The soil type 
and its physical and chemical characteristics have a strong influence on the fate of bacterial 
HPs. Those characteristics include texture and particle size  distribution, which affect adsorp-

tion of Salmonella to soil particles. The soil type determines the extent of Salmonella leaching, 

if the bacteria are applied to the soil surface via contaminated slurry or manure as shown by 

Bech et al. [42]. In this study, percolation of S. Typhimurium was more  pronounced in loamy 

Salmonella Serovar Vector Year Country Cases/serovar 
confirmed

Reference

S. Newport Tomatoes 2015 USA 115/81 [112]

S. Poona Cucumbers 2015‐16 USA 907/907 [113]

Unknown Onions, tomatoes 2015 USA 200/0 [114]

S. Enteriditis Sprouts,

beans

2014 USA 115/0 [113]

S. Newport Cucumbers 2014 USA 275/0 [113]

S. Typhimurium Cantaloupe 2012 USA 261/261 [115]

S. Braenderup Mangoes 2012 USA, Canada 127/0 [113]

S. Newport Mung beans 2011 Germany,  

The Netherlands

106/32 [116]

Unknown Produce-based 

salads, broccoli 

salad

2011 Japan 1500/0 [117]

S. Agona Fruit, papaya 2011 USA 106/0 [113]

S. I4,[5],12:i:‐ Vegetables, sprouts, 
alfalfa sprouts

2010 USA 140/0 [118]

S. Hvittingfoss Vegetables, leafy 
greens, lettuce, 
fruit, tomatoes, 

olives

2010 USA 114/108 [119]

Only large outbreaks with more than 100 associated total or confirmed cases since 2010 are shown.

Table 1. International salmonellosis outbreaks associated with fresh produce.
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than in sandy soil with leaching bacteria reaching 1 m of depth at 105 CFU/ml of leachate. 
Transport and survival of bacterial pathogens in soil is also influenced by amendment of 
fertilizers probably because of the presence of organic matter [43]. Leaching of Salmonella 
through soil was observed to reach greater depths after application of slurry than of manure 

[44]. In the same line, the application method of fertilizers can also have an effect on Salmonella 
survival in soil since an injection of manure or slurry or clumping of the applied fertilizer 

Figure 1. Factors influencing the survival of Salmonella in soil and its colonization of plants.
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aboveground protect bacteria in the soil from desiccation, UV, and high temperatures [43, 
45, 46]. Agricultural practices like tillage that have an effect on the porosity of soil determine 
the extent of leaching [47] and the availability of oxygen. While a detrimental influence of 
aeration on survival of E. coli O157:H7 has been demonstrated, the oxygen availability does 
not influence the survival of Salmonella [48]. Soil pH is also an important factor for Salmonella 

survival and Salmonella can survive in the environment with neutral to acidic pH while alka-

line pH has a detrimental effect on its persistence [49]. Another important determinant of 
Salmonella survival in soil is the availability of nutrients. In this environment, nutrients can 
only partly be used by bacterial HPs and are generally rather scarce. Salmonella is chemohet-

erotrophic and therefore depends on carbohydrates, lipids, and protein in its environment as 

sources for energy, nitrogen, and amino acids. Addition of organic fertilizers improves nutri-
ent availability by addition of readily available carbon and nitrogen sources as well as other 

nutrients. But amendment of fertilizers also changes the microbiological properties of soil 
by introducing microorganisms to the soil microbial community. Moreover, the additional 

nutrients stimulate growth of copiotrophic soil bacteria which might compete for the nutrient 

resources [50]. So far, no clear correlations between the type of fertilizer and survival in soil 
have been identified [51]. But when survival in manure was compared to survival in manure‐
amended soil, Salmonella usually survived better in soil [22]. This could be due to competition 
by the microbial flora of manure, which is more concentrated than in soil.

The soil microbial community and its composition have a great influence on the survival of 
Salmonella [52]. In the soil ecosystem, Salmonella has to compete with the indigenous microbial 

community for space and nutrients [24]. For example, it was shown that Salmonella enterica 

serovar Newport (S. Newport) survived about 10 weeks longer in sterilized soil compared to 
nonsterilized manure‐amended soil [22]. Similarly, a better survival was found in γ‐irradiated 
than in untreated soil [53]. These results indicate suppression by the native microbial com-

munity. Overall, results demonstrate the importance of the microbial community affecting 
the fate of Salmonella in soil. Plant pathogens, fungi, viruses, and animal pests present in the 

environment can degrade the plant material and increase the content of available nutrients or 

provide entry sites facilitating internalization into plants [7, 14, 54]. They may also serve as 
vectors [7, 55]. Effects of protists have been analyzed using protozoa showing that their pres-

ence can foster or reduce survival of different species. For example, Salmonella enterica serovar 

Thompson was accumulated in vesicles of Tetrahymena [56], while growth of protozoa can also 
decimate S. Typhimurium populations [37].

