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Abstract

To date, over 78 genomes of nucleopolyhedroviruses (NPVs) have been sequenced and 
deposited in NCBI. How to define a new virus from the infected larvae in the field is 
usually the first question. Two NPV strains, which were isolated from casuarina moth 
(L. xylina) and golden birdwing larvae (Troides aeacus), respectively, displayed the same 
question. Due to the identity of polyhedrin (polh) sequences of these two isolates to that of 
Lymantria dispar MNPV and Bombyx mori NPV, they are named LdMNPV-like virus and 
TraeNPV, provisionally. To further clarify the relationships of LdMNPV-like virus and 
TraeNPV to closely related NPVs, Kimura 2-parameter (K-2-P) analysis was performed. 
Apparently, the results of K-2-P analysis that showed LdMNPV-like virus is an LdMNPV 
isolate, while TraeNPV had an ambiguous relationship to BmNPV. Otherwise, MaviNPV, 
which is a mini-AcMNPV, also exhibited a different story by K-2-P analysis. Since K-2-P 
analysis could not cover all species determination issues, therefore, TraeNPV needs to 
be sequenced for defining its taxonomic position. For this purpose, different genomic 
sequencing technologies and bioinformatic analysis approaches will be discussed. We 
anticipated that these applications will help to exam nucleotide information of unknown 
species and give an insight and facilitate to this issue.

Keywords: nucleopolyhedroviruses, Kimura-2-parameter analysis, next-generation seq- 
uencing, bioinformatic analysis

1. Introduction

Baculoviruses are insect-specific viruses which have a large circular double-stranded DNA 
genome packaged in enveloped, rod-shaped nucleocapsid and occluded within a paracrys-

talline protein occlusion body (OB) [1, 2]. The family Baculoviridae has four genera, including 
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Alphabaculovirus, Betabaculovirus, Gammabaculovirus and Deltabaculovirus. Nucleopolyhedrovirus 

(NPV) is a member of Alphabaculovirus (lepidopteran-specific NPV) [3]; NPV replicates in the 
nucleus of the infected host cell and causes a disease of nuclear polyhedrosis. Epidemic out-

break of NPV may play a role in regulation of the host nature population [4]. Thereby, it is a 

potential agent for biological control with a number of eco-friendly benefits including high 
virulence and specificity against target insects, environmental safety and sustainable existence 
with target insects. Several baculoviruses showing promising results have been commercial-
ized as biopesticides for the control of insect pests around the world [5]. For biotechnological 
applications, baculoviruses have been constructed as a eukaryotic protein expression vectors 

(baculovirus expression vector system (BEVS)) over the last 30 years and used to gene therapy 
trials. So far, many recombinant proteins have been expressed in insect cells by BEVS and con-

tribute to human life [6].

To date, baculoviruses are known to infect more than 660 insect species; most of them are 
belonging to the order of Lepidoptera, Diptera and Hymenoptera [7, 8]. Baculoviruses exhibit 

genetic variations among species and its isolates [9]. Although a large number of baculovi-

ruses in the nature, only a few have been well studied. To the best of our knowledge, a total 

of 78 fully sequenced genomes have been deposited in GenBank [10] and also several baculo-

viruses of whole genomes may soon be sequenced and deposited (Table 1). However, these 

published viral genomes represent only a small fraction and the genetic relationship among 

nucleopolyhedroviruses (NPVs) in the natural environment remains a puzzle.

Previously, Sanger sequencing was employed to sequence the viral genomic sequences 
cloned in plasmids. With the advances of sequencing technologies, next-generation sequenc-

ing (NGS) is becoming an important technology for large-scale viral genomic sequencing. 
The high cost of NGS and requirement of intensive bioinformatic analysis remain a hurdle 
for this application. In a word, NGS is an available tool to facilitate on the study of the genetic 
relationship of baculoviruses.

2. Identification of NPVs

Biochemical and biotechnology-based methods are the most common approaches employed 

to identify the NPVs. In most cases, more than one method is employed to compensate the 

pros and cons for each other. For example, restriction enzyme profiling of viral genomic DNA 
was used to reveal genetic variations among different isolates [97–99] and to distinguish 
one species from another between closely related viruses such as Rachiplusia ou (RoMNPV), 

AcMNPV, Trichoplusia ni (TnMNPV), Galleria mellonella (GmMNPV) [100, 101] and the MNPVs 
of Spodoptera frugiperda [102].

Polymerase chain reaction (PCR)-based methods were then established. These methods 

have been shown not only to be more sensitive and faster but also more reliable than restric-

tion enzyme analysis for classifying baculoviral species [4, 103–105]. Multiple genetic mark-

ers (e.g., egt, ac17, lef-2, polh, p35, pif-2) could be used for the identification of baculoviruses 
[7, 106–109]. The late expression factor 8 (lef-8), late expression factor 9 (lef-9) and polyhedrin 
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Genus Virus Virus  
Abbreviation

GenBank 

accession

Genome 

size (bp)

A C G T GC content ORFs Sequencing Assembler Reference

Alphabaculovirus 

(Group I)

Anticarsia 

gemmatalis 

MNPV

AgMNPV-2D NC_008520 132,239 36,623 29,338 29,513 36,765 44.5% 158 Sanger PHRED/ 

ALIGNER

[11]

AgMNPV-26 KR815455 131,678 36,411 29,288 29,405 36,574 44.6% 157 Roche 454 GS 
FLX

Geneious [12]