In addition to the environment in which Salmonella is introduced, the bacterial characteristics 

are crucial for persistence. Firstly, the genetic disposition of the strain, for example, the pres-

ence of type III secretion system (T3SS), the ability to form biofilms, chemotaxis, or motility 
are important. Studies using strains with mutations influencing these characteristics usually 
resulted in reduced survival [57–59]. Salmonella can also produce an O-antigen capsule, which 

improves survival under desiccation stress [60]. Furthermore, the ability to form biofilms 
enhances environmental persistence of some Salmonella serovars [61]. Similarly, a biofilm‐pro-

ducing Salmonella strain survived chlorination significantly better than the biofilm‐deficient 
mutant [62]. The conditions under which Salmonella are grown before their inoculation in the 

environment are also important since preadaptation influences the persistence [20]. Finally, 
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many studies on the survival of HPs in soil employed a relatively high inoculum, which 

under natural conditions occurs only locally, e.g., by fecal point contaminations. Inoculation 
resulted in a fast initial decline of inoculated bacterial populations with usually low numbers 

of Salmonella that survive for a long time after the inoculation.

In conclusion, studies analyzing the survival of Salmonella demonstrated complex interactions 
with the environment and a network of factors, which might play an important role in the 

persistence of Salmonella. Therefore, the very often contradictory results reflect the variability 
of strains, their survival strategies in a complex environment as well as differences in experi-
mental setups used.

5. Attachment to plant surfaces and biofilm formation

Attachment and adhesion of Salmonella to plant surfaces are essential steps of plant coloniza-

tion. Several bacterial elements such as fimbrial structures, nonfimbrial adhesins, flagella, cel-
lulose, and lipopolysaccharides (LPS) are important bacterial factors for colonization [63, 64]. 
Although previous studies demonstrated that the attachment depends on plant and bacterial 
factors, no single factor was found to be essential, suggesting that bacteria use several parallel 

mechanisms to ensure attachment to different plants or to different plant cells under a wide 
variety of conditions [65]. Furthermore, the attachment of S. enterica to plant surfaces appears 

to be serovar‐dependent [66]. For example, the strength of the attachment to basil, lettuce, or 
spinach leaves differed between S. enterica serovars. While S. Typhimurium, Salmonella enterica 

serovar Enteritidis, and Salmonella enterica serovar Senftenberg were efficient, other serovars 
including Salmonella enterica serovar Agona, Salmonella enterica serovar Heidelberg or Salmonella 

enterica serovar Arizonae showed less attachment [67]. Clear differences in attachment were 
also observed in leaves of different age, for example, S. Typhimurium showed a better attach-

ment to older compared to younger lettuce leaves [68]. Additionally, S. enterica serovars were 

reported to actively move toward plant roots, attracted by root exudates [69]. There, they are 
able to efficiently attach and to form biofilms at natural openings or wounds [70, 71].

Several other studies provided evidence for biofilm formation by Salmonella on plant surfaces 

[72]. Within biofilms, bacteria are generally well‐protected against environmental stresses, 
antibiotics, and disinfectants. The importance of biofilms for the attachment of Salmonella 

to plants and their role in the persistence in plants was recently described by Yaron and 

Romling [65]. Biofilm formation of Salmonella is influenced by environmental conditions and 
is reported to be maximal under reduced nutrient availability, aerobic conditions, low osmo-

larity, and mid temperatures [73], which are characteristic for the plant surface. In contrast, it 
was shown in vitro that S. Typhimurium cells grown at 37°C, the temperature in the animal 

host, do not produce cellulose and fimbriae [64]. Furthermore, the red dry and rough (rdar) 

and the smooth and white (saw) morphotypes, regulated by the agfD promoter and defined by 
a combination of traits such as the presence of thin aggregative fimbriae (tafi), cellulose, and 
O‐antigen capsule, might affect the dispersal of Salmonella in an agricultural environment 