AgMNPV-27 KR815456 131,172 36,273 29,176 29,331 36,392 44.6% 157

AgMNPV-28 KR815457 130,745 36,185 29,018 29,242 36,300 44.6% 157

AgMNPV-29 KR815458 130,506 36,072 28,989 29,216 36,229 44.6% 157

AgMNPV-30 KR815459 130,741 36,195 29,011 29,173 36,362 44.5% 156

AgMNPV-31 KR815460 132,126 36,543 29,363 29,564 36,656 44.6% 158

AgMNPV-32 KR815461 131,494 36,341 29,234 29,384 36,535 44.6% 157

AgMNPV-33 KR815462 131,059 36,322 29,114 29,244 36,379 44.5% 157

AgMNPV-34 KR815463 131,543 36,435 29,233 29,383 36,492 44.6% 158

AgMNPV-35 KR815464 132,176 36,552 29,384 29,558 36,682 44.6% 159

AgMNPV-36 KR815465 131,216 36,293 29,127 29,270 36,526 44.5% 156

AgMNPV-37 KR815466 131,855 36,531 29,255 29,400 36,669 44.5% 156

AgMNPV-38 KR815467 130,740 36,194 29,012 29,172 36,362 44.5% 156

AgMNPV-39 KR815468 130,698 36,219 29,026 29,184 36,269 44.5% 157

AgMNPV-40 KR815469 132,180 36,542 29,409 29,583 36,646 44.6% 158

AgMNPV-42 KR815470 130,949 36,274 29,098 29,275 36,302 44.6% 157

AgMNPV-43 KR815471 132,077 36,539 29,369 29,528 36,641 44.6% 159

Antheraea  

pernyi NPV

AnpeNPV NC_008035 126,629 29,513 34,041 33,664 29,406 53.5% 147 Sanger ContigExpress9.1.0  
+ SeqMan5.0/ 
DNASTAR

[13]

Autographa 

californica  

MNPV

AcMNPV NC_001623 133,894 39,195 27,151 27,347 40,201 40.7% 156 Sanger GCG package [14]
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Genus Virus Virus  
Abbreviation

GenBank 

accession

Genome 

size (bp)

A C G T GC content ORFs Sequencing Assembler Reference

Autographa 

californica 

MNPV-WP10

AcMNPV- 

WP10
KM609482 133,926 39,205 27,157 27,346 40,199 40.7% 151 Illumina HiSeq 

2000
Newbler [15]

Bombyx 

mandarina  

NPV

BomaNPV NC_012672 126,770 37,358 25,398 25,601 38,413 40.2% 141 Solexa GA GENETYX-win 
Software  
+ DNASTAR

[16]

Bombyx mori 

NPV

BmNPV NC_001962 128,413 37,747 25,828 26,056 38,782 40.4% 143 Sanger DNASIS/PROSIS [17]

Catopsilia  

pomona NPV

CapoNPV KU565883 128,058 38,938 25,348 25,444 38,328 39.7% 131 Roche 454 GS 
FLX+

GS de novo  

assembler

[10]

Choristoneura 

fumiferana  

DEF MNPV

CfDEFMNPV NC_005137 131,160 35,474 30,110 29,993 35,580 45.8% 149 Sanger MacVector  

+ Lasergene/ 

DNASTAR

[18]

Choristoneura 

fumiferana  

MNPV

CfMNPV NC_004778 129,593 32,224 32656 32,261 32,452 50.1% 146 Sanger Gene Runner [19]

Choristoneura 

murinana  

NPV

ChmuNPV NC_023177 124,688 31,408 30,986 31,370 30,924 50.0% 147 Roche 454 CLC Genomics 

Workbench

[20]

Choristoneura 

occidentalis  

NPV

ChocNPV NC_021925 128,446 32,108 31,905 32,481 31,952 50.1% 148 Roche 454 GS 
FLX

SeqMan Pro  
Lasergene/ 

DNASTAR

[21]

Choristoneura 

rosaceana  

NPV

ChroNPV NC_021924 129,052 33,309 31,261 31,425 33,057 48.6% 149

Condylorrhiza 

vestigialis  

MNPV

CoveMNPV NC_026430 125,767 35,904 26,937 27,038 35,886 42.9% 138 Roche 454 Geneious + MIRA [22]

Dasychira 

pudibunda  

NPV

DapuNPV KP747440 136,761 31,022 37,008 37,454 31,277 54.4% 161 Illumina MiSeq Geneious [23]
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Genus Virus Virus  
Abbreviation

GenBank 

accession

Genome 

size (bp)

A C G T GC content ORFs Sequencing Assembler Reference

Ectropis  

obliqua NPV

EcobNPV NC_008586 131,204 40,683 24,676 24,708 41,137 37.6% 126 Sanger Genetyx-win [24]

Hyphantria  

cunea NPV

HycuNPV NC_007767 132,959 36,031 30,039 30,465 36,424 45.5% 148 RISA-384 DNASIS [25]

Lonomia  

obliqua MNPV

LoobMNPV KP763670 120,023 38,995 20,932 21,966 38,104 35.7% 134 Roche 454 GS 
FLX

Geneious [26]

Maruca vitrata 

MNPV

MaviMNPV NC_008725 111,953 34,041 21,669 21,563 34,680 38.6% 126 Sanger PHRED/PHRAP [27]

Orgyia 

pseudotsugata 

MNPV

OpMNPV NC_001875 131,995 29,463 36,477 36,295 29,758 55.1% 152 Sanger GCG package [28]

Philosamia  

cynthia ricini 

NPV

PhcyNPV JX404026 125,376 28,966 33,461 33,809 29,140 53.7% 138 Sanger N/A1 [29]

Plutella  

xylostella  

MNPV

PlxyMNPV NC_008349 134,417 39,437 27,303 27,396 40,281 40.7% 152 Sanger Lasergene/ 

DNASTAR
[30]

Rachiplusia ou 

MNPV

RoMNPV NC_004323 131,526 39,674 25,630 25,793 40,429 39.1% 149 Sanger Wisconsin  

package  

+ Lasergene/

DNASTAR

[31]

Thysanoplusia 

orichalcea NPV

ThorNPV NC_019945 132,978 40,022 26,388 26,142 40,426 39.5% 145 Solexa GA Edena [32]

Alphabaculovirus 

(Group II)

Adoxophyes 

honmai NPV

AdhoNPV NC_004690 113,220 36,505 20,025 20,328 36,362 35.6% 125 RISA-384 PHRED/PHRAP [33]

Adoxophyes 

orana NPV

AdorNPV NC_011423 111,724 36,306 19,404 19,694 36,320 35.0% 121 Sanger SeqMan II  
Lasergene/ 

DNASTAR

[34]

Agrotis ipsilon 

MNPV

AgipMNPV NC_011345 155,122 40,201 37,490 7,860 39,571 48.6% 163 Sanger Lasergene/ 

DNASTAR
[35]
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Genus Virus Virus  
Abbreviation

GenBank 

accession

Genome 

size (bp)