[74]. In contrast to the saw morphotype, the rdar morphotype, isolated from tomato, showed 
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better attachment to plant surfaces [74, 75]. Biofilm‐producing Salmonella on parsley showed 

a higher resistance against disinfectants than the biofilm‐deficient mutant. Furthermore, after 
a storage period of the plant, the cells that were able to produce the biofilm matrix were 
significantly more resistant to the disinfection treatment [62]. A screening of 6000 transpo-

son mutants of S. Newport resulted in the identification of 20 mutants selected for reduced 
adherence to alfalfa sprouts [70]. Interestingly, these mutants contained insertions associ-
ated with genes, for example, for the surface‐exposed aggregative fimbriae nucleator (agfB) 

and the general transcriptional regulator rpoS. The respective proteins have been reported to 

regulate the production of curly, cellulose, and other adhesins such as pili. Two other genes 

(STM0278 and STM0650) were identified as important factors for the colonization of alfalfa 
seedlings. Both play an important role in the formation of biofilms [76]. Furthermore, bacte-

rial cellulose and curly were involved in the colonization of parsley with S. Typhimurium 

from irrigation water [77].

Although many factors influencing the colonization of plants were identified by in vitro 

experiments, a more detailed investigation of genes of Salmonella that are expressed dur-

ing the colonization of plants is needed. New techniques for the isolation of mRNA from 
samples containing both plant and bacterial materials as well as for the quantitative 

PCR allow the analysis of the transcriptome and the identification of genes with related 

functions [78].

6. Internalization of Salmonella into plant tissues

An increasing number of salmonellosis outbreaks associated with plants shows that human 

pathogenic bacteria use plants as a niche for replication or as hosts and vectors for animal 

and human infection (Table 1). For a long time it was assumed that Salmonella rather sur-

vives on plant surfaces than colonizes the plant interior. This view has been challenged by 
recent reports. Today we know that Salmonella can actively enter and spread within the plant. 

Plants offer multiple entry possibilities for HPs; stomata, for example, were identified already 
a few years ago. Stomata are used for gas exchange between the surroundings and cells of 
the inner mesophyll layers, this is necessary for proper photosynthetic efficacy. They can 
close if a pathogen is recognized. Some pathogens, however, produce toxins (coronatine), 
which reopen stomata and therefore allow their use as gates for colonization of underlying 
tissues. Salmonella was shown to gather around the open stomata and enter the mesophyll tis-

sue of lettuce leaves [58]. Similar to lettuce, a high incidence of internalization was observed 
in arugula leaves, while romaine and red‐lettuce, as well as basil showed significantly lower 
internalization rates [79]. Interestingly, in this study parsley and tomato leaves showed only 
marginal internalization [79]. In addition to stomata, also hydratodes and trichomes allow an 
internalization of Salmonella into leaves [31, 80, 81]. Not only Salmonella or phytopathogenic 

bacteria use stomata as entry points, also other Enterobacteriaceae, for example E. coli, use simi-

lar strategies to access the plant's interior [82, 83]. Importantly to note is the fact that the pref-
erence to gather around open stomata manifests only in photosynthetically active leaves, and 
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an artificial opening of the stomata at night has no effect on the bacterial behavior [58]. This 
observation is in line with the proposed hypothesis that those bacteria are in a direct competi-

tion for C‐ and N‐sources with the native leaf microbiome [69, 71], and suggests a chemotaxis 
toward the newly synthesized products of the photosynthesis.

From the consumers’ point of view, not only the internalization into leaves but also the trans-

location within the plant, e.g., toward fruits is important. In some crop plants, e.g., tomato, 
such translocation was detected [81]. The authors showed internalization into the tomato 
fruits when the entire plant was systemically colonized. Still, the colonization rates seemed 
rather low [81]. Nonetheless, in light of the persistent pathogenicity in animals after the pas-

sage through a plant host [84], the internalization mechanisms are of high interest. Some 
detailed mechanisms were already suggested. Erlacher and coworkers proposed one of those 

possible mechanisms: colonization of the niche below the cuticle layer of the epidermis [9]. 
Obviously such a behavior protects bacteria from the harsh conditions on the leaf surface (UV 
light, drought, and quick changes in temperature) but also from surface sterilization agents. 
Another strategy would be an intracellular lifestyle, which would resemble the strategy in the 

animal infection model. Until now, this possibility remains unverified, two reports postulated 
internalization into plant cells using Arabidopsis and tobacco systems [84, 85]. Yet, another 
helpful strategy is the efficient formation of biofilms, this strategy was discussed above and 
was reviewed by Yaron and Romling [65]. Only recently, it was discovered that particular 
Salmonella strains may avoid the recognition by the plant immune system [86], which would 
make them very well adapted colonizers (see below).