A C G T GC content ORFs Sequencing Assembler Reference

Agrotis segetum 

NPV

AgseNPV NC_007921 147,544 40,237 33,200 34,247 39,860 45.7% 153 Sanger Gap4 [36]

Agrotis  

segetum NPV B

AgseNPV-B NC_025960 148,981 40,490 33,698 4,371 40,422 45.7% 150 Roche 454 DNASTAR [37]

Apocheima 

cinerarium  

NPV

ApciNPV NC_018504 123,876 41,223 20,865 20,449 41,332 33.4% 117 Sanger SeqMan Pro 
Lasergene/ 

DNASTAR

unpublished

Buzura 

suppressaria 

NPV

BusuNPV NC_023442 120,420 37,568 22,152 22,142 38,558 36.8% 127 Roche 454 GS 
FLX

GS de novo 
assembler

[38]

Chrysodeixis 

chalcites NPV

ChchNPV NC_007151 149,622 45,151 29,304 29,060 46,107 39.0% 151 Sanger Gap4 [39]

Chrysodeixis 

chalcites SNPV
ChchSNPV- 
TF1-A

JX535500 149,684 45,090 29,324 29,133 46,137 39.1% 150 Roche 454 Newbler [40]

ChchSNPV- 
TF1-C

JX560539 150,079 45,146 29,384 29,096 46,447 39.0% 150

ChchSNPV- 
TF1-B

JX560540 149,080 44,989 29,152 28,987 45,952 39.0% 150

ChchSNPV- 
TF1-G

JX560541 149,039 45,075 29,136 28,869 45,958 38.9% 151

ChchSNPV- 
TF1-H

JX560542 149,624 45,162 29,285 29,034 46,143 39.0% 150

Clanis bilineata 

NPV

ClbiNPV NC_008293 135,454 41,557 25,560 25,558 42,779 37.7% 129 Sanger N/A [41]

Epiphyas 

postvittana  
NPV

EppoNPV NC_003083 118,584 35,221 24,287 23,956 35,120 40.7% 136 Sanger DNASTAR [42]

Euproctis 

pseudoconspersa 

NPV

EupsNPV NC_012639 141,291 41,736 28,455 28,549 42,551 40.3% 139 Sanger Wisconsin  

package  

+ GENETYX-win

[43]
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Genus Virus Virus  
Abbreviation

GenBank 

accession

Genome 

size (bp)

A C G T GC content ORFs Sequencing Assembler Reference

Helicoverpa 

armigera  

SNPV AC53

HaSNPV-AC53 NC_024688 130,442 39,121 25,389 25,606 40,326 39.1% 138 Ion Torrent 

PGM

CLC Genomics 

Workbench

[44]

Helicoverpa 

armigera  

MNPV

HearMNPV NC_011615 154,196 46,371 30,731 31,060 46,031 40.1% 162 Sanger SeqMan 5.0/
DNASTAR

[45]

Helicoverpa 

armigera  

NPV

HearNPV NC_003094 130,759 39,345 25,340 25,552 40,522 38.9% 137 Sanger Wisconsin  

package  

+ Lasergene/

DNASTAR

[46, 47]

Helicoverpa 

armigera NPV 

G4

HearNPV-G4 NC_002654 131,405 39,529 25,530 25,738 40,608 39.0% 135 Sanger PHRED/PHRAP [48]

Helicoverpa 

armigera NPV 

NNg1

HearNPV- 

NNg1

NC_011354 132,425 39,754 25,791 26,054 40,826 39.2% 143 RISA-384 DNASIS [49]

Helicoverpa zea 

SNPV
HzSNPV NC_003349 130,869 39,273 25,471 25,675 40,450 39.1% 139 Sanger Wisconsin  

package  

+ Lasergene/

DNASTAR

[50]

Hemileuca sp. 

NPV

HespNPV NC_021923 140,633 42,827 26,977 26,595 44,234 38.1% 137 Sanger Wisconsin  

package  

+ Lasergene/

DNASTAR

[51]

Lambdina 

fiscellaria NPV

LafiNPV NC_026922 157,977 45,363 34,616 34,350 43,648 43.7% 137 Roche 454 CLC Genomics 

Workbench

[52]

Leucania 

separata NPV

LeseNPV NC_008348 168,041 42,546 40,683 40,927 43,885 48.6% 169 MegaBACE 

1000
DNASTAR [53]

Lymantria  

dispar MNPV

LdMNPV NC_001973 161,046 34,229 46,226 46,331 34,260 57.5% 164 Sanger GCG package [54]
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Genus Virus Virus  
Abbreviation

GenBank 

accession

Genome 

size (bp)

A C G T GC content ORFs Sequencing Assembler Reference

Lymantria  

dispar  

MNPV-27

LdMNPV-27 KP027546 164,158 35,020 47,133 47,118 34,887 57.4% 162 Illumina  

ZMiSeq
CLC Genomics 

Workbench

[55]

Lymantria dispar 

MNPV-BNP

LdMNPV-BNP KU377538 157,270 38,788 39,579 39,567 39,336 50.3% 154 Illumina  

MiSeq
Geneious [56]

Lymantria  

dispar 

MNPV-2161

LdMNPV-2161 KF695050 163,138 34,855 46,648 46,812 34,823 57.3% 174 Roche 454 GS 
Junior

SeqMan NGEN 
Lasergene/

DNASTAR

[9]

Lymantria  

dispar 

MNPV-3029

LdMNPV-3029 KM386655 161,712 34,321 46,434 46,457 34,500 57.4% 163 Roche 454 Lasergene/

DNASTAR
[57]

Lymantria  

dispar 

MNPV-45

LdMNPV-45 KU862282 161,006 34,234 46,192 46,314 34,264 57.5% 155 Illumina CLC Genomics 

Workbench

[58]

Lymantria dispar 

MNPV-3054
LdMNPV-3054 KT626570 164,478 35,151 47,119 47,140 35,068 57.3% 174 Roche 454 GS 

Junior

LaserGene/

DNASTAR
[59]

Lymantria  

dispar 

MNPV-3041

LdMNPV-3041 KT626571 162,658 34,715 46,478 46,647 34,818 57.3% 178

Lymantria  

dispar MNPV- 

Ab-a624

LdMNPV- 

Ab-a624

KT626572 161,321 34,282 46,302 46,405 34,332 57.5% 176

Lymantria 

xylina MNPV

LyxyMNPV NC_013953 156,344 36,207 41,674 41,933 36,530 53.5% 157 Sanger PHRED/PHRAP [60]

Mamestra 

brassicae  

MNPV

MabrMNPV NC_023681 152,710 46,042 30,311 30,604 45,753 39.9% 159 Roche 454 GS de novo 
assembler

[61]

Mamestra 

configurata 
NPV-A

MacoNPV-A NC_003529 155,060 45,336 32,160 32,463 45,101 41.7% 169 Sanger Wisconsin  

package  

+ Lasergene/

DNASTAR

[62]

Biological Control of Pest and Vector Insects
176



Genus Virus Virus  
Abbreviation

GenBank 

accession

Genome 

size (bp)

A C G T GC content ORFs Sequencing Assembler Reference

Mamestra 

configurata 
NPV-B

MacoNPV-B NC_004117 158,482 47,831 31,504 31,953 47,194 40.0% 168 Sanger Sequencher 4.0 [63]

Orgyia 

leucostigma 

NPV

OrleNPV NC_010276 156,179 46,420 31,270 31,020 47,469 39.9% 135 Sanger Agencourt 

BioScience
[64]

Peridroma NPV PespNPV NC_024625 151,109 35,060 40,593 39,822 35,633 53.2% 139 Roche 454 CLC Genomics 

Workbench

[65]

Perigonia lusca 

single NPV

PeluNPV NC_027923 132,831 39,968 26,167 26,362 40,256 39.6% 145 Roche 454 Geneious unpublished

Pseudoplusia 

includens  

SNPV

PsinNPV NC_026268 139,132 41,843 27,452 27,210 42,609 39.3% 141 Roche 454 GS 
FLX

MIRA [66]

Spodoptera 

exigua MNPV

SeMNPV NC_002169 135,611 38,445 29,486 29,929 37,751 43.8% 139 Sanger Wisconsin  

package  

+ Lasergene/

DNASTAR

[67]

Spodoptera 

frugiperda 

MNPV virus

SfMNPV NC_009011 131,331 39,417 26,346 26,507 39,061 40.2% 143 Sanger Lasergene/ 

DNASTAR
[68]

Spodoptera  

litura MNPV

SpliMNPV- 
AN1956

JX454574 137,998 37,469 30,803 30,846 38,880 44.7% 132 Roche 454 GS 
Junior

LaserGene/ 

DNASTAR
[69]

Spodoptera  

litura NPV

SpltNPV NC_003102 139,342 39,180 29,691 29904 40,567 42.8% 141 MegaBACE1000 DNASIS  
+ DNASTAR

[70]

Spodoptera  

litura NPV II

SpltNPV-II NC_011616 148,634 40,998 33,210 33,671 40,755 45.0% 147 n/a N/A unpublished

Sucra jujuba 

NPV

SujuNPV KJ676450 135,952 41,395 26,157 26,399 42,001 38.7% 131 Roche 454 GS de novo  
assembler

[71]

Trichoplusia ni 

SNPV
TnSNPV NC_007383 134,394 40,601 6,256 26,117 41,384 39.0% 145 Sanger PHRED/PHRAP [72]
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Genus Virus Virus  
Abbreviation

GenBank 

accession

Genome 

size (bp)

A C G T GC content ORFs Sequencing Assembler Reference

Betabaculovirus Adoxophyes 

orana 

granulovirus

AdorGV NC_005038 99,657 33,077 17,098 17,275 32,207 34.5% 119 Sanger SeqMan II  
Lasergene/ 

DNASTAR

[73]

Agrotis segetum 

granulovirus

AgseGV NC_005839 131,680 41,892 25,179 23,953 40,656 37.3% 132 n/a n/a unpublished

Clostera 

anastomosis  

GV isolate 

Henan

ClasGV-A NC_022646 101,818 27,115 23,832 23,739 27,132 46.7% 122 Illumina GA SOAPdenovo [74]

Clostera 

anastomosis 

granulovirus-B

ClasGV-B KR091910 107,439 33,648 19,904 20,673 33,214 37.8% 123 Roche 454 GS 
FLX

Newbler [75]

Cnaphalocrocis 

medinalis GV

CnmeGV NC_029304 111,246 36,021 19,756 19,385 36,084 35.2% 118 Roche 454 GS 
FLX

GS de novo 
assembler

[76]

Cnaphalocrocis 

medinalis 

granulovirus

CnmeGV KP658210 112,060 36,295 19,904 19,529 36,332 35.2% 133 PacBio RS II HGAP2.2.0 [77]

Choristoneura 

occidentalis GV

ChocGV NC_008168 104,710 36,132 17,268 16,938 34,372 32.7% 116 Sanger PHRED/PHRAP [78]

Clostera 

anachoreta 

granulovirus

ClanGV NC_015398 101,487 28,188 22,554 22,523 28,222 44.4% 123 Illumina GA SOAPdenovo [79]

Cydia pomonella 

granulovirus

CpGV NC_002816 123,500 34,029 27,722 28,183 33,566 45.3% 143 Sanger Wisconsin  

package  

+ Lasergene/

DNASTAR

[80]

Cryptophlebia 

leucotreta 

granulovirus

CrleGV NC_005068 110,907 38,095 18,090 17,890 36,832 32.4% 128 Sanger Lasergene/ 

DNASTAR
[81]
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Genus Virus Virus  
Abbreviation

GenBank 

accession

Genome 

size (bp)

A C G T GC content ORFs Sequencing Assembler Reference

Diatraea 

saccharalis 

granulovirus

DisaGV NC_028491 98,392 32,133 17,032 17,337 31,880 34.9% 125 Roche 454 Geneious [82]

Epinotia 

aporema 

granulovirus

EpapGV NC_018875 119,082 35,524 24,984 24,403 34,171 41.5% 132 Roche 454 GS 
FLX

Newbler [83]

Erinnyis ello 

granulovirus

ErelGV NC_025257 102,759 31,707 19,440 20,324 31,288 38.7% 130 Roche 454 GS 
FLX

Geneious [84]