Many row eaten crop plants plants associated with salmonellosis outbreaks or food poison-

ing are usually grown in soil (lettuce, basil, parsley, etc.). In such cases the translocation from 
the potentially contaminated soil (through manure or irrigation water) via roots into the har-

vested and consumed plant parts is of enormous importance. Several reports assessed already 

this possibility and pointed at a very diverse picture with regard to pathogenic E. coli or 

Salmonella. Here the high heterogeneity with regard to colonization in the plant population 
is very remarkable [69, 87], usually about 20% of the plant population is colonized, however, 
this range may vary from 0 to 100% and strongly depends on plant species and bacterial strain 
[51, 69, 77, 88–90].

7. The function of T3SS and the role of plant immune system during the 

interactions between plant and Salmonella

Bacterial pathogens use T3SS and T4SS to inject so‐called effector proteins directly into the 
cytoplasm of host cells. Those effectors are able to manipulate the host immune system and 
suppress the otherwise negative effects of defense responses. Salmonella uses two T3SS and 

more than 40 effectors in order to manipulate the immune system (perception mechanisms 
and signaling cascades) as well as the cytoskeleton of animal cells at different stages of 
the infection process [91]. Recent discoveries from others and our group imply that the 
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mechanisms used in animal and plant hosts may resemble each other [59, 85, 86, 92–95]. 
The inoculation with the wild-type Salmonella strains and mutants in one or both of the 

T3SSs showed that functional secretion systems are required for efficient plant colonization 
[59, 85, 93]. Two observations allow such a conclusion: (1) The mutants had lower prolif-
eration rates when compared to the respective wild type, which suggests that a functional 

T3SS helps with the colonization of plants; and (2) T3SS mutants induced stronger immune 
response of the host plant. Similar to animals or humans, plants respond to colonization 
of pathogenic bacteria inducing numerous immune responses, among others are oxidative 
burst and enhanced expression of Pathogenesis Related (PR) genes. Both were observed after 

inoculation with Salmonella and both were stronger if the inoculation was performed using 

mutants in T3SS [59, 85, 86]. Those results suggest that the wild‐type strain is able to sup-

press the immune response. It is very plausible to think that this suppression is due to func-

tional T3SS‐dependent effector proteins. We know only little about their function in plant 
cells, since only two effectors (SseF and SpvC) were evaluated in this respect. SseF together 
with SseG are translocated into animal cells and are responsible for the establishment of 

the reproduction niche [96]. In plants, SseF induces the hypersensitive response (HR) [94]. 
Important is the fact that silencing of the suppressor of SGT1 eliminates the response to 
SseF, suggesting that this effector is recognized in R protein‐dependent manner, which is 
the usual recognition method of pathogen effectors during the effector‐triggered immunity 
(ETI). SpvC is a phosphothreonin lyase which dephosphorylates activated MAP kinases. 
Those kinases build a core compound in the signaling cascade leading from the perception 

of the pathogen on the cell surface to the transcriptional response at the chromatin level. 

Especially the trio MPK3, MPK4, and MPK6 plays an important role in plants [97], and is 
activated (phosphorylated) during the response to Salmonella [84]. SpvC interacts actively 
with the MPK6 and dephosphorylates this kinase, consequently abolishing the signal 
transduction [95]. A comprehensive overview of the reports regarding the plant immune 
responses to HPs was published only recently and is an excellent compendium of the cur-

rent knowledge [98].

8. Salmonella changes its physiology in contact with plant host

During the interaction between Salmonella and crop plants, not only the plant reacts to the 

presence of the bacteria, also Salmonella adapts to the conditions represented by a plant organ-

ism. Recent results show that bacteria modify their physiology and motility in order to adjust 

to the physiological conditions occurring in plants. Several authors evaluated the transcrip-

tional changes of bacteria when in contact with plants or plant‐originated products [99, 100]. 
Interestingly, the analysis of the transcriptome, revealed a partial overlap between bacteria 
from macerated lettuce or cilantro leaves and bacteria from intestine, suggesting that those 
bacteria might be better adapted to the exploitation of plant material than estimated [100]. 
Similar results were observed for the pathogenic E. coli O157:H7, which seem to change its 
enzymatic and metabolomic equipment in order to utilize plant compounds [101, 102]. In 
addition, the bacteria upregulate a plethora of genes related to attachment, antimicrobial 
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resistance and response to oxidative stress [101]. Very striking was the fact that although 
plant filtrates or root exudates contain numerous amino acids, which are available to the 
bacteria as C and N sources, E. coli induced many amino acid synthesis pathways probably to 

 supplement the missing compounds [102].