Helicoverpa 

armigera 

granulovirus

HearGV NC_010240 169,794 50,336 34,518 34,810 50,130 40.8% 179 Sanger SeqMan  
Lasergene/

DNASTAR

[85]

Plodia 

interpunctella 

granulovirus

PiGV KX1513952 112,536 n/a n/a n/a n/a n/a 123 Roche 454 GS 
Junior

SeqMan NGEN 
Lasergene/

DNASTAR

[86]

Phthorimaea 

operculella 

granulovirus

PhopGV NC_004062 119,217 38,306 21,127 21,431 38,353 35.7% 130 Sanger N/A [87]

Plutella 

xylostella 

granulovirus

PlxyGV NC_002593 100,999 30,252 20,546 20,546 29,655 40.7% 120 DSQ-1000 L GENETYX-win [88]

Pieris rapae 

granulovirus

PrGV NC_013797 108,592 36,619 17,863 18,168 35,942 33.2% 120 Sanger NN/A [89]

Pseudaletia 

unipuncta 

granulovirus

PsunGV NC_013772 176,677 53,572 34,993 35,311 52,799 39.8% 183 n/a N/A unpublished

Spodoptera 

frugiperda GV 

isolateVG008

SpfrGV NC_026511 140,913 38,131 32,852 32,288 37,642 46.2% 146 Roche 454 GS 
FLX

Newbler [90]
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Genus Virus Virus  
Abbreviation

GenBank 

accession

Genome 

size (bp)

A C G T GC content ORFs Sequencing Assembler Reference

Spodoptera  

litura 

granulovirus

SpliGV NC_009503 124,121 38,360 23,813 24,377 37,571 38.8% 136 Sanger N/A [91]

Xestia c-nigrum 

granulovirus

XcGV NC_002331 178,733 53,166 36,079 36,627 52,861 40.7% 181 Sanger DNASIS/PROSIS [92]

Gammabaculovirus Neodiprion 

abietis NPV

NeabNPV NC_008252 84,264 28,292 13,948 14,177 27,847 33.4% 93 Sanger PHRED/PHRAP [93]

Neodiprion 

lecontei NPV

NeleNPV NC_005906 81,755 27,741 13,596 13,640 26,616 33.4% 89 Sanger SeqMan  
Lasergene/

DNASTAR

[94]

Neodiprion 

sertifer NPV

NeseNPV NC_005905 86,462 29,158 14,444 14,745 28,115 33.8% 90 Sanger Sequencher 4.1 [95]

Deltabaculovirus Culex 

nigripalpus 

NPV

CuniNPV NC_003084 108,252 26,623 27,228 27,839 26,562 50.9% 109 Sanger CAP3 [96]

N/A: no information is available either in the paper or GenBank file.
The GenBank file with accession number KX1513952 is not available in GenBank website.

Table 1. List of sequenced baculoviruses genomes.
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(polh) were found in a highly conserved genes among baculoviruses [110], therefore, used 
as targets for degenerating PCR to characterize lepidopteran NPVs through the amplifica-

tion of the conserved regions from a variety range of baculoviruses [111–113]. The Kimura 
2-parameter (K-2-P) distances between the aligned polh/gran, lef-8 and lef-9 nucleotide 

sequences were described by Jehle et al. for baculoviruses identification and species clas-

sification [3]. The K-2-P nucleotide substitution model from aligned nucleotide sequences 
were determined by using the pairwise distance calculation of MEGA version 3.0 applying 
the Kimura 2-parameter model [114].

Due to the higher cost of NGS for viral genome sequencing, it is frequently required to com-

bine various approaches to cut down the cost but still ensure precision, e.g., PCR-based K-2-P 

analysis and NGS approach for identifying the potential new NPV species. Two NPVs were 
isolated from casuarina moth (Lymantria xylina) and golden birdwing larvae (Troides aeacus) 

collected from the fields, respectively, will be as representative cases for explanation in the 
following sections. We will focus on the characterization of these two potential new NPVs first 
and then the use of the sequences of three genes, lef-8, lef-9 and polyhedrin of two NPV candi-

dates was used to examine their taxonomic position by K-2-P analysis. Finally, we will focus 
on the genome sequencing technology and bioinformatic analysis on NPVs.

3. The identification of ambiguous NPVs

In this section, the discussion of molecular identification of NPV species based on K-2-P dis-

tance [3] is presented. Two new NPVs were used as examples in this study to reveal different 
issues regarding the classification of NPVs.

3.1. LdMNPV-like virus

The K-2-P distances, based on the sequences of three genes, between different viruses 
could mostly evaluate the ambiguous relationship among the NPVs. It was defined that 
distances less than 0.015 indicates that the two isolates are the same baculovirus species. 
On the other hand, the difference between two viruses is more than 0.05 should be consid-

ered as different virus species. For the distances between 0.015 and 0.05, complementary 
information is needed to determine whether these two viruses are of the same or different 
species [3, 9, 115].

A new multiple nucleopolyhedrovirus strain was isolated from casuarina moth, L. xylina 

Swinhoe, (Lepidoptera: Lymantriidae) in Taiwan. Since the polyhedrin sequence of this virus 

had high identity to L. dispar MNPV (98%), it was named LdMNPV-like virus [116]. To pre-

cisely clarify the relationship of three Lymantriidae-derived NPVs (LdMNPV-like virus, 

LdMNPV and LyxyMNPV [60]), the K-2-P of polh, lef-8 and -9 was performed. The distances 

between LdMNPV-like virus and LyxyMNPV exceeded 0.05 for each gene, polh, lef-8, or lef-9 

and also for concatenated polh/lef-8/lef-9 (Figure 1). For LdMNPV-like virus and LdMNPV, 
not only the single lef-8 and lef-9 sequences but also concatenated polh/lef-8/lef-9, the distances 

were generally lower than 0.015, but only the polh sequence distance (0.016) exceeded slightly 
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0.015 (Figure 1). These results strongly suggested that LdMNPV-like virus is an isolate of 

LdMNPV. However, as indicated by our previous report, the genome of LdMNPV-like virus 

is approximately 139 Kb, due to large deletions compared to that of LdMNPV [116]. To fur-

ther investigate the LdMNPV-like virus, a HindIII-PstI fragment (7,054 nucleotides) was 
cloned, sequenced and compared to the corresponding region of LdMNPV. Nine putative 

ORFs (including seven with full lengths and two with partial lengths) and two homologous 
regions (hrs) were identified in this fragment (Figure 2) and those genes, in order from the 5′ 
to 3′ end, encoded part of rr1, ctl-1, Ange-bro-c, LdOrf151, LdOrf-152-like peptides, Ld-bro-n, 

two Ld-bro-o and part of LdOrf155-like peptides (Table 2). The physical map of HindIII-PstI 

fragment of LdMNPV-like virus showed that the gene organization was highly conserved 

compared to the corresponding region of LdMNPV, although several restriction enzyme rec-

ognition sites were different. Additionally, the ld-bro-o gene in the LdMNPV-like virus was 

split into two ORF7 and ORF8, due to a point deletion in the downstream (+669) of ORF7 
and this deletion causes a frameshift that results in the formation of a stop codon (TGA) after 

73 bp. Afterward, ORF8 was overlapped with the last four base pairs (ATGA) in ORF7. The 
nucleotide identities of these genes were 96–100% homologous to those of LdMNPV, except 
ORF3 which was 68% homologous to Ange-bro-c and ORF7 and ORF8 showing low identities 
to Ld-bro-o (73% and 26%, respectively). The deduced amino acid sequences of these genes 
were similar to those of LdMNPV, with identities of 81–100%, except the similarity of ORF3 to 
Ange-bro-c was 70% and ORF7 and ORF8 also showed low similarity to Ld-bro-o (67% and 26%, 

respectively). These results imply that the LdMNPV-like and LdMNPV viruses are closely 

related but not totally identical.

Based on these results, LdMNPV-like virus has a genomic size significantly smaller than that 
of LdMNPV and LyxyMNPV and appears to be an NPV isolate distinct from LdMNPV or 

LyxyMNPV. Moreover, a gene, ange-bro-c of LdMNPV-like virus, was truncated into two ORF7 

Figure 1. Pairwise K-2-P distances of the nucleotide sequences of polh, lef-8 and lef-9 and concatenated polh/lef-8/lef-9 

fragments of LdMNPV-like virus, LyxyMNPV and LdMNPV. Modified data reproduced with permission of the Elsevier 
[116].
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and ORF8 and the sequence showed relatively low identity to that of LdMNPV (Table 2). 

Taken together, these results indicate that LdMNPV-like virus is a distinct LdMNPV strain 

with several novel features. Otherwise, LdMNPV-like virus and LdMNPV have distinct 

 geographical locations (from subtropical and cold temperate zones, respectively) and are 

Figure 2. Comparison of relative restriction sites and gene locations in the LdMNPV-like virus HindIII-PstI fragment 

with those of the corresponding LdMNPV fragment. Arrows denote ORFs and their direction of transcription. Gray 
boxes represent the homologous repeat regions (hrs). ORF homologues in the corresponding regions are drawn with the 
same patterns. Numbers below the arrows indicate the nine putative ORFs listed in Table 2.

No* LdMNPV-like virus LdMNPV§

Position† Length Name Identity (%)

nt aa nt aa

1 1 → 654 654 217 rr1 96 81

2 1063 → 1224 162 53 Ctl-1 100 100

3 1397 → 2473 1077 358 Ange-bro-c 68 70

4 2590 → 3596 504 168 LdOrf-151 99 98

5 3200 → 3952 753 251 LdOrf-152 99 99

6 4019 → 5026 1005 335 Ld-bro-n 93 91

7 5645 → 6391 744 248 Ld-bro-o 73 67

8 6388 → 6654 264 88 Ld-bro-o 26 26

9 6758 → 7054 297 99 LdOrf-155 100 100
†The directions of the transcripts are indicated by arrows.
§Reference from the genome of LdMNPV (Kuzio et al. [63])
*The nine potentially expressed ORFs are numbered in the order in which they occur in the LdMNPV-like virus genomic 
fragment from the 5′ to 3′ end. Two ORFs extend past this cloning site are printed in bold; only the N-terminus which 
contains 217 amino acids (654 nucleotides) and 99 amino acids (297 nucleotides) was examined.

Table 2. Comparison of the nucleotide (nt) and deduced amino acid (aa) sequences for putative ORFs in LdMNPV-like 
virus genomic fragment and their corresponding LdMNPV homologues.
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 distinct in genotypic and phenotypic characteristics and it also showed broad genetic varia-

tion among LdMNPV isolates [9].

3.2. An NPV isolate from T. aeacus larvae

A nucleopolyhedrosis disease of the rearing of the golden birdwing butterfly (T. aeacus) larvae 

was found and the polyhedral inclusion bodies (PIBs) were observed under light microscopy 

(Figure 3). PCR was performed to amply the polh gene by 35/36 primer set (Figure 3) to further 

confirm NPV infection [117, 118]. Therefore, this NPV was named provisionally TraeNPV. 
The three genes, polh, lef-8 and lef-9 of TraeNPV, were cloned and sequenced and then the 

K-2-P distances between the aligned single and concatenated polh, lef-8 and lef-9 nucleotide 

sequences were analyzed. The results indicated that TraeNPV belonged to the group I bacu-

loviruses and closely related to BmNPV group. Figure 4 showed that most of the distances 

between TraeNPV and other NPVs were between 0.015 and 0.050, whereas the distances for 
polh between TraeNPV, PlxyNPV, RoNPV and AcMNPV group exceeded 0.05. It should be 
noted that for all the concatenated polh/lef-8/lef-9 sequences, the distances were apparently 

much more than 0.015 and even to 0.05. These results left an ambiguous situation of this 
NPV isolate; so far, we could conclude that TraeNPV neither belongs to BmNPV group nor 
AcMNPV group. More complementary information is needed to determine the viral species 

of TraeNPV.