9. Detection, characterization and quantification of Salmonella in 

environmental samples

Salmonella is rarely detected in crop plants. For example, in a previous study Salmonella could 

not be detected in more than 170 plants but in their environment [103]. This suggests that 
environmental factors are affecting the prevalence of Salmonella in the field, or that the sensi-
tivity of the currently used detection system is not sufficient.

Traditional methods for the detection and identification of HPs often rely on cultivation‐
dependent techniques followed by biochemical and serological identification, which is 
typically time‐consuming and laborious [104]. Furthermore, in response to environmental 
stresses Salmonella can enter a physiological state where the cells remain viable, but are no 

longer culturable on typically used growth media. Salmonella in this VBNC state are often 
only detectable by methods depending on nucleic acids. This highlights the importance 

of the complementary use of cultivation-dependent and -independent detection meth-

ods for the diagnosis and prevention of food contamination and foodborne diseases. In 
the recent decades, there have been increasing efforts to develop and improve molecular 
methods for the rapid detection and characterization of pathogens in animals and animal 
products [105–108]. These methods, which include immunological as well as biosensor‐ 
and nucleic acid‐based assays (e.g., ELISA, PCR, microarrays, next generation sequencing) 
have an improved sensitivity and specificity but are also time‐, cost‐, and labor‐demand-

ing. Typically, to further increase the sensitivity of these methods nonselective or selec-

tive enrichment steps are employed. One of the most challenging problems is the sample 

preparation, which is strongly depending on the sample matrix, associated inhibitory com-

pounds, and the bacterial load.

So far, knowledge is scarce regarding the specific and reliable detection of Salmonella in 

complex and often heterogenous plant‐ and environmental‐matrices (e.g., vegetables, 
spices, soil samples, manure, biogas digestates) as well as the appropriate extraction and 
purification techniques. For iceberg lettuce, carrot‐ and cucumber‐peelings, qPCR detec-

tion limits of 103 bacterial cells per gram were reported [109]. Since the infectious dose of 
Salmonella was reported to be less than 103 cells [110], small numbers have to be detected 
reliably. Besides direct extraction of total DNA from the sample material, a preceding 
enrichment step in the respective culture media can be performed. This enrichment has 

the advantage to increase the sensitivity of detection and additionally to reactivate cells in 

the dormant VBNC state. After extraction of DNA from the respective samples, Salmonella 

can be detected by qPCR or PCR‐Southern blot hybridization, e.g., by detection of the invA 

gene [104, 111]. Alternatively or additionally to DNA‐based methods, RNA‐based methods 
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can be used. Apart from a more laborious sample preparation, RNA-based methods have 

the advantage that in contrast to DNA-based methods only living and active Salmonella are 

detected, i.e., Salmonella relevant for a potential infection of humans. Especially the detec-

tion of mRNA of pathogenicity determinants could be appropriate to prove the viability 

and potential virulence of HPs.

Microarrays and next‐generation sequencing technologies offer intriguing possibilities 
regarding the rapid and accurate detection as well as genetic characterization of Salmonella 
in environmental matrices. However, the costs and technical requirements for the analysis 

of large data sets still limit their practicability in the day-to-day qualitative and quantita-

tive detection. The further development of rapid, reliable, and cost‐effective high‐throughput 
detection methods will very likely contribute to the understanding of the ecology of Salmonella 

in the plant environment and consequently help to reduce or prevent infections mediated by 

plant-associated HPs.

10. Conclusions

Today the notion that human pathogenic bacteria such as Salmonella might persist on or 

within plants in low numbers is widely accepted. The research on the interactions between 

crop or model plants and Salmonella is obviously driven by its medical aspects and the need 

for better prevention methods. We already know various features of the interactions but 
many are still not fully understood. New techniques that use high-throughput analyses 

and unbiased approaches are useful. Numerous national survey agencies started to use 

next‐generation sequencing for the epidemiological analysis of salmonellosis outbreaks 
and have therefore direct access to the genome sequences of particular serovars. They 

are also able to monitor the genomic changes, for example, reception of new plasmids 
or pathogenicity islands, which are important prerequisites in virulence of the bacterial 

strain. Similarly, the full range of “omic” approaches is being used in model systems pro-

viding very detailed data on both partners in the Salmonella-plant interaction at biochemi-

cal, physiological, and transcriptional levels. The study of those interactions harbors even 

more potential, it permits the characterization of the different infection mechanisms and 
the different strategies available for Salmonella in contact with diverse hosts. New and more 

efficient prevention strategies greatly depend on our understanding of these mechanisms. 
Therefore, the new findings might significantly improve our possibilities to diminish the 
number of future outbreaks.
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