In summary, K-2-P distances were employed to further clarify the relationship between closely 

related NPVs. We discussed two different cases analyzed by K-2-P. From the sequence data 

Figure 3. Identification of unknown NPV. (A) Light microscopy observation of liquefaction from the cadavers of T. aeacus 

larvae, scale bar = 20 μm. Black arrows indicated the polyhedral inclusion bodies (PIBs). (B) PCR detection of partial 
polyhedrin gene, M = 100 bp marker, (+) = positive control and (−) = negative control.
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of LdMNPV-like virus, results strongly supported that LdMNPV-like virus is an isolate of 

LdMNPV. Since the RFLP profiles of the LdMNPV-like virus showed the genome of this isolate 
was deleted tremendously, this deletion also showed coordinately in our partial sequences of 

genomic DNA fragments and the results of K-2-P. The K-2-P distances between TraeNPV and 

BmNPV or AcMNPV were among 0.05 and 0.015. Anyway, we cannot define that this virus is 
a new species with the evidences of RFLP, part gene sequences and K-2-P results; therefore, it 
is necessary to get more data, especially the whole genome sequence of TraeNPV.

4. The importance of whole genome sequencing on baculoviruses

The rapidly growing mass of genomic data shifts the taxonomic approaches from traditional 

to genomically based issues. The K-2-P distance supported LyxyMNPV as a different viral 
species (K-2-P values = 0.067–0.088), even though they were still a closely relative species phy-

logenetically. But, “how different did LyxyMNPV and LdMNPV?” become another question. 
Thus, the whole genome sequence could provide deep information of this virus. For exam-

ple, as the genomic data revealed, the most part of the ORF (151 ORFs) between LyxyMNPV 
and LdMNPV was quite similar while still have several different ORF exhibits or absent in 
LyxyMNPV, e.g., two ORFs were homologous to other baculoviruses and four unique ORFs 
were identified in the LyxyMNPV genome and LdMNPV contains 23 ORFs that are absent 
in LyxyMNPV [60]. Besides, there is a huge genomic inversion in LyxyMNPV compared to 
LdMNPV [60]. Another example is Maruca vitrata NPV (MaviNPV). All of the K-2-P distance-

Figure 4. Pairwise Kimura-2-parameter distances of the nucleotide sequences of lef-8, lef-9 and polh and concatenated 

polh/lef-8/lef-9 fragments of TraeNPV and 12 viruses.
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supported MaviNPV is quite different from other NPVs (K-2-P values = 0.092–0.237) (Figure 6). 

While the gene content and gene order of MaviNPV were highly similar to that of AcMNPV 

and BmNPV, through the genomic sequencing, it showed the 100% collinear to AcMNPV [27] 
and MaviNPV shared 125 ORFs with AcMNPV and 123 with BmNPV. The detailed infor-

mation could only be captured after whole genome sequencing rather than  partial gene 

Figure 5. Pairwise Kimura-2-parameter distances of the nucleotide sequences of lef-8, lef-9 and polh and concatenated 

polh/lef-8/lef-9 fragments of MaviNPV and 12 viruses.

Figure 6. Common bioinformatic workflow for genome assembly and analysis.
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sequences or other phylogenetic analyses. Sometimes, usage of K-2-P data may raise other 
problems, which we mentioned above; it seems LdMNPV-like virus and LdMNPV were the 
same viral species. While through the restriction enzyme profile and partial genomic data, we 
could identify that there are some deletion fragments and different gene contents within the 
LdMNPV-like virus genome. For the TraeNPV, most of the K-2-P values were ranged from 
0.015 to 0.05; thus, whole genome sequencing could be one of the best ways to figure out this 
ambiguous state. The more detailed information we can get, the more deep aspect we can 

evaluate, e.g., the taxonomic problems and further evolutionary studies.

5. Genomic sequences of NPVs

5.1. Genome sequencing technology

Previous NPV genome sequencing employed three types of approaches: plasmid clone (or 

template) enrichment, NGS, or a combination of the two methods. Initially, the most com-

mon approach used restriction enzymes to fragmentize the viral genome into smaller pieces. 

Plasmid-based clone amplification was then employed to enrich templates for sequencing. 
Later, conventional Sanger sequencing and/or next-generation sequencing was employed for 
genome assembly. In addition, purely high-throughput sequencing-based approach from iso-

lated viral genome was also employed [9, 15]. To date, next-generation sequencing technology 

plays an increasingly important role on viral genome assembly. Previous researches showed 

that Illumina HiSeq has superior performance in yield than 454 FLX [119–121]. Baculoviruses 
usually contain a novel homologous region (hr) feature, which comprises a palindrome that 

is usually flanked by short direct repeats located elsewhere in the genome [122]. Thereby, the 
shorter single-read length of Illumina sequencers might lead the difficulty during genome 
assembly. Further application of paired-end read sequencing method could certainly provide 
alternative for sequencing overlap the hrs in baculoviral genomes.

5.2. Bioinformatic analysis

Construction of a complete genome map is essential for future genomic investigations. 

Besides sequencing, bioinformatic approaches are also required for determining the order 

and content of the nucleotide sequence information for the viral genome of interest. In gen-

eral, bioinformatic approaches can be separated into three consecutive steps: genome assem-

bly, genome annotation and phylogenetic relationship inference (Figure 5).

5.2.1. Genome assembly

Sequence reads are the building blocks for genome sequencing and assembly. Thus, quality 
control of sequence reads plays a key role in determining the fidelity of a genome assembly. 
The procedure of read quality checking includes, but not limited to, the removal of unrelated 

sequences such as control sequences, adaptors, vectors, potential contaminants, etc., trimming 

of low-quality bases and selection of high-quality reads. The control sequences (e.g., PhiX con-

trol reads in Illumina sequencers, control DNA beads in Roche 454 sequencer) are routinely 
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used by sequencer manufacturers to evaluate the quality of each sequencing run. There are soft-

ware applications made available to be utilized to identify and remove control sequences and 

low-quality bases. For NGS, sequencing adapters could be identified in reads if the fragment 
size is shorter than read length. Cutadapt [123] was implemented to trim the adapter sequences. 
Ambiguous bases or bases with lower-quality values can be removed by PRINSEQ [124] from 
either 5′ or 3′ end. NGS QC Toolkit [125] has programmed module to select high-quality reads. 
If paired-end technology was applied, paired-end reads could be joined by PANDAseq [126], 
PEAR [127], FLASH [128] and COPE [129], if a fragment size is shorter than read length.

Genome can be assembled from quality paired-end or single-end reads with de novo or ref-

erence-guided approaches. There are two standard methods known as the de Bruijn graph 
(DBG) approach and the overlap/layout/consensus (OLC) approach for de novo genome 

assembly. The idea of de Bruijn graph is to decompose a read into kmer-sized fragments 
with sliding window screening. Each kmer-sized fragment will be used to construct graph 

for longer path (e.g., contigs). Then, long-range paired reads can be utilized to build scaffolds 
from contigs with given insert size and read orientation. SOAPdenovo [130] is one of the 
DBG assembler that has an extreme speed by utilizing threads parallelization [131]. The OLC 
assembler starts by identifying all pairs of reads with higher overlap region to construct an 

overlap graph. The contig candidates are identified by pruning nodes to simplify the overlap 
graph. The final contigs are then output based on consensus regions. Additionally, Newbler 
[132] is a widely used OLC assembler distributed by 454 Life Sciences.

Reference-guided genome assembly is another solution for genome assembly if the genome of 

a closely related species is already available. For viral genome assembly, closely related spe-

cies can be identified by mapping quality reads against sequenced viral genomes deposited 
in GenBank (http://www.ncbi.nlm.nih.gov/genome/viruses/) and select top-ranked species 
as the reference genome(s) to facilitate the assembly of the genome of interest. Reference-

guided assembler is also called mapping assembler that the complete genome is generated 

by mapping quality reads with variant (single nucleotide polymorphism (SNP), insertion and 
deletion) identification. For example, MIRA (a computer program) [133] can create a refer-

ence-based assembly by detecting the difference between references.

During the assembly process, gap filling (or gap elimination) is conducted to resolve the 
undetermined bases either by bioinformatics or other approaches such as PCR and additional 

sequencing. Bioinformatic approaches normally use paired-end reads to eliminate gaps. PCR 

coupled with Sanger sequencing is a common approach to finalize the undetermined regions 
[134]. In addition, Sanger sequencing can also be used for genome validation and homologous 
region (hr) checking.

5.2.2. Genome annotation

Annotation determines the locations of protein-coding and noncoding genes as well as the func-

tional elements in the genome. Glimmer [135], N-SCAN [136], NCBI ORF Finder (https://www.
ncbi.nlm.nih.gov/orffinder/), GeneMark [137] and VIGOR [138] are gene prediction tools for 
identifying protein-codivng genes in the genome. Repetitive sequence regions were detected by 
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RepeatMasker (http://www.repeatmasker.org/). Viral microRNA candidate hairpins can be pre-

dicted by Vir-Mir [139]. The circular map of the viral genome was generated by CGView [140].

5.2.3. Phylogenetic analysis

Phylogenetic relationship inference reveals the evolutionary distances of various, especially 

closely related, species. MEGA [141] was the most widely used software suite that provides 

the sophisticated and integrated user interface for studying DNA and protein sequence 

data from species and populations. Alternatively, phylogenetic relationships among species 

based on the complete viral genomes or functional regions could also be estimated with 

Clustal Omega [142]. Clustal Omega was employed for multiple sequence alignment on the 

complete genomes and DNA fragments, respectively. ClustalW [143] was employed to do 
file format conversion of multiple sequence alignment. Ambiguously aligned positions were 
removed by using Gblocks version 0.91b [144, 145] under default settings. Phylogenetic tree 
inference could be constructed by hierarchical Bayesian method (e.g., MrBayes [146]) or max-

imum likelihood method (e.g., RAxML [147]) to estimate phylogeny [148]. Tree was depicted 

with FigTree version 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). The divergence times 
of different species were estimated using BEAST version 1.8 or version 2.3.2 [149]. In addi-
tion, pairwise sequence identity was determined by BLASTN (NCBI BLAST Package) [150] 
to analyze sequence-level variation. Also, whole genome pairwise alignment can be done by 

LAGAN [151]. CGView comparison tool (CCT) [152] was used to represent the block similar-

ity among different species. Mauve [153], one of the multiple genome alignment tools, can 
help us to visualize the consensus sequence blocks among distant-related species.

Up to 78 baculoviruses have been reported; most of baculoviruses have a narrow host range, 
only infect their homogenous hosts, such as BmNPV, SpltNPV, SpeiNPV, MaviNPV and 
so on; LyxyNPV can infect LD and LY cell lines, while AcMNPV has a wide host range; at 
least 40 hosts in vitro have be found. Therefore, a new baculovirus isolate needs to define its 
taxonomic position and to analyze its phylogenetic relationship with a known baculovirus 

member.

6. Conclusion

With the accomplishment of the sequencing technologies, more NPV genomes were sequenced. 

So far, more than 78 baculoviruses have been fully sequenced and based on the sequencing 
methods, we can divide into two parts, one is sequencing by Sanger method and another is 
sequencing by NGS method (Table 1). Among these sequenced genomes, 35 genomes were 
sequenced by Sanger method and 43 genomes were sequenced by NGS methods. It could be 
expected that whole genome sequencing by NGS method would get much common in this 
field; however, the upcoming metagenomic era is imperative that one remains aware of and 
careful about the shortcomings of the information presented about the organisms that are 

being sequenced and that these databases can oversee neither the correctness of the organis-

mal identifications nor of the sequences entered into the databases.
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The natural environment harbors a large number of baculoviruses. However, only a few of 

them have been sequenced and studied. A lot more information related to the genetic relation-

ship of NPVs in the natural environment is needed to facilitate our understanding of these 

creatures. Though NGS technology has become an important technology for viral genomic 
sequencing, high cost of NGS for whole viral genome sequencing remains a barrier. To reduce 
the cost, it is necessary to evaluate whether the newly collected NPVs are suitable for whole 

genome sequencing or not. Alternatively, biochemical approaches and biological tools, such as 

PCR-based K-2-P analysis, can be good options to facilitate the process. As expected, all these 

applications are anticipated to help us reveal the genetic information of unknown species, so 

that more detailed insights of their genetic makeup and functional composition can be obtained 

to help us better understand the nature of these viruses. By using the powerful sequencing 
technique, the metagenomic progress (e.g., transcriptome analysis of insect host), new patho-

gen species in the natural environment would be easier to be found in the future. With the 

increase of new baculoviral genomic data, improvement of bioinformatic analysis methods and 

further validation of biological information would generate a group of genes, which connect to 

the viral host range and solve the contradiction situation in the baculoviral genomics.
